
Evolutionary Prediction Games

Jeffrey A. Barrett

Michael Dickson

Gordon Purves

Abstract. We consider an extension of signaling games to the case of prediction, where

one agent (‘sender’) perceives the current state of the world and sends a signal. The second

agent (‘receiver’) perceives this signal, and makes a prediction about the next state of the

world (which evolves according to stochastic but not entirely random ‘laws’). We suggest

that such games may be the basis of a model for the evolution of successful theorizing

about the world.

1. Introduction.

Recent work on signaling games has demonstrated that they can be used to model a

number of phenomena, far beyond Lewis’ (1969) original target of the successful

communication via conventional meaning. This paper explores a closely related type of

game, prediction games, as a rudimentary model of the emergence of successful theorizing

about the world in terms of a similarly conventional signaling system.

In a simple iterated signaling game there are N states (sometimes referred to as

states of the world, sometimes as states of the first player), chosen randomly (typically

from a stationary, often flat, distribution) in each round of the game. The first player (the

‘sender’) produces a ‘signal’ chosen from a set of S many potential signals according to a

distribution determined by the state. The second player (the ‘receiver’) then performs an

‘act’ chosen from a set of A many potential acts according to a distribution determined by

the signal. (In other words, receiver ‘knows’ the signal, but not the state.) We say that

signals and acts are determined by ‘dispositions’, which are sets of N many (for sender) or



S many (for receiver) probability distributions over the signals (for sender) or acts (for

receiver). In the games we considered, these distributions are initially flat. There is a

utility measure over states, signals, and acts for both sender and receiver.

The games that we consider here are cooperative—maximizing expected utility for

one player entails maximizing it for both. Indeed, the games we consider have a stronger

property, namely, that the payoffs to sender and receiver are always the same. (This

condition could be weakened considerably, however, with no change in the analysis.)

Finally, sender and receiver are given the capacity to learn, in the following sense.

After each iteration, if the payoff to sender and receiver is positive, then both receiver and

sender are ‘reinforced’, meaning that their distributions are modified so that they are more

likely to repeat their respective actions (signal for sender, act for receiver) under the same

circumstances (state of the world for sender, signal for receiver). We discuss the nature of

this ‘learning algorithm’ in detail below. It is sufficient for now to note that under a

reasonable choice for this algorithm, in the simplest case (N = S = A = 2), both sender

and receiver evolve (with probability 1) a completely efficient signaling system, which is to

say that their distributions are given by one of the two signaling systems in Figure 1. In

that figure (and henceforth) the rows of the matrices are the distributions for the various

inputs. Hence, for example, in 1(a), if the state of the world is 1 (where we simply label the

states 1, 2, . . . , N , and likewise for the signals and acts), then the first row of sender’s

matrix is used to determine a signal—i.e., sender will produce signal 1—and then, of

course, receiver will perform act 1.

Sender Receiver Sender Receiver(
1 0
0 1

) (
1 0
0 1

) (
0 1
1 0

) (
0 1
1 0

)

(a) (b)

Figure 1. Signaling systems for N = S = A = 2.
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Although we use suggestive terms such as ‘sender’, ‘signal’, and so on, they are to

be taken as defined entirely by the formal rules governing their behavior. In other words,

for example, there is no (presumed) sense in which ‘senders’ understand what they are

doing when they ‘send a signal’, nor in which they ‘intend to communicate’. The entire

process is mechanical and could be redescribed in terms of stimuli and responses. We

sometimes use less mechanistic terminology only for ease of exposition.

A learning algorithm that (provably) produces the kind of signaling system noted

above in the case N = S = A = 2 is simple reinforcement learning, in which each agent has

a matrix of ‘propensities’ (each represented as a positive integer), each initially set to the

same value. When the pair is successful, the size of the propensity corresponding to the

performed action (the input and output) is increased by 1 (or some other fixed number).

Probabilities are determined from these propensities in the obvious way (divide the

propensity by the sum of all propensities in its row). This algorithm is familiar as the

‘basic model’ used by Roth and Erev (1995), who discuss its pedigree and relation to

evolutionary dynamics.

In the remainder of this paper, we will explore some modifications of this basic

game, leading up to the ‘prediction game’, where the pair succeeds only if the receiver’s act

matches the next state of the world. (Of course, the state will need to evolve in some

law-like fashion for there to be any hope of more than purely random success.) In section 2

we discuss some relevant extensions and modifications of the standard signaling game

described above. We then (section 3) discuss prediction games, and present some results

from computer simulations. The results support the very general idea that emergence of

the ability to theorize about the world may be modeled by a prediction game, and we

discuss this point in section 4.
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2. Extensions of Signaling Games.

