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Abstract

This paper focuses on the question how much evidence one should

collect before deciding on the truth-value of a proposition. An anal-

ysis is given of a model where evidence takes the form of Bernoulli-

distributed random variables. From a Bayesian perspective, the op-

timal strategy depends on the potential loss of drawing the wrong

conclusion about the proposition and the cost of collecting evidence.

It turns out to be best to collect only small amounts of evidence un-

less the potential loss is very large relative to the cost of collecting

evidence.

1 Introduction

Suppose a scientist wants to learn the truth-value of some proposition. Per-

haps because some important decision depends on it, perhaps just because

she wants to know. She can gather evidence, but no collection of evidence

conclusively settles the truth-value of the proposition. Gathering evidence is

costly: it requires time and effort, which could be spent on other pursuits.

How much evidence should the scientist collect in such a scenario? Or in

other words, how should the benefits of more evidence be traded off against

the costs? This paper analyzes a model where the evidence takes the form of

Bernoulli trials and finds the optimal Bayesian strategy for this model. The
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results are obtained by applying the sequential probability-ratio test (Wald

1947, Wald and Wolfowitz 1948, DeGroot 2004).

Sections 2 and 3 describe the model and state the results. Sections 4

and 5 discuss the results and draw some conclusions. An appendix contains

the proofs.

2 The Model

Let p be a proposition. The scientist is interested in learning the truth-value

of p, thus the relevant set of possible worlds is Ω = {p,¬p}, i.e., p is either

true or false.

In this model evidence about p takes the form of random variables that

are distributed like X, where

X | p ∼ Ber(1− ε),
X | ¬p ∼ Ber(ε),

for some given ε ∈ (0, 1/2). So if p is true it is more likely that X = 1 than

that X = 0, while if p is false this is reversed. Realizations of X are assumed

to be independent in each of the two possible worlds, so any collection of

evidence forms an i.i.d. dataset.

At a cost c > 0, the scientist gains one piece of evidence (i.e., one real-

ization of X). Gaining a piece of evidence may reflect an experiment done

by the scientist, or it may reflect what the scientist learns through testimony

(say, by reading a paper by another scientist).

The scientist is allowed to collect evidence sequentially. That is, the

decision whether or not to collect a k + 1-st piece of evidence may depend

on what is learned from the first k pieces of evidence.

Whenever the scientist decides to stop collecting evidence, she has to

choose a terminal decision from the set D = {d1, d2}, where d1 represents the
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decision to believe that p is true (and to act on that belief when appropriate),

and d2 represents the decision to believe that p is false.

The scientist is faced with a trade-off. Collecting more evidence reduces

the chance of drawing the wrong conclusion about the truth-value of p, but

increases the accumulated costs. Collecting less evidence reduces the costs,

but increases the chance of drawing the wrong conclusion about p.

In order to mathematically analyze this trade-off, I need some additional

assumptions about the way individual scientists make decisions. I assume

scientists act as if they were Bayesian statisticians. This means that their

decisions can be modeled as follows.

First, at any given time the scientist has a subjective probability ξ ∈ [0, 1]

that reflects how likely she thinks it is that p is true. Second, in response to

evidence she updates these beliefs using Bayes’ rule. Third, the scientist has

a loss function that puts a numerical value on each decision in each possible

world. Fourth, the scientist makes decisions that minimize risk, which is the

expected value of the loss relative to her subjective beliefs.

In this model, the loss ` is zero if the decision is “correct” (d1 if p and

d2 if ¬p), and β > 0 if the decision is “incorrect” (d2 if p and d1 if ¬p, see

table 1). The total loss is then ` plus the number of connections made times

c.

`(w, d) p ¬p
d1 0 β

d2 β 0

Table 1: The loss function `.

As a result, the risk associated with decision d1 is (1 − ξ)β and the risk

associated with decision d2 is ξβ. By assumption, the scientist chooses the

decision with the lowest risk, so the risk associated with the decision is

ρ0(ξ) := min{ξβ, (1− ξ)β}.

