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Abstract. Much recent philosophical attention has been devoted to variants on the Best

System Analysis of laws and chance. In particular, philosophers have been interested in the

prospects of such Best System Analyses (BSAs) for yielding high-level laws and chances.

Nevertheless, a foundational worry about BSAs lurks: there do not appear to be uniquely

appropriate measures of the degree to which a system exhibits theoretical virtues, such as

simplicity and strength. Nor does there appear to be a uniquely correct exchange rate at

which the theoretical virtues of simplicity, strength, and likelihood (or fit) trade off against

one another in the determination of a best system. Moreover, it may be that there is no

robustly best system: no system that comes out best under any reasonable measures of the

theoretical virtues and exchange rate between them. This worry has been noted by several

philosophers, with some arguing that there is indeed plausibly a set of tied-for-best systems

for our world (specifically, a set of very good systems, but no robustly best system). Some

have even argued that this entails that there are no Best System laws or chances in our

world. I argue that, while it is plausible that there is a set of tied-for-best systems for our

world, it doesn’t follow from this that there are no Best System chances. (As I will argue,

the situation with regard to laws is more complex.) Rather, it follows that (some of) the

Best System chances for our world are unsharp.
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1. Introduction

Much recent philosophical attention has been devoted to variants on the Best System Anal-

ysis of laws and chance. In particular, philosophers have been interested in the prospects of

such Best System Analyses (BSAs) for yielding high-level laws and chances. Nevertheless,

a foundational worry about BSAs lurks: there do not appear to be uniquely appropriate

measures of the degree to which a system exhibits theoretical virtues, such as simplicity and

strength. Nor does there appear to be a uniquely correct exchange rate at which the theo-

retical virtues of simplicity, strength, and likelihood (or fit) trade off against one another in

the determination of a best system. Further, there may be no robustly best system: that is,

no system that comes out best under any reasonable measures of the theoretical virtues and

exchange rate between them. This worry has been noted by several philosophers, with some

arguing that there is indeed plausibly a set of tied-for-best systems for our world (specifically,

a set of very good systems, but no robustly best system). Some have even argued that this

entails that there are no Best System laws or chances in our world.

In what follows, I will argue that plausibly there is a set of tied-for-best systems for our

world, but that it doesn’t follow from this that there are no Best System chances. Rather,

it follows that (some of) the Best System chances for our world are unsharp. When it comes

to laws the situation is somewhat more subtle. But I will argue that the existence of ties

doesn’t imply that there are no Best System laws either.
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The plan is as follows. In Section 2, I outline the Best System Analysis (BSA) of laws

and chance. In Section 3, I describe a recent argument for the conclusion that the best

system for our world is one that entails the fundamental dynamical laws together with the

probabilistic principles of statistical mechanics (SM). Specifically, in that section, I examine

so-called ‘Globalist’ approaches to axiomatizing SM. In Section 4, I describe arguments that

there is no clearly best ‘Globalist’ system for SM. In Section 5, I argue that, contrary to

what has sometimes been thought (and even if one assumes the Globalist approach to be

the correct approach to axiomatizing SM), this does not show that there are no Best System

chances in SM. Rather, it shows that the Best System chances are unsharp. In Section

6, I turn my attention to so-called ‘Localist’ approaches to SM, and argue that a similar

conclusion follows in this context. In Section 7, I seek to further justify the conclusion that

the BSA yields unsharp chances for our world by examining the chance-credence connection.

In Section 8, I examine the so-called ‘Better Best System Analysis’ (BBSA) of laws and

chance, which aims to capture the role of laws and chances in the special sciences. I argue

that, in the light of actual attempts to systematize certain special sciences, it is plausible

that the BBSA yields non-sharp special science chances.

2. The Best System Analysis (BSA) of Laws and Chance

According to the BSA, which received its most significant development by Lewis (1983,

1994), the laws are the theorems entailed by that set of axioms which best systematizes the

entire history of the world. The objective chances are those probabilities that are entailed

by this best system. Lewis (1994) combines the BSA with the (logically distinct) thesis

of Humean Supervenience (HS): the thesis that the laws and chances supervene upon the

Humean mosaic, that is, upon the distribution of categorical (i.e. non-modal) properties

throughout all of space-time. Specifically, when the BSA is combined with HS, the idea is

that what gets systematized by the various competing systems is (parts of) the Humean

mosaic. While I find the thesis of HS plausible, the BSA’s plausibility is not tied to that of

HS. In what follows, however, I shall assume HS since most discussion of the BSA has been
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conducted against the background of this assumption. Nevertheless, as far as I can see, my

claim that the BSA yields unsharp chances need not turn upon this assumption.

The goodness with which a candidate system systematizes the Humean mosaic is judged

against the theoretical virtues of simplicity, strength, and likelihood (or fit). A system

is strong to the extent that it says “what will happen or what the chances will be when

situations of a certain kind arise” (Lewis 1994, 480). A system is simple to the extent that

it comprises fewer axioms, or those axioms have simpler forms (e.g. linear equations are

simpler than polynomials of degree greater than 1). Often greater strength can be achieved

at a cost in terms of simplicity (e.g. by adding axioms, or making them more complicated),

while simplicity can often be gained at the expense of strength (e.g. by removing axioms or

simplifying them).

The Best System mustn’t be dominated by any other system: that is, it mustn’t be the case

that it exhibits some theoretical virtue to a lower degree than another system that exhibits

all other virtues in at least as high a degree. But, among the non-dominated systems, some

systems will strike a better balance between the virtues than others. For example, if there is a

system that achieves great strength with relatively few, simple axioms, then this system is to

be judged superior to one that achieves maximal simplicity at the cost of minimal strength,

by saying nothing at all (even though the latter system is not dominated by the former). The

Best System is therefore that non-dominated system that strikes the best balance between

the theoretical virtues, where (for example) neither strength nor simplicity receives zero

weight in the exchange rate that determines the best balance between the virtues.

If the world’s history is a certain way (if it contains a lot of stochastic-looking events),

then a candidate system may achieve a good deal of strength with little cost in simplicity

by being endowed with a probability function (cp. Loewer (2004, 1119)): that is, a function

Cht(p) that maps proposition and time pairs 〈p, t〉 onto real values in the [0, 1] interval, and

that obeys the axioms of probability. Alternatively, and I think rather plausibly, one might

take conditional probability as basic. One might, for instance, prefer the Renýı-Popper

axiomatisation of probability to the Kolmogorov axiomatisation (Hájek 2003a,b, 2007). In
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that case, one can take candidate systems to come endowed with a Renýı-Popper function

Ch(p|q) that maps proposition pairs 〈p, q〉 onto the reals in the [0, 1] interval. If one takes

conditional chance as basic in this way, then it is unnecessary to include a ‘time’ index to

the chance function. Rather Cht(p) can be analyzed as the chance for p that comes by

conditioning upon Ht: the history of the world up to t (see Hoefer (2007, 562–565); and

Glynn (2010, 78–79)). That is, Cht(p) =def Ch(p|Ht).

If one takes conditional chances to be basic, one may allow that there are chances for p

conditional upon propositions less informative than one giving the complete history of the

world up to some time t.1 For example, there may be chances for p conditional upon just

the macro-history of the world through t, HM
t (see Loewer (2001)). There may also be

chances for p conditional upon other sorts of proposition: for example, those specifying some

localized chance setup (Hoefer (2007), Frigg and Hoefer (2013)). Indeed, perhaps we can get

chances for p by conditioning upon just about any arbitrary proposition (Albert 2000, 2012,

Ismael 2012).

Where a system comes endowed with a probability function, it may exhibit a third theo-

retical desideratum (besides simplicity and strength) to a greater or lesser degree: namely

likelihood or fit. A system fits the actual course of history well (has higher likelihood) to

the extent that the associated probability function assigns a higher probability to the actual

course of history: the higher the probability, the better the fit (Lewis 1994, 480).2 Where

we take conditional probability as basic, we need a notion of fit according to which a system

fits better to the extent that it assigns a higher probability to the actual course of history

conditional upon initial conditions. If we’re to make sense of chances in statistical physics

and the special sciences, then we should also regard relatively high probability assignments

1There may be well-defined chances conditional upon propositions specifying the complete state of the world
at a time (or on a Cauchy surface – cp. Maudlin (2007a, 18-20)). However, assuming that the dynamical
laws of the world are Markovian, this is equivalent to conditioning upon the entire history of the world up
to and including that time (or up to and including that Cauchy surface).
2This notion of fit applies only if there are only finitely many chance events. It also doesn’t work well
when systems may incorporate continuous chance distributions (Frigg and Hoefer 2013): that is, chance
distributions over infinite sets. See Elga (2004) for an extension of the notion of fit to infinite cases.
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conditional upon coarse grainings of those initial conditions (that is, conditional upon the

initial macro-state, and not just the initial micro-state) as contributing to a system’s fit.

The Best System is that which strikes the best balance between the theoretical virtues of

simplicity, strength, and fit. According to the BSA, the probability function associated with

the Best System is the chance function for the world.

The idea, then, is that the Humean mosaic, together with the theoretical virtues, serves

to fix a Best System. As Lewis (1994, 480) puts it: “The arrangement of qualities provides

the candidate . . . systems, and considerations of simplicity and strength [and fit] and balance

do the rest”. Or, more concisely, chances are “Humean [Best System]-supervenient on [the

Humean mosaic]” (Frigg and Hoefer 2013).

3. The BSA and Statistical Mechanics

Lewis himself appears to have thought that the probability function associated with the best

system for our world would simply be the fundamental physical probability function: that

is, the function that yields all and only the probabilities entailed by quantum mechanics, or

whatever fundamental physical theory replaces it (see Lewis (1986, 118); Lewis (1994)).

Yet Loewer (2001, 2007, 2008, 2012a,b) has influentially argued that the probabilities of

statistical mechanics (SM) are also entailed by the best system for our world, and therefore

are genuine objective chances according to the BSA. Loewer appeals to the axiomatisation

of SM described by Albert (2000, Chs. 3-4). Albert suggests that SM can be derived from

the following:

(FD) the fundamental dynamical laws;

(PH) a proposition characterising the initial conditions of the universe as constituting a

special low-entropy state; and

(SP) a uniform probability distribution (on the standard Lebesgue measure) over the re-

gions of microphysical phase space associated with that low-entropy state.
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Albert (2012) and Loewer (2012a,b) dub the conjunction of FD, PH, and SP ‘the Mentacu-

lus’.3

The argument that the SM probabilities are derivable from the Mentaculus goes roughly

as follows. Consider the region of microphysical phase space associated with the low-entropy

initial state of the universe implied by PH. Relative to the total volume of that region, the

volume taken up by micro-states that lead (by FD) to fairly sustained entropy increase until

thermodynamic equilibrium is reached (and to the universe staying at or close to equilibrium

thereafter) is extremely high. Consequently, the uniform probability distribution (given by

SP) over the entire region yields an extremely high probability of the universe following such

a path. When it comes to (approximately) isolated subsystems of the universe the idea is

that, since a system’s becoming approximately isolated is not itself correlated with its initial

micro state being entropy-decreasing, it is extremely likely that any such subsystem that is

in initial disequilibrium will increase in entropy over time (see Loewer (2007, 302); Loewer

(2012a, 124–125); Loewer (2012b, 17); and Albert (2000, 81-85)).4

Albert (2000, 2012) and Loewer (2007, 2008, 2012a,b) have argued that the Mentaculus

entails many of the probabilities of the special sciences.5 Loewer thus claims that the Men-

taculus is much stronger than a system consisting of the fundamental dynamical laws, FD,

alone. And since it is not much more complicated (it only requires the addition of the axioms

PH and SP), Loewer claims that it is a plausible best system for our world.6

In fact a minor modification to the BSA, as articulated by Lewis, is required if the Men-

taculus is even to be a candidate Best System for the world. It has often been observed that

3Note that, where the fundamental dynamics are quantum rather than classical, the uniform probability
distribution – which in the classical case is given by the Statistical Postulate, SP – is not over classical phase
space, but rather over the set of quantum states compatible with the PH; or at least this is the standard
construal of how we recover the statistical mechanical probabilities in a quantum mechanical system (cp.
Albert (2000, 131-133)).
4See Winsberg (2004), Earman (2006), and Callender (2011) for criticisms of this line of argument. Such
criticisms will be further discussed in sections 6 & 8 below.
5Though I won’t go into the details (such as they are) here, the idea is roughly that this is because many of
the special sciences are themselves concerned with entropy-increasing processes.
6This proposal requires that facts about initial conditions, such as PH, are potential axioms of the Best
System. The BSA has not always been construed as allowing for this. However, Lewis (1983, 367) himself
takes the view that facts about initial conditions may well be among the axioms of the Best System. See
also Maudlin (2007b, 280-281) and Maudlin (2011, 303).
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the simplicity of a system is relative to the vocabulary in which it is expressed. Lewis (1983,

367-368) took this as a reason to restrict candidates for Best Systemhood to those systems

whose axioms refer only to perfectly natural properties. But, as Schaffer (2007, 130) points

out (see also Cohen and Callender (2009) and Callender and Cohen (2010)), the Mentaculus

contains predicates like ‘low entropy’ that correspond to properties that are not perfectly

natural, and so doesn’t even seem to be a candidate Best System. One alternative to Lewis’s

approach – pursued by Callender (2011), Cohen and Callender (2009), Callender and Cohen

(2010), Dunn (2011), and Schrenk (2008) – which will be discussed further in Section 8, is

to argue that Best Systemhood is vocabulary-relative.

Yet it is not necessary to take Best Systemhood to be vocabulary relative, nor to make an a

priori choice of some uniquely privileged vocabulary (such as the vocabulary of the perfectly

natural kinds) in order to allow that the Mentaculus is a candidate Best System.7 An

alternative is to adopt the following, slight modification of the BSA (for further alternatives,

see Frisch (2013) and Frigg and Hoefer (2013)). Observe that, as Lewis (1983, 368) recognises,

naturalness admits of degrees. We may thus take naturalness of the predicates that it

employs to be a theoretical virtue, to be weighed alongside the simplicity, strength, and fit

of a system. If an axiom system is able to achieve great simplicity and strength and fit by

employing a not-too-unnatural predicate like ‘low entropy’ – as the Mentaculus does – then

it is a plausible best system.

