Is the world made of loops?

Alexander Afriat

November 1, 2013

Abstract

In discussions of the Aharonov-Bohm effect, Healey and Lyre have attributed reality to loops σ_0 (or hoops $[\sigma_0]$), since the electromagnetic potential A is unmeasurable and can therefore be transformed. I argue that $[A] = [A + d\lambda]$ and the hoop $[\sigma_0]$ are related by a meaningful duality, so that however one feels about $[A]$ (or any potential $A \in [A]$), it is no worse than $[\sigma_0]$ (or any loop $\sigma_0 \in [\sigma_0]$): no ontological firmness is gained by retreating to the loops, which are just as flimsy as the potentials. And one wonders how the unmeasurability of one entity can invest another with physical reality; would an eventual observation of A dissolve σ_0, consigning it to a realm of incorporeal mathematical abstractions?

The reification of loops rests on the potential’s “gauge dependence”; which in turn rests on its unmeasurability; which is too shaky and arbitrary a notion to carry so much weight.

1 Introduction

Thales, one gathers, had nothing but water; then came atoms, fire, air, earth, effluvia, fields, energy, waves and other complications. The history of ontological speculation (to say nothing of my garden, §5) has now been enriched by loops—and perhaps other boundaries too (§6).

The Aharonov-Bohm effect1 ($§2$) involves a relationship between variations in the current through a solenoid and changes in the interference pattern on a screen. The relationship is puzzling, but one can try to make sense of it in various ways. Of the available elements (electromagnetic field F in the solenoid, loops enclosing the solenoid, wavefunction ψ, electromagnetic potential A, its circulation C around the loops, interference pattern P, topological features), some can be chosen, others left out—with inevitable philosophical tradeoffs. Accounts emphasizing the relationship between ψ or P and F (rather than A) have been found disturbingly nonlocal;2 those preferring3

2 Aharonov & Bohm (1959) p. 490: “we might try to formulate a nonlocal theory in which, for example, the electron could interact with a field that was a finite distance away. Then there would be no trouble in interpreting these results, but, as is well known, there are severe difficulties in the way of doing this.” See also Healey (1997).
3 Aharonov & Bohm (1959) pp. 490-1: “we may retain the present local theory and […] try to give
A to \(F \) seem more local, but are vitiated by the kernel of \(d : A \rightarrow F = dA \), which produces the troublesome freedom

\[
[A + d\lambda]_\lambda = d^{-1}F
\] (1)

eliminated by \(d \).

A central notion here will be measurability: \(F \) and \(C \) can be measured, but not \(A \)—for the time being at any rate (but see §7). Indeed measurability is a complicated matter: what’s unmeasurable today may not be tomorrow (or vice versa); it depends on the current state of science, technology, ingenuity, economics and so forth; resources, instruments, capabilities and possibilities available in one space-time region may not be in another. In §7 we’ll see that it can even depend on the way one feels about a rule. I’ll avoid the most absolute notion of measurability, as being too abstract to countenance, and will sometimes include a specification in square brackets: unmeasurable[today], measurability[Tuesday] or [with respect to theoretical stipulation \(\Sigma \)], unmeasurability[given the resources available in space-time region \(R \)] or [with respect to instrument \(\iota \)] and so forth. Different contexts require different notions of measurability; no notion will be given an absolute primacy, which transcends context. So I should really say something like “\(A \) is unmeasurable[now]” or “\(A \) is unmeasurable[in the current state of science and technology].” How can one know that “\(A \) will never be measured” or “\(A \) is unmeasurable in principle”? Maudlin (1998, p. 367) writes that “since potentials which differ by a gauge transformation generate identical effects, no amount amount of observation could reveal the ONE TRUE GAUGE,” which I take to mean “since potentials which differ by a gauge transformation generate identical effects for the time being, no amount amount of observation[now] could reveal the ONE TRUE GAUGE.”