3



It remains to ask how much evidence the scientist will collect. This is

a sequential sampling problem. The scientist wants to learn the true state

of the world, which she can do by sampling at a cost c from a probability

distribution that depends on the state of the world. Let ∆ denote the set of

all possible sequential decision procedures the scientist might use. So each

δ ∈ ∆ is a function that specifies whether the scientist collects an additional

piece of evidence as a function of the evidence obtained so far.

Let Xi denote the i-th piece of evidence. Let ξ(X1, . . . , Xn) denote the

posterior probability that p is true after seeing X1, . . . , Xn (assuming the

prior was ξ). Let N(δ) denote the number of connections made under se-

quential decision procedure δ ∈ ∆ (in general, this is a random variable).

Then the risk of a sequential decision procedure δ ∈ ∆ is

ρ(ξ, δ) := E
[
ρ0(ξ(X1, . . . , XN(δ))) + cN(δ)

]
.

By assumption the scientist chooses the procedure with the lowest risk, i.e.,

the procedure δ∗ ∈ ∆ that satisfies

ρ(ξ, δ∗) = inf
δ∈∆

ρ(ξ, δ).

The existence of a procedure δ∗ that satisfies this equation is guaranteed

by Chow and Robbins (1963, theorem 1). The next section is dedicated to

specifying δ∗.

3 The Results

The problem that the scientist needs to solve is that of finding an optimal

stopping rule. DeGroot (2004, sections 12.14–12.16) provides an analysis of

this situation.

Let ξ denote the scientist’s prior before seeing any evidence and let c > 0

be the cost of one observation. The observations are i.i.d. with distribution
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f1(x) := Pr(Xi = x | p) = ε1−x(1− ε)x, x = 0, 1

if p is true, and

f2(x) := Pr(Xi = x | ¬p) = εx(1− ε)1−x, x = 0, 1

if p is false. Let

Zi := log
f2(Xi)

f1(Xi)
= (1− 2Xi) log

1− ε
ε

.

Consider the sequential decision procedure δ(a, b) that continues to take ob-

servations as long as

a <
N∑
i=1

Zi < b,

for some a < 0 and b > 0. Note that each Zi can take only two possible

values: log 1−ε
ε

if Xi = 0 and − log 1−ε
ε

if Xi = 1. Thus
∑N

i=1 Zi can only take

values that are integer multiples of log 1−ε
ε

. So without loss of generality a and

b can be rounded to integer multiples of log 1−ε
ε

. In that case
∑N

i=1 Zi must

be exactly equal to either a or b when δ(a, b) takes no further observations.

Proposition 1 (DeGroot (2004)). Suppose the random variables Zi can only

take the values z and −z for some z and a and b are integer multiples of z.

Then the risk of the sequential decision procedure δ(a, b) is

ρ(ξ, δ(a, b)) = ξβ
1− ea

eb − ea
+ (1− ξ)β e

a(eb − 1)

eb − ea
+ cξ

a(eb − 1) + b(1− ea)
(eb − ea)E[Zi | p]

+ c(1− ξ)ae
a(eb − 1) + beb(1− ea)
(eb − ea)E[Zi | ¬p]

(1)

and the optimal sequential decision procedure among those that take at least

one observation is δ(a∗, b∗) where a∗ < 0 and b∗ > 0 are the values that

minimize (1).

5



So the optimal sequential decision procedure in the decision problem un-

der consideration (assuming at least one observation is taken) takes the form

δm,n := δ

(
−m log

1− ε
ε

, n log
1− ε
ε

)
,

where m and n are positive integers. The scientist considers the difference

between the number of Xi so far observed that took the value zero and the

number of Xi so far observed that took the value one. The procedure then

tells her to continue to take observations as long as that difference is strictly

between −m and n. If the difference hits −m she stops taking observations

and chooses decision d1, and if the difference hits n she stops and chooses

decision d2.

Let gk be defined by

gk(ε) =
(1− ε)2k+1 − ε2k+1

(1− 2ε)2εk(1− ε)k
+

2k + 1

1− 2ε
,

for all non-negative integers k and ε ∈ (0, 1/2). Since gk+1(ε) > gk(ε) for all

k and ε, there is a unique k∗ such that

gk∗−1(ε) <
β

c
≤ gk∗(ε).