4. Ties Between Systems

Lewis acknowledged that the BSA is not completely unproblematic. “The worst problem

about the best-system analysis” (Lewis 1994, 479) is that notions such as simplicity and

balance are to some extent imprecise. There is, for example, no unique and maximally de-

terminate simplicity metric that is obviously the correct one to apply to candidate systems,8

nor is there a unique and maximally determinate correct exchange rate between the com-

peting virtues of simplicity, strength, and fit. The worry is that, within acceptable ranges,

7For the problems associated with making a once-and-for-all choice of a privileged vocabulary, see Cohen
and Callender (2009, 11-20).
8Indeed the notion of strength is also difficult to render precise (see e.g. Woodward (2005, 288-290)).
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different precisifications of the simplicity metric and of the exchange rate between the virtues

will result in different verdicts about which system counts as best. Lewis has little more to

offer than the hope that this will turn out not to be so:

“If nature is kind, the best system will be robustly best – so far ahead of

its rivals that it will come out first under any standards of simplicity and

strength and balance. We have no guarantee that nature is kind in this way,

but no evidence that it isn’t. It’s a reasonable hope. Perhaps we presuppose

it in our thinking about law. I can admit that if nature were unkind, and if

disagreeing rival systems were running neck-and-neck, then . . . the theorems

of the barely-best system would not very well deserve the name of laws. But

I’d blame the trouble on unkind nature, not on the analysis; and I suggest

we not cross these bridges unless we come to them.” (Lewis 1994, 479; italics

original)

Lewis adds parenthetically:

“Likewise for the threat that two very different systems are tied for best.

. . . I used to say that the laws are then the theorems common to both

systems, which could leave us with next to no laws. Now I’ll admit that in

this unfortunate case there would be no very good deservers of the name of

laws. But what of it? We haven’t the slightest reason to think the case really

arises.” (Ibid.)

One might think that the same thing that Lewis says about laws should be said of chances:

if there is no clear winner of the best system competition, then there would be nothing

deserving of the name chance. While Lewis himself does not explicitly say this, it is a

conclusion that is drawn by Beisbart (2013).
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The trouble is that it has seemed to a number of authors that, particularly when we

consider axioms systems that entail SM, there is indeed a set of rival systems – each of

which is associated with a different probability function – that are running neck-and-neck

(at least within the limits of precision of notions such as simplicity and balance) in the best

system competition for our world. The Best System analyst might therefore be hard pressed

to avoid the conclusion that there simply aren’t things deserving of the names of laws and

chances in our world (see Beisbart, ibid.).

Specifically, let us assume that the Mentaculus does indeed entail the SM probabilities, and

let us assume that Loewer is correct that it constitutes a better system for our world than one

comprising the fundamental dynamical laws alone. If the Mentaculus comes out best, then

the SM probabilities will count as objective chances on the BSA, and any generalizations

(probabilistic or otherwise) that it entails will count as laws on the BSA.

But an axiom system consisting of only the fundamental dynamic laws (FD) is not the

only rival to the Mentaculus. Schaffer (2007, 130–132), Hoefer (2007, 560), and Beisbart

(2013) consider another candidate, which consists of the fundamental dynamic laws plus

an axiom giving the precise initial conditions (PICs) of the universe. This is a very strong

system. Schaffer (2007, 131-132) suggests that it is maximally strong, while Hoefer (2007,

560) questions this. Hoefer (ibid.) points out that it’s not obvious how to quantify the

complexity of the two candidate systems (i.e. the Mentaculus and the FD + PICs system)

in such a way as to allow comparison. It is also not obvious how to decide whether any

difference in complexity is adequately compensated for by a resulting a difference in strength.

As Beisbart (2013) suggests, there are still further rivals to the Mentaculus:

“We can improve fit when we . . . assume a flat probability distribution over a

certain sub-region of the past low-entropy macro-state [as opposed to over the

whole of the past low-entropy macro-state – as per (SP) of the Mentaculus].

That sub-region may be defined by the demand that a certain elementary

particle has a kinetic energy larger than a particular value e0, for instance.
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If we do so, we have to pay in simplicity though because [in addition to the

assumed low-entropy initial state, we have to further specify that the initial]

kinetic energy of a particular particle be e0.

So overall, would we improve the system . . . ? This is a difficult question,

and the answer is far from clear. The only thing we can say is that fit is

considerably improved, but that there is a considerable cost in simplicity too.

So it’s not a case in which the right sort of balance favours one system rather

than the other in a clear way.”

Beisbart’s worry is that, by choosing different sub-regions of the phase space associated

with PH to apply the uniform probability distribution to, we get a range of candidate

best systems (cp. also Schaffer (2007, 131n)). At one extreme, we have the Mentaculus

(where a uniform distribution is applied to the whole region of phase space compatible with

PH); at the other extreme, we have a system comprising the fundamental dynamic laws

together with the PICs. The latter is equivalent to what we get in the limit as we apply a

uniform distribution to smaller and smaller sub-regions of the phase space associated with the

PH, each of which contains the point-sized region of phase space that the universe actually

initially occupied. The former is relatively simple, but gives an inferior fit; the latter gives

a better fit, but is less simple. In between we have a continuum of systems involving the

application of the uniform distribution to progressively smaller sub-regions of the phase-

space compatible with PH (where each sub-region contains the actual point in phase space

at which our universe was initially located). Such systems are increasingly better fitting,

since they assign an increasingly high probability to the actual macroscopic course of events,9

but also increasingly complex, since picking out progressively smaller sub-regions requires

building into the axioms an increasing amount of information about the actual initial state

of the universe.

9The claim that this is so will be argued for in detail at the end of this section.
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To be more precise, consider again the Mentaculus, i.e. the conjunction of FD, PH, and SP.

Holding fixed FD, as defined above, there are three further things that need to be specified

in order to give us SM-like regularities:10 a measure µ over 6N-dimensional microphysical

phase space, a phase space region Γ within which the initial micro-state of the universe is

located (the relevant region Γ may be picked out by specifying that the universe was initially

in some or other macro-state, M), and a probability distribution, P , over Γ. The Mentaculus

takes the relevant measure to be the Lebesgue measure, λ; it takes the relevant region of

phase space to be the region Γ0 that is associated with the special low entropy macro-state,

M0, described by PH; and it takes the relevant probability distribution, P , over Γ0 to be the

distribution P λ
U that is uniform with respect to the Lebesgue measure λ.

The systems that appear to be tied for best with the Mentaculus (at least given the limits

of precision of notions like simplicity and balance) vary either the measure over phase space,

or the size of the initial low-entropy region, or the probability distribution. In fact, the

probability distribution isn’t really specifiable independently of the measure. For instance,

it only makes sense to talk about a uniform distribution when we specify which measure the

distribution is uniform with respect to. The probability distribution-measure pair, 〈P µ, µ〉,

must be specified together, with the superscript to P indicating that the distribution is to be

understood with respect to the measure µ. The Mentaculus takes the relevant distribution to

be that which is uniform with respect to the Lebesgue measure. That is, it takes the relevant

probability distribution-measure pair to be 〈P λ
U , λ〉. In what follows, I will sometimes talk

simply about a probability distribution, suppressing reference to the measure. Where I do

so, I should be understood as assuming the Lebesgue measure.

Beisbart, as discussed, considers a rival to the Mentaculus which involves applying P λ
U (i.e.

the distribution that is uniform on the Lebesgue measure) to a sub-region ΓB of the phase

space region Γ0 associated with the low entropy macro-state M0 specified by the Mentaculus.

This sub-region ΓB is defined by adding to the requirement that the region be associated with

10At least this is so on the standard assumption that the SM regularities cannot be derived from the
fundamental dynamics alone. The possibility that they can be so derived is one that is investigated by
Albert (2000, 150-162) (cp. also Albert (2012, 39-40)).
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a low-entropy macro-state, the specification that one of the elementary particles constituting

the initial condition of the universe has kinetic energy above a certain value. As discussed

above, one can consider a continuum of sub-regions of Γ0, given by specifying more and more

of the microphysical details of the universe’s initial state. As we move along this continuum,

we get better and better fit at the cost of less and less simplicity up to the extreme case

where we specify the PICs of the universe, corresponding to the point-sized region of phase

space, Γδ.

One can also consider a variety of probability distributions, P (or, more accurately, proba-

bility distribution-measure pairs, 〈P µ, µ〉) over the initial phase space region. In many cases,

systems that vary the initial phase space region, Γ, will be equivalent to systems that vary

the probability distribution, P . Consider for example the suggestion, made by Frigg and

Hoefer (2013), that among the competitors to the Mentaculus is an axiom system that –

instead of the Mentaculus’s SP – contains an axiom that specifies “a peaked distribution,

nearly Dirac-delta style” – call it Pδ – whose peak is at the precise (point-sized) initial condi-

tion represented by Γδ. The delta distribution assigns probability 1 to the point at which it

is peaked (in this case, the precise actual microphysical initial condition of the universe), and

0 to all regions that don’t include this point (in this case, regions of phase space that don’t

include the actual initial condition of the universe).11 Such a system is effectively equivalent

to what we get in the limit as we apply the distribution P λ
U to smaller and smaller phase

space regions that contain the point Γδ.
12

One can thus formulate a family of Mentaculus-like axiomatizations of SM. Let us call

this family Ment(Γ, P µ, µ). Members of Ment(Γ, P µ, µ) comprise FD plus the following:

11The implications of choosing the delta-distribution as one of our axioms will be the same whether we take
the measure over phase space to be the Lebesgue measure (so that our measure-probability distribution pair
is 〈Pλδ , λ〉), or any other measure that is absolutely continuous with the Lebesgue measure (i.e., that assigns
0s to all of the sets that the Lebesgue measure assigns 0 to).
12Incidentally, I think that Beisbart (2013) is correct to challenge Frigg and Hoefer (2013)’s contention that
a system comprising FD together with the delta distribution peaked at the world’s actual PICs is clearly
superior to the Mentaculus. Frigg and Hoefer claim that the delta distribution is just as simple as the
uniform distribution (over the region of phase space corresponding to the low entropy condition specified by
PH) while yielding much better fit to the actual frequencies. But, as Beisbart (2013) correctly points out,
“[t]he delta distribution has a simple functional form, but to pick one particular delta function, you have to
specify the location of the peak . . . i.e., the whole initial condition, and this is not simple at all!”
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(PH*) a proposition characterising the initial condition of the universe as some particular

element of the set γ = {Γ0, . . . ,ΓB, . . . ,Γδ}.

(SP*) a probability distribution-measure pair 〈P µ, µ〉 applied to the region of microphysical

phase space specified by PH* (that is, to the relevant element of γ). Assuming

the measure to be the standard, Lebesgue measure (i.e. µ = λ), the probability

distribution can be taken to be some element of the set ρ = {P λ
U , . . . , P

λ
δ } (the

elements of this set besides P λ
U and P λ

δ are to be taken to be non-flat distributions

that assign increasingly high probability to smaller and smaller regions of phase space

containing the PICs).

(SP* is redundant for the case where PH* specifies the PICs, Γδ.) As we will see shortly,

non-identical SM probabilities are entailed by Ment(Γ, P µ, µ) for different choices of Γ ∈ γ

and P ∈ ρ (even if we hold fixed µ = λ).

As Beisbart (2013) and others have pointed out, the PH as stated by Albert and Loewer is

ambiguous. For one thing, there is an ambiguity between (at least) the following two readings

of PH. On the one hand, it could be interpreted as simply saying something like ‘there exists

a macro-state M (and an associated phase space region Γ) and a value s such that the

universe was initially in M , M has entropy value s, and s is low’.13 On the other hand, it

could be interpreted as saying ‘the initial macro-state of the universe was M0 (corresponding

to phase space region Γ0)’, where M0 in fact has low entropy (= s). On the former reading,

PH simply specifies that the universe was initially in some-or-other macro-state with an

entropy value s; on the latter reading, PH specifies exactly which macro-state the universe

was in fact initially in.14 If the latter reading of PH is intended, then it seems clear that

there are still further competitor systems to the Mentaculus, which include axioms that

13In which case, it is not clear exactly how low initial entropy is specified to be by the PH. Consequently,
it’s not clear how big Γ0 itself should be taken to be.
14Lavis (2005, 255) uses the term ‘degenerate’ to describe entropy values that are associated with more than
one macro-state, and takes the number of macro-states sharing that value to be a measure of the value’s
‘degeneracy’. If s is degenerate, then the two readings of PH suggested in the main text are not equivalent.
The former version of PH would make for an axiom system that is more simple (since only an entropy
value, and not a precise macro-state, is specified), the latter version would make for an axiom system that
is better-fitting.
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achieve greater simplicity at the cost of worse fit by being less and less precise about the

initial macro-state of the universe: for example by specifying the values of fewer and fewer

macro-variables (thus perhaps restricting the entropy of the initial macro-state to lie below

higher and higher values of s). Such systems would involve applying a uniform distribution

to regions larger than Γ0.
15

It thus seems that we are confronted by a plethora of very good systems, none of which

stands out as robustly best. Indeed, plausibly we are confronted with a continuum of such

systems: for example, systems that apply a uniform distribution to smaller and smaller

regions of phase space, each of which contains the universe’s PICs. If we had a precise

simplicity measure, and a precise exchange-rate between simplicity and strength/fit, then

perhaps the measure and the exchange rate might produce an exact tie between systems

located on this continuum. The idea would be that, according to the exchange rate, the

change in strength/fit as we move along the continuum is precisely counterbalanced by the

change in simplicity. More plausibly, a precise simplicity measure and a precise exchange

rate is something that we cannot reasonably hope to have. If so, then it is quite plausible

that none of the systems on this continuum is robustly better than all – or indeed any –

of the others. That is, none is superior to all – or any – others given the imprecision of

simplicity and of the exchange rate.16

As we saw earlier, Lewis (1994, 479) claims that, if there is not a unique best system, then

there is nothing deserving of the name law. But we have now seen that, very plausibly, there

is no unique best system for our world. Must we then draw the (surprising) conclusion that

there are no laws for our world?

15Not all ways of giving less and less precise information about the universe’s initial state will increase
simplicity (though they will all decrease fit). For instance, while specifying the values of fewer macro-
variables may increase simplicity, it doesn’t seem obviously more simple to specify the values of the same
number of macro-variables, but to simply specify them less precisely. For instance, an axiom that specifies
that temperature t at location l is between x degrees kelvin and y degrees kelvin doesn’t seem obviously
more simple than one that specifies that t at l lies within a strict sub-interval of [x, y].
16Or, more modestly: it is plausible that there is some subset of the systems on this continuum each member
of which is at least as good as any system not in this subset, but none of which is robustly better than all –
or indeed any – of the others within this subset.
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This seems to be too extreme a position to take. Lewis’s earlier position that, in case of

ties, those theorems entailed by all of the tied-for-best systems would count as laws (Lewis

1983, 367) is more plausible. Thus, for example, those who have examined axiomatizations

of SM that are rivals to the Mentaculus have not disputed that the fundamental dynamical

principles are the same across all such systems. If this is indeed the case, then it is plausible

that they are genuine laws of our world.

What conclusion should we draw about chances? Is it the case that if (as is plausible

in light of the foregoing) there is not a unique best system for our world, there is nothing

deserving of the name chance? Lewis doesn’t explicitly say such a thing, though it might be

a natural view for him to take given his position that there would be no laws in such a case.