It is not difficult to imagine myriad extensions and modifications of the basic signaling

game sketched above. Here we consider just those that will show up in our present study of

prediction games.

2.1. Generalizations.

First, there are a number of points where the model may be generalized. One could allow

that N 6= S 6= A. Moreover, one could allow that senders do not react to all world-states,

i.e., there are more world-states than the sender can ‘see’, or that receivers do not react to

all signals, i.e., the sender has more signals than the receiver can ‘hear’. (Denote the

number of states that the sender can discern by Ñ and the number of signals that the

receiver can discern by S̃.) As we will have occasion to notice in a moment, these

modifications have surprisingly little impact on the basic result noted above. Of course, if

the pair does not have sufficient resources to develop a fully successful signaling system,

then they will not do so, but in general they may (and often do) come as close as they

logically can. For example, with the basic learning model described above and with N = 4,

S = 3, and A = 3, a pair whose sender can see all four world-states (Ñ = 4) and whose

receiver can see all three signals (S̃ = 3) is likely to evolve dispositions such as those in

Figure 2, where each number in the matrices is a probability (derived, of course, from the

propensities).

Sender Receiver
1 0 0
0 0 1
0 1 0

1/3 1/3 1/3


 1 0 0

0 0 1
0 1 0



Figure 2. Evolved dispositions in the case N = 4, S = 3, A = 3, Ñ = 4, S̃ = 3.
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This pair will never get things right when the world-state is 4 (the receiver cannot perform

act 4), but are nonetheless as successful as they could be given the situation. (In section

2.3 we will develop a few ideas to make such statements more precise. The numbers in

Figure 2 are made up only to illustrate a point. We will discuss the actual results of actual

simulations later.)

Senders and receivers might not be completely accurate in what they see and

hear—instead of seeing the world-state every time, a sender might occasionally see some

‘nearby’ state. Below, we implement this idea by assigning to senders a ‘state perception

standard deviation’, ∆σ, so that the state that actually serves as input to the sender’s

disposition is chosen according to a normal distribution centered at the actual world-state,

with standard deviation ∆σ (then rounded to the nearest whole number). For this and

similar determinations, the state space has the topology of a ring. A similar idea can be

applied to the receiver by choosing a ‘signal perception standard deviation’, ∆ρ.

As we noted above, there are numerous other modifications one might wish to

consider. One could allow senders and receivers to ‘change partners’ from time to time,

perhaps as they move around on a grid. Or perhaps receivers can hear more than one

sender at a time. Perhaps one and the same agent could be both sender and receiver. And

so on. Many of these (and other) extensions are also worthy of study in the context of

prediction games, but here we restrict ourselves to those already noted, in large part to

demonstrate the robustness of the results under the introduction of these complications.

2.2. Learning Algorithms.

Let sender’s propensity on round t of the game, for output s on input n, be a positive

integer, denoted σns(t). Similarly, receiver’s propensity on round t of the game for output a

on input s is a positive integer, ρsa(t). (σ(t) and ρ(t) are thus matrices, examples of which

we saw above.) We always presume that for some integer, B, σns(0) = ρsa(0) = B for all n,
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s, and a. The basic learning algorithm mentioned above says that

σns(t+ 1) =


σns(t)− l on failure

σns(t) + k on success

ρns(t+ 1) =


ρns(t)− l on failure

ρns(t) + k on success

(1)

for some positive integer, k, and l = 0. As we said above, probabilities are derived from

these propensities by

Prσ(s|n)(t) =
σns(t)∑
i σni(t)

Prρ(a|s)(t) =
ρsa(t)∑
i ρsi(t)

.

(2)

In addition to the ‘reward’ k, one might wish to impose a ‘penalty’ for failure, which we do

by choosing l > 0. With penalties, it is possible for a propensity to become negative, which

would of course pose a problem for (2). In general, then, we specify a minimum size for any

propensity, which we will always set to 1. Another reasonable choice is 0. However, the

latter choice does preclude the possibility of ‘unlearning’ an unsuccessful strategy.1

Learning with both rewards and penalties tends to be slightly more successful (in the

precise senses discussed below) than it is with only rewards.