(Unless β/c ≤ g0(ε); in that case define k∗ = 0. See also tabel 2)

Proposition 2. If ξ = 1/2, the optimal sequential decision procedure is

δk∗,k∗.

This proposition determines the optimal procedure for a scientist who

starts out thinking p is equally likely to be true or false. What if the scientist

has a different prior?

Proposition 3. Let d ∈ Z. If

ξ =
εd

εd + (1− ε)d
,

the optimal sequential decision procedure is δk∗+d,k∗−d (where the optimal pro-

cedure takes no observations if k∗ + d ≤ 0 or k∗ − d ≤ 0).
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k∗ β/c

0 (0, g0(ε)]

1 (g0(ε), g1(ε)]
...

...

k (gk−1(ε), gk(ε)]

k + 1 (gk(ε), gk+1(ε)]
...

...

Table 2: k∗ is determined by finding an interval of the form (gk−1(ε), gk(ε)]

such that β/c is in that interval.

Corollary 4. For any ξ ∈ (0, 1) not covered by proposition 3 there must be

a d ∈ Z such that

εd

εd + (1− ε)d
< ξ <

εd−1

εd−1 + (1− ε)d−1
.

Then the optimal sequential decision procedure is one of δk∗+d,k∗−d, δk∗+d−1,k∗−d+1,

δk∗+d−1,k∗−d, or δk∗+d,k∗−d+1.

One can derive general inequalities to determine which of these four pro-

cedures is optimal for given values of ξ, β, c, and ε, but this is not important

for my purposes here.

What proposition 3 and its corollary show is that in general a larger value

of k∗ indicates that more observations will be needed to come to a decision on

the truth-value of p. The value of ξ biases the process towards one conclusion

or the other but it does not change this general level k∗. I will focus on the

value of k∗ in the remainder of this paper.
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4 Discussion

In the previous section I identified k∗ as a function of the parameters β, c,

and ε (see figure 1). If the prior is ξ = 1/2, the optimal sequential decision

procedure may be characterized straightforwardly in terms of k∗ (if ξ 6= 1/2,

this characterization holds except for a bias towards one conclusion or the

other).

Where k∗ = 0, the optimal procedure is to take no observations. Where

k∗ = 1, the optimal procedure is to take exactly one observation. Where

k∗ > 1, the optimal procedure is to take observations until the absolute

difference between the number of observed Xi that take the value one and

the number that take the value zero is k∗.
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Figure 1: k∗ when β/c ≤ 1000 and 0 < ε < 1/2. The indifference curves are

the functions gk(ε). Note that the β/c-axis is logarithmic.
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How does k∗ respond to changes in the parameter values? Consider a

change along the vertical axis of figure 1. All else being equal, if β increases

the scientist takes more observations before making a decision. This is rea-

sonable, because an increase of β means that coming to the wrong conclusion

gives a higher loss, and taking more observations helps decrease the chance

of that. Conversely, if c increases the scientist takes less observations before

making a decision (all else being equal). This is also reasonable, because

increased costs of observations give the scientist an incentive to come to a

decision quickly, even if this increases the chance of making the wrong deci-

sion.

Now consider a change in the reliability of the evidence (the horizontal

axis of figure 1). In the limit as ε goes to 1/2, k∗ decreases to the point where

it is optimal to take no observations at all. This is because at such a high

value of ε, observations provide no meaningful information: the two possible

outcomes are almost equally likely in either of the two possible worlds. Given

that nothing is learned from them anyway, it is unreasonable to pay any cost

to see the value of these random variables, no matter the value of c. This is

why gk(ε) goes to infinity as ε goes to 1/2 (for any k).

In the limit as ε goes to 0, it is optimal to take at most one observation.