Beisbart (2013) thinks that the Best System analyst is committed to such a view:

“The conclusion looming large here is that Humean considerations do not

provide us with any clearly optimal solution to the problem of how to define

a dynamics of chances. And good just isn’t good enough. We need a best

system that is clearly best, and not just a good one. If there isn’t a best

system, then there are no chances . . . .”

Beisbart’s idea is that the Humean mosaic, together with the theoretical virtues, fails to single

out a unique best system, and therefore a corresponding probability function. Consequently

he claims that the BSA implies that there is nothing that counts as the objective chance

function for our world. This is precisely analogous to Lewis’s claim that there would be

nothing deserving of the name of law if several systems were roughly tied for best.

Again, this seems like an extreme position to take, and it is tempting to instead adopt

a position analogous to Lewis’s earlier, more moderate, position on laws in the case of ties

between systems. That is we might say that, in the case of a tie, any probabilities that

the tied-for-best systems agree upon count as objective chances. If the tied-for-best systems

entail the same fundamental dynamics, then they presumably entail the same probabilities
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conditional upon microphysical chance setups. For example, it is possible that all the tied-

for-best systems agree on the probability that a particular tritium atom will decay within

the next 12.32 years. One might plausibly say that such agreed-upon probabilities count as

chances.

Do the probabilities that the tied-for-best systems agree upon extend beyond the probabil-

ities of micro-physics? It’s a highly non-trivial question how different choices of initial phase

space region of the universe and different probability distribution-measure pairs (i.e. differ-

ent choices from the family Ment(Γ, P µ, µ)) translate into SM probabilities at later times.

If systems that include axioms that differ concerning the initial probability distribution-

measure pair and/or the region of phase space to which it is to be applied, nevertheless

agree on (some of) the SM probabilities, then the latter might count as objective chances.

Albert (2000, 67) argues that, provided that the sub-region of Γ0 we choose is regularly-

shaped and not too small, and provided the probability distribution that is applied to it is

reasonably ‘smooth’ with respect to the Lebesgue measure (‘smooth’ in the sense that the

probability density varies only negligibly over small distances in the phase space), then the

resulting probabilities of thermodynamic-like behavior (that is, monotonic entropy increase)

will diverge only a little from those entailed by the Mentaculus.

Frigg argues that the assumption that underlies Albert’s claim – the assumption that

the micro-states that lead to un-thermodynamic behavior are scattered in tiny clusters all

over phase space (Albert 2000, 67) – is supported by “neither a priori reasons nor plau-

sibility arguments . . . and merely asserting that the condition does hold is simply begging

the question” (Frigg 2011, 87). If this assumption of Albert’s is incorrect, then the choice

of (regularly-shaped) sub-region of Γ0 and (smooth) probability distribution may make a

significant difference to the probabilities of thermodynamic-like behavior. But, even if the

assumption is correct, different choices will yield some small but finite differences in such

probabilities. Moreover, from the perspective of providing a best axiom system for the uni-

verse, it is not clear why choices of irregularly shaped regions and non-smooth distributions
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should be ruled out a priori. For example, the delta-distribution is as unsmooth as possible,

and yet an axiom system incorporating it seems a live candidate for best systemhood.17

Maudlin (2007b, 2011) has argued that one can derive normal thermodynamic behav-

ior without committing to precise assumptions about the initial probability distribution-

measure pair, 〈P µ, µ〉, provided that different choices of probability distribution-measure

pair agree on which sub-regions get zero probability. Maudlin appeals to considerations of

‘typicality’. When defined strictly (a more liberal definition will be considered below), a

certain sort of dynamic behavior (or a limiting relative frequency for that behavior), such as

thermodynamic-like behavior, counts as typical relative to a measure µ when that behavior

(limiting relative frequency) is produced by a set of initial conditions that µ assigns measure

1 (see Maudlin (2007b, 286) and Maudlin (2011, 310)), and which hence has probability 1

on any distribution that does not concentrate finite probability on sets of measure 0 (as, for

example, the delta distribution does).18

Maudlin’s idea is as follows. Suppose that we start with some convenient measure, such

as the Lebesgue measure λ,19 and suppose that some set of initial conditions that produces

a given behavior is assigned measure 1 by λ. Then, if one switches to any other measure,

µ, that is absolutely continuous with λ: that is, which assigns measure 0 to all the sets

that have measure 0 according to λ, the same behavior will count as typical with respect

17Of course, the candidate systems will all assign a high probability to thermodynamic-like behavior, other-
wise they won’t be well-fitting. But there is still an important difference between (for example) the extreme
probabilities assigned to thermodynamic-like behavior by the system including the delta-distribution and the
non-extreme probabilities entailed by the Mentaculus, even if both entail probabilities that are ‘very high’.
18Often advocates of the ‘typicality’ approach to explaining thermodynamic behavior eschew talk of proba-
bility, hoping to explain thermodynamic behavior simply in terms of the large measure of the set of points
(within the region of phase space associated with the low entropy initial conditions) on entropy-increasing
trajectories. Maudlin, however, has no problem with probability-talk. In fact, he talks about the relevant
measures as being ‘probability measures’ (e.g. Maudlin (2007b, 311)), suggesting that what he has in mind
are measure-probability distribution pairs. In any case, it seems implausible that thermodynamic behavior
can be explained in terms of the sizes of the respective regions, unless one can say that the size of a region
is correlated to the probability that a system is located within it. One can do the latter only by appealing
to some or other probability distribution (such as the one that’s uniform with respect to the measure in
question). I thus follow orthodoxy (and the Albert-Loewer line) in supposing that both a measure and a
probability distribution with respect to that measure is needed to explain thermodynamic behavior.
19As well as being ‘convenient’ – the Lebesgue measure is ‘convenient’ in the sense that it is invariant under
the dynamics (Liouville’s Theorem) – the measure must also be such that we “feel comfortable that it
represents a reasonable choice of sets of measure one and zero” (Maudlin 2007b, 287). What constitutes a
reasonable choice is left unclear by Maudlin.



Luke Fenton-Glynn 19

to µ as did with respect to λ. And provided that we choose a probability distribution P µ

which doesn’t assign finite probability to sets that have measure 0 according to µ, then

the measure-probability distribution pair 〈P µ, µ〉 will assign probability 1 to the behavior in

question (precisely because the initial conditions that don’t lead to this limiting frequency

still get assigned probability 0).20

Maudlin (2011, 311) claims that “[i]t is also extremely plausible that the choice of the

exact interval [or, in the case that concerns us, the exact region of phase space] is irrelevant:

make it larger and smaller, and still the same [behavior] will be typical”. Maudlin does not

present an argument for this latter claim, and it is not clear how such an argument would

go. In particular, there is no reason to suppose that the same measure applied to different

sized regions of phase space will assign zero to all of the same sets. Perhaps the idea is that

the set of ‘bad’ points (i.e. the ones that don’t yield entropy increasing behavior) has the

same measure in different ‘reasonable’ choices of subregion of the phase space. Such a claim

would seem to depend upon the sort of ‘scattering’ assumption discussed above, which is

made by Albert, and questioned by Frigg.

Maudlin certainly claims that this typicality reasoning applies to thermodynamics:

“If we have two metal rods at different temperatures and then bring them into

thermal contact, typical behavior (in the ‘thermodynamic limit’) will be for

the motions of the atoms in the rods to evolve so that the temperatures in the

rods equalize. This is the way that the laws of thermodynamics, which are de-

terministic, are ‘reduced’ to statistical mechanics: Thermodynamic behavior

is shown to be typical behavior.” (Maudlin 2007b, 287)

By “in the ‘thermodynamic limit’”, Maudlin presumably means as the number of molecules

in the system increases to infinity. Goldstein and Lebowitz (2004, 57) claim that, as the

20Maudlin doesn’t explain why any reasonable measure must be absolutely continuous with the Lebesgue
measure. And it is not at all clear that it must be. In particular, Frigg (2011, 88) points out that there is no
proof that all measures that are invariant under the dynamics (for a given system) are absolutely continuous
with the Lebesgue measure. But let’s set this worry aside, for the sake of argument.
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number of molecules goes to infinity, the (Lebesgue) measure of the initial conditions that

lead to significant violations of the Second Law of Thermodynamics goes to zero.21

The trouble with this is that no thermodynamic system, not even the universe as a whole,

comprises infinitely many molecules. Consequently, thermodynamic behavior (in our world)

isn’t ‘typical’ in the sense that the initial conditions that produce it form a set that has

Lebesgue measure 1. Rather, that set has Lebesgue measure only 1− ε (for small but finite

ε), as Maudlin (2007b, 289) acknowledges.22

Given that this is so, there are measures that are absolutely continuous with λ that assign

a range of sizes to the set of initial conditions that produce thermodynamic-like behavior.

Maudlin claims that, since the Lebesgue measure of this set is high, it will also be very

high on “almost any reasonable” alternative measure (Maudlin (2011, 314); see also Maudlin

(2007b, 289)). Nevertheless, “there will be some . . . degree of sensitivity . . . [to] the particular

measure chosen” (Maudlin 2007b, 290). Because of this sensitivity of the size of the ‘good’

set to the choice of measures, there are probability distributions (including the uniform

distributions) relative to such measures that assign a range of probabilities to that set (even

though they don’t assign finite probability to sets of zero measure), and hence entail a range

of probabilities for entropy-increasing behavior.23

It thus seems that the differences in our tied-for-best systems translate into different

probabilities for entropy-increasing behavior. Of course, there must be a certain amount of

qualitative agreement between the systems: each must entail that the probabilities of entropy

increase in (most isolated) non-equilibrium systems are ‘very high’, since any system that did

21Frigg (2011, 88) objects that there is no proof that the set of ‘bad’ initial conditions has Lebesgue measure
zero even in the infinite case. If it does not, then measures that are absolutely continuous with the Lebesgue
measure may assign this set a range of different sizes and hence probability distributions that (e.g.) are
uniform with respect to these various measures will yield a range of different probabilities for entropy-
increasing behavior.
22In fact Frigg (2011, 85-87) points out that there is no general proof that micro-states on trajectories that
lead to thermodynamic equilibrium are typical for the systems of concern to us even in the weak sense of
having Lebesgue measure at least 1− ε.
23Indeed, in the context of devising candidate best systems, it is unclear that it is reasonable to adhere to
Maudlin’s stricture that one ought to “avoid extremism: don’t pick a new measure that concentrates finite
probability on a set that got zero probability originally, and don’t shrink the [region that the probability
distribution is applied to] down to a point” (Maudlin 2011, 311). In the context of constructing candidate
best systems, we are well within our rights to consider systems that incorporate the delta distribution, or
that specify the universe was initially in the point-sized region of phase space, Γδ.
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not would not be well-fitting enough to be among the best. Still the different probability-

distribution-measure pairs invoked by different systems, and the different sized regions of

phase space to which the probability distributions are applied are liable to translate into

small but finite differences in the probabilities assigned to entropy-increasing behavior.

That different probability distributions over the initial conditions of the universe may at

least yield qualitative agreement on the SM probabilities is suggested by Callender (2011,

107), when he discusses what he calls the ‘Liberal Globalist’ approach to axiomatizing sta-

tistical mechanics. Globalist approaches are those that – like the Mentaculus, and all of

the other systems that we have considered thus far – seek to derive SM probabilities by

means of the application of a probability distribution to the region of phase space associ-

ated with some or other low entropy initial macrostate of the universe as a whole. (Localist

approaches, as we’ll see in Section 6, seek to derive the SM probabilities by applying prob-

ability distributions to the regions of phase space associated with the initial macrostates of

isolated subsystems of the universe.) Liberal Globalism acknowledges that there is not a

unique distribution that yields a high probability of entropy increase for the universe:

“Liberal Globalism notices that many other probability distributions over ini-

tial conditions will ‘work,’ i.e. make probable the generalizations of thermo-

dynamics, in addition to the standard one [i.e. the one that is uniform on the

Lebesgue measure]. David Albert (private communication) then suggests the

following strategy. Take the set SPi of all such probability distributions that

work. There will be uncountably many of these. Dictate that physics is com-

mitted to those propositions on which SPi plus the dynamical laws all agree.

Such a picture will . . . be agnostic about claims . . . [where] the probability

distributions . . . disagree and so the theory makes no claim. The advantage

of this position, if it works, is that it isn’t committed to any one probability

distribution doing the job . . . .” (Callender 2011, 107)
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Here the point seems to be that different distributions will often yield qualitative agreement

about objective chances: for example, they will agree that the probability of entropy increase

in a given non-equilibrium isolated system is ‘high’, though they do not agree on a precise

numerical value for such a chance. It seems, however, that Albert and Callender take the

view that, while it will then be true that the chance of entropy-increasing behavior, in some

particular situation, is high (because the tied-for-best systems agree on this proposition),

there will be no fact of the matter about what the objective chance is (since the tied-for-

best systems yield different sharp probabilities for entropy increase). By contrast, in what

follows, I will argue that there is a fact of the matter about what the objective chance is :

namely, it is the set of sharp probability values entailed by the tied-for-best systems. That

is to say, it is the unsharp chance that corresponds to this set of values.24

In general, it seems plausible that the probabilities that the tied-for-best systems all agree

on ought to be counted as objective chances. But the SM probabilities entailed by the set

of apparently tied-for-best systems diverge from one another. In disanalogy to the case of

laws, I will argue that the chances aren’t limited to the probabilities that are agreed upon

by the tied-for-best systems. Rather, in the case where divergent probabilities are entailed

by the tied-for-best systems, the chances correspond to the set of probabilities entailed by

these tied-for-best systems.

5. Unsharp Best System Chances

The fact that the Humean mosaic, together with the (imprecise) relation of Best System-

supervenience does not uniquely fix a single axiom system should not lead the Best System

analyst to conclude that there are no chances in the world. It shouldn’t even lead her to

conclude that the only chances in the world are those probabilities that the set of tied-for-best

systems all agree on. In cases where the tied-for-best systems disagree about the probability

24Note that, if the tied-for-best systems all entail that the probability for entropy increase given a non-
equilibrium macro-state for an isolated system is high, but do not agree on sharp valued probabilities, then
one might think that the correct thing to say about laws in this case is that there exists a qualitative
probabilistic version of the Second Law of Thermodynamics (but no precise quantitative one). I find this
view plausible, but nothing that I say about chances turns upon it.
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for some event, the Best System analyst shouldn’t say that there is no well-defined objective

chance for that event. Rather, she should simply deny that the objective chance for that

event is sharp.

If there is no clear winner in the Best System competition, the natural thing for the Best

System analyst to say is that the set of probability functions corresponding to the tied

systems constitutes the set of chance functions for the world.