This is related to the matter of invariance under certain transformations. The point is not that \(A \) can be transformed whereas \(F \) and \(C \) cannot (for they can); but that \(A \), which is unmeasurable[now], can be subjected to a transformation,

\[
A \rightarrow A' = A + d\lambda,
\] (2)
to which \(C \) and \(F \) are indifferent (despite being functions of \(A \)). Whereas it makes sense to say that “\(F \) (or \(C \)) is gauge invariant,” the meaning of “\(A \) is not gauge invariant” or “\(A \) is gauge dependent” is less clear. Is it meant that \(A \) can be transformed? Of course it can—but so can \(C \) and \(F \), and in many different ways: \(C \rightarrow C + 7 \), \(F \rightarrow 2F \) etc. “\(A \) is gauge dependent” may mean something like “\(C \) and \(F \), which are functions

\[\text{a further new interpretation to the potentials. In other words, we are led to regard } A_\mu(x) \text{ as a physical variable.} \]

\[\text{See also Feynman et al. (1964) §15-5.} \]

\[\text{Cf. Healey (2007) pp. 113-4: “one cannot rule out a future extension of a Yang-Mills gauge theory that permits observations whose results depend on the existence of a privileged gauge [. . .] If that were to happen, then his observations would discriminate in favor of an interpretation of the gauge theory that commits it to such a privileged gauge, and against a holonomy interpretation. This has not yet happened. But since we cannot be sure that it never will, it seems that we are in no position to answer the question as to whether a holonomy interpretation is correct.” Belot (1998, footnote 17) seems to countenance the possibility of physically different but empirically indistinguishable potentials \(A, A' \in [A] \)—which makes the empirical indistinguishability appear particularly contingent, perhaps even temporary. See also Aharonov & Bohm (1959) p. 491: “we must be able to define the physical difference between two quantum states which differ only by a gauge transformation” and Healey (2009).} \]
of \(A \), are measurable, unlike \(A \) itself; and \(A \) can be subjected to transformations that leave \(C \) and \(F \) unchanged.”

The transformation (2) has to be understood in conjunction with the associated phase transformation

\[
\psi \mapsto e^{i\lambda} \psi,
\]

as Leeds (1999) has rightly emphasized. But it remains true that the gauge dependence of \(A \) has above all to be understood in terms of the observability of \(F \) and \(C \), and their indifference to (2). If the \(\lambda \) of (2) \& (3) were fixed by measurement (of phase or gauge), both freedoms would disappear together.

The holonomy interpretation\(^5\) of the Aharonov-Bohm effect, which will concern us here (§3), can be summarized as follows: (1) rules out the reality of \(A \); but the circulation \(C \) is indifferent to (1) (or rather (2)); since \(A \) isn’t really there, and something ought to be, the obvious alternative as bearer or locus of physical reality is the loop(s) \(\sigma_0 \) around which \(A \) is integrated to give \(C \). Even more briefly: Unlike \(A \), \(C \) is invariant, so \(\sigma_0 \) (or perhaps \([\sigma_0] \)) is real but not \(A \). Healey (2007) p. 51:

If the value of the vector potential \(A_\mu \) at each space-time point \(x \) in a region does not represent some qualitative intrinsic physical properties in the vicinity of \(x \), it may be that some function of its integral around each closed curve \(C \) in that region does represent such properties of or at (the image of) \(C \). […] Since the gauge dependence of the vector potential made it hard to accept Feynman’s view that it is a real field that acts locally in the Aharonov-Bohm effect, there is reason to hope that a gauge-invariant function of its line integral around closed curves might facilitate a local account of the action of electromagnetism on quantum particles in the Aharonov-Bohm effect and elsewhere.

And p. 105:

The non-localized gauge potential properties view is motivated by the idea that the structure of gauge potential properties is given by the gauge-invariant content of a gauge theory. The most direct way to implement this idea would be to require that the gauge potential properties are just those

\(^5\)Lyre has it the other way around—the symmetry comes first, \(A \) is unmeasurable as a result: (2001) p. S377 “The Reality of Gauge Potentials. “Only gauge-independent quantities are observable.””; p. S379 “holonomies are gauge-independent quantities and therefore appropriate candidates of observable entities”; (2002) p. 82 “Der Eichsymmetrie zufolge lassen sich Eichpotentiale nicht direkt beobachten – nur eichinvariante Größen können observabel sein. […] In den Eichtheorien sind diejenigen Entitäten, denen aufgrund observabler Konsequenzen Realstatus zugebilligt werden muß, einerseits klarerweise nur bis auf Eichtransformationen festgelegt […]”