In addition to adding penalties to the basic learning algorithm, we consider two

further dynamical modifications to agents’ dispositions, very similar to what Roth and

Erev (1995) call ‘persistent local experimentation’ and ‘gradual forgetting’.2

In our models, local experimentation is implemented by associating standard

deviations, xσ and xρ, with senders and receivers, respectively. An agent first chooses a

provisional output according to the relevant distribution, but the actual output is then

1In actual simulations, with reasonable choices for the other parameters, the difference between these two
choices is small but noticeable.

2They also introduce ‘extinction in finite time’, which forces probabilities to go to zero below some
cutoff. We do not consider this modification here, in part because it is often effectively nullified by local
experimentation in many of the cases we care about.
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chosen according to a normal distribution centered on the provisionally chosen output,

with the given standard deviation. As before, we round the choice to the nearest whole

number and mod by the number of outputs.3

Gradual forgetting allows one to maintain the overall magnitude of the propensities

at a reasonable maximum in a natural way.4 Doing so ensures that even after a long time,

present success or failure effects dispositions about the same as medium-term successes or

failures did. (On the other hand, early successes and failures still have a much larger

influence on dispositions. This situation is desirable, because it means that the ‘learning

curve’ is very steep in the early stages of the game, allowing agents very quickly to evolve

successful dispositions.5) We implement forgetting by multiplying each propensity by a

factor, φ, every F rounds of the game.6 Of course, 0 < φ ≤ 1, with equality on the right if

there is no forgetting. Forgetfulness can improve success by giving agents who early on

made some bad choices a chance to unlearn what they think they know. Without

forgetfulness, the size of the propensities can grow so large that before long, even a long

string of failures cannot affect the agent’s disposition appreciably. (The fact that agents

tend to evolve decent signaling systems even with φ = 1 is a testament to the rarity of

evolving ‘badly’ in the early stages.)

2.3. Measures of Success.

What do we mean by ‘success’? There are (at least) three questions that we might ask

about sender-receiver pairs evolving according to the dynamics given above.

3Our implementation is thus not quite that of Roth and Erev. In their model, ‘experimentation’ occurs
only when the provisional output has high probability, and then only ‘nearby’ outputs have a chance of
becoming the true (‘experimental’) output. In our model, experimentation is always a possibility and all
outputs have non-zero chance of becoming the experimental output (though for small standard deviations,
only nearby outputs have an appreciable chance of being selected). These differences do not appear to lead
to substantially different (or even noticeably different) behavior, for reasonable choices of xσ and xρ.

4Keeping the magnitude down has an additional benefit: the probabilities never get so small that one
needs to worry about rounding errors due to limits in the precision of the computer.

5In fact, the situation is more complicated. Very early penalties and rewards also tend not to have a big
influence on agents’ dispositions. See note 9 for why.

6In Roth and Erev’s models, F = 1. Allowing F > 1 and adjusting φ accordingly yields nearly identical
results, and allows simulations to run faster.
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First: How quickly (if ever) do they become ‘stable’, i.e., their dispositions do not

change much over time? To address this question, we need a measure of the ‘difference’

between the agent’s disposition before and after it is updated in response to success or

failure. There is more than one way to skin that cat, but for our purposes the differences

among them do not appear to be significant. We take the difference between two

dispositions to be the mean Kullback-Liebler (KL) divergence (the relative entropy)

between the rows of the dispositions. For two dispositions, Pr(i|j) and Pr′(i|j) (i and j are

indices to the outputs and inputs of the disposition respectively), which we can conceive as

distinct sets (indexed by j) of conditional probability measures, the ‘difference’ between

them is thus

d[Pr(i|j),Pr′(i|j)] =
∑
j

∑
i

[
1

J
Pr(i|j) log2

(
Pr(i|j)
Pr′(i|j)

)]
, (3)

where J is the number of rows in the dispositions.7 Finally, by choosing some threshold, τ ,

we can say that a disposition is ‘stable’ if the KL-divergence between the disposition at t

and t+ 1 remains below this threshold for ‘sufficiently long’ (another number, T , that we

must choose). Figure 3 may give the reader some sense of the numerics.

Pr1 Pr2 Pr3
0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97




0.96 0.02 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97




0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25



Figure 3. Mean KL-divergence of two pairs of 4x4 dispositions. d(Pr1,Pr2) ≈ 0.0011 (the
only difference between them appears in the first row), and d(Pr1,Pr3) ≈ 1.7581.