Where the probability functions associated with the tied systems agree on the probability

for a particular event then the objective chance for that event is sharp. As suggested above,

this seems quite plausible when, for example, we are considering microphysical events like

the decay of a tritium atom within the next 12.32 years.25 On the other hand, when the

probability functions of the tied-for-best systems yield a set of values, as appears to be the

case for thermodynamic behavior in any given situation, then the set of values constitutes

an unsharp chance for the event in question. Put in terms of the family Ment(Γ, P µ, µ) of

plausibly tied-for-best Mentaculus-like systems which we formulated in the previous section,

the suggestion is that differing SM probabilities are entailed by Ment(Γ, P µ, µ) for various

choices of initial phase space region, Γ, and for different choices of probability distribution-

measure pair 〈P µ, µ〉 and that, by considering the probabilities entailed by the various tied-

for-best members of the family Ment(Γ, P µ, µ), we obtain SM probabilities that are set-

valued, i.e. are unsharp.

The possibility of unsharp chances, especially in the context of the BSA, has been noted in

passing by Hájek (2003b). After discussing the possibility that credences may be unsharp – or

25Although one might even wonder whether there is a unique real number that constitutes the chance of
this decay event (see the discussion of Maudlin (2011, 295-296)). One might take the view that the chance
for the decay event is unsharp. There are two interestingly different ways of construing a situation in which
the fundamental dynamics, FD, doesn’t assign a unique real number as the probability of occurrence for
some microphysical event. On the one hand, one might construe this as involving a tie between systems,
each of which entails Quantum Mechanics-like theorems that entail various unique real-valued probabilities
for decay. If so, QM chances would be unsharp for the same reason that SM chances are. Alternatively,
the situation in QM might be construed, not as one in which there is a tie amongst systems each of which
gives sharp QM chances (i.e. is endowed with exactly one probability function), but as a case in which the
(unique) best axioms for QM themselves entail unsharp chances (i.e. include a set of probability functions).
Perhaps – though I will not explore this question here – these two ways of construing the case are equivalent.
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in Hájek’s terminology ‘vague’26 – Hájek briefly turns his attention to objective probability:

“More controversially, let me suggest that we remain open to the possibility of

vague objective probabilities. For example, perhaps the laws of nature could be

vague, and if these laws are indeterministic, then objective probabilities could

inherit this vagueness. ... [A] chance that is vague over the set S corresponds

to a set of sharp chances, taking on each of the values in S.” (Hájek 2003b,

278)

In a footnote, Hájek (2003b, 278n) notes that:

“This would certainly seem to be a live possibility on a Mill-Ramsey-Lewis

style account of laws as regularities that appear as theorems in a ‘best’ theory

of the universe, as long as the criteria for what makes one theory better

than another are themselves vague. (In Lewis’ 1973 theory, for instance, the

vagueness may enter in the standards for balancing the theoretical virtues

of ‘simplicity’ and ‘strength’.) Then nature may not determine a single best

theory, but rather a multiplicity of such theories. Suppose, for example, that

these equal-best theories disagree on the chance that a radium atom decays

in 1500 years: for each real number r in the interval [1/3, 2/3], there is such

a theory that says that the chance is r. Then we might say that the chance

of this event is vague over this interval.”27

26I don’t think that Hájek’s terminology is ideal. Specifically, I think that the term ‘vague probability’ is
best reserved for the case when it is a vague matter which elements of the set of reals in [0, 1] belong to the
set that constitutes an unsharp probability (cp. Joyce (2005, 167n), Sturgeon (2008, 158-159), and Sturgeon
(2010)). Adopting this terminology, it is possible to have an unsharp chance that is not vague – i.e. when
more than one element of the reals in [0, 1] is an element of the set that constitutes the unsharp chance, but
it is a perfectly determinate matter which elements of the former set belong to the latter set. In any case,
the sort of chances that Hájek discusses correspond to what I’m calling ‘unsharp’ chances.
27Cp. also Hájek and Smithson (2012, 39).
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The possibility suggested in this latter quote is one that I wish to push. As has been

seen, competing ways of axiomatizing statistical mechanics provide a strong motivation for

thinking that there is indeed a tie and hence – on a plausible construal of the BSA – that

there are unsharp Best System chances in our world. It is thus particularly plausible that the

BSA yields unsharp chances in the case of SM, as opposed to the case of quantum mechanics

that Hájek considers.28

The basic reason for holding that there are unsharp chances in this context is that it seems

unreasonable to claim that, in the case of a tie between systems, there simply is nothing

playing the chance role in guiding rational credence, and hence action. This argument will

be developed in detail in Section 7 below, but the following is a sketch.

Hoefer (2007, 580-587) and Frigg and Hoefer (2010) argue that Humean chances are con-

straints on rational credence because of the tight connection between Humean chances and

actual frequencies. Specifically they argue that this allows for a ‘consequentialist’ justifi-

cation for calibrating one’s credences with the Humean chances. The basic idea is that,

given the tight connection between Humean chances and actual frequencies, agents betting

according to the Humean chances will do well in the long run.

The assumption that there is a unique probability function that serves as the Humean

chance function does not seem essential to this argument.29 On the BSA, in the case of a tie

between systems, it seems that one can argue that the set of probability functions entailed

by the tied systems would constrain reasonable credence. Specifically, when confronted with

a tie between systems, an agent who knows the set of probability functions corresponding

to the tied-for-best systems, and who knows that a certain chance setup is instantiated, and

who has no inadmissible information (no information relevant to the outcome of the chance

28Hájek’s suggestion that ties between systems yield vague or unsharp laws of nature is intriguing. As already
suggested it seems plausible that, in cases of ties, the theorems (if any) common to all of the tied-for-best
systems constitute the (sharp) laws of nature. However, since the tied-for-best systems entail different SM
probabilities, but nevertheless agree on the qualitative fact that the probability of Second Law-like behavior
is ‘very high’, it was suggested in Footnote 24 that this might be taken to imply the existence of a qualitative
probabilistic version of the Second Law. Perhaps a law that assigns only a qualitative probability to certain
behavior counts as an ‘unsharp’ law (since it is a kind of summary of what is common to the various
quantitatively precise generalizations entailed by the different tied-for-best systems).
29Frigg and Hoefer (2013) themselves find it plausible that there may not be a unique best system for our
world, and that there may be “a family of closely related cousins” that come out tied-for-best.
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event beyond knowledge of the initial chance setup and the set of probability distributions

entailed by the tied-for-best systems) rationally ought not to adopt a credence value that

lies outside the set of probability values entailed by the systems that are tied-for-best.

For example, all tied-for-best systems entail a very low probability for entropy decrease

in (most) isolated systems. An axiom system that does not would be straightforwardly

excluded from the set of tied-for-best systems: it will inevitably be highly ill-fitting, since

fit implies a close correspondence of the entailed probabilities to the actual frequencies. One

can thus offer a ‘consequentialist’ justification for not adopting a credence outside of the

set of probabilities yielded by the tied systems: betting as though entropy-decrease in non-

equilibrium isolated systems is not very improbable would lead one to do very badly in the

long run.

Indeed, rather plausibly, a reasonable agent who knows that a certain chance setup is

instantiated, who knows that the set of probability functions corresponding to the tied-

for-best systems yield a (non-singleton) set of probabilities for a given outcome conditional

upon the instantiation of that chance setup, and who has no inadmissible information, would

have an unsharp credence in the outcome in question: specifically, her credence would be

represented by a set of values corresponding to those entailed by the probability functions of

the tied systems. In such a situation the agent would have no rational basis to choose between

the probability functions entailed by the tied systems but would be rationally compelled to

base her behavior upon the relevant unsharp chance. Thus, in such a situation, the set

of values entailed by the tied systems is playing the key chance role of guiding reasonable

credence, and thereby constitutes an unsharp chance.

There is one worry here. Given a set of systems that are tied for best, some of which have

greater fit, and others of which have greater simplicity, it would appear to be (instrumentally)

rational to set one’s credences according to the probabilities entailed by that system which

has the greatest fit (i.e. accords best with the actual frequencies), since betting according to

those probabilities would yield the greatest payoff in the long run. This is a genuine worry,

but it is a general problem for the BSA. Even in the case of a unique best system, the Best
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System chances are liable to depart somewhat from the actual overall world frequencies.

This is because considerations of simplicity go into determining a Best System, and not

just considerations of fit. But it seems difficult to argue that the Best System probabilities,

rather than the actual overall world frequencies, are the best players of the chance role in

guiding rational credence: if one knew both, one would do better in the long run if one

bet according to the actual frequencies. The advocate of the BSA requires some general

explanation of why the best-fitting probabilities (i.e. the actual overall world frequencies)

aren’t automatically the chances (perhaps, for example, she could appeal to other aspects of

the chance role). Whatever answer is deployed in this context will also be available to us in

explaining why the best fitting of the tied systems doesn’t automatically deliver the chances

(and why simpler theories also have strong claims to do so). This issue will be taken up in

more detail in Section 7 below.

6. Localist Approaches to SM

Callender (2011) calls attempts to derive the SM probabilities from a probability distribution

over a phase space region corresponding to some-or-other specification of the low entropy

initial macrostate of the universe as a whole ‘Globalist’ approaches to axiomatizing SM. The

Mentaculus is one example of a Globalist approach. As we have seen, this can be generalised

to a family of such approaches, Ment(Γ, P µ, µ), many of which are plausibly just as good

systematizations as the Mentaculus.

In contrast to Globalist approaches, ‘Localist’ approaches (see Callender (ibid.) and Frigg

and Hoefer (2013)) attempt to derive the SM probabilities from probability distributions

over the initial states of the various approximately isolated subsystems of the universe. As

with Globalist approaches to axiomatizing SM, it is plausible that there is a set of Localist

approaches that are tied-for-best (at least within the limits of precision of notions like sim-

plicity and balance). Many of the preceding points about unsharp chances in the Globalist

case therefore carry across to the Localist case. So one should also believe in unsharp chances
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if one regards Localist axiomatizations as more promising (i.e. as plausibly providing better

systems) than Globalist axiomatizations.

One important motivation for those who have advocated the Localist approach is the fact

that there is not much evidence – let alone proof – that a high probability of entropy increase

for (approximately) isolated subsystems of the universe can be derived from Mentaculus-like

Globalist axiomatizations of SM (cp. Callender (2011, 106); Frigg and Hoefer (2013)).

Indeed, Callender (2011, 100-101) points out that it simply doesn’t follow from the fact that

(e.g.) a uniform distribution over the low-entropy initial condition of the universe specified by

the PH makes entropy increase for the universe as a whole very likely, that entropy increase

in (approximately) isolated non-equilibrium subsystems of the universe is also very likely.

The reason for this is that the phase spaces corresponding to these subsystems have a lower

dimensionality than does the phase space of the universe as a whole. These subsystems thus

have zero volume in the phase space of the universe. So increasing entropies in individual

subsystems simply don’t ‘add up’ to entropy increase in the universe as a whole. Conversely,

entropy increase in the universe as a whole does not imply that entropy increases in ‘most’

subsystems. Yet it seems plausible that a Best System for our universe ought to entail a

high probability for entropy increase in such subsystems, otherwise it will be ill-fitting (cp.

Callender (2011, 100, 106)).

The Localist proposal is that, rather than simply applying a probability distribution (as

in SP*), to a region of the phase space of the universe that contains the initial state of

the universe (as described by PH*), we should apply probability distributions to regions of

the phase spaces of (approximately) isolated subsystems of the universe that contain the

actual initial conditions of those systems (Callender 2011, 96-97). Thus Callender (2011,

96) suggests that “we impose SP at (roughly) the first moment low-entropy macroscopic

systems become suitably isolated”. Callender calls those subsystems of the universe such

that the imposition of SP on a region of their phase space corresponding to a low-entropy

initial macro-state is predictively successful ‘SP-systems’ (Callender 2011, 106). Callender’s
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preferred version of Localism is one that is ‘agnostic’ about whether the existence of SP-

systems is itself somehow to be explained (as on Globalist versions of SM) in terms of the

application of SP to some sub-region of the phase space of the universe as a whole.

Frigg and Hoefer (2013) endorse a Localist approach to SM, and combine this with a Best

System-style analysis of chance, which they call a ‘Theory of Humean Objective Chance’,

or ‘THOC’. They argue that the distribution P λ
U that is uniform on the standard Lebesgue

measure, λ, should be applied to the initial state of SP-systems to generate the SM chances.

They argue that the distribution P λ
U can be justified in terms of simplicity and fit with the

actual frequencies. Specifically, they take Γp to denote the phase space region corresponding

to an SP-system’s initial macro-state (that is it’s macro-state at some initial time t0), and

they argue that:

“There is a well circumscribed class of objects to which a chance rule like [P λ
U ]

applies (gases, etc.). Each of these . . . has a precise initial condition x at t0,

which, by assumption, lies within Γp. Now go through the entire [Humean

Mosaic] and put every single initial condition x into Γp. The result of this

is a swarm of points in Γp. . . . THOC is essentially a refinement of finite

frequentism and chances should closely track relative frequencies wherever

such frequencies are available. . . . But . . . we have to reduce the complexity

of the system by giving a simple summary of the distribution of points. To

this end we approximate the swarm of points with a continuous distribution

(which can be done using one of the well-known fitting techniques . . . ) and

normalise it. The result of this is a probability density function ρ on Γp,

which can be regarded as an expression of the ‘initial conditional density’ in

different subsets C of Γp.

The good-fit constraint now is that ρ(C) be equal to (or in very close

agreement with) [λ(C)/λ(Γp)] for all subsets C of Γp. This is a non-trivial

constraint. For it to be true it has to be the case that the initial conditions
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are more or less evenly distributed over Γp because [λ(C)/λ(Γp)] is a flat

distribution over Γp.” (Frigg and Hoefer 2013, square brackets indicate where

I have changed notation for consistency with my own)

Frigg and Hoefer’s idea is that, if we consider systems whose phase spaces have (roughly) the

same dimensionality, then the precise actual initial conditions of those various systems will

be roughly uniformly distributed over that phase space. Thus the application of a uniform

probability distribution to that phase space can be justified in terms of this frequency: the

uniform probability distribution fits well the uniform frequency with which the initial condi-

tions of actual systems lie in the various sub-regions of the phase space. (And, in particular,

it fits better than any comparably simple distribution.) Frigg and Hoefer’s justification for

applying the uniform distribution to subsystems of the universe is thus somewhat different

from Albert and Loewer’s justification for applying it to the initial conditions of the universe

as a whole. Their idea is that the uniform distribution is “an elegant summary of actual

initial conditions as they occur in the [Humean Mosaic] of a world like ours” (Frigg and

Hoefer 2013). As they point out, this justification of the uniform distribution “is not open

to those who take [Boltzmannian SM] to be a theory about the universe as a whole, since

there is only exactly one initial condition of the universe” (Frigg and Hoefer 2013).

