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Abstract: 

I analyse critically what I regard as the most accomplished empiricist account of 

propensities, namely the long run propensity theory developed by Donald Gillies (2000). 

Empiricist accounts are distinguished by their commitment to the ‘identity thesis’: the 

identification of propensities and objective probabilities. These theories are intended, in the 

tradition of Karl Popper’s influential proposal, to provide an interpretation of probability 

(under a suitable version of Kolmogorov’s axioms) that renders probability statements 

directly testable by experiment. I argue that the commitment to the identity thesis leaves 

empiricist theories, including Gillies’ version, vulnerable to a variant of what is known as 

Humphreys’ paradox. I suggest that the tension may be resolved only by abandoning the 

identity thesis, and by adopting instead an understanding of propensities as explanatory 

properties of chancy objects. 
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1. Empiricist Propensity Theories 

 

 Karl Popper is largely responsible for the contemporary meaning of the term 

‘propensity’ in the philosophy of probability. He introduced it in a series of papers in the late 

1950’s, which simultaneously inaugurated an empiricist tradition in thinking about 

propensities – one characterised by its focus on the testability of propensity statements. In 

those foundational papers, Popper emphasised the falsifiability of statistical hypotheses as 

the key to the empirical character of propensities. Thus in (Popper, 1959, p. 36), 

propensities are favoured because they ensue quantitative empirical predictions: “The 

estimate of the measure of a possibility – that is, the estimate of the probability attached to 

it – has always a predictive function, while we should hardly predict an event upon being 

told no more than that this event is possible […] In other words, we do not assume that a 

possibility as such has any tendency to realise itself; but we do interpret probability 

measures, or ‘weights’ attributed to the possibility, as measuring its disposition, or 

tendency, or propensity to realise itself; and in physics (or in betting) we are interested in 

such measures, or ‘weights’ or possibilities, as might permit us to make predictions.”  Later 

on, he adopted a single case version of the theory, but continued to claim the virtues of 

falsifiability for it: “The greater or smaller frequency of occurrences may be used as a test of 

whether a hypothetically attributed [propensity] weight is, indeed, an adequate 

hypothesis.” (1990, p. 11). And indeed “some typical experiments measure propensities 

fairly directly” (ibid, p. 15). The empiricist tradition founded by Popper eventually gave rise 

to the contemporary views of Donald Gillies, whose ‘long-run’ theory appropriately links 
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propensities to statistical hypotheses subject to empirical tests. 2 The key to empiricist 

approaches is their provision of a plausible interpretation of the (classical, or Kolmogorov) 

probability calculus, including the fourth axiom of conditional probability.  

 Gillies claims that his theory enjoys a number of advantages over other propensity 

theories; I review – and, by and large, endorse – these advantages in the next section of the 

paper. In the third section of the paper, however, I raise some difficulties and, in the fourth 

section, I argue that empiricist theories, including Gillies’, are committed to what I call the 

identity thesis – the identification of propensities with objective probabilities. This 

commitment threatens empiricist theories with incoherence – as is shown by versions of 

what is known in the literature as Humphreys’ paradox. In the fifth and main section of the 

paper I review an ingenious way around this threat inspired by Gillies’ distinction between 

fundamental and non-fundamental conditional probabilities, and his development of a 

propensity ‘system’. I go on to criticise this solution, and argue that it leads to a dilemma: 

The long run theory is either committed to the identity thesis, and the ensuing incoherence; 

or it must adopt a radical departure from empiricism – a move anathema to the Popperian 

tradition. In the final and concluding section I briefly outline the main features of an 

alternative account of chance, in the tradition of Charles Sanders Peirce, which 

appropriately relinquishes the commitment to the identity thesis, while retaining an 

important role for propensities in the explanation of empirical probabilities. 

  

2. Long-run and Single-case Propensities 

 

                                                           
2
 See, particularly, Gillies (2000, chapters 6 and 7). For Popper’s original proposal see Popper (1957), (1959).  
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Gillies’ theory enjoys a number of different advantages over other versions of the 

propensity theory. 3 First, a single case version of the propensity theory is harder to square 

with the commitment to falsifiability. A long run view, by contrast, is almost automatically in 

line with falsificationist methodology. Second, the truth makers for propensity statements 

according to single case versions of the theory (such as Miller’s), are not empirically 

accessible, but are rather metaphysical entities. Gillies’ own long run version, by contrast, 

ascribes propensities to large, but finite, sequences.  So in his theory the truth makers of 

propensity statements are, at least in principle, empirically accessible. Finally, Gillies’ long 

run version accommodates and explains naturally the empirical laws of probability. 

 The difference between long run and single case propensity theories may be 

described roughly as follows. Suppose we are trying to determine the propensity that a coin 

possesses to land heads on a particular toss. The single case and the long run theories will 

both explain the particular outcome as a ‘result’ of some underlying physical fact or 

property – the ‘propensity’. But they will identify a different fact or set of facts as the 

‘propensity’. Thus, a single case theory ascribes a chance (a ‘propensity’) for the coin to land 

heads in that very experimental set up. The propensity is therefore a property of the entity 

or entities involved in the single experiment. A long run theory, by contrast, characterises 

some ‘repeatable conditions’ giving rise to a sequence of events that the particular outcome 

event belongs to; it then goes on to ascribe a frequency of outcomes of the same type in the 

sequence, and identifies this frequency value as the ‘propensity’. The point is not so much 

that single-case propensities are qualitative and long run properties are quantitative, but 
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that they are predicated of different entities: the object itself in the former case, and the 

sequence of outcomes in the latter.  

 Hence in order to falsify a propensity ascription, on the long run theory, we just need 

to test the corresponding long but finite frequency by repeating the same experiment. This 

may be a complicated affair – depending on how long the sequence and how difficult in 

practice to recreate the experimental conditions repeatedly – but it is in principle possible. 