In practice, it is often too time-consuming to calculate the KL-divergence between

the dispositions at t and t+ 1 and instead we choose some positive integer, Π—the

‘period’—and calculate the KL-divergence between the dispositions sampled at intervals Π,

saying that an agent’s disposition is ‘stable’ if this KL-divergence is below τ for T periods

7The KL-divergence is not a metric on probability measures. Nonetheless, it is a convenient and simple
‘measure’ of how close two probability measures are, and the functional in (3) gives one a pretty good handle
on how ‘stable’ a disposition is. I.e., if it is small for a while, then the disposition is stable.

8



(where T is of course positive). A similar procedure will be used to check on the evolution

of the other two measures, mentioned below. This procedure can hide very short term

(occurring over intervals less than Π) fluctuations, but longer-term trends (which are our

main concern here) are faithfully captured by these measures.8 Note that an agent may be

‘stable’ at one stage of the simulation, and ‘unstable’ at another—its disposition could be

stable for a while, and then become unstable, either randomly or in response to some

changes in the conditions of the simulation.9

Our next question concerns accuracy: How well do a pair’s dispositions get the

receiver’s act to match the state of the world? And how does this accuracy evolve as the

agents’ dispositions evolve? It is a simple matter to calculate the overall probability that a

pair will be successful on any given round of the game, given their dispositions:

∑
n∈{1...N}

∑
s∈{1...S}

1

N
Prρ(n|s)Prσ(s|n). (4)

(Note that if the world-states are not chosen from a flat distribution then we would replace

the factor 1/N with their distribution.10) In the end, we are interested in the mean

accuracy of all agents, i.e., we take the mean of (4) over all pairs. We report accuracy as a

probability, expressed as a percentage between 0 and 100.

Third, how ‘efficient’ is a given pair? One natural understanding of ‘efficiency’ is

that a pair is efficient if and only if it does the best it can to associate, deterministically, to

each act of the receiver a state of the world. Consider, as an example of inefficiency, the

8A more fine-grained notion of stability can still, of course, be pursued by setting Π = 1, and in this case,
one finds that once a disposition hits long-term stability, the short-term fluctuations are indeed generally
small.

9When the number of states, N , is large, and the initial size (B) of the propensities is large relative to k
and l, agents might, by our criteria, become ‘artificially’ stable in the early stages of the simulation, because
the denominator in (2) is very large relative to the size of the individual propensities, which themselves
change a relatively small amount per reward or penalty. After a while, however, the dispositions typically
become unstable, before much later becoming stable again.

10In the dynamical case that we consider below, the world-states are indeed not chosen from a flat dis-
tribution, but instead according to a dynamical law. The condition in that case is that over long stretches
of time, the states appear with equal frequency. This condition holds in all of the dynamical laws that we
consider.
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pair of distributions in Figure 4.

Sender Receiver
1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1




1 0 0 0
0 0 1 0

1/3 1/3 1/3 1/3
0 0 0 1



Figure 4. An inefficiency pair of dispositions.

It represents a commonly encountered inefficiency (called ‘partial pooling equilibrium’) in

which the pair is inefficient because it fails to associate any state to the act 3. Note that

the ‘blame’ here appears to fall squarely on the sender. The receiver is ‘doing the best it

can’ given the sender’s refusal to use signal 3. The receiver ‘hears’ 2 when the world-state

is both 2 and 3, and the best pure strategy that the receiver can evolve is to choose one or

the other and always do that act in response to signal 2. The receiver could also have

chosen a mixed strategy on input 2 (sometimes choosing act 2, sometimes act 3) without

loss of success (accuracy). Contrast this pair with the one in Figure 2. The latter is

efficient (by our definition), despite the persistent failure on state 4. Given their limited

resources, they are doing ‘as well as they can’—they are not ‘wasting’ any signals.

Rather than simply classifying pairs as efficient or not, it is helpful (especially in

situations where full efficiency is unlikely, such as when N , S, and A are large) to take a

more fine-grained approach. Let the fine-grained efficiency for a pair be the number of acts

that are deterministically associated to states, divided by the total number that could be,

by this pair, given the parameters N , S, A, Ñ , and S̃.11 This measure is especially

pertinent in cases where full efficiency is very unlikely.