One worry about this localist approach is that there may simply not be enough systems

that have exactly the same number of phase space dimensions to produce a set of actual

initial conditions that is large enough to single out the uniform distribution as that which

supplies the robustly best balance of fit and simplicity. Frigg and Hoefer (2013) acknowledge

this worry in a footnote, saying:

“[O]ur discussion idealises by pretending that the histories of all sorts of dif-

ferent SM systems could be treated as representable via paths in a single

phase space. This is an idealisation because systems with a different particle

number N have different phase spaces. We think that this is no threat to

our approach. SM systems such as expanding gases and cooling solids are
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ubiquitous in [the Humean Mosaic] and there will be enough of them for most

N to ground a [Humean Best System] supervenience claim. Those for which

this is not the case (probably ones with very large N) can be treated along

the lines of rare gambling devices such as dodecahedra: they will be seen as

falling into the same class as the more common systems and a flat distribution

over possible initial conditions will be the best distribution in much the same

way in which the 1/n rule [where n is the number of sides] is the best for all

gambling devices.”

But it is not at all clear that Frigg and Hoefer are justified in being confident, even for

systems of relatively low phase space dimensionality, that there will be enough such systems

to single out P λ
U as the distribution that strikes the robustly best balance of simplicity and fit

with the actual distribution of initial conditions. Still less is it clear that there are enough to

guarantee that applying P λ
U to phase spaces of higher dimensionality (of which there may be

fewer instances) will be the strategy that strikes the robustly best balance between simplicity

and fit.

If the set of actual initial conditions of SP systems fails to nail down P λ
U as that distribution

which strikes the robustly best balance between simplicity and fit, then plausibly we will be

left with a large (perhaps continuous) range of distributions that fit actual initial condition

frequencies reasonably well, with the better fitting (e.g. certain non-flat distributions –

including those with peaks at each of the actual initial conditions of the subsystems in

question) being more complex, and the worse fitting (e.g. P λ
U) being more simple.

Analogously with the Globalist approach, we can also consider a range of Localist ap-

proaches to SM that apply one or other probability distribution to variously sized sub-regions

of the phase spaces of the appropriate subsystems of the universe (where these regions con-

tain the precise initial conditions of the systems in question). Again, picking out smaller

sub-regions will typically buy better fit (by increasing the probability of the system’s actual

macro-evolution) but will involve more complexity (because it involves specifying the initial
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macro-state of the system more precisely, or adding in some information about the system’s

initial micro-state). If this is so, then the upshot will be a range of tied-for-best Localist

axiomatizations of SM entailing different SM probabilities. Consequently, even if Localist ax-

iomatizations are superior to Globalist axiomatizations, the Best System analyst should still

conclude that there exist unsharp SM chances, where this time the unsharp SM chances are

constituted by the set of probabilities entailed by the tied-for-best Localist axiomatizations

of SM.

7. Unsharp Chances and the Chance-Credence Connection

The thesis that reasonable credences may be imprecise has gained some popularity in formal

epistemology. Joyce (2005, 156) claims that “[t]he idea that people have sharp degrees of be-

lief is both psychologically implausible and epistemologically calamitous”. The psychological

implausibility of precise credences is emphasised by Hájek:

“What is your subjective probability that the Democrats win the next elec-

tion? If you give a sharp answer, I would ask you to reconsider. Do you really

mean to give a value that is precise to infinitely many decimal places? If

you’re anything like me, your probability is vague – perhaps over an interval,

but in any case over a range of values.”30 (Hájek (2003b, 293); cp. Elga (2010,

6))

The ‘epistemological calamitousness’ of precise credences is emphasised by Joyce (2005).

Specifically Joyce (2005, 170) argues, concerning the notorious Principle of Insufficient Rea-

son (or Indifference Principle):

“The real difficulty is not that the Principle of Insufficient Reason might be

incoherent; it is that the Principle, even if it can be made coherent, is defec-

tive epistemology. It is wrong-headed to try to capture states of ambiguous

30Recall from Footnote 26 that by ‘vague’ probability, Hájek means what I mean by ‘imprecise’ probability:
namely a probability that is set-valued.
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or incomplete evidence using a single credence function. Those who advocate

this approach play on the intuition that someone who lacks evidence that

distinguishes among possibilities should not ‘play favorites,’ and so should

treat the possibilities equally by investing equal credence in them. The fal-

lacious step is the last one: equal treatment does not require equal credence.

When [an agent who has no evidence concerning which of a set of hypotheses

is true assigns to each hypothesis] an equal probability he is pretending to

have information he does not possess. His evidence is compatible with any

distribution of objective probability over the hypotheses, so by distributing

his credences uniformly over them [he] ignores a vast number of possibilities

that are consistent with his evidence.”

Joyce (2005, 171) continues:

“As sophisticated Bayesians . . . have long recognized, the proper response to

symmetrically ambiguous or incomplete evidence is not to assign probabili-

ties symmetrically, but to refrain from assigning precise probabilities at all.

Indefiniteness in the evidence is reflected not in the values of any single cre-

dence function, but in the spread of values across the family of all credence

functions that the evidence does not exclude. This is why modern Bayesians

represent credal states using sets of credence functions. It is not just that

sharp degrees of belief are psychologically unrealistic (though they are). Im-

precise credences have a clear epistemological motivation: they are the proper

response to unspecific evidence.”

My suggestion will be that there is an additional motivation for supposing that a rational

agent will sometimes have imprecise credences. It is not just that imprecise credences are

more psychologically realistic, or that they are the proper response to a lack of evidence,
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or to unspecific evidence. They can also be the proper response to precise evidence about

imprecise chances.

White (2010, 174) suggests that many of those who endorse unsharp credences subscribe

to:

“Chance Grounding Thesis. Only on the basis of known chances can one

legitimately have sharp credences. Otherwise one’s spread of credence should

cover the range of possible chance hypotheses left open by your evidence.”

I will argue that, even when one knows the chances, it needn’t always be legitimate for one

to have sharp credences. Specifically, it will not be legitimate if those known chances are

themselves set-valued.

As Joyce indicates, in the quotation given above, the standard formal representation of

imprecise credences appeals to the idea that the credences of a rational person, S, are best

represented, not by a single probability function, but rather by a set of probability functions,

cr. This set is the person’s ‘representor’. Since I take conditional probability to be basic

(cp. Hájek (2003a,b, 2007)), I assume that each element of cr is a sharp-valued conditional

probability function cri(·|·) that maps ordered pairs of propositions 〈X, Y 〉 onto a unique

real number, x(∈ R), in the [0, 1] interval: cri(X|Y ) = x. (Unconditional probabilities can

be defined via cri(X) =def cri(X|>), where > is the tautology.)

Joyce (2005, 2010) observes that determinate facts about S’s degrees of belief correspond

to properties that are invariant across all elements of cr. For example, a person has a sharp

credence in X conditional upon Y when cri(X|Y ) = x for every cri(·|·) ∈ cr, and she is

more confident in X than in Y given Z if cri(X|Z) > cri(Y |Z) for every cri(·|·) ∈ cr.

Those who advocate representing a rational agent S’s credal state in terms of a set of

probability functions typically model updating upon new evidence D by supposing that each

probability function in S’s representor is conditionalized upon D. Specifically, if S’s initial

representor is cr and she learns D (and nothing else), then her new representor is crD,

where:
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(∗) crD = {crDi (·|·) = cri(·| ·&D) : cri(·|·) ∈ cr}

(Conditionalization is undefined for those probability functions in S’s initial representor, cr,

for which cri(D) = 0. So these probability functions are ‘weeded out’ rather than updated

in the transition to crD.)

Note, however, that no completely compelling argument has been produced to show that

(∗) is the correct way of modelling rational belief change for a rational agent whose credal

state is represented by a set of probability functions. Where the credal state of a rational

agent is modeled by a single probability function, conditionalization is normally taken to

be justified by diachronic Dutch Book arguments (Teller 1973, Lewis 1999), or by consid-

erations of ‘symmetry’ or ‘representation independence’ (Hughes and van Fraassen 1984)

(cp. also Grove and Halpern (1998)). Justification of the principle that, where an agent’s

belief state is represented by a set of probability functions, rationality requires that she

update by conditionalizing each probability function in her representor upon the evidence

is less straightforward, and attempts to justify it (see Grove and Halpern (1998)) are less

compelling.31

For now, however, let us assume that (∗) is the correct way in which to model rational

belief change for a rational agent whose credal state is modeled by a representor. Such an

agent S can come to have imprecise credences in response to imprecise evidence as follows.

Suppose that S gains imprecise evidence, D, concerning some proposition A. For example,

suppose that A = ‘a red ball will be drawn from urn 1 next’, and that D = ‘all balls in urn

1 are either red or blue’ (D is imprecise because it doesn’t say what the proportions of red

31Walley (1991) presents an argument for a ‘generalized Bayes rule’ in the context of an account that
represents imprecise probabilities in terms of upper and lower probabilities, rather than sets of probability
functions.
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and blue balls are). If S has no other evidence bearing upon A, then it is plausible that her

post-update credence in A should be spread out over the whole of the [0, 1] interval.

Modeling the agent S’s credences by a representor cr that is updated according to (∗)

can accommodate this. The idea is that various elements cri ∈ cr ‘interpret’ the evidence

D differently. That is to say, the value of cri(A|D) is different for various cri ∈ cr. Conse-

quently, when S updates upon D in accordance with (∗), various elements crDi ∈ crD yield

different values crDi (A). More precisely, the idea is that there is a set cr′ ⊆ cr such that, for

each pair of elements cri, crj ∈ cr′ (i 6= j), cri(A|D) 6= crj(A|D). This means that the post-

update credences, crDi (A) and crDj (A) will diverge. The idea is that, for a rational agent,

the probability functions in her initial representor must be such that the various values for

cri(A|D) are spread out all over the [0, 1] interval, so that the various values of crDi (A) are

too.

It is plausible that an unsharp chance for some proposition X is just one among many

types of imprecise evidence that one might have about X. Suppose that ch represents the

set of probability functions associated with the tied-for-best systems. For want of a better

term, call the set ch the cadentor 32. Each element of the cadentor is a sharp probability

function chi(·|·) that associates ordered pairs of propositions 〈X, Y 〉 with a unique real

number, x(∈ R) in the [0, 1] interval: chi(X|Y ) = x. (Again, unconditional probabilities are

defined via chi(X) =def chi(X|>), where > is the tautology.) The elements chi ∈ ch are

the probability functions entailed by members of the set of tied-for-best systems. Abusing

notation slightly, we can let ch(X|Y ) represent the function that maps ordered pairs of

propositions 〈X, Y 〉 to the set of values that the probability functions in ch give for X

conditional upon Y : that is ch(X|Y ) = {chi(X|Y ) : chi ∈ ch}.

We might suppose that updating upon an unsharp chance is aptly modeled by (∗). For

example, suppose that T1 is a proposition specifying that the thermodynamic state of some

isolated system I at time t1 ism1, while T2 is a proposition specifying that the thermodynamic

state of I at time t2 is m2. Suppose that ch(T2|T1) = {x : x ∈ R, 0.2 ≤ x ≤ 0.3}: that

32After the Latin cadentia from which the English word ‘chance’ ultimately derives.
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is, the probability functions in the cadentor – that is, the chi ∈ ch – are such that, for all

and only values x such that x is a real number in the [0.2, 0.3] interval, there is a chi ∈ ch

such that chi(T2|T1) = x. (Informally: the probabilities for T2 conditional upon T1 entailed

by probability functions in the cadentor are ‘spread out’ all over the [0.2, 0.3] interval.) Let

Ω be the proposition that ch(T2|T1) = {x : x ∈ R, 0.2 ≤ x ≤ 0.3}, and suppose that S

learns that Ω&T1. Then, since Ω&T1 constitutes some imprecise evidence pertaining to T2,

the formula (∗) applies where we let D = Ω&T1.

How exactly ought rational credence be constrained by evidence concerning unsharp

chances? It will be difficult to answer this question definitively given that there is no consen-

sus on the correct rational decision theory for the case where agents have unsharp credences

(see, e.g., Elga (2010) and Bradley (2013)). However, one natural proposal is that, when an

agent learns a set-valued chance for A, her credence ought to come to be captured by the

same set of values. Let me try to state this somewhat more precisely.

Since I am taking conditional chance to be basic, I prefer to begin with a formulation of

the chance-credence connection that – in contrast to Lewis (1980)’s Principal Principle (PP)

– takes conditional chances to be the quantities that (in the first place) constrain rational

credences.33 I take it to be more or less platitudinous that conditional chances place the

following constraint on rational credences. Suppose that a rational agent S knows that a

certain chance setup c is instantiated and knows that the chance of A conditional upon the

fact that c is instantiated is x. And suppose that the remainder of S’s evidence is admissible

in the sense that it doesn’t contain any information about the truth-value of A that isn’t

simply information about whether c is instantiated or about the chance of A to which c gives

rise. Such an agent has a credence in A equal to x.

33The ‘New Principle’ (NP) proposed by Hall (1994) and Lewis (1994) has conditional chances guiding
rational credence. However, I have my reservations about NP, at least as Hall and Lewis formulate it, since
their formulations incorporate the assumption that chances are the sorts of thing that would guide rational
credences given knowledge of some complete initial microphysical history of the world and of the fundamental
laws of nature. Such an assumption leads quickly to the view that the only genuine chances are those of
Quantum Mechanics (see Hoefer (2007, 558-9) and Schaffer (2007, 128)). But it also effectively begs the
question against those (such as myself) who think it plausible to regard the probabilities that figure in higher
level theories, such as SM, as chances.
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Let me try to state this principle somewhat more precisely. Let Ch(·|·) be the chance

function (which for now is assumed to be unique and to yield point values). Let Cr(·|·) be

any reasonable initial credence function (which, again, is for now assumed to be unique and

point-valued). Suppose that F is some proposition specifying that a certain chance setup c is

instantiated, so that Ch(X|F ) is well-defined for some outcome-specifying propositions X.34

Suppose that A is just such an outcome-specifying proposition, so that there is a well defined

chance Ch(A|F ). Finally, let E be any proposition that is admissible in the sense that it

doesn’t convey any information about the truth-value of A that isn’t simply information

about whether the chance setup c described by F is instantiated or about the chance of A

conditional upon the fact that c is instantiated. Then conditional chances guide rational

credence in the sense captured by Cond:35

(Cond) Cr(A|Ch(A|F ) = x&F&E) = x

The principle as stated must be qualified: it is important that F itself not be inadmissible.

That is, F must not bear upon reasonable credence about A otherwise than bearing upon

reasonable credence that c is instantiated or upon reasonable credence about the chance of

A to which c gives rise. Where c is a setup involving an unbiased coin about to be flipped

by a fair flipper, and A is the proposition that the coin lands heads, F should not be the

proposition that an unbiased coin is about to be flipped by a fair flipper and the Oracle says

that the coin will land heads (at least not unless the latter is counted as a complex chance

setup by our best theory of chance).