By contrast, no inspection of any sequence, no matter how long, can conclusively lead to a 

falsification of a single case propensity ascription. The ascription of a ½ single-case 

propensity for a coin to land heads, for example, is consistent with any sequence of heads-

tails outcomes. Now, this brief argument requires some unravelling, but it already shows 

that the long run theory is much more in line with Popperian falsificationist methodology. 

(Whether such a methodology is the correct one to use in assessing different accounts of 

propensities is of course a different issue altogether – and I partly address it in the last 

section of the paper). 

For similar reasons, Gillies charges single case accounts with being metaphysical and 

not scientific (Gillies, 2000, p. 127). The worry here is connected with truth makers. Gillies is 

quite right to stress that, on the single case account, what makes a propensity statement 

true is a state of affairs that we can have no direct empirical access to, namely a 

dispositional and non-observable property, or a ‘propensity weight’. In a single run of an 

experiment this weight is not actualised at all, except as a particular outcome (an outcome 

which would have equally actualised any other ‘propensity weight’). Thus a coin in such an 

experiment is said to have the propensity irrespective of whether it is actually tossed, and 

how many times. So the ascription of the propensity remains ‘metaphysical’ – in the sense 
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that a single-case propensity statement is not strictly speaking an empirical statement, i.e. 

not one that can be tested directly by experiment. This obviously marks a profound 

difference with the long run understanding of propensity, since on the latter propensities 

are features of sequences of outcomes in chancy experiments which can be tested directly – 

hence they are empirically accessible properties. The truth maker of a propensity statement, 

according to the long run view, is part of our empirical knowledge of the world. 

Finally, the two empirical laws of probability are what Gillies calls (following Keynes – 

see Gillies, 2000 p. 92) the law of stability of statistical frequencies; and the law of excluded 

gambling systems. The latter was due to Von Mises (1928, p. 20), and may be stated as 

follows: “it is impossible to improve one’s chances of winning by using a gambling system”, 

where a ‘gambling system’ is any rule that selects systematically a subsequence in a 

sequence of outcomes defining a probability (a ‘collective’ in von Mises’ terminology) such 

that the value of the probability in the subsequence differs from that in the long sequence. 

This entails that an outcome sequence is only a collective if its structure does not contain 

such sub-sequences with different probability values. So for instance, in tossing a coin the 

sequence HTHTHTHTHT… has the limiting frequency of heads ½. However such a sequence 

is not a properly defined collective since the rule ‘pick up the n-place member of the 

sequence, for n even’ systematically selects a subsequence with a limiting frequency of 

heads other than ½ (namely, 1). The law is then empirical in the sense that any genuine 

chance set up (e.g. any genuinely random tossing of a coin) yields sequences that obey it, 

and this is an empirical fact that may be determined by experimental means (as long as 

genuine chancy set ups may be distinguished).  
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As regards the law of stability of statistical frequencies, it may be expressed concisely 

as follows. Suppose that A is a possible attribute of a particular sequence. And suppose 

further that amongst the first n members of the sequence, m(A) measures the relative 

frequency of those with attribute A. Then the law of stability of statistical frequencies states 

that as n increases m (A) / n gets closer to a fixed value. Gillies then argues that both laws 

receive a natural explanation in his long run propensity theory. The law of stability of 

statistical frequencies is explained as convergence to the actual propensity value, while the 

law of excluded gambling systems is explained by the fact that probabilities are defined to 

comply with the axiom of independence (Gillies 2000, p. 154). Now, while this does not 

confer it a decisive advantage (single case propensity theories prima facie explain at least 

the law of stability just as well), it certainly adds to the attraction of Gillies’ view. 

 

3. Some Difficulties for the Long Run View 

 

We may summarise the two views as follows: In a single case theory the propensity 

is a property of (the entity or entities involved in) the single case itself; whereas in a long run 

version of the theory, the propensity is a property of the sequence of events that the 

outcome event belongs to, which is in turn defined by a set of repeatable conditions. Hence 

in the long run version of the theory, the single case – or the particular outcome event – 

does not literally possess or display the propensity, but it may only be said to display it in a 

derivative sense as part of a sequence of events. The propensity is only fully displayed in the 

whole long (perhaps infinite) sequence.  
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 This brings the long run version of the propensity theory perilously close to a 

frequency theory of probability. Indeed Gillies acknowledges that a long run theory is much 

closer to the frequency theory than the single case version of the propensity theory (Gillies, 

2000, p. 137). Yet, there are differences. On a frequency theory, probability is exclusively a 

property of the sequence, and this generates the notorious reference class problem – the 

probability of a single case depends on how that single case is represented as belonging in 

one sequence or another. Thus, the probability that an individual dies of a heart attack at 

the age of 40 year depends on whether the individual is a man or a woman, whether a 

smoker or not, whether living in Europe or Africa or, etc. Each of these prescriptions 

determines a different population, and the relative frequency of heart attacks at 40 differs 

across populations. So, frequency theories must come up with a story to fix the appropriate 

reference class. A single case version of the propensity theory overcomes this difficulty in a 

straightforward way since it ascribes the probability to the outcome event itself 

independent of any sequence – hence the single case displays a probability, namely the 

probability of the outcome event, regardless of what class or classes this event may be said 

to belong to. 4  

 Now, a long run propensity theory is supposed to ascribe the propensity to the 

sequence, but only relative to the set of ‘repeatable generating conditions’ that actually 

generate the sequence. 5 Thus the outcome event ultimately displays the propensity in 