\(^6\)Healey (1997, 2001, 2004, 2007), Belot (1998), Lyre (2001, 2002, 2004a,b); see also Wu & Yang (1975), Myrvold (2011). The first two letters of “anholonomy” don’t look semantically irrelevant, quite on the contrary; the “a” looks very much like a transliterated alpha privative, which far from doing nothing at all would turn “holonomy” into its opposite, “¬ holonomy.” One might imagine that the removal of the initial “an” would restore the meaning of “holonomy.” Not at all; by a prodigy of language and logic we have holonomy \(\equiv \neg \) holonomy. “Holonomy” is often preferred to its anto-synonym (the French say énantiosème) “anholonomy.” Whether “holonomy” means “anholonomy” or the opposite is settled by context.
that are represented by gauge-invariant magnitudes. [. . .] While the vec-
tor potential \(A_\mu \) is gauge dependent, its line integral \(S(C) = \oint_C A_\mu dx^\mu \) around a closed curve \(C \) is gauge invariant.

The point cannot just be that *invariance is ontologically relevant*, for that goes back\(^7\) to Cassirer (1921) or perhaps Einstein (1916) or even Klein (1872); nor can it be anything like *the world is made of structures or structures should be taken seriously*,\(^8\) which may be right but not new, either; nor can it be a mere extension of old ideas (about invariance or structures) to another theory. The claim, as I take it, is interesting, original, even spectacular: *the world is made of loops* (or perhaps *loops are ontologically preferable to potentials*). That’s what I contest. Not that structures or transformation properties can be ontologically relevant, nor that anholonomies are worth bearing in mind.

I argue (§4) as follows: \(A \) and \(\sigma_0 \) are related by a significant duality, so that however one feels about the class \([A]\) (or its elements), it is no worse than the hoop\(^9\) \([\sigma_0]\) (or its elements). I’ll think of \(A \) as a set \(\{\sigma_1, \ldots, \sigma_N\} \) of level curves, which can indeed be deformed (by (2))—but so can \(\sigma_0 \). The deformability of \(\sigma_1, \ldots, \sigma_N \), or rather \(\sigma_0, \ldots, \sigma_N \), is neither here nor there, and shouldn’t be used to rule out the reality of \(A \) in particular.

I also explore (§§5,6) the relationship between the measurability of a quantity (say \(A \)) and the ontic status of a boundary; can the measurement of one entity undermine the physical reality of another, ferrying it off to a shadier realm of mathematical ab-
stractions?

My arguments are no doubt best applied to the holonomy interpretation within an appropriate structural realism—which may or may not be the best description of Healey’s position.

Healey (2007) devotes much attention to quantized non-Abelian Yang-Mills theory. I only consider electrodynamics—and hence \(U(1) \), rather than the non-Abelian structure groups of Yang-Mills theory—without quantization (beyond the use of a wave-
function).

2 The Aharonov-Bohm effect

A wavefunction is split into two, and these, having enclosed a (simply-connected) re-
gion \(\omega \) containing a solenoid, are made to interfere on a screen. The enclosing wave-
function is sensitive to any enclosed electromagnetism inasmuch as the electromagnetic potential \(A \) contributes a phase

\[
\exp i \oint_{\partial \omega} A
\]

to (the wavefunction along) the boundary \(\partial \omega \equiv \sigma_0 \) and hence to the interference pattern on the screen. The electromagnetism on \(\omega \) is related to the circulation around the

\(^7\)See Afriat & Caccese (2010) p. 18.

\(^9\)This is the class of loops going around the solenoid once, and no more.
boundary by Stokes’s theorem

\[\mathbb{C} = \oint_{\partial \omega} A = \iint_{\omega} dA. \]

The electromagnetic field\(^{10}\) \(F = dA \) produced by the solenoid is circumscribed\(^{11}\) to a middle region \(\mu \subset \omega \) surrounded by an isolating region\(^ {12}\) \(\mu' = \omega - \mu \) where \(F \) vanishes but not \(A \).

Varying the current through the solenoid changes the arbitrarily distant interference pattern, which is surprising.