34Lewis took the only genuine chance setups to be complete initial microphysical histories of the world. I
find it plausible that many other sorts of things (e.g. the macro-state of some thermodynamically isolated
system, or an unbiased coin together with a flipper) may serve as chance setups (cp. Hoefer (2007, 564-5)).
This, however, is a matter that is ultimately to be decided by our best metaphysical theory of chance.
35As far as I can tell Cond is essentially the principle that is advanced by Hoefer (2007, esp. 574-5) as an
interpretation of the PP .
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We should thus require that F be a minimal specification of a chance setup c, in the

sense of providing ‘just enough’ information about c so that Ch(A|F ) is well-defined and

expresses the chance of A to which c gives rise (without conveying additional, potentially

inadmissible, information). One first pass at attempting to capture this more precisely would

be to require that F mustn’t be such that (a) there is a strictly less informative proposition

F ′ such that Ch(A|F ) = Ch(A|F ′),36 unless (b) there is some proposition F ′′ of intermediate

informativeness such that Ch(A|F ) 6= Ch(A|F ′′).

Let H be the proposition that the coin will land heads. According to the criterion just

outlined, the proposition O: an unbiased coin is about to be flipped by a fair flipper and the

Oracle says that the coin will land heads is not minimal in the requisite sense, since there

is a strictly less informative proposition U : an unbiased coin is about to be flipped by a fair

flipper such that Ch(H|O) = Ch(H|U).37 Moreover, since the second conjunct of O contains

no information relevant to the chance of H, it seems that there is no proposition T that is

intermediate between U and O in informativeness such that (b) is satisfied. We thus get the

desired result that O is not minimal in the requisite sense.38

The most natural way of extending a principle like Cond to set-valued chances and set-

valued credences is as follows. As before, let ch be the set of probability functions that

constitutes our unsharp chance, and let cr be any reasonable representor (that is, any set

of credence functions that could model a rational agent’s epistemic state). As before (and

with a slight abuse of notation), let ch(X|Y ) represent the function that maps ordered pairs

of propositions 〈X, Y 〉 to the set of values x that the probability functions in ch give for

X conditional upon Y : that is ch(X|Y ) = {chi(X|Y ) : chi ∈ ch}. With a similar slight

36If we understand propositions as sets of possible worlds, then F ′ is strictly less informative than F iff
F ⊂ F ′.
37Again, I’m assuming that the state of affairs described by O will not itself count as a (complex) chance
setup, yielding different chances for A than the simple coin-flip setup does, according to our best theory of
chance.
38The reason for condition (b) is to deal with the sort of case in which, coincidentally, the chance for H
conditional upon U exactly matches the chance for H conditional upon a proposition Q giving the quantum
mechanical state of the coin and the flipper. Plausibly U is strictly less informative than Q. So condition (a)
would be satisfied where F = Q. Yet of course it is still the case that Cr(H|Ch(H|Q) = x&H&E) = x. This
is provided for by the fact that (b) is satisfied: there are propositions of intermediate informativeness (e.g.
ones that specify the state of the coin-plus-coin-flipper system at an intermediate level of detail) conditional
upon which the chance of H differs or (perhaps more plausibly) goes undefined.
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abuse of notation, let cr(X|Y ) represent the function that maps ordered pairs of propositions

〈X, Y 〉 to the set of values that the probability functions in cr give for X conditional upon

Y : that is cr(X|Y ) = {cri(X|Y ) : cri ∈ cr} (cp. Bradley (2013)). Finally, let F be some

admissible proposition describing a chance setup c, let A be a proposition describing one of

the possible outcomes of c, and let E be any admissible proposition (i.e. any proposition that

doesn’t convey information about the truth-value of A that isn’t simply information about

whether the chance setup c described by F is instantiated or about the unsharp chance of

A conditional upon the fact that c is instantiated). Then the generalized chance-credence

connection is captured by Cond*:

(Cond*) cr(A|ch(A|F ) = x&F&E) = x

Informally, Cond* says that a rational agent’s credence in A, conditional upon the propo-

sition F , the proposition that the set-valued chance for A conditional upon F is x, and any

admissible proposition E, is x. More precisely, Cond* says that any reasonable representor

is such that the result of conditioning each probability function within it upon the propo-

sition F and the proposition that the set of probabilities for A generated by conditioning

each of the probability functions in the cadentor upon F is x, and any other admissible

information E, is the set x of probabilities for A.

Hájek and Smithson (2012, 38) seem to have a similar extension of the PP in mind when,

in considering the possibility that chances might be unsharp (or, in their terminology ‘inde-

terminate’39), they say:

“[A]ssume a version of a chance-credence coordination principle, such as

Lewis’s well-known Principal Principle . . . according to which your credence

39This terminology seems unhappy to me, since it has epistemic connotations. Yet when Hájek and Smithson
speak of ‘indeterminate chance’, they mean chance that is objectively indeterminate – i.e. the same as I
mean when talking about ‘unsharp chance’
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in a proposition, conditional on the chance of that proposition being x, should

be x (see Lewis for further fine-tuning). Extend this in a natural way to allow

for indeterminate chances: your credence in a proposition, conditional on the

chance of that proposition being indeterminate in a particular way, should

be indeterminate in the same way. The indeterminacy in the chance . . . is

inherited by your conditional credence.”

Note that Cond and the PP gain much of their plausibility from the assumption that

updating upon evidence proceeds by conditionalization: that is, CrD(·|·) = Cr(·| · &D).

This is because the plausibility of these principles depends largely upon the intuition that

chances guide rational action. But it is unclear that chances would serve as a guide to action

for an agent whose credences conformed to some such principle but who did not update by

conditionalization.

Yet, where an agent’s epistemic state is represented by a set of probability functions, rather

than a single probability function, it is not so clear how to model the process of updating

upon evidence. It is still less clear how updating should be modeled when the evidence may

itself be imprecise.

So far we have supposed, as is orthodox in the literature on imprecise credences, that

the correct way of modeling an update upon some proposition D is to suppose that each

probability function cri(·|·) in S’s initial representor is updated by conditionalization upon D

to yield a function crDi (·|·) = cri(·| ·&D) (this is the update principle (∗) that we considered

above). Where D is imprecise evidence concerning A, the idea is that S’s resulting credences

in A are unsharp because various functions in her representor ‘interpret’ D differently, in the

sense that, for different values of i, the values of cri(A|D) (= cri(A|>&D)) and so of crDi (A)

(= crDi (A|>)) vary.
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If this is correct then, where S’s evidence D comprises F together with the proposition

that the (possibly unsharp) chance for A conditional upon F is given by the (possibly non-

singleton) set of values x, as well as an admissible proposition E, her post-update credence

is given by Upd:

(Upd) crch(A|F )=x&F&E(A) = cr(A|ch(A|F ) = x&F&E)

It follows from Cond* and Upd that S’s post-update credence in A is given by what I will

call the ‘Mushy Principle’ (or MushyP):40

(MushyP) crch(A|F )=x&F&E(A) = x

MushyP states that S’s post-update credence in A (upon learning F , the set-valued chance

for A, conditional upon F , and the admissible proposition E) will be represented by precisely

the same set of values as is the chance for A conditional upon F . So, according to MushyP,

credence is constrained by unsharp chance in precisely the way that it was argued that it

ought to be in Section 5.

While I find MushyP to be extremely plausible, I’m less convinced by Upd. Recall that

Upd incorporates the orthodox assumption that the correct way of modeling an update upon

some proposition D is to suppose that each probability function cri in S’s initial representor

is updated by conditionalization upon D. The idea is that, when D is imprecise evidence

pertaining to some proposition A, the different probability functions in S’s initial representor

‘interpret’ D differently in the sense that the values of cri(A|D) are different for different

40This name is inspired by the fact that unsharp probabilities are sometimes described as ‘mushy’.
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cri ∈ cr. On this orthodox view, things should presumably work no differently when S’s

unsharp evidence D for A is a proposition – such as ch(A|F ) = x&F&E – implying an

unsharp chance for A.

The reason that I find this orthodox approach slightly unsatisfactory is that we only get

the correct post-update ‘spread’ for S’s credences by building it in by hand. We must simply

stipulate that any rational agent S must be endowed with a representor that contains just

the right probability functions in the first place: that is, a set of probability functions that

will ‘interpret’ any piece of imprecise evidence concerning a proposition A in just the right

range of ways to leave S with a post-update representor that yields just the right unsharp

credence in A. Where the imprecise evidence comes in the form of an imprecise chance,

we must stipulate that S is endowed a set of probability functions that will ‘interpret’ this

imprecise chance in just the right range of ways to leave S with a post-update representor

that satisfies MushyP.

Admittedly, this orthodox approach is just a model: it is perhaps not intended to be

altogether psychologically realistic (even to the extent that we approximate ideally ratio-

nal agents). Still the example of imprecise chances suggests an alternative model which

is more elegant in that it doesn’t involve a rather ad hoc reverse-engineering of the desired

post-update representor to determine the requisite pre-update representor, and then the stip-

ulation that any rational agent must come equipped with a pre-update representor of just the

right sort. The alternative model that I wish to suggest is rather permissive concerning the

initial representor that a rational agent may come endowed with. It then suggests an update

mechanism by which a wide range of plausible initial representors may come post-update to

have the desired properties, such as satisfaction of MushyP.

Let’s start with the case where S’s imprecise evidence D concerning A comprises an impre-

cise chance for A. More specifically, suppose that it comprises (i) an admissible proposition

F ; (ii) the proposition that the (possibly unsharp) chance for A conditional upon F is given

by the (possibly non-singleton) set of values x; and (iii) any further admissible proposi-

tion E. In this case, there seems to be a very natural way of modeling S’s update on her
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evidence. Roughly speaking, the idea is that a rational agent S’s post-update representor

comprises the set of probability functions that result from updating each of the probability

functions cri(·|·) in her initial representor upon each proposition chj(A|F ) = xj&F&E such

that chj(·|·) is a probability function in the cadentor. In the case where S has a finite num-

ber N of probability functions in her initial representor and there is a finite number, M , of

probability functions in the cadentor, S will thus end up with N ×M (minus the number

of instances in which a conditional probability of the form cri(·| ·&chj(A|F ) = xj&F&E) is

undefined) probability functions in her updated representor.

If each cri ∈ cr responds in an Cond-like way to learning chj(A|F ) = xj&F&E,41 then

for each cri ∈ cr and for all chj ∈ ch we have:

(†) cri(A|chj(A|F ) = xj&F&E) = xj

And assuming that updating proceeds by conditionalization then, for each cri ∈ cr and for

all chj ∈ ch, we have:

(‡) cr
chj(A|F )=xj&F&E
i (A) = cri(A|chj(A|F ) = xj&F&E) = xj

If S updates her initial representor cr in the light of the evidence ch(A|F ) = x&F&E

by updating each of the probability functions cri ∈ cr upon each proposition of the form

chj(A|F ) = xj&F&E such that chj(·|·) ∈ ch, and if each of the latter updates conforms to

41I admit that this assumption is somewhat ad hoc, and motivated only by the fact that it helps to yield the
desired results about the nature of S’s post-update representor. So both the orthodox model of updating
one’s representor in the light of evidence and the model that I’m currently articulating involve some ad
hocness: I’ll leave it to the reader to judge whether the ad hocness is worse in one case than the other.
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(‡), then we get just the right mix of sharpening and dilation to ensure that S’s post-update

representor satisfies MushyP.

To see this, suppose that, for each probability function chj ∈ ch, chj(A|F ) = xj = x. In

other words, the chance of A conditional upon F is sharp: ch(A|F ) = {x}. Then since (‡)

holds for all cri ∈ cr and for all chj ∈ ch, it entails that, if S’s initial credence is unsharp, but

S then learns ch(A|F ) = {x}&F&E, then S’s post-update credence in A will be sharp and

equal to x. That’s because, by (‡), for each chj ∈ ch, all functions in S’s representor, once

updated on chj(A|F ) = xj&F&E, will take the value x post-update. This seems exactly as

it should be (it is also what MushyP entails). For example, suppose you start off knowing

just that all the balls in urn 1 are red or blue and that a draw will be made from urn 1, but

you then learn that the draw will be made randomly and that there is a sharp chance 0.5

of a red ball being drawn conditional upon a ball being drawn randomly from urn 1. Then

your credence that a red ball will be drawn should also be 0.5.

But where S learns ch(A|F ) = x&F&E, where x is not a singleton, updating each

probability function in her representor upon chj(A|F ) = xj&F&E for each chj ∈ ch

has a tendency to cause dilation. Specifically, for each credence function cri(·|·) in S’s

initial representor, she ends up with a set of post-update credence functions of the form

cr
chj(A|F )=xj&F&E
i (·|·).

Note that, where S has a finite number N of probability functions in her initial representor

and there is a finite number, M , of probability functions in the cadentor, this need not entail

that S’s post-update credence in A is represented by a set of N ×M (minus the number of

instances in which a conditional probability of the form cri(·|chj(A|F ) = xj&F&E) is unde-

fined) different values. This is because, for all N probability functions cri in S’s representor,

for each of the M probability functions chj in the cadentor, cr
chj(A|F )=xj&F&E
i (·|·) = xj. So

S ends up with at most a set of M values representing her post-update credence in A.

Indeed, this value may even be considerably lower, since (in addition to the fact that

conditionalization may not be well-defined in all cases), it may be that some or all of the

probability functions in ch entail the same value x for the probability of A conditional upon
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F . In the extreme case where, for all chj ∈ ch, chj(A|F ) = xj = x, S’s post-update credence

will have the sharp value x. An example would be if all of the probability functions in the

cadentor entailed the same probability of a given tritium atom decaying within the next

12.32 years (conditional upon some arbitrary proposition).

One worry about the present proposal – namely that updating on the imprecise evidence

for A that comprises the proposition ch(A|F ) = x&F&E involves updating each probability

function cri ∈ cr upon the proposition that chj(A|F ) = xj&F&E for every chj ∈ ch – is that

it appears to appears to make updating upon an unsharp chance a rather different operation

to updating upon any other sort of evidence. After all, it was noted earlier that the orthodox

way of modeling updating upon evidence D where S’s epistemic state is represented by a

set of probability functions, is to suppose that S’s post-update representor is arrived at by

updating each of the probability functions in S’s representor by conditionalizing upon D.

The idea was that, when D is imprecise evidence concerning A, various functions in S’s

initial representor ‘interpret’ D differently, resulting in S’s post-update credence in A being

unsharp.