                                                           
4
 A complication is that the outcome event itself may only be identified relative to the experimental set up – 

indeed Popper thought that propensities were relational properties of the entire experimental set-up – but 
this does not alter the fundamental point. 
5
 Gillies is not always entirely clear on this point. Sometimes he seems to ascribe propensities to the set of 

repeated conditions relative to the sequence, rather than the other way around, as, for instance, when he 
notes: “The propensity theory claims that some sets of repeatable conditions have a propensity to produce in 
a long sequence of repetitions frequencies which are approximately equal to the probabilities” (Gillies, 2000, 
p. 161). On the other hand, he is also very clear that single case chances are not propensities, but may only be 
interpreted as subjective (ibid., pp. 119-120). The interpretation in the text above seems to make most sense 
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virtue of its having been generated by a particular set of conditions. The distinction is subtle 

but the underlying thought is sound, namely that the difference between frequency and 

propensity accounts in general must ultimately rest upon a key difference between their 

respective truth makers. On one account (frequency) probabilities are made true by 

sequences of events simpliciter, while on the other account (propensity) they are made true 

at least in part by certain facts regarding the physical entities that generate such sequences.  

Nevertheless, the long run propensity theory ascribes the propensity to a sequence, 

however relative, and as a result it does inherit some features of frequency accounts of 

probability. First, it must be determined whether a propensity is ascribed to a long but finite 

sequence, or an infinite hypothetical one. Gillies’ development of a falsifying rule (Gillies, 

2000, p. 145-150) seems to me to entail that the sequences be actual – hence finite. While 

the choice is necessitated by this kind of empiricism, it also imports a plethora of well-

known difficulties associated with finite frequencies. When is the sequence long enough for 

the frequency to be representative? Tossing a coin just a few times can be very misleading 

regarding the underlying propensity of a coin to land heads. The law of large numbers, or 

some version thereof, is supposed to provide an answer, but why accept the law in the first 

place? From an empiricist point of view of the kind defended by Gillies and Popper, the law 

must be falsifiable, but the only way to go about falsifying a law regarding the nature of long 

run frequencies, and their putative convergence onto the right numbers, involves a 

comparison with probabilities, and, on the proposal under consideration, these already 

require the frequencies to be in place. I won’t rehearse all the arguments against finite 

                                                                                                                                                                                     
of Gillies’ various commitments, but in any case nothing much hinges on this subtlety. Most of the arguments 
raised in this paper, and in particular those in sections 4 and 5, go through regardless.  
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frequentism here: 6 it suffices to note that many of these arguments apply to the long run 

propensity theory too. 

 The solution to these problems supposedly comes in hand with the insistence on 

ascribing propensities relative to the set of ‘repeatable generating conditions’. In tossing a 

coin, for example, the propensity is supposedly a property of the sequence relative to the 

entire chance set up, including the mechanisms involved in the tossing, the friction of the air 

molecules against the coin’s movement, the physical features of the surface upon which the 

coin lands, etc. But if this relativity is required in order to solve the aforementioned 

problems, one wonders why propensities must be ascribed to the sequence at all. Why this 

remnant of the frequency account, when it has already been established that the key to the 

ascription lies with the physical situation rather than any feature of the sequence (or 

‘collective’ in Von Mises terminology)? Why not do away with the need to refer to any 

sequences altogether? There seems to be an inherent instability in the long run view, which 

aims to simultaneously enjoy the benefits of both the frequency and single case propensity 

accounts. But, it seems that one cannot have one’s cake and eat it too – for the account 

inherits not only the benefits, but also the difficulties incurred by both approaches. 

 

4. The Identity Thesis 

  

 The approach that I advocate, and describe briefly in section 6, is resolutely single 

case in ascribing propensities to the chance set up and in no way to sequences. I urge that 

                                                           
6
 But see Hajek (1997) for a review. 
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this approach ultimately entails a clean conceptual separation between propensities and 

probabilities – and this has not been recognized in the literature so far. By contrast, 

propensity accounts (including Gillies) have traditionally understood propensities to 

fundamentally provide an interpretation of probability. No wonder, then, that a long run 

propensity theory seems attractive. On these views, propensities and probabilities are 

essentially the same kind of thing – the former simply provide a model for the latter. 

Propensities and probabilities alike then turn out to be features of the sequences generated 

by those set ups. This conflation, I argue, leads to major difficulties, and should be given up. 

Instead propensities should be ascribed exclusively to features of chance set ups, while 

probabilities are distinct manifestations of these propensities – and, if so desired, may be 

defined as relative frequencies in finite or infinite sequences. 7 

 I am claiming that empiricist accounts of propensity are implicitly committed to an 

identity thesis, i.e. the identification of propensities and probabilities. But one has to be 

careful in describing the thesis, since it has two parts, or halves. There is first the 

commitment to interpret all probabilities, including all conditional probabilities, as 

propensities – we may refer to this as the probability-to-propensity half of the identity 

thesis, or identity1. There is then the converse commitment to treat all propensities as 

probabilities, or to be more precise to represent all propensities as conditional probabilities. 

We may refer to this as the propensity-to-probability half of the identity thesis, or identity2. 

The full identity thesis is then the conjunction of identity1 and identity2. 8 Now, I am not 

                                                           
7
 Alternatively, probablities maybe tested by observed experimental frequencies. Note that the view as 

described above has affinities with single case propensity theories such as those due to Miller and Fetzer. 
However, these authors do not really relinquish the identity thesis – they do not separate as cleanly as I do 
propensities from their probabilistic manifestations.  
8
 These terms were introduced in (Suárez, 2013) with slightly different meanings but amounting to the same 

idea that the conjunction of both makes up the full identity thesis. Note that strictly speaking the bi-
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arguing that all empiricist accounts are committed to both halves of the identity thesis full 

court. I do believe that all empiricist accounts, and many other propensity accounts that are 

not empiricist in the same strong sense of falsifiability, are committed to the probability-to-

propensity half – but only for objective probabilities. Many defenders of propensities have 

accepted that there is a subjective sense of probability, and I of course would not claim that 

they have applied identity1 to it. 9 Yet, when it comes to objective probabilities, most 

propensity approaches in the empiricist tradition have attempted to at least interpret them 

as propensities – if not altogether reduce them to propensities. So, the claim is that 

empiricism is committed to the identity thesis for objective probabilities only. 