3 The reality of loops

The electromagnetic field \(F \) and inverse image \([A] = d^{-1}F \) are measurable, but not the individual potential\(^ {13}\) \(A \)—which may therefore be physically meaningless, on its own at any rate. But surely the Aharonov-Bohm effect has to be conveyed by \textit{something}. If the potential isn’t really there, what’s left? The solenoid, and the electromagnetic field it contains, are (arbitrarily) far from the wavefunction and the screen on which the effect is seen. The circulation \(\mathbb{C} \), which determines the interference pattern, has a promising indifference\(^ {14}\) to \(\mathbb{C} \); but \(\mathbb{C} \) is just a number, not enough on its own to convey or account for the effect—something more is presumably sought. The number is obtained by integrating any\(^ {15}\) \(A \in [A] \) around any \(\sigma_0 \in [\sigma_0] \); having ruled out \(A \),\(^ {16}\)

\(^{10}\)It is perhaps easiest to think of \(F \) as a purely magnetic field \(B \) produced by the current density \(J = d^*B \) in the solenoid.

\(^{11}\)Mattingly (2007) argues that the magnetic field \(B \) is present on the annulus \(\mu' \), since its many components are. Indeed they cancel by addition, but one can wonder about the physical meaning of the sum.

\(^{12}\)It will be convenient to view \(\mu \) and \(\omega \) as concentric disks.

\(^{13}\)But see §7.

\(^{14}\)Healey (1997) p. 34: “since \(S(C) \) is gauge-invariant, it may readily be considered a physically real quantity.”

\(^{15}\)To stress the ontic and conceptual autonomy of loops, Healey (2007, pp. 72-3—and perhaps Lyre too) would rather think of a holonomy as a number assigned to a loop than as the integral of a potential around a loop: \textit{loops can do without potentials}. But can they? How does one know what number the loop gets? But suppose one works out the circulation by integration, then forgets about the original potential \(A \)—all that’s remembered is the number \(\mathbb{C} \) and its loop(s). Even if such associations \textit{under}determine the individual potential \(A \), they \textit{determine} the equivalence class \([A] \) (see Anandan (1983), Barrett (1991), Healey (2004) pp. 626-7). So potentials are never too far away, and cannot be completely divorced from holonomies. See Healey (2001) p. 447.

\(^{16}\)Lyre (2001) p. S377, Lyre (2004b) p. 665: “realists can hardly be satisfied by the gauge dependence of entities as imminent in the A-interpretation […]” Healey (1997) p. 22: “there is reason to doubt that the magnetic vector potential is a physically real field, since \(A \) is not gauge-invariant, unlike the magnetic field \(B \) […]” Healey (1999) p. 445, Healey (2001) pp. 435-6, 454, Healey (2007) pp. 25-6, pp. 55-6: “If there are new localized gauge properties, then neither theory nor experiment gives us a good grasp on them. Theoretically, the best we can do is to represent them either by a mathematical object chosen more or less arbitrarily from a diverse and infinite class of formally similar objects related to one another by gauge transformations, or else by this entire gauge-equivalence class” and p. 118. Healey’s claim that \textit{theory itself} (rather than experimental limitations) rules out a choice of gauge is answered (by himself) in footnote 4 above. \textit{Cf.} Maudlin (1998) pp. 366-7, Leeds (1999) p. 610, Mattingly (2006) p. 251, Healey (2009) p. 707: “It is especially hard when it is the theory itself that provides our only initial access to those features of situations it represents by newly introduced structures—hard, but not impossible.”
Healey (2001),17 Lyre (2001),18 Lyre (2004a),19 Lyre (2004b)20 and Healey (2007)21 attribute reality to σ_0 (or $[\sigma_0]$) instead.22

α : Since C, unlike A, is indifferent to (2), A isn’t real but σ_0 (or $[\sigma_0]$) is.

17P. 448: “it is the holonomies that represent the real physical structures in a gauge situation, rather than any particular bundle connection that is compatible with them.” P. 449: “What is distinctive is not the properties represented by holonomies but the nature of the object whose properties they are. On the present view, holonomies represent global properties of a loop that are not determined by any intrinsic properties of the points on that loop.” A holonomy is a pair (σ_0, C). It is hard to see how a loop and a number can be real without the loop itself being real.