I admit that it would be unfortunate to model updates upon unsharp chances of A dif-

ferently from the way in which one models updates upon other sorts of imprecise evidence

concerning A. But perhaps the present proposal for updating upon imprecise chances could

be generalized to other sorts of imprecise evidence (i.e. the orthodox view of how to model

the update of an agent’s representor in response to imprecise evidence could be rejected en-

tirely). The proposal that I have outlined concerning updates on imprecise chances basically

involves the idea that there are various precisifications of an imprecise chance: specifically,

each proposition of the form chj(A|F ) = xj&F&E is a precisification of the imprecise ev-

idence that ch(A|F ) = x&F&E. The idea is that, where the imprecise evidence for A

comes in the form of an imprecise chance for A, S’s update should involve conditionalizing

each probability function in her initial representor upon each precisification of the imprecise

evidence: that is, upon each proposition of the form chj(A|F ) = xj&F&E such that chj is

in the cadentor.
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Yet plausibly an imprecise chance of A is not the only sort of imprecise evidence concerning

A that can be precisified in various ways. For example, suppose that A is the proposition

that there is a red ball in urn 1, and that D is the proposition that there are some balls

in urn 1 and either all balls in urn 1 are red or all balls in urn 1 are blue. What should

your credence in A be upon learning that D? Plausibly it should be the unsharp credence

{0,1} (i.e. it should be represented by the binary set whose elements are 0 and 1). The

‘precisification’ account that I am proposing delivers this result. Specifically, there are two

‘precisifications’ of D, namely:

D1 : There are some balls in urn 1 and all balls in urn 1 are red.

D2 : There are some balls in urn 1 and all balls in urn 1 are blue.

Conditionalizing all of the probability functions in S’s initial representor (for which the

operation of conditionalization is well defined) upon D1 results in the updated functions

assigning probability 1 to A; conditionalizing them all upon D2 results in their assigning

probability 0 to A. Since the present, ‘precisification’ proposal is that S’s updated representor

contains the probability functions that result from both of these operations, her post-update

credence in A is the unsharp one {1, 0}.

If this is the correct way of modeling updates upon imprecise evidence – namely, by

supposing that S’s post-update representor is arrived at by conditionalizing each probability

function in her initial representor upon each precisification of her imprecise evidence – then

modelling an update on an unsharp chance in terms of updating each of the probability

functions in a person’s representor upon every sharp-valued probability that constitutes the

unsharp chance (these being the various ‘precisifications’ of the unsharp chance) would just

be to treat the latter as a special case of updating on unsharp evidence more generally.

I’m not suggesting that there are no problems with this ‘precisification’ approach;42 the

orthodox approach remains a live option. But the precisification approach certainly strikes

42For one thing, it is not clear how to rigorously cash out the notion of a ‘precisification’ of imprecise evidence
in the case where that imprecise evidence doesn’t take the form of an unsharp chance. There are also some
examples of imprecise evidence (e.g. that given by Elga (2010, 1)) where it’s not clear what a ‘precisification’
of the evidence would amount to.
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me as an elegant way of modeling updates in response to unsharp evidence that comprises

an unsharp chance. This is because it represents a ‘mechanism’ by which agents with a wide

variety of initial representors may arrive at a post-update representor that satisfies MushyP.

In any case, the key claim for present purposes is that, whatever the precise update

mechanism, a rational agent’s updated representor, once she updates on an imprecise chance,

ought to respect MushyP. MushyP is supposed to be intuitive and, as such, not in need

of explicit justification. Hájek and Smithson (2012, 38-39) claim that something along the

lines of MushyP is plausible:

“If you regard the chance function as indeterminate regarding [some proposi-

tion] X, it would be odd, and arguably irrational, for your credence to be any

sharper. Compare: if your doctor is your sole source of information about

medical matters, and she assigns a credence of [0.4, 0.6] to your getting lung

cancer, then it would be odd, and arguably irrational, for you to assign this

proposition a sharper credence – say, 0.5381. How would you defend that

assignment?”

Admittedly, MushyP doesn’t enjoy quite the same intuitive pull as the PP. But, then again,

neither does the so-called ‘New Principle’ (NP) that was proposed by Lewis (1994) and Hall

(1994) when it was realized that PP, in combination with Humean theories of chance, leads

to contradiction. Rather MushyP, like NP, is an attempt to capture as best we can our pre-

theoretical intuitions about the chance-credence connection, while simultaneously remaining

reasonably true to other, sometimes competing, intuitions (such as that the rational response

to imprecise evidence is imprecise credences) and to the implications of our best theories of

chance (such as that chances derive from axioms that systematize the complete history of the

world in the way that strikes as good a balance as possible between the competing theoretical

virtues).43

43Cp. Lewis (1994, 489).
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But even if MushyP enjoys a fair degree of intuitive support as an explication of the

chance-credence connection, it remains to be shown in any great detail that the probability

functions entailed by the tied-for-best systems play the chance role in guiding rational cre-

dence in accordance with MushyP. I do not have any completely satisfactory demonstration

that they do so. This should come as no surprise, given that no entirely satisfactory expla-

nation exists in the literature of why, in the case where there is a unique winner of the Best

System competition (and on the assumption that credence must be sharp), the probabilities

entailed by the winning system play the role that chance does according to either the PP or

the NP.

But there is an additional obstacle to showing that the probability functions entailed by

the tied-for-best systems play the MushyP role in guiding rational credence. The most

promising attempts to argue that, in the case of a unique Best System, the (sharp) Best

System probabilities play the Principal Principle role in guiding rational credence appeal to

the instrumental rationality of conforming one’s credences to the Best System probabilities

(Hoefer 2007, Frigg and Hoefer 2010). Such arguments have a fairly well worked-out decision

theory to draw upon in the form of Expected Utility Theory. However, there is no comparably

well worked out theory of rational decision in the face of imprecise credences (see, e.g., Elga

(2010) and Bradley (2013)).

In spite of these obstacles, some remarks are worth making that are of relevance to this

issue. Some of these were already made briefly in Section 5 above. The argument considered

there was that that systems earn membership of the set of tied-for-best systems by entailing

conditional probabilities that are close to the actual relative frequencies. Systems that do

not do so will be ill-fitting and not among those tied for best. Consequently, an agent who

bets according to the conditional probabilities that are entailed by a member of the family

of tied-for-best systems will do well in the long run. Moreover, an agent who knew the set

of probability functions associated with the tied-for-best systems would lack a rational basis

for choosing between them. So she appears to be rationally obliged to adopt a credence
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that takes the set of values corresponding to the probabilities entailed by the tied-for-best

systems.

Of course, as we noted in Section 5, there will likely be some well-fitting systems that aren’t

among those that are tied-for-best, since they are too complex. Why should the agent not

calibrate her credences to the probability functions entailed by these systems? This appears

to be a genuine problem, but it is one that Best System analyst must face in any case

(whether or not she takes Best System chances to be set-valued). The Best System analyst

needs to have some account of why simplicity considerations ought to constrain rational

credence. Otherwise she will have no answer to the question of why the probabilities of the

overall Best System should play the chance role in guiding rational credence, rather than

the probabilities of the best-fitting (but presumably highly complex) system.44

Alternatively, and to my mind more promisingly, the Best System analyst might admit

that the Best System probabilities are imperfect players of the chance role in guiding rational

credence, as captured by the Principal Principle (or indeed NP or MushyP),45 but maintain

(contra Lewis (1980)) that the chance-credence connection doesn’t exhaust the chance role

(cp. Loewer (2001), Arntzenius and Hall (2003), Schaffer (2003, 2007)). She might then

argue that the probability function of the overall best system (for now, assume that it is

unique) counts as the chance function because it plays other aspects of the chance role

(besides guiding rational credence) better than the the probability function associated with

the best fitting system.

For example, if one thinks that there is some sort of frequency-tolerance platitude concern-

ing chance (cp. e.g. Armstrong (1983, 32); Loewer (2001, 613); Frigg and Hoefer (2013)),

then this could motivate the view that the BSA probabilities are better players of the chance

44In this vein, Hoefer (2007, 583-7) mounts an argument that (much of the time) Humean chances serve as
better guides to rational credence than the actual frequencies.
45Lewis thought that it is the Principal Principle that is “the key to our concept of objective chance” (Lewis
1994, 489). However, he admitted (ibid.) that Best System probabilities at best merely satisfy the NP,
and so are imperfect players of the chance role. Lewis (ibid.) nevertheless claimed that the Best System
probabilities are both the best players of the chance role, and that they are good enough players of that role
to deserve the name chance.
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role than the actual frequencies. The idea behind frequency-tolerance is that, while ac-

tual frequencies are evidence for chances (and while chances perhaps explain frequencies),

nevertheless actual frequencies may diverge (arbitrarily?) from the chances. The actual fre-

quencies themselves exhibit zero frequency tolerance, and so fail to conform to this putative

platitude. Best System probabilities are constrained, via the theoretical desideratum of fit,

not to diverge arbitrarily from all frequencies throughout the entire universe. That is, they

may not exhibit arbitrarily large global divergence from the actual frequencies.46 In this

respect they are perhaps imperfect players of the chance-frequency aspect of the chance role.

Nevertheless, the BSA allows that the Best System probabilities may exhibit at least some

global divergence, and a great deal of local divergence from the actual frequencies (especially

if this buys significant simplicity for the system that entails them), and are thus much better

players of this aspect of the chance role than are the actual frequencies themselves.

It would seem that such arguments can be adapted to our purposes. If the defender of

the BSA can admit that, on the assumption of a unique Best System, that the Best System

probabilities don’t play the Principal Principle (or NP) role as well as, for example, the actual

overall world frequencies, but can emphasize some other aspect of the chance role (such as

frequency-tolerance) that they play better then, relaxing the assumption of a unique Best

System, we can admit that the set of all and only the probability functions of the tied-for-best

systems doesn’t play the MushyP role better than any other set of probability functions

(such as certain sets containing the function freq(X|Y ) that, for all X and Y , entails the

actual overall world frequencies for X given Y ), but we can nevertheless argue that the set

of (simplicity-constrained) probability functions associated with the tied-for-best systems

plays other aspects of the chance role (e.g. frequency-tolerance) better than those sets of

probability functions that are its rivals for the name chance.

A different sort of worry concerning the ability of imprecise probabilities to play the chance

role in guiding reasonable credence seems to follow from arguments due to Elga (2010) and

White (2010). They argue that having unsharp credences in response to unspecific evidence

46This is what leads to the undermining problem for the BSA (see Lewis (1994)).
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is incompatible with perfect rationality. White (2010) focuses upon the phenomenon of

probabilistic dilation, whereby imprecise credences in a proposition A, for which one has

unspecific evidence, can force one to adopt imprecise credences in an apparently unrelated

proposition B, about which one has highly specific evidence: for example, one might have

knowledge of a sharp chance for B. The resulting imprecise credence in B appears irrational:

for one thing, it appears to be in violation of the chance-credence connection, given one’s

knowledge of the sharp chance of B. On the other hand, Elga (2010) argues that imprecise

credences permit an agent to make decisions that she knows to be dominated by (that is, to

yield lower payoffs come-what-may than) alternative decisions that she knows to be available

to her. Both White’s and Elga’s arguments appear to apply to those adopting unsharp

credences in response to imprecise evidence that takes the form of an imprecise chance, as

well as to those adopting unsharp credences in response to other types of imprecise evidence

(it is the latter upon which they focus). If their arguments go through, then perhaps any

player of the chance role in guiding rational credence must itself be sharp. For one thing,

insofar as unsharp credences issue in irrational betting behavior, this threatens to undercut

the ‘instrumental’ or ‘consequentialist’ argument that unsharp chances can play the MushyP

role in guiding rational credence.

However, Joyce (2010)’s defenses of unsharp credences against Elga’s and White’s argu-

ments are compelling. In response to White (2010), Joyce (2010, 299-307) argues that the

circumstances that force dilation with respect to the proposition B are in fact circumstances

in which one gains imprecise evidence that is relevant to B but not (only) because it is rele-

vant to the originally-known sharp chance for B. In other words, the new imprecise evidence

that one gains in such circumstances is evidence that is inadmissible sensu the Principal

Principle and MushyP. Given this fact, it is not incompatible with perfect rationality to

have a post-update credence in B that is unsharp (and to bet accordingly). In response to

Elga, Joyce (2010, 315-316) argues that Elga considers only an impoverished set of betting

rules that someone with imprecise credences might adopt. Joyce argues that, given a betting

rule that is sensitive, not just to the set of probabilities that the functions representing one’s
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credence entail, but also to other features that are common to every such function, one can

avoid bets that one knows to be dominated. So imprecise credences about a proposition

B (whether arrived at upon the basis of knowledge of an imprecise chance for B or some

other sort of imprecise evidence concerning B) aren’t irrational and (when combined with

reasonable decision-making procedures) do not lead to unreasonable betting behavior.

In this section, I have proposed a principle – MushyP – concerning how unsharp chances

ought to guide reasonable credence. I have suggested a mechanism for updating credences

upon unsharp chances – one that involves, roughly speaking, an agent conditionalizing each

probability function in her representor upon each chance in the cadentor – that leads agents

starting with a wide range of initial representors to have post-update representors that

respect MushyP. Finally, I have argued that the probability functions associated with the

tied-for-best systems play the MushyP role in guiding rational credence reasonably well

and that it is plausible that, when we take into account other aspects of the chance role,

they are the best players of the chance role. I thus hope to have gone at least some way

toward establishing that the unsharp Best System probabilities deserve to be called unsharp

chances.

8. Special Sciences and the ‘Better Best Systems’ Analysis

Albert (2000, 2012) and Loewer (2008, 2012a) claim that probabilistic approximations to

many of the generalizations of the special sciences are theorems of the Mentaculus. If the

Mentaculus were the robustly best system for our world then it would follow, on the BSA,

that the theorems in question are genuine probabilistic laws, and that the associated prob-

abilities are genuine chances. But if the Mentaculus is tied for best with a number of other

systems then, since the probabilistic special science generalizations that derive from these

systems may diverge somewhat, we will be liable to get unsharp chances in the special

sciences.

The view that probabilistic versions of the special science laws derive from some Mentaculus-

like Globalist axiomatisation of statistical mechanics has been dubbed ‘Statistical Mechanical
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Imperialism’ (Callender and Cohen (2010); see also Callender (2011) and Weslake (2013)).

The view is one that has been challenged by Callender and Cohen (2010), Callender (2011),

Dunn (2011), Frigg and Hoefer (2013), Frisch (2011, 2013) and Weslake (2013). In particu-

lar, it has been argued that there is not much evidence – let alone proof – that probabilistic

versions of the special science laws can be derived in this way.

As we saw in Section 6, one alternative to the approach of Albert and Loewer is the

view that Localist axiomatizations of SM are superior to their Globalist counterparts (Cal-

lender 2011, Frigg and Hoefer 2013). In Section 6, we noted Callender’s argument that it

simply doesn’t follow from the fact that a uniform distribution over the sub-region of the

universe’s phase space associated with the low-entropy initial macro-state specified by the

PH makes entropy increase for the universe as a whole very likely, that entropy increase in

non-equilibrium sub-systems of the universe is very likely (Callender 2011, 100-101). If Cal-

lender is correct then, since the special sciences are themselves concerned with subsystems

of the universe (e.g. ecology is concerned with ecosystems, meteorology with atmospheric

systems, biology with organisms, economics with markets, etc.), it appears that one cannot

infer probabilities for these systems (and probabilistic laws for the corresponding sciences)

from a probability distribution over the initial conditions of the universe as a whole.