In practice, because we do not allow propensities to go to zero (recall that the

11This measure is not perfect. Consider the pair from Figure 4. Their fine-grained efficiency is 75%, but
if the receiver had played a mixed strategy on state 2—arguably just as efficient a use of resources—their
efficiency would have been 50%. However, the complexity of implementing a better definition of fine-grained
efficiency is not worth the small gain—in the situations that we consider, agents very rarely end up playing
mixed strategies when they can play a pure strategy, and we are only after a very general picture of overall
efficiency. We can just assume that the actual mean fine-grained efficiency (i.e., properly accounting for
mixed strategies) across a large group of agents is ever so slightly larger than what we report here.
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minimum size of any propensity is 1), we cannot require complete determinism for

efficiency. Instead, we choose some threshold, ε, and require that the probability be greater

than 1− ε. The statistic of interest is the percentage of pairs that evolve efficient signaling

systems (and thus avoid unnecessary partial pooling equilibria), or in some cases

(especially when partial pooling is extremely common) the mean fine-grained efficiency.

2.4. Examples.

We now consider some specific examples and relate the results of their simulation,12 for

later comparison with prediction games. In these examples, we declare an agent to be

‘stable’ if the mean KL-divergence between its current disposition and its previous

disposition is below τ = 0.0025 for T = 10 periods of Π = 100 rounds each, and we report,

for each simulation, the percentage of agents that are stable by the end. ‘Accuracy’ is the

mean over all pairs in the simulation. Efficiency is fine-grained efficiency. Each result

reported below is the result of allowing the game to run until the three quantities of

interest have ‘settled down’.13

We report the results of a simple game in Table 1.14 Stab1 refers to the mean time

12Simulations were done in the NetLogo platform (http://ccl.northwestern.edu/netlogo/), with two of us
independently coding the simulations and comparing results. Simulations are run on multiple pairs only to
save computing time—in these simulations, the pairs ‘know nothing’ of one another (though they do see the
same random sequence of world-states, so it is important to run the simulations multiple times to confirm
the general results).

13The fine print: Mean accuracy, in every case we have seen, settles down to a near constant value well
before efficiency and stability do. (See Figure 5 for an example). Depending on the conditions of the
simulation, efficiency and especially stability can continue to experience fluctuations into the long term, but
after a while, these fluctuations occur around a near-constant mean. In order to detect when to halt the
simulation, we choose a number, I, of periods over which to time-average the quantities. (Recall that these
quantities are ‘sampled’ once per every Π rounds, where Π rounds is a ‘period’). We then choose a number, ν,
of consecutive time-averaged quantities to remember. We check the standard deviation of the most recently
collected ν many time-averaged values, and if it is low enough for both stability and efficiency, we halt. In
all but the most chaotic simulations, these standard deviations can be kept quite low (typically around 0.25
for efficiency, taken as a number between 0 and 100, and 0.5 for stability, also a number between 0 and 100,
with I = 10 and ν = 5) and still we get halting in reasonable time—tens of thousands of rounds for the cases
with the lowest numbers of states and less randomness, up to hundreds of thousands of rounds for the cases
with many states and more randomness. (The actual ‘first moment’ at which the quantities have settled is
of course somewhat earlier. In the typical (for us) case of Π = 100, I = 10 and ν = 5 it happened 5,000
rounds earlier.)

14We report stability, accuracy, and efficiency only to two significant figures, as re-running the simulations
can lead to changes in these quantities that would make reporting a more precise figure misleading. For
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to first stability, which gives a very general sense of how quickly the pairs become stably

successful. Efficiency in reported results refers to fine-grained efficiency.15 A few

N S A Ñ S̃ ∆σ ∆ρ xσ xρ Stab. Acc. Eff. Stab1

(i) 4 4 4 4 4 0 0 0 0 98% 96% 96% 4314

Table 1. Results of a signaling game simulation run on 10000 pairs. Learning dynamics:
B = 100, k = 2, l = 1, xσ = xρ = 0, φ = 0.096, F = 100. Stability: τ = 0.001, T = 10,
π = 100. Efficiency: ε = 0.1.

observations about these results apply as well to our other results, reported below.

First, these results are a ‘snapshot in time’ of what is happening in the simulation.

Hence, for example, the 99% stability in (i) does not necessarily mean that a couple of

agents have stubbornly refused to become stable, but more likely that, at the moment that

this snapshot was taken, these agents (who were in all likelihood stable at some earlier

moment) have experienced enough of a fluctuation in their dispositions to become

temporarily unstable. (On the other hand, it is true that agents who have evolved to be

inefficient tend to be more susceptible to fluctuations and therefore long-term instability.)