18P. S379: “We […] should consider holonomies as physically real.” P. S380: “We may very well represent the physically significant structures in an ontological universe consisting of matter-fields, gauge field strengths, and holonomies.”

19P. 116: “Die Entitäten der Eichtheorien sind Holonomien […] .”

20P. 665-6: “we may still consider holonomies as object-like entities, but to such an extent that our notion of an object becomes highly abstract.” P. 667: “When we stick to more abstract and non-local entities we do not dismiss the notion of objects altogether. […] A third “intermediate” possibility would be to stick with more abstract but still measurable or, as some authors like to phrase it, “structural” objects—and here non-separable holonomies turn out a suitable case at hand. […] a more sustained conclusion should perhaps rather be seen in the development of modern physics into more abstract—here spatiotemporally holistic—entities in accordance with an intermediate version of structural realism—less radical than the ontic version but more directly supported from science than the epistemic one.” Lyre (p. 658) sees holonomies as “basic entities” and “genuine entities.”

21P. xviii: “In the simplest case (classical electromagnetism interacting with quantum particles) such an account ascribes properties to (or on) a loop of empty space that are not fixed by properties of anything located at points around the loop […] .” P. 30: “Suppose instead that one takes the holonomies themselves directly to represent electromagnetism and its effects on quantum particles.” P. 31: “But if the holonomies directly represent electromagnetism and its effects, then there is still a sense in which the action of electromagnetism on the electrons is not completely local, since holonomies attach to extended curves rather than points.” P. 56: “only gauge-invariant functions of these mathematically localized fields directly represent new electromagnetic properties; and these are predicated of, or at, arbitrarily small neighborhoods of loops in space-time—i.e. oriented images of closed curves on the space-time manifold.” P. 74: “This makes it plausible to maintain that what an SU(2) Yang-Mills theory ultimately describes is not a localized field represented by a gauge potential, but a set of intrinsic properties of what I have simply called loops […] .” P. 106: “we arrive at the view that non-localized EM potential properties in a region are represented by the holonomies […] of all closed curves in the region […] . This is the interpretation of classical electromagnetism I shall defend.” P. 118: “One can reformulate the theory as a theory of holonomy properties, so that it does not even appear to mention localized gauge potential properties.” P. 185: “gauge potentials directly represent no localized gauge properties, but rather indirectly represent non-localized holonomy properties.” P. 220: “[…] the Aharonov-Bohm effect and other related effects provide vivid examples of physical processes that seem best accounted for in terms of non-localized holonomy properties […] .” P. 221: “Should we believe that non-separable processes involving non-localized holonomy properties are responsible for phenomena like the Aharonov-Bohm effect? This belief may be encouraged by the predictive successes consequent upon introducing classical electromagnetism into the quantum mechanics of particles.” P. 225: “This reinforces the conclusion that the evidence for contemporary gauge theories lends credence to the belief that these describe non-separable processes, while nothing in the world corresponds to or is represented by a locally defined gauge potential.” And the last paragraph of the book pp. 227-8.

22Belot (2003) p. 216 has a similar position—without, however, going so far as to claim that loops are more real: “holonomies […] are well-defined quantities on the spaces of states of the standard formulations of Yang-Mills theories. If it is accepted that these theories describe reality, does not it follow that the quantities in question are as real as any others?” See also Belot (1998) p. 544: “we must also consider closed curves in space to be carriers of the electromagnetic predicates” and the final paragraph pp. 553-4.
4 Duality between loops and potentials

But there is a significant duality between loops and potentials: just as a vector \(\dot{\sigma}'(x) \in T_x M \) and a covector \(A(x) \) from the dual space \(T^*_x M \) give a number \(\langle A(x), \dot{\sigma}'(x) \rangle \), the loop\(^{23} \) \(\sigma_0 \equiv \partial \omega \) and potential give a number \(\langle A, \sigma_0 \rangle = \mathcal{C} \). Both \(A \) and \(\sigma_0 \) can be deformed without affecting the circulation: the potential according to (2); a loop can be deformed into any other loop going around the solenoid once. Both could be replaced by their equivalence classes \([A]\) and \([\sigma_0]\), one could even write \(([A], [\sigma_0]) = \mathcal{C}\).