But, even if one is a Localist about SM, one might still think that probabilistic approx-

imations to the generalizations of the special sciences derive from SM (while thinking that

the standard SM probabilities derive, not from a probability distribution over some region

of the phase space of the universe associated with its initial low-entropy initial macrostate,

but rather from distributions over regions of the phase spaces of subsystems of the universe

associated with their initial macrostates). As we saw in Section 6, it is plausible that there

is a tie between various Localist axiomatizations of SM, with various of the tied-for-best Lo-

calist axiomatizations endowed with different probability functions. If so, and if the special

science chances do indeed derive from SM, then it appears that, once again, we have reason

to believe the special science chances to be unsharp.47

47Indeed, Callender’s favored Localist approach to SM effectively treats SM itself as a special science (see
Callender (2011, 96, 106, 110); cp. also Dunn (2011)).
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Even if probabilistic approximations to the generalizations of the special sciences don’t

derive from SM, whether it is given a Globalist or a Localist axiomatization, it needn’t follow

that there are no special science laws or chances. One possibility is that the strength of a

system that already entails SM probabilities is augmented, with minimal cost in simplicity,

by the addition of special science laws (or axioms that entail them) to its set of axioms (see

Frisch (2013); cp. also Frigg and Hoefer (2013)).48 If such laws are probabilistic, then the

probabilities that are entailed will be special science chances. And if there aren’t uniquely

best axiomatizations of the special sciences (more on this below), then there may well be tied-

for-best systems for the universe as a whole that entail different special science probabilities,

so that special science chances are unsharp.

An alternative approach to special science laws and chances, proposed by Cohen and

Callender (2009) and Callender and Cohen (2010)49 is to modify the BSA in an attempt to

ensure that the simple, informative generalizations of the special sciences come out as genuine

laws.50 Cohen and Callender (2009) and Callender and Cohen (2010) call the resulting,

modified BSA, a ‘Better Best Systems Account (BBSA)’ of laws.

Their proposal draws upon Lewis’s observation that a system’s simplicity depends upon

the vocabulary in which it is expressed.51 But rather than following Lewis in restricting

the systems under consideration to those whose axioms contain only perfectly natural kind

predicates, and rather than following the approach that we have been considering so far where

naturalness-of-vocabulary-in-which-axioms-are-expressed is a competing theoretical virtue to

be weighed alongside simplicity and strength/fit, their idea is that Best Systemhood should

be taken to be relative to a set of kinds K (or predicates PK). Relative to different sets

of kinds, different axiom systems strike the best balance between simplicity, strength, and

48The resulting systems may, however, incur the cost that many of their axioms are formulated in imper-
fectly natural vocabulary. Whether they are nevertheless among the systems that are tied-for-best (at least
given the limited precision of notions like simplicity and naturalness, and of the exchange rate between the
theoretical virtues) will depend upon the strength/fit that this sacrifice of naturalness-of-vocabulary buys.
49For similar proposals, see Schrenk (2008) and Dunn (2011, 88-90).
50Of course, following the recent literature, I have already been assuming a version of the BSA that departs
somewhat from the original in allowing axioms to be framed in imperfectly natural vocabulary. But Cohen
and Callender’s proposed modification to the BSA is more radical still.
51They also point out that strength and balance are vocabulary-relative (Cohen and Callender 2009, 6).
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fit. A generalization is a law relative to K just in case it is a theorem of the Best System

relative to K. In the case of a set of systems that are tied-for-best relative to K, Cohen

and Callender claim that a generalization is a law relative to K just in case it is a theorem

of all of the systems that are tied-for-best relative to K (Cohen and Callender (2009, 21);

Callender and Cohen (2010, 440); see also Callender (2011, 111-112)).52 Applying their

BBSA to chances as well as laws, a probability is a chance relative to K just in case it is

entailed by a probabilistic generalization that is a law relative to K (Cohen and Callender

2009, 27-30).53

The BBSA is particularly conducive to counting special science generalizations as laws. In

particular, on the BBSA, the generalizations of a special science (such as biology, economics,

or chemistry) count as laws of that science if they are theorems of the best system relative

to the science’s proprietary kinds or predicates (e.g. the biological, economic, or chemical

kinds).54

52This is clearly analogous to Lewis’s earlier construal of the BSA according to which, in case of ties, those
theorems entailed by all of the tied-for-best systems count as laws (Lewis 1983, 367).
53Cohen and Callender (2009, 27-29) spend some time wrestling with the question of how different chances,
each relativized to a different set of kinds K, for the same proposition A can play the Principal Principle
(PP) role in guiding rational credence. But this issue appears acute for the proponent of BBSA only if she
takes chances to be fundamentally unconditional. But the chances that the various sciences entail for any
given proposition are inherently conditional. For example, think of the different chances that are entailed by
SM, on the one hand, and by Newtonian mechanics, on the other, for a particular classical isolated system
evolving to thermodynamic equilibrium (cp. Cohen and Callender (2009, 28)). The different chances that
these theories entail are chances conditional upon different propositions concerning the system. Newtonian
mechanics entails a chance conditional upon the proposition that the system occupies such-and-such a point
in phase space, while SM entails a chance conditional upon the proposition that the system is in the non-
point-sized region of phase space so-and-so. There is no conflict between divergent chances for a proposition
A conditional upon different propositions B1, . . . , Bn. Principles like Cond and Cond* tell us precisely
how rational credence is constrained by various existent conditional chances. In their later paper, Callender
and Cohen (2010, 444n) give some indication of recognizing this.
54Cohen and Callender (2009, 10, 28) and Callender (2011, 106-112) treat thermodynamics and SM as at
least on a par with the special sciences in the sense that they are likely upshots of Best System competitions
conducted in their own proprietary vocabularies, which include predicates – such as entropy – that don’t
refer to fundamental natural kinds. Similarly, Dunn (2011, 80-81, 91) explicitly treats thermodynamics as
just one special science among many (cp. Loewer (2012b, 15, 18)). Winsberg (2008, 884) objects that
there is no distinctive proprietary vocabulary for SM: there is only the thermodynamic language and the
microphysical language. Weslake (2013) suggests that the correct response is to see SM as a best system
for the conjunction of the fundamental kinds and the thermodynamic kinds. Frisch (2013) (cp. also Frigg
and Hoefer (2013)) suggests an alternative variant of the Best Systems approach that makes it plausible
that the laws of the special sciences, together with those of fundamental physics, are part of a single ‘big’
(non-vocabulary relative) best system. This seems suited to accommodating axiom systems that draw upon
multiple scientific vocabularies. Frisch’s ‘Big’ Best System approach is likely to result in ties between systems



Luke Fenton-Glynn 57

Callender and Cohen (2010, 437-438) and Callender (2011, 103, 111-112) suggest that

the best axiomatization for various special sciences will include probability distributions

over underlying state-spaces (these need not be phase spaces however). On their view, the

probabilistic theorems generated by the resulting axiom systems will be probabilistic laws

of the sciences in question, and the probabilities that those laws entail will be chances of

that science. Specifically, Callender and Cohen’s idea appears to be that the probability

distributions over the underlying state-spaces of the systems that the special sciences seek

to characterize can be justified in terms of the frequency, among the large number of such

systems, of systems whose initial conditions lie in various sub-regions of that the underlying

state space.55 It is natural to construe this in a manner similar to Frigg and Hoefer’s Localist

approach to axiomatizing SM (Frigg and Hoefer 2013): the idea being that, if we consider

systems whose state spaces have (roughly) the same dimensionality, then the precise actual

initial conditions of those various systems will be distributed over that state space. A prob-

ability distribution fits well if it matches (or comes close to matching) the actual frequency

with which the initial conditions of actual systems are to be found in the various sub-regions

of the state space.

The trouble with this proposal – as was noted in our earlier discussion of Frigg and Hoefer’s

Localist approach to SM – is that it is extremely plausible that, in many cases, there are

too few systems that have state spaces with exactly the same number of dimensions. Too

few in the sense that there aren’t enough to yield a frequency distribution of actual initial

conditions within such a space that nails down a unique probability distribution as that

and unsharp chances for reasons very similar to those discussed in connection with Cohen and Callender’s
BBSA in the main text below.
55Like Callender and Cohen, Ismael (2009, 2012) is skeptical about the derivability of the probabilistic
generalizations of the high-level sciences from a distribution over the possible microphysical initial conditions
of the universe (a la Albert and Loewer), but argues that a probability measure over underlying state space
is essential to their derivation (cp. Glynn (2010, 60-62)). Which measure is appropriate depends upon the
relative frequencies with which macrostates are realized in various microphysical ways (Ismael (2009, 96);
Ismael (2012, 433, 438); cp. Glynn (2010, 61)): a distribution will be preferable if it closely matches those
frequencies. While Ismael doesn’t commit to (and has “reservations about” – Ismael (2012, 432)) the Best
System approach to laws and objective probability, she nevertheless takes a probability distribution over
underlying state space to be part of the “objective content” (Ismael 2009, 91) of any theoretical package
from which probabilistic high-level generalizations can be derived, and takes such high-level generalizations
to be laws and the probabilities that they entail to be objective.
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which strikes the robustly best balance between simplicity and fit. It is plausible that,

instead, we have a large (perhaps continuous) range of probability distributions over such

spaces that fit the actual initial condition frequencies within them reasonably well, with some

of the better fitting (such as distributions that have peaks at each actual initial condition

that lies within the space in question) being more complex, and the worse fitting (e.g. the

uniform distribution) being simpler. If so, then axiomatizations of the special sciences that

incorporate different such distributions will plausibly yield a set of tied-for-best systems that

will entail different special science probabilities because of the different distributions over

the underlying state spaces that they incorporate.

More generally, ties between special science systems that strike different and good, but

not robustly best, balances between the theoretical virtues would not be surprising, espe-

cially given the limits of precision of the notions of simplicity, strength, and balance. In a

discussion of what he calls ‘Multiple Models Idealization’ (MMI) in science, Weisberg (2007)

points out that sciences commonly draw upon “multiple related but incompatible models”

(Weisberg 2007, 645). He gives as examples the multiple models that ecologists have for

phenomena such as predation, and the multiple models that meteorologists use to predict

the weather (Weisberg 2007, 646). He notes that one particularly important justification for

using multiple models “is the existence of tradeoffs” (ibid.). The idea is precisely that there

are various theoretical desiderata, such as strength/predictive power and simplicity, and

that “these desiderata . . . can trade off with one another in certain circumstances, meaning

that no single model can have all of these properties to the highest magnitude” (Weisberg

2007, 646). Weisberg observes that “[o]ur cognitive limitations, the complexity of the world,

and constraints imposed by logic, mathematics, and the nature of representation, conspire

against simultaneously achieving all of our scientific desiderata.” (Weisberg 2007, 647). He

claims that this has been taken to justify the notion that “communities of scientists should

construct multiple models, which collectively can satisfy our scientific needs” (Weisberg 2007,

647). He also claims that:
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“if tradeoffs exist between theoretically important desiderata in a particular

domain, then we should not expect MMI to abate with further progress.

These tradeoffs are consequences of logic and mathematics and thus present

a permanent justification for MMI.” (Weisberg 2007, 648)

It is notable that some of Weisberg’s main examples are drawn from the special sciences,

strongly suggesting that there fail to be unique best models relative to the proprietary kinds

of these sciences. For those (such as Cohen and Callender (2009), Callender and Cohen

(2010), Schrenk (2008), and Frisch (2011)) who are sympathetic to a Best System-style

approach to special science laws and chances, it is natural to think that the various models

that are equally good upshots of trading off competing theoretical virtues against one another

are genuine tied-for-best systems for the sciences in question.56 Where such systems come

endowed with differing probability functions – as competing models in meteorology, ecology,

etc. – very often do, then it is natural to regard the set of such functions as constituting an

unsharp chance for the science in question.

Yet, as was noted above, Cohen and Callender say that in the event of ties the laws relative

to K are those theorems common to all of the systems that are tied-for-best relative to K,

and that the chances relative to K are the probabilities entailed by the laws relative to K.

This seems to me to be the wrong thing to say, just as it would be wrong for the defender of

the non-vocabulary-relativized BSA to deny that there are chances in the case of ties between

systems. In particular, in the event of ties (and, for reasons already given, it seems that in

worlds like ours ties are ubiquitous), it is not the case that there are no quantities that play

the chance role in guiding rational expectations and decision-making. If, for example, I know

that an ecosystem is in the initial ecological state E (where that state is characterized by

56It is plausible that many special science models don’t alone constitute systems for the whole of the science in
question. For example, the Lotka-Volterra predator-prey model is merely intended to capture one important
aspect of ecosystem dynamics, and isn’t intended as an axiomatization of ecology as a whole. At this point
there are important questions that arise about how unified a special science like ecology is, and whether
various models for specific ecological phenomena can be integrated into a single ‘system’ for ecology. But,
even if axiomatizations of ecology as a whole can be produced, the underlying reasons for the existence of
ties between models of specific ecological phenomena (namely tradeoffs between theoretical virtues) will also
apply at the level of candidate axiomatizations for the science as a whole.
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the values of various ecological variables) and I know that all of the tied-for-best systems

for ecology entail a high probability (� 0.5), given E, for the bunny population growing at

rate > r, and if I know nothing else of relevance, then it would be wise for me not to bet

against the bunny population growing at rate > r and indeed wise to bet in favor of it. This

is so even if there is no unique probability x such that the tied-for-best systems all imply

that the probability of growth at rate > r, given E, is equal to x, and so I am not rationally

compelled to have a sharp credence x in a growth rate > r.

9. Conclusion

It has been argued that, if we take some variant of the BSA of laws and chances to be correct,

then we have good reason to think that there are unsharp chances in our world. This is for the

following reasons. Firstly, it is implausible that there is a single axiom system for our world

that strikes the uniquely best balance between the theoretical virtues of simplicity, strength,

and fit. It is also implausible even to think that there is a unique best system relative to

the proprietary kinds of each science. Part of the reason for this is that notions such as

simplicity and balance are imprecise. Secondly, it appears that the tied-for-best systems

come endowed with different probability functions, which entail divergent probabilities for

the same events (given the same chance setup). But, thirdly, it is not true that there is

simply nothing that plays the chance role in (for example) guiding rational credence and

decision when such chance setups are instantiated. Rather, the set of probabilities entailed

by the set of probability functions associated with the tied-for-best systems plays this role,

and so such sets of probabilities constitute unsharp chances.
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