Efficiency is a different story. Typically, efficient agents do not become inefficient,

and agents who have been inefficient for a long time do not tend to become efficient.

Instead, they tend to evolve dispositions such as those in Figure 4.

Finally, it is worth bearing in mind that although simulation (i) was run to around

example, in 10 runs of simulation (i), the means and standard deviations for stability, accuracy, and efficiency
were:

Mean Standard Deviation
Stability xxx xxx

Accuracy xxx xxx
Efficiency xxx xxx

The number of rounds required to reach very stable values for these quantities (see note 13 for a discussion
of halting) ranged from 23,000 to 39,200.

15Note, as well, the seemingly large value for ε. For games with small numbers of inputs and outputs,
one can set ε quite small (e.g., 0.01) and still see high rates of efficiency. However, with higher numbers of
inputs and outputs, a minimum size for each propensity, and an effective cap on the size of any propensity
(due to forgetting), even a successful pair ‘doing the best it can’, with no partial pooling, could easily have
conditional probabilities only around 0.95, so that their product is already nearly 0.9, right at the threshold
for being accounted efficient. Indeed, for the 16x16x16 game, frequently agents who appear to be doing quite
well have poor efficiency even with ε = 0.1, and it can be instructive in that case to set ε even higher.
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24,000 rounds, in fact the fate of the vast majority of the pairs is sealed in the early stages.

As early as several hundred rounds into the game, most agents have moved enough towards

a ‘favored’ output for each input that turning back is very unlikely. Indeed, notice that the

mean time of first stability in this simulation was 4283 rounds.16 Not long after this time,

accuracy begins to rise sharply. Changing various parameters in the learning model (such

as reward and penalty) can change these numbers, but not the general shapes of these

curves (except when extreme values are chosen). After the curves flatten out, very little

happens thereafter apart from some tiny fluctuations. These fluctuations can be made

greater, of course, by increasing forgetfulness (among other things).17 Figure 5 shows of all

three curves for simulation (i).

It is a simple matter to explore various changes in the parameters of the simulation.

We illustrate some additional (and typical) results in Table 2. The basic fact that many

pairs evolve a more or less successful (stable, accurate, and efficient) signaling system is

remarkably robust under changes in the parameters. We leave it to the reader to observe

N S A Ñ S̃ ∆σ ∆ρ xσ xρ Stab Acc Eff Stab1

(i) 4 4 4 4 4 0 0 0 0 98% 96% 96% 4314
(ii) 4 4 4 4 4 0.25 0.25 0 0 95% 96% 96% 4511
(iii) 4 4 4 4 4 0.50 0.50 0 0 45% 85% 87% 7257
(iv) 4 4 4 4 4 0 0 0.25 0.25 96% 96% 96% 4557
(v) 4 4 4 4 4 0.25 0.25 0.25 0.25 94% 97% 96% 4913
(vi) 4 4 4 4 4 0.50 0.50 0.25 0.25 7% 94% 98% 18398
(vii) 4 3 4 4 3 0 0 0 0 95% 74% 97% 4108
(viii) 4 4 4 3 5 0 0 0 0 97% 75% 100% 4381
(ix) 8 8 8 8 8 0 0 0 0 xx% xx% xx% xxxx
(x) 8 8 8 8 8 0 0 0.25 0.25 89% 93% 96% 7625

Table 2. Results of several signaling game simulations run on 10000 pairs. Learning dynam-
ics: B = 100, k = 2, l = 1, φ = 0.096, F = 100. Stability: τ = 0.0025, T = 10, π = 100.
Efficiency: ε = 0.1.

16Recall that agents can be stable then become unstable. The mean last time of stability was 5675 in this
simulation. Also, the ‘first time’ of stability does not include any ‘artificial’ stability from very early in the
simulation—see note 9.

17Recall that a higher forgetfulness will lower the maximum size of a disposition, so that smaller absolute
changes in size have a larger effect. Hence stability, but also efficiency and accuracy, can suffer if the
maximum size is too small, i.e., forgetfulness is too high (φ is small or F is small or both).
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the various trends in the results. Our main point, for now, is the one already made—the

evolution of signaling systems is robust.

3. Prediction Games.

3.1. The Model.

A natural extension of signaling games is to allow the state of the world to evolve

according to some simple laws, and then require that the receiver ‘predict’ the next state of

the world, in the sense that success for the pair requires the receiver’s act at t to match the

state of the world at t+ 1, reward or penalty being applied at t+ 1. One might be inclined

to choose, for these laws, some 1-1 map from the state space for the world to itself (a

permutation of the space). However, in that deterministic case, and because the meaning of

signals is purely conventional, predicting the future is tantamount to knowing the present.