As regards identity2, or the propensity-to-probability half, all proponents of 

propensities have adopted a representation of propensities as probabilities. True, some 

scholars have argued, in light of some of the challenges and considerations that I discuss 

below, that conditional probability, as defined by Kolmogorov, is inappropriate for 

probability in general. 10 However, this is tantamount to relinquishing the classical or 

Kolmogorov axiomatization, and to adopting an alternative a representation of probability 

for propensities – without in any case relinquishing identity2. I shall argue below that the 

right response to the challenges is not to abandon Kolmogorov, but rather to abandon the 

commitment to the identity thesis.  

                                                                                                                                                                                     
conditional applies to conditional probabilities only but, as I go on to make clear in section 5, there is a formal 
way to render all probabilities explicitly conditional. 
9
 Although I am unsure about Popper himself, who sometimes (for instance, in describing how the propensity 

interpretation ‘takes the mystery out of quantum mechanics’), writes as if he does not countenance any 
meaningful concept of subjective probability. But this seems rather extreme. Donald Gillies certainly 
countenances subjective probabilities, as distinct from objective propensities, and defends a kind of pluralism 
regarding probability (Gillies, 2000, Ch. 8). Similarly Carnap (1966), Hacking (1975, 1990), Mellor (2005) all 
accept at least two different senses of probability, roughly along the lines of the distinction between the 
objective (relating to physical states) and the subjective (relating to mental or belief states).   
10

 Hajek (2003). 



 13 

My main argument for distinguishing propensity and probability ascriptions, and 

generally for distinguishing these concepts and their role in practice, derives from what is 

known as “Humphreys’ paradox”. As first described by Salmon (1979), this is the claim that 

propensities and Kolmogorov probabilities are significantly different – and in the cases 

usually discussed by Salmon, propensities can be seen to exhibit some asymmetry which is 

lacking in the corresponding probabilities. Thus in Salmon’s original example (Salmon 1979, 

pp. 213-14), the propensity of a certain person to die given that he is shot in the head is ¾. 

This is not a symmetric propensity, since there is no propensity to have had one’s skull 

perforated by a bullet given that one is dead. Yet the inverse conditional probability (i.e. the 

conditional probability of someone’s having been shot in the head, given that this someone 

is dead) is perfectly well defined, and can be calculated easily by means of Bayes theorem – 

provided that some estimates for the priors are available. This argument shows rather 

decisively that Identity1 cannot generally hold, even when restricted to objective probability. 

There are well-defined objective probabilities that receive no propensity interpretation. In 

fact, it is arguable that for any objective conditional probability that represents a propensity, 

there is a well-defined objective probability (its inverse under Bayes’ theorem) that does not 

represent any propensity. The reason is that, in a propensity represented as a conditional 

probability Prob (A / B), the conditioned upon event B is typically the dispositional property 

that fires in order to either generate or cause the conditional event A. We then say that B 

has a propensity to A. Since “having a propensity to” is typically, if not always, an 

asymmetric relation, it follows that Prob (B / A) does not represent a propensity, because A 

has no propensity to B.    
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The sort of example invoked by Paul Humphreys himself is more involved and, as a 

matter of fact, shows not the failure of the probability-to-propensity half (Identity1), but 

rather the failure of the propensity-to-probability half (Identity2). Now, this may come as a 

surprise, since the paradox is often presented as demonstrating that the propensity 

interpretation is inconsistent (i.e. that interpreting some objective probabilities as 

propensities yields some results that are inconsistent with the axioms of probability). This 

diagnosis is implausible once the relevant distinctions are in place. In particular, Humphreys’ 

example does not show the concept of propensity itself to be flawed, but rather it shows 

that propensities may not be identified with probabilities. The simple reason, made evident 

by the example, is that some propensities lack any plausible probability representation. The 

example provided is a thought experiment involving photon emission and transmission, in 

which a number of propensities explain, ex-hypothesis, certain observable statistical 

features of the example. There does not seem to be any problem with the assumption that 

these propensities are explanatory – yet I argue that on account of Humphreys’ example, 

they cannot be meaningfully rendered into probabilities. 

The thought experiment postulates the emission of photons at time t1, their 

incidence upon a half-silver mirror at time t2, and their transmission past the mirror at time 

t3, where t1 < t2 < t3. Thus for any given photon that is transmitted, there is an emission 

event E (t1), an incidence event I (t2), and a transmission event T (t3). However, it is assumed 

that not all emitted photons actually reach the mirror, and not all those that reach the 

mirror are actually transmitted. This is because any given photon has, in the given 

experimental set up, a propensity to be emitted at t1, let us refer to it as Prop (E (t1)). Any 

photon emitted at t1 also has a certain propensity of reaching the mirror Prop (I (t2)). And 
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any photon that reaches the mirror has a certain propensity to be transmitted Prop (T (t3)). 

We may assume that all these propensities are set by the physical facts at the time of 

emission, and thus we may attempt to represent such propensities as conditional 

probabilities subscripted at t1 as follows: Prop1 (E (t1)), Prop1 (I (t2) / E (t1)), Prop1 (T (t3) / I 

(t2) & E (t1)). 11 Now, once we express the propensities this way, we are obliged to represent 

any additional facts regarding them by means of these conditional probability expressions. 