At such a low value of ε, one observation is enough for the scientist to learn

which world she is in with near-certainty. So whatever the value of c, there

is no point in paying it more than once. The only question is whether one

or zero observations should be taken. This question is equivalent to asking

whether the cost to the scientist of guessing which world she is in (with a 1/2

chance of being correct, this cost is β/2) or the cost of the one observation

needed to learn which world she is in (i.e., c) is lower. Clearly, taking one

observation is better if β/c > 2, while taking no observations is better if

β/c < 2. In accordance with this result, g0(ε) goes to 2 as ε goes to 0, while

gk(ε) goes to infinity for all k > 0.

For moderate values of ε, there is some more interesting behavior. As long

as ε is not too close to its limits, the value of β/c actually matters. At values
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of β/c greater than 13.7, more complicated decision procedures than “decide

immediately” or “take one observation and then decide” start appearing.

Noting that the vertical axis in figure 1 is logarithmic, it is worth mentioning

that quite large values of β/c are needed before procedures that wait for a

larger difference than a few between the number of observations favoring p’s

truth and p’s falsity come into the picture. For instance, if β/c ≤ 100, it is

never optimal to wait for a larger difference than 4, whatever the value of ε.

5 Conclusion

I analyzed a model of a scientist trying to learn the truth-value of a propo-

sition by observing evidence in the form of Bernoulli-distributed random

variables. I asked and answered the question how much evidence a Bayesian

scientist should want to see, given that each observation comes at a cost c,

and the loss for an incorrect conclusion is β.

Qualitatively, the results are as expected. A higher loss β or a lower cost

c leads to a higher number of observations, and vice versa.

Quantitatively, the results are perhaps a little more surprising. If the

loss is no higher than the cost of thirteen observations (β ≤ 13c) then it is

optimal to take no more than one observation. Even if the loss is as high as

the cost of a hundred observations it is not optimal to wait for a difference

larger than four between the number of observations favoring one conclusion

and the number of observations favoring the other.

This suggests that only the most important propositions (where the re-

sults of having the wrong belief about it are many times worse than the costs

of collecting additional evidence) merit extensive investigation. For less im-

portant propositions collecting a single piece of evidence (or simply guessing

the truth-value based on no evidence at all) is often the best strategy.

The model used here lends itself to extension in various respects. It might

be interesting to use different distributions for the evidence and compare the

results with the case analyzed here. Such variations would remain within
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the basic framework of the sequential probability-ratio test and could thus

be analyzed on similar lines. Less straightforward extensions might consider

more complicated problems (e.g., learning about multiple propositions) and

different forms of the loss function.

A Proofs

From proposition 1 it follows that the optimal procedure that takes at least

one observation takes the form δ(a, b), where a is a negative integer multiple

of log 1−ε
ε

and b is a positive integer multiple of log 1−ε
ε

.

If ξ = 1/2, the symmetry of the problem (the loss for a wrong decision β

and the cost per observation c are the same whether p is true or false) implies

that a = −b. So the optimal procedure that takes at least one observation is

of the form

δk,k := δ

(
−k log

1− ε
ε

, k log
1− ε
ε

)
,

for some positive integer k. Note also that

E[Zi | ¬p] = (1− 2ε) log
1− ε
ε

= −E[Zi | p].

Next I apply equation (1) to δk,k, plugging in the expected values of Zi, and

using some algebra to simplify the resulting expression. This yields

ρ

(
1

2
, δk,k

)
= β

εk

(1− ε)k + εk
+ c

k

1− 2ε

(1− ε)k − εk

(1− ε)k + εk
.

Now I can compare the risk of different procedures, for example δk,k and

δk+1,k+1. This way I find

ρ

(
1

2
, δk+1,k+1

)
− ρ

(
1

2
, δk,k

)
= β

εk(1− ε)k(2ε− 1)

((1− ε)k+1 + εk+1)((1− ε)k + εk)

+ c
1

1− 2ε

(2k + 1)(1− ε)kεk(1− 2ε) + (1− ε)2k+1 − ε2k+1

((1− ε)k+1 + εk+1)((1− ε)k + εk)
.
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So ρ(1/2, δk+1,k+1) < ρ(1/2, δk,k) if and only if

β

c
> gk(ε) =

(1− ε)2k+1 − ε2k+1

(1− 2ε)2εk(1− ε)k
+

2k + 1

1− 2ε
.