The results of simulations carried out in such a deterministic case are exactly as they are in

the cases described above, so long as the laws guarantee that each state is visited with

roughly equal frequency. A simple example of such a law is one where the state is

incremented by 1 each round. We say that there is a ‘drift’ of 1 in the laws. (As before, the

state space is taken to be a ring for this purpose.) Hence everything that one has learned

about signaling games can be reconstrued in terms of a deterministic prediction game in

which signals come to refer to the future (rather than the present) state of the world.

To get genuinely new behavior, we need the world to be slightly unpredictable. A

simple way to achieve the required randomness is to introduce, in addition to a drift, y, a

standard deviation, z. Let the state at t be n(t). Then the state at t+ 1 is chosen from a

normal distribution, centered at n(t) + y, with a standard deviation z. So the world tends

to drift by an amount y each turn, but occasionally (or frequently if z is allowed to be

large) it does something else. For the values of z typically chosen in our simulations, that

‘something else’ is nearly always to drift an additional unit, or not to drift at all.

Additional randomness can be introduced by allowing for an occasional ‘surprise’—on each
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round, with probability β, the state is chosen at random from a flat distribution. (Other

choices for this distribution could of course be made.)

As before, one may be interested in a pair’s ability to evolve dispositions that are as

successful as possible (or nearly so). In the indeterministic case, however, there are no

dispositions that could achieve 100% success. Instead, we account a pair as ‘making the

right prediction’ if it predicts the drifted state.18 Hence, while we continue to use the term

‘accuracy’, it is a slight misnomer in this case, referring to how likely the pair is to make

the best (but not necessarily correct) prediction.

3.2. Results.

For easy comparison, we first show, in Table 3 results for an indeterministic version of

simulations (i)-(x). A few observations are immediately apparent. First and foremost, the

N S A Ñ S̃ ∆σ ∆ρ xσ xρ Stab Acc Eff Stab1

(i′) 4 4 4 4 4 0 0 0 0 87% 94% 95% 5177
(ii′) 4 4 4 4 4 0.25 0.25 0 0 80% 93% 94% 5508
(iii′) 4 4 4 4 4 0.50 0.50 0 0 1% 63% 58% 17421
(iv′) 4 4 4 4 4 0 0 0.25 0.25 74% 96% 97% 6437
(v′) 4 4 4 4 4 0.25 0.25 0.25 0.25 61% 95% 97% 7105
(vi′) 4 4 4 4 4 0.50 0.50 0.25 0.25 0% 89% 89% 73067
(vii′) 4 3 4 4 3 0 0 0 0 51% 73% 97% 6097
(viii′) 4 4 4 3 5 0 0 0 0 91% 74% 100% 5281
(ix′) 8 8 8 8 8 0 0 0 0 xx% xx% xx% xxxx
(x′) 8 8 8 8 8 0 0 0.25 0.25 51% 89% 95% 19794

Table 3. Results of a single signaling game simulation run on 10000 pairs. World Laws:
y = 1, z = 0.5, β = 0. Learning dynamics: B = 100, k = 2, l = 1, φ = 0.096, F = 100.
Stability: τ = 0.001, T = 10, π = 100. Efficiency: ε = 0.1.

pairs do, quite robustly, evolve successful prediction systems, even in cases where

conditions make stability very difficult to achieve.19

18For pathologically large values of z or β, while predicting the drifted state is still the best one can do,
it will in fact be fairly unsuccessful, because the world is essentially random. Of course, agents are not able
to learn much in such a world (there is not much to learn), and tend not to evolve any stable prediction
system, successful or otherwise.

19One trend not shown in the table is that the accuracy of converged pairs is—somewhat unsurprisingly—
higher than average. For example, the accuracy of just the converged pairs in both (i′) and (ii′) is 99% while
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The main difference between the signaling and prediction games is in the sensitivity

to added randomness (∆σ, ∆ρ, xσ, xρ)—these factors have a larger effect on convergence

especially, and to a lesser extent, accuracy and efficiency. One other interesting difference is

explored in the next section.