Humphreys, in particular, stipulates that the following three facts obtain in this thought 

experiment: 

 

i) 1 > Prop1 (I (t2) / E (t1)) = q > 0.  

ii) Prop1 (T (t3) / I (t2) & E (t1)) = p > 0.  

iii) Prop1 (T (t3) / ¬ I (t2) & E (t1)) = 0. 

 

The first expression states that the propensity of a photon emitted at the source at t1 

to reach the mirror at t2 is finite and non-zero – this explains the fact that some photons 

always reach the mirror but not all photons do. The second expression states that the 

propensity of a photon that has reached the mirror to be transmitted is greater than zero – 

which in turn explains why some photons are transmitted. In the last expression, ¬ I (t2) 

represents the event of a photon not reaching the mirror. The equality expresses the fact 

that a photon emitted at t1, but not received at the mirror at t2, has no propensity at all to 

                                                           
11

 Humphreys (1985, p. 561) assumes that emission time is t0, and that it is the physical facts at some strictly 
later time t1 that fix the propensities. Nothing essential in what follows depends on this assumption, so I shall 
assume that t1 = t0 without loss of generality. 
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be transmitted at t3 (presumably because it is not possible for it to be transmitted). 12 This 

explains why no photons that fail to reach the mirror are transmitted.  

Next, Humphreys considers a principle of Conditional Independence (CI) which, for 

reasons that will soon become clear, I shall refer to as Conditional Independence of 

Propensities (CIProp): 

(CIProp) Prop1 (I (t2) / T (t3) & E (t1)) = Prop1 (I (t2) / ¬T (t3) & E (t1)) = Prop1 (I (t2) / E 

(tt)). 

“Humphreys’ paradox” is then the fact that (CIProp) is inconsistent with expressions i), ii) 

and iii) above as long as probabilities obey Kolmogorov’s axioms, and in particular Bayes’ 

theorem. Later on in the paper I will dispute the appropriateness of expressions i)-iii) for the 

thought experiment described. But, first, we must consider the status of (CIProp). This 

principle states that the propensity at t1 of incidence upon the mirror at t2 is independent of 

transmission at t3. Humphreys grounds (CIProp) on the more general thought that nothing 

that happens at time t3 can causally affect the propensity at t1 of something else happening 

at t2. 13 

Now, regardless of one’s views on backwards causation, there is a more worrying issue 

regarding (CIProp), and it comes to the fore when considering the status of an equivalent 

condition for probabilities in general. The equivalent condition may be referred to as 

Conditional Independence of Probabilities (CIProb):  

                                                           
12

 Strictly speaking it states that its propensity to be transmitted is zero, but I assume throughout that having 
propensity zero is equivalent to having no propensity. 
13

 He writes (Humphreys, 1985, p. 561): “[…] The propensity for a particle to impinge upon the mirror is 
unaffected by whether the particle is transmitted or not”.  
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(CIProb) Prob1 (I (t2) / T (t3) & E (t1)) = Prob1 (I (t2) / ¬T (t3) & E (t1)) = Prob1 (I (t2) / E 

(tt)). 

It turns out that (CIProb) may fail regardless of any causal relations between T (t3), Prob1 

(I (t2)), and I (t2).  This is because, as is well known, statistical independence between 

variables fails to generally entail the absence of causal relations amongst them. On the 

contrary, the causal inference literature makes it by now abundantly clear that probabilistic 

dependence per se is not a sound basis on which to infer a causal connection. The 

underlying causal structure may be hideously complicated, so that correlated factors may in 

no way be directly causally related. Conversely, probabilistic independence between 

variables does not entail that there are no causal connections amongst them. The absence 

of statistical correlation may be masking an array of carefully balanced causal factors that 

have no overall statistical effect.14 Nothing in the nature of propensities seems to rule out 

such possibilities, however farfetched they may seem.  

There are thus two different ways in which (CIProb) may fail. First, backwards causation 

is not in general ruled out. True, this is no argument by itself since there are contingent 

issues and problems for backwards causation, particularly outside quantum mechanics. But 

it does suggest (CIProb) depends upon some contingent assumptions. Second, causal 

independence is not a necessary condition for statistical independence. So (CIProb) does not 

guarantee that T (t3) is not a cause of either Prop1 (I (t2)) or I (t2).  Whatever reasons there 

are to uphold (CIProp), they must derive from different grounds. Is there anything significant 

about propensities that makes (CIProp) hold where (CIProb) fails? Certainly, the principle 

                                                           
14

 One of the most widely discussed such arrangements in the literature is known as Hesslow’s example, where 
a particular variable is causally related to an effect via two different intermediate routes, one route involving 
an inhibitor and the other route involving a producer, so finely balanced that no correlation is apparent at all 
between cause and final effect (Hesslow, 1976). The example has famously provided grounds against statistical 
theories of causation as probability raising in general (for instance, see Cartwright, 1989, pp. 99-100 ). 
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seems to have a greater credibility when applied to propensities, and on would seem to be 

able to come up with examples that do satisfy (CProp). It is hard to see what the difference 

could possibly be as long as we continue to insist that propensities are probabilities, as 

Identity2 claims. Humphreys’ own reaction to his example is that the Kolmogorov axioms, 

and in particular Bayes’ theorem as a definition of conditional probability, are false: “The 

account thus ought […] to be viewed as […] showing directly the falsity of […] Bayes’ 

theorem” (Humphreys, 1985, p. 567). Thus he suggests in response to reject the 

Kolmogorov calculus for probability, and to come up with an alternative to standard 

probability theory: “[…Standard] probability should be viewed as a contingent theory. […It] 

does not have the status of a universal theory of chance phenomena with which many have 

endowed it” (Humphreys, 2004, p. 679). 