It will be useful to understand the transformation (2) more geometrically, as a deformation of the level sets of \(A \)'s local primitive\(^{24} \) \(\sigma \).\(^{25} \) One can first imagine a purely ‘angular’ or ‘radial’ \(\sigma \) (with values running from zero to \(2\pi k = \mathcal{C} \)),\(^{26} \) whose level lines are straight rays radiating through the annulus \(\mu' \) from the inner disk \(\mu \) to the edge \(\partial \omega \). A gauge transformation (2) would then deform the level rays, bending them without making them cross. It is easier to picture the denumerable set \(\{\sigma_1, \ldots, \sigma_N\} \) of level curves at intervals of \(\mathcal{C}/N \) than all of them; they will each be cut once\(^{27} \) by any loop \(\sigma_0 \) going around the solenoid once.

In this construction we have \(N + 1 \) deformable curves \(\sigma_0, \ldots, \sigma_N \), which all seem pretty much on the same footing; \(\alpha \) amounts to the surprising claim that \(\alpha' : \text{Only } \sigma_0 \text{ is real because the other curves } \sigma_1, \ldots, \sigma_N \text{ can be deformed.} \)

Why should one curve \(\sigma_k \) be any better than the others? How about \(\sigma_\pi \)? It remains true that \(\sigma_1, \ldots, \sigma_0, \sigma_\pi, \ldots, \sigma_N \) can be deformed.

To emphasise that loops are no better than \(A \), we can even arrange for a gauge transformation to induce a loop deformation (thus strengthening the duality): Level rays of unit length determine a unit circle, which will then be ‘deflated’ into a smaller loop by a gauge transformation (2); to every such transformation there corresponds a different loop \(\sigma_0^\lambda \). If a potential subject to (2) is too flimsy to exist, how can loops also subject to (2) be any better? Are vectors any more real than the covectors dual to them? Is a Lagrangian any less real than the Hamiltonian dual to it? Does momentum exist more than velocity?

5 Vertical drop

Suppose I can only measure the curl \(F = dA \) of my garden’s gradient\(^{28} \) (or infinitesimal vertical drop) \(A \) but not the gradient itself—some instruments and experimental

\(^{23}\)The one-dimensional manifold \(\sigma_0 \subset M \) is the image of the mapping \(\sigma_0' : I \to M ; t \mapsto \sigma_0'(t) \), without its parameter \(t \), which is not part of the boundary \(\partial \omega \) (where \(I \subset \mathbb{R} \) is an interval and the manifold \(M \) an appropriate base space).

\(^{24}\)For wherever \(A \) is closed it can be written locally as the gradient \(A = d\sigma \) of a zero-form \(\sigma \).

\(^{25}\)A similar construction is used in Afriat (2013).

\(^{26}\)Such a \(\sigma \) cannot be continuous everywhere; we can imagine a single discontinuity, say on the ray with values \(\sigma = 2\pi nk \), where the integer \(n \) is zero then one, \(k = \mathcal{C}/2\pi \) being a constant.

\(^{27}\)One should really say an odd number of times, as Jean-Philippe Nicolas has pointed out to me. Crossings in opposite directions cancel, and add nothing to the integral.

\(^{28}\) Needless to say, most gardens have an exact gradient.
The indifference of \(F = dA + d^2\lambda \) to the exact one-form \(d\lambda \) can accordingly be called a gauge freedom. The vertical drop or rather circulation

\[
C = \oint_{\partial \omega} A = \int \int_{\omega} dA
\]

is also indifferent to (2), where \(\partial \omega \) is the boundary of any region \(\omega \).

The unmeasurability in an appropriate part of space-time of \(A \) makes my garden an awkward tangle of real physical loops by producing the gauge freedom which in turn invests the boundary \(\partial \omega \) (or \(\partial \omega' \)) with physical reality. But to dispatch the loops to the shady regions (populated by innocuous mathematical ghosts) where they obstruct neither gardening nor evening strolls it is enough to work out how to measure \(A \); for that will change the status of (2) and hence of the loops.\(^{30}\)

We know that peeking can kill a cat (Schrödinger, 1935); but here, peeking at a gradient may well carry off a loop!