3.3. Learning New Tricks.

The indeterministic case introduces another type of learning that has no correlate in the

deterministic case. Suppose that a pair has evolved a reasonably accurate prediction

system. Now, for whatever reason, the laws change. (For example, perhaps they learned to

predict in one environment, but now find themselves in another.) Can the pair adapt? Can

they ‘unlearn’ their old ways and learn the new laws? In such cases, who makes the

adjustment? In principle, of course, one of them (either sender or receiver) could

stubbornly refuse to change its disposition, forcing the other to change. But what actually

happens? We turn now to some results.

Our procedure here is to run the simulations to ‘completion’, as above, then,

keeping the agents as they are, change the laws (by changing the drift term, y, from y = 1

to y = 3), and the continue the simulation. Of course, the pairs are initially horrible at

predicting under the new circumstances, but, as the results in Table ?? show, they pretty

quickly develop successful prediction systems. In Table ??, Stab1 now refers to the first

time at which the pairs converge on their new system—it is therefore a measure of how

quickly they adapt to the new situation.

4. Theories as Prediction Systems.

Faced with the task of modeling the evolution of the ability to predict, a likely first

attempt would be to model a single agent who witnesses a state of the world and acts. The

agent would be rewarded as above for a successful prediction, and penalized for an

for (iii′) it is 94%. Similar figures hold for the other cases, apart, of course, from (vi′).
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N S A Ñ S̃ ∆σ ∆ρ xσ xρ Stab Acc Eff Stab1

(i′) 4 4 4 4 4 0 0 0 0 87% 94% 95% 5177
(ii′) 4 4 4 4 4 0.25 0.25 0 0 80% 93% 94% 5508
(iii′) 4 4 4 4 4 0.50 0.50 0 0 1% 63% 58% 17421
(iv′) 4 4 4 4 4 0 0 0.25 0.25 74% 96% 97% 6437
(v′) 4 4 4 4 4 0.25 0.25 0.25 0.25 61% 95% 97% 7105
(vi′) 4 4 4 4 4 0.50 0.50 0.25 0.25 0% 89% 89% 73067
(vii′) 4 3 4 4 3 0 0 0 0 51% 73% 97% 6097
(viii′) 4 4 4 3 5 0 0 0 0 91% 74% 100% 5281
(ix′) 8 8 8 8 8 0 0 0 0 xx% xx% xx% xxxx
(x′) 8 8 8 8 8 0 0 0.25 0.25 51% 89% 95% 19794

Table 4. Results of a single signaling game simulation run on 10000 pairs. World Laws:
y = 1, z = 0.5, β = 0. Learning dynamics: B = 100, k = 2, l = 1, φ = 0.096, F = 100.
Stability: τ = 0.001, T = 10, π = 100. Efficiency: ε = 0.1.

unsuccessful prediction. It will come as no surprise that such an agent will evolve a

successful predictive disposition. Indeed, rates of success are higher than they are for our

prediction systems. (This result is also unsurprising—such an agent does not face the

additional task of ‘communicating’ along with predicting.)

However, in our view, while a model such as this one may be sufficient for capturing

how a mechanistically described agent may ‘learn’ to predict the state of the world, it fails

miserably as an even rudimentary model for the evolution of the capacity to theorize about

the world, for a few reasons. Our model, on the other hand, is a valid first-step, and has

the capacity to be extended in ways (some of which we describe below) that will capture

some subtler aspects of theorizing.

Basic theme: Bona fide theorizing about the world involves representation, whereas

a single ‘learner’ who simply changes behavior in response to input states does not have a

representation of the world. Signaling/predicting pairs do—the signal is the

’representation’. (Note that the ‘pair’ could in fact be aspects of a single agent, a predictor.

This predictor gets an input, and them by internal machinations modeled by the sending

and receiving of a signal, eventually issues a ‘prediction’. Those internal machinations are

what amount to the predictor’s ‘representation’ of the world.)
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OK, a bit of fleshing out is obviously needed here too... One obvious thing to at

least mention is the potential for combining Jeff’s coding stuff with this prediction stuff.

Then we start to see a more interesting notion of a ’theoretical language’ develop and stuff

that Jeff has said about partitioning and incommensurability could be applied in the

context of prediction (and thus, theorizing in a richer sense). I would like to pursue that as

a next step (not in this paper.)
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sim_i_graphs.png

Figure 5. Accuracy, efficiency (fine-grained), and stability in simulation (i). The red curve
(the last to rise from zero) is stability. The green curve (the one that begins at 24%) is
accuracy, and the black curve (first to rise from zero) is fine-grained efficiency.
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