 The preceding analysis suggests that this may be an extreme reaction that throws the 

baby out together with the bathwater. It should suffice instead to reject the identity thesis, 

in both directions, by giving up both Identity1 and Identity2. Since (CIProb) is generally false, 

but (CIProp) often holds, the most reasonable response to Humphreys’ paradox is indeed to 

abandon the identity thesis. There is then no conceptual identity between propensity and 

probability – and propensity does not then merely interpret probability theory. Certainly, 

the move requires that we come up with an alternative representation of the propensities in 

the example that does not employ probability theory. But as long as such a thing is possible 

– and there seem to be myriad ways of doing this, as I discuss in section 6 – this is the most 

sensible, or at least the most conservative, response to Humphreys’ paradox. It sticks to the 

Kolmogorov axioms for probability, while insisting that propensity requires no probability 

interpretation at all – under any calculus.  
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5. Fundamental Probability Systems 

 

Donald Gillies has developed an ingenious response to some of these challenges, 

involving a distinction between fundamental and non-fundamental conditional probabilities. 

In this section I describe the response, and proceed to criticize it. Gilllies’ main tenet is what 

we may refer to as the universality of conditional probability. He claims that all objective 

probabilities are implicit if not explicitly conditional – so there exist no genuinely 

unconditional, or “absolute”, objective probabilities.  First of all, in the long-run theory, 

propensities are necessarily conditional probabilities since they are by definition relative to 

a set of repeatable conditions S. Thus the propensity of an event A is to be identified with 

the conditional probability of A, conditional on the set of repeatable conditions that 

generate it, i.e. with Prob (A / S). This commits the long run theory to Identity2 in a 

particular version that states that all propensities may be represented as conditional 

probabilities, and I argue below that it remains problematic in light of Humphreys’ paradox.  

However, Gillies is rather more concerned with avoiding the converse condition, which 

would make the long run theory prey to Salmon-type counterexamples. Recall that the 

probability-to-propensity half of the identity thesis, or Identity1, claims that all probabilities 

may be given a propensity interpretation. But as Salmon’s counterexamples demonstrate, in 

those cases where a conditional probability may receive a propensity interpretation, its 

inverse conditional probability is well defined, but almost always not amenable to a 

propensity interpretation. Gillies attempts to get around this problem by appealing to the 
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universality thesis, and his argument goes roughly as follows. The universality thesis tells us 

that all probabilities are implicitly or explicitly conditional upon a set of repeatable 

conditions S. What appear to be “absolute” or unconditional probabilities are in fact 

fundamental conditional probabilities (Gillies, 2000, p. 132): “Probabilities like P (A) are 

often called absolute probabilities, but really since P (A) is an abbreviation for P (A / S) it 

would be more accurate to refer to them as fundamental conditional probabilities.” We may 

identify fundamental probabilities by means of a subscript. Probf (A) then stands for the 

fundamental probability of A, which is only conditional upon its set of repeatable conditions, 

and may be fully spelled out as an ordinary conditional probability: Probf (A) = Prob (A / S).  

Now, not all conditional probabilities are fundamental. In particular, ordinary conditional 

probabilities, or event-conditional probabilities, such as Prob (A / B), where B is an arbitrary 

event, are not fundamental. Yet, they are also conditional upon a set of repeatable 

conditions, but only implicitly, and they may be fully and explicitly rendered as: Prob (A / B 

& S). So what distinguishes fundamental conditional probabilities is the fact that they are 

solely conditional upon their set of repeatable conditions. Other conditional probabilities 

are ‘event-conditional’ in the sense that they are conditional upon further events in addition 

to their set of repeatable conditions. Now, one possible response to the objection raised by 

Humphreys’ paradox would reject Identity1, by insisting that only fundamental conditional 

probabilities can be interpreted as propensities. 15 In particular the inverse of a fundamental 

probability, however numerically well defined, would not be interpretable as a propensity, 

since it is not conditional upon a set of repeatable conditions. Thus Prob (S / A) may be 

                                                           
15

 This may not be Gillies’ considered response, however, since in (Gillies, 2000, p. 132), it is asserted that ‘to 
say that P (A / B&S) = q means that there is a propensity if …’, which shows that Gillies gives a propensitiy 
interpretation to both fundamental and non fundamental conditional probabilities, insisting only on the non-
reversibility of the former.  
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numerically well defined, but it does not represent any meaningful propensity since only 

fundamental conditional probabilities do, and Probf (S / A) and Probf (S) are meaningless 

expressions.  

This seems to be a novel suggestion, in the spirit of Gillies’ proposal, to get around the 

Salmon-type counterexamples. The conditional probability of someone dying given that 

they are shot in the head may represent a propensity, but this does not require the inverse 

conditional probability of someone being shot in the head given that they are dead to 

represent a propensity too. The reason is presumably that shooting is part of the repeatable 

conditions that give rise to the propensity of death, but not the other way round. The 

conditional probability of shooting given dying is not fundamental, and the question does 

not arise as to whether this conditional probability may be interpreted as propensity. The 

proposal is in effect to restrict the scope of Identity1, so as to make it applicable only to 

fundamental conditional probabilities. In the remainder I wish to argue that it is not possible 

to answer the objection raised by Humphreys in this manner, i.e. by selectively relinquishing 

only a part of one half of the identity thesis. A full rejection of the identity thesis is rather 

called for. 

Gillies further formalises these notions, by means of what he call a “probability system”. 