6 ELECTROSTATICS, GRAVITY

The solenoid, or perhaps the field \(F = dA \) it produces, is a source whose ‘radiation’ \(A \) is caught by the boundary \(\partial \omega \).

In electrostatics the source is a charge density three-form \(\rho = dE \), which radiates the electric two-form \(E \) caught by the two-dimensional boundary \(\partial \Omega \) of a region \(\Omega \) containing \(\rho \). Stokes’s theorem again holds, and allows us to write

\[
F = \oint_{\partial \Omega} E = \int \int_{\Omega} dE = \int \int_{\Omega} \rho.
\]

The difference here is that \(\rho \)’s primitive \(E \) is measurable, and fixed by the condition \(E = \ast d\varphi \) (the electrostatic potential \(\varphi \) being a zero-form). But \(F \) and \(\rho \) can nonetheless be called ‘gauge invariant,’ in the sense that they are indifferent to the gauge transformation

\[
E \mapsto E' = E + d\beta,
\]

where \(d\beta \) is the curl of a one-form \(\beta \).

But this gauge invariance may seem purely formal, vacuous, meaningless. To take it more seriously one would have to forget how to measure \(E \).\(^{31}\) Once \(E \) is unmeasurable, (4) will acquire a different status, and so will the boundary \(\partial \Omega \). If we then feel trapped inside an infinite gauge-invariant class \([\partial \Omega] \) of real physical membranes, all we have to do, to dissolve them all, is remember how to measure \(E \).

\(^{29}\) Again, there can be other instruments and experimental possibilities in other space-time regions; a notion of experimental possibility may or may not propagate from one region to another.

\(^{30}\) It may look as though I am affirming the consequent; [unmeasurable potential]⇒[real boundary] does not on its own imply [measurable potential]⇒[unreal boundary]. But it seems natural to assume that mathematical boundaries are merely mathematical, unless we have reason to believe they’re not. Such a reason—“\(A \) is gauge dependent”—is exactly what Healey and Lyre provide. If that reason ceases to hold, however, the departure from the natural assumption is no longer justified.

\(^{31}\) It is by no means impossible to make a quantity unmeasurable; one can destroy instruments, abolish know-how, banish specialists and so on. Measurability is as reversible as progress.
The same applies, mutatis mutandis, to Newton-Poisson gravity, where ρ is the mass density, ϕ the gravitational potential etc.32

The same also applies to the Aharonov-Bohm effect itself: Suppose an ingenious experimenter works out how to measure A. That would change the status of (2)—it would be taken less seriously—and hence of $\partial \omega$, which would undergo an ontic transition. We have something like a ‘law of ontological conservation’: if the reality isn’t here (A), and it has to be somewhere, it must be there ($\partial \omega$); but if it is here, it no longer has to be there . . .

7 Liénard-Wiechert

Mattingly (2006) has convincingly argued that the Liénard-Wiechert potential $A_l \in [A]$ is privileged, and should be taken seriously for various reasons; but one can even go so far as to claim it is observable. It is defined with respect to a quantity, the four-current-density j, which is as real, observable and well-behaved as one could wish. Expressing the one-form (field) A_l as the value $A_l = Lj$ of an appropriate linear operator $L : \Lambda^3(M) \to \Lambda^1(M)$ transforming three-form fields on (flat) spacetime into one-form fields on spacetime, everything will turn on the nature of L—which propagates the covector33 $A_l(x') = *j(x)/\|x' - x\|$ along (all points x' of) the future light cone of the current $j(x)$ at x, where $*$ is the Hodge dual. If L seems artificial, arbitrary and contrived, j will no more ‘yield’ A_l than it yields many other quantities obtained from j through equally artificial operations. But if L seems so simple, natural and appropriate that it acquires an air of ‘uniqueness,’ it will indeed yield A_l; the (theory laden) observability of A_l would then follow from the unquestionable observability of j. For once the theory-ladenness of observation (together with the underdetermination of theory by the evidence) has been accepted, the observation of any quantity—A or F or P or ψ—will necessarily involve theoretical choices and stipulations. L is a stipulation differing at most (and not excessively) in degree, but in any case not in kind, from theoretical (often tacit) conventions of which even the best physics is full.