For a given value of ε, gk+1(ε) > gk(ε) for all k ≥ 0 because:

∂gk(ε)

∂k
= log

1− ε
ε

(
(1− ε)2k+1 + ε2k+1

(1− 2ε)2εk(1− ε)k

)
+

2

1− 2ε
> 0,

for all k ≥ 0, 0 < ε < 1/2.

So there is a unique positive integer k∗ such that

gk∗−1(ε) <
β

c
≤ gk∗(ε).

(Unless β/c ≤ g1(ε); in that case set k∗ = 1.) Moreover, δk∗,k∗ is the optimal

sequential decision procedure that takes at least one observation:

ρ

(
1

2
, δk∗,k∗

)
≤ ρ

(
1

2
, δk,k

)
for all positive integers k (with equality only if either k = k∗ or β/c = gk∗(ε)

and k = k∗ + 1).

So far, I have focused on determining an optimal procedure under the as-

sumption that at least one observation is taken. It remains to be determined

whether ρ(1/2, k∗, k∗) < ρ0(1/2), that is whether the optimal procedure that

takes at least one observation is better than taking no observations at all.

First consider whether taking one observation is better than taking none.

Since

ρ

(
1

2
, 1, 1

)
= βε+ c,

ρ0

(
1

2

)
=
β

2
,

it follows that ρ(1/2, 1, 1) < ρ0(1/2) if and only if

β

c
>

2

1− 2ε
= g0(ε).
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It turns out that the criterion is exactly β/c > g0(ε). So if taking zero

observations is better than taking one observation β/c ≤ g0(ε) < gk(ε) for

all k > 0, so in that case taking zero observations is better than taking any

number of observations.

So I can simply extend the definition of k∗ to be the unique positive

integer such that

gk∗−1(ε) <
β

c
≤ gk∗(ε),

unless β/c ≤ g0(ε), in which case k∗ is defined to be zero. The optimal

sequential decision procedure when the prior is 1/2 is δk∗,k∗ . This proves

proposition 2.

Now consider a prior of the form

ξd =
εd

εd + (1− ε)d

for some d ∈ Z. This might be called a conjugate prior for this decision

problem since conditioning on evidence yields posterior probabilities of the

same form: ξd(1) = ξd−1 and ξd(0) = ξd+1 (recall that ξ(x) denotes the result

of using Bayes’ rule with prior ξ and evidence X1 = x).

Note that ξ0 = 1/2 so the optimal sequential decision procedure for ξ0 is

δk∗,k∗ . But in light of the above that means that it is optimal to continue

taking observations as long as the posterior is between ξk∗ and ξ−k∗ , to stop

and choose decision d2 if the posterior hits ξk∗ , and to stop and choose decision

d1 if the posterior hits ξ−k∗ .

These optimal stopping points do not depend on the prior. Thus for

any prior ξd it is optimal to continue taking observations as long as the

posterior remains between ξk∗ and ξ−k∗ . But this is exactly the sequential

decision procedure δk∗+d,k∗−d (assuming ξk∗ < ξd < ξ−k∗ , i.e., k∗ + d > 0

and k∗ − d > 0, otherwise it is optimal to decide immediately). This proves

proposition 3.

If ξd < ξ < ξd−1 then observing Xi = 0 k∗−d+1 times forces the posterior

to be less than ξk∗ , at which point it is optimal to stop taking observations.
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Observing Xi = 0 less than k∗−d times forces the posterior to be larger than

ξk∗−1, so continuing to take observations is optimal.

Similarly, observing Xi = 1 k∗+d times forces the posterior to be greater

than ξ−k∗ , at which point it is optimal to stop taking observations. Observing

Xi = 1 less than k∗ + d− 1 times forces the posterior to be less than ξ−k∗+1,

so continuing to take observations is optimal.

Hence one of δk∗+d,k∗−d, δk∗+d−1,k∗−d+1, δk∗+d−1,k∗−d, or δk∗+d,k∗−d+1 is the

optimal sequential decision procedure. This proves the corollary.
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