16 A probability system is a set (SS, Ω, F, P) where (Ω, F, P) is an ordinary probability space 17 

and Ss is a “sequence of repetitions”: a sequence of events satisfying a set of ‘repeatable 

conditions’ S and separated in agreement to some spacing condition s, which fixes the 

essential variable parameters that separate the events generated by the ‘repeatable 

                                                           
16

 Gillies, ibid, pp. 161ff. The exposition in the text differs slightly from the original, on account of our present 
interest to draw out the consequences of probability systems for the identity thesis. 
17

 An ordinary probability space (Ω, F, P) contains a set of possible outcomes of chance trials, or outcome space 
(Ω), a Borel field F of subsets of the outcome space, and a  probability function or measure P defined over the 
elements of the outcome space.     
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conditions’ in the sequence.  For example, in analysing the propensity of 40 year-old men to 

survive to 41, we are not only interested in people who satisfy the repeatable conditions of 

being men and 40. We are also interested in a time-slice of those men at this or any other 

particular time. The propensity to survive to 41 may well differ in different epochs, cultures, 

ages and conditions. The spacing condition is supposed to take account of such variability by 

generating a stable set Ss of events with similar features amongst those that are legitimately 

generated by the repeatable conditions. The net effect of introducing the sequence of 

repetitions Ss is precisely to restrict Identity1, as previously suggested, to only those 

probabilities defined over elements of Ω included in Ss.  

Yet, the restriction does not dispense with all the problems associated to the 

probability-to-propensity half of the identity thesis. To see this, let me briefly invoke a 

different Salmon-type example where, unlike what is the case in Salmon’s own example, the 

time order of the events is not determined (Suárez, 2013, pp. 79-80). Consider my 

propensity to fly out to North America (F) in the Spring (S). The frequency of my travelling 

there during the last 10 years, gives Prob (F / S) = 0.9. Now estimate further the probability 

for it to be spring on any given day of the year as Prob (S) = ¼, and the probability of my 

flying out to North America on any season, again on account of my last 10 years’ travelling 

there, as Prob (F) = 0.4. By means of Bayes’ theorem we can easily calculate the probability 

of it being spring in North America given that I fly out as Prob (S / F) = 0.56. However, while 

Prob (F / S) may be said to represent a propensity, it does not seem to make any sense to 

say that Prob (S / F) too represents a propensity. This judgement agrees with the intuition 

underlying all Salmon-type examples: propensities inherit the asymmetry of causation but 

probabilities do not. There is something about Spring in North American that causes my 



 23 

travelling there, but not the other way round: nothing in my travelling plans alters the North 

American seasons. The example makes it also clear that it is the causal asymmetry itself and 

not any time-asymmetry that is inherited by propensities. For the underlying intuition can 

not this time be grounded upon the time order of events – since Spring is an extended event 

that comprises my flying out there, but can not be said to occur either before or after it. 

Propensities are asymmetric in the way causation is – and this is irrespective of any time-

asymmetry that the causal relation maybe judged to possess. 

The obvious response from the point of view of the suggestion that we are considering is 

to assert that while Prob (F / S) is a fundamental probability (and can thus be written as 

Probf (F)), while Prob (S / F) is not. This would explain the asymmetry in our intuitions. 

However, the distinguishing grounds for the fundamentality of Prob (F / S) seem lacking – it 

is just not the case that S is in the set of repeatable conditions that give rise to F, since I fly 

out to North America not only in the spring, but throughout the year, in any season. Are we 

to say that “F” is a distinct event depending on whether it happens in the spring or any 

other season? Why? The distinction between different types of F seems arbitrary in this 

context unless it is related to the exercise of distinct underlying propensities. But to say that 

“F” is a distinct event depending on the propensities that generate it is just to say that it is 

not always the result of the same set of generating repeatable conditions. Hence it is 

circular as an elucidation of what probabilities are fundamental and may be freely 

interpreted as propensities – since it presupposes the very notion of propensity that it is 

intended to capture. Moreover, the set of repeatable conditions are meant to include the 

physical features of the chance set up that generate the long run sequence of outcomes of a 

particular experimental type. But, if so, then neither F nor S seem to be part of each other’s 
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set of repeatable conditions. F certainly does not cause S, in the sense that S maybe 

generated without F. But then, neither does S cause F in this sense. Hence, on Gillies’ 

prescription neither Prob (F / S) nor Prob (S / F) are fundamental probabilities – so neither 

should receive a propensity interpretation. Yet, ex-hypothesis Prob (F /S) measures my 

propensity to travel to North American in the spring in this example – and our intuitions 

seem as solid regarding this propensity ascription as any other we know. So the causal 

asymmetry of propensities does not seem to be captured by the distinction between 

fundamental and non-fundamental conditional probabilities after all. It seems that some 

non-fundamental conditional probabilities are propensities too, while some fundamental 

conditional probabilities are perhaps not propensities at all.  

The argument extends to the formal version of Gillies’ distinction in terms of probability 

systems. The introduction of the sequence of repetitions Ss as part of the probability system 

is a genuine innovation. It is supposed to take account of just those features that are the 

distinguishing key to fundamental probabilities – and it thus under the present suggestion 

serves to distinguish propensities from other probabilities. An implicit commitment to 

Identity2 drives through the idea that such repeatable conditions must be part of the 

formally defined probability system. The same commitment underlies the thought that 

sequences of repetitions Ss ultimately are sets of events generated by the repeatable 

conditions S. In other words, instead of representing such conditions directly as physical 

facts regarding the chance set up and its properties (which is what they presumably are), we 

represent them indirectly as some set of the events that result out of the operation of this 

chance set up. Why? The reason is intimately connected with the identity thesis: We aim to 

define the probability function over the repeatable conditions so as to preserve the identity 
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thesis (Identity2). Since probabilities are mathematically defined only over events or 

propositions, we better find a representation of the generating conditions (i.e. the actual 

propensities) in terms of events – and Ss is the best we can come up with.  