Will the reality of loops depend on the way one feels about L? I re-read Mattingly’s paper this morning, and found it even more convincing; L seemed especially appropriate; were the universe’s loops thereby condemned to ontic degradation? But perhaps such degradations are a matter of social, rather than individual, psychology; and the full weight and authority of communities is needed to capture truths, inaccessible to individuals, about observability . . .

8 Geometric potential

Another approach—not really my main argument—is to represent the potential (or connection) at a higher level of abstraction, at which the ontologically troublesome gauge freedom (2) disappears, leaving only a geometrical structure (horizontal distribution

32See Afriat (2013).

33The ‘length’ $\| \cdot \|$ is purely spatial, being the modulus $\| V \| = \sqrt{g(\mathcal{P}V, \mathcal{P}V)}$ of a spacelike projection $\mathcal{P}V$ of the argument V. Here I am indebted to Jean-Philippe Nicolas.
on the principal bundle34) that corresponds to \([A]\) but not to \(A\), which it underdetermines.35 If one is burdened with \(A\) and (2) and their ontological implications one has simply chosen the wrong way of thinking about potentials, the wrong level of abstraction, encumbered as it is by confusing and irrelevant clutter that just gets in the way.36

9 Final remarks

Picking a potential \(A\) out of \([A]\) is admittedly problematic37 (as long as \(A\) remains unmeasurable). But picking a loop \(\sigma_0\) out of the hoop \([\sigma_0]\) is just as bad. There are indeed reasons to prefer \([A]\) to any particular potential \(A\), and to prefer \([\sigma_0]\) to any particular loop \(\sigma_0\); but those reasons are not good reasons to prefer \([\sigma_0]\) to \([A]\), or any particular \(\sigma_0\) to any particular \(A\); nor are they good reasons to prefer \([\sigma_0]\) to any particular \(A\) (or \([A]\), for that matter, to any particular \(\sigma_0\)).

Healey and Lyre attribute reality to loops because potentials are subject to (ontologically troubling) arbitrary choices. I have argued in §4 that potentials are no more subject to arbitrary choices than loops; and in §8 that potentials are less subject to such choices. The ‘gauge freedom’ of potentials is due to their unmeasurability, about which I have raised questions in §§5-7: It is remarkable that the unmeasurability of a differential form \(\zeta\) defined on \(\Omega\) should confer physical reality on the boundary \(\partial\Omega\). If the ‘potential’ represented by \(\zeta\) sooner or later becomes measurable, does the ontic status of the boundary \(\partial\Omega\) weaken?

I thank Jean-Philippe Nicolas for valuable clarifications and corrections, Silvia De Bianchi for her suggestions, and Dimitri Kasprzyk for telling me about énantiôsèmes.

References

34See Bleecker (1981), Baum (2009) pp. 73ff.

36Healey (1999 p. 446, 2001 p. 436ff., 2004 p. 628) argues that the gauge freedom, which remains in the form of vertical automorphisms, is in fact ineliminable. But even if such automorphisms, which do correspond to the gauge freedom, are indeed available, the horizontal distribution can be specified without any reference to them.

37Healey (1999) p. 444: “The main problem with ONE TRUE GAUGE is epistemological: the theory itself entails that we could never have any evidence that the TRUE GAUGE was ONE rather than ANOTHER.”

Cassirer, E. (1921) *Zur Einstein'schen Relativitätstheorie*, Bruno Cassirer, Berlin

Feynman, R. P., R. B. Leighton and M. Sands (1964) *The Feynman lectures on physics, volume 2*, Addison-Wesley, Reading

Klein, F. (1872) Vergleichende Betrachtungen über neuere geometrische Forschungen, Deichert, Erlangen

Lyre, H. (2004b) “Holism and structuralism in $U(1)$ gauge theory” Studies in History and Philosophy of Modern Physics 35, 643-70

Poincaré, H. (1902) La science et l’hypothèse, Flammarion, Paris

Poincaré, H. (1905) La valeur de la science, Flammarion, Paris

12