Now a crucial question opens up: Is the sequence of repetitions Ss included in the 

outcome event set Ω? There are several reasons to think that any long run propensity 

theory must be committed to a positive answer to this question. First, the introduction of 

probability systems only helps to distinguish fundamental probabilities if indeed Ss  Ω, as I 

remarked above. Second, the long run theory is empiricist in the sense that propensities are 

understood to be subject to empirical refutation or confirmation directly by experiment. 

This requires Ss  Ω, since Gillies shows how the falsifying rule follows from an Axiom of 

Independent Repetitions that may be formally stated as a variety of a probability system. 18 

Although he does not make it explicit, an assumption in this derivation is that the sequence 

of repetitions Ss is included amongst the outcome events, and in fact it determines which 

amongst the outcome events, are genuinely ‘independent’. Finally, that Ss  Ω is entailed by 

the fact that the probability function P is explicitly defined over the elements of Ss, as Gillies 

writes (ibid, p. 167): “P (A / B) is really an abbreviation for P (A / B & Ss), although the 

underlying repeatable conditions Ss are never written out explicitly within Kolmogorov’s 

formalism”.  

The introduction of Ss in Ω is thus entailed by the basic commitments of the long run 

version of the propensity theory and, in particular, by the empiricism that runs through it. 

Yet, it is also the source of all its problems and difficulties. Once the repeatable conditions 
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 The Axiom of Independent Repetitions states that if (SS, Ω, F, P) is a probability system, then so is (SS
n
, Ω

n
, F

n
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(n)

), where SS
n
 is the sequence of repetitions formed out of repeatedly choosing the same n-tuple of elements 

of SS;  Ω
n
 is the n-fold Cartesian product of Ω; F

n
 is the minimum Borel field of subsets of Ω
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 that contains F; 

and the measure P
(n)

 on F
n
 is the n-fold product measure of the measure P on F. (Gillies, ibid, pp. 164-167).  
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are included in the outcome space, and the probability function is defined over them, there 

seems to be no reason at all why probabilities may not be meaningfully reversed in the way 

described by Humphreys. Yet, as Salmon-type counterexamples show, most inverse 

conditional probabilities cannot be interpreted as propensities. And, as Humphreys’ own 

example illustrates, most propensities cannot be represented as conditional probabilities. 

Both halves of the identity thesis are false – and there is no need to define propensities as 

probabilities. It is rather time to look for an understanding of propensities that skirts such 

commitments. 

 

6. Towards a Pragmatist Conception 

 

The main aim of this paper is critical – since it is intended to show that empiricist 

accounts of propensity are essentially committed to the identity thesis and thus confront 

major objections arising out of Humphreys’ paradox. I have already completed this task, but 

one may wonder what the alternatives are. In this last section, I briefly sketch the outlines 

of a possible non-empiricist account. 19 In section 4, it was suggested that the relation 

between propensities and probabilities is not one of interpretation but of manifestation. 

Propensities manifest themselves in probabilities, and this ‘manifestation’ relation is sui 

generis and does not reduce to anything else. It thus seems appropriate to introduce a new 

symbol “»” to represent it, while leaving open at this stage any questions regarding the 

connection between this propensity relation and other modal locutions and relations, 
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 The account is presented in (Suárez, 2013), which also explains the reasons why this particularly non-
empiricist conception of propensities may be said to be “pragmatist”.  



 27 

including probability. Note that the change of representation immediately lets us out of 

Humphreys’ paradox. The propensities that are actually explanatory in this thought 

experiment can best be represented by means of the sui generis symbol “»” as follows: 

i) E (t1) » Prob (I (t2)) = q, where 1 > q > 0. 

ii) E (t1) & I (t2) » Prob (T (t3)) = p, where p > 0. 

iii) E (t1) & ~ I (t2) » Prob (T (t3)) = 0. 

In all these expressions we are assuming that there are different propensities of the 

chance set up and experiment associated to different configurations expressed by different 

factual events at different times. 20 The propensities described by E (t1) are those that in any 

given way relate to the emission event at t1, etc. In the first case the propensity is defined at 

time t1, while in the second case it is defined at time t2. The last case (iii) is indeterminate – 

it depends on whether we take the facts at t1 to leave open what happens at t2, and in 

particular whether or not It2 takes place then.  

These propensities manifest themselves in probability distributions over observable 

events. The distributions are subject to empirical testing directly by experiment, but the 

propensities are not. This is acceptable from the point of view of a non-empiricist 

understanding of chance and probabilistic dispositions. From this point of view, propensities 

do not interpret, but rather explain probabilities: They appear as part of an explanatory 

story. 21 And indeed the above expressions seem to capture all the explanatory power of the 

propensities invoked in the example. In particular the propensities so described provide as 

good an explanation of all the relevant facts, namely: i) that some photons always reach the 

                                                           
20

 An alternative interpretation of i)-iii) above, which makes the point even sharper, associates the propensities 
to dynamical properties of either the set up or the photons themselves as they travel from the source, at 
different instants of time. Thus propensities are not even described as events  – so they cannot even in 
principle be defined as probabilities.  
21

 Similar views had been voiced earlier by Levi (1980, chapter 12). 
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mirror but not all photons do, ii) that some photons are transmitted, and iii) that no photons 

are transmitted which fail to reach the mirror. This explanatory work is performed without 

any recourse to conditional probability.  

 Note also that no problems arise here in connection with conditional probability and, 

in particular, no inconsistency with the Kolmogorov axioms may be derived from these 

expressions with the help of any principle such as (CIProp) or (CIProb). In addition, from the 

point of view of this representation, it becomes clear that (CIProp) is as suspect as (CIProb) 

and should be rejected. 22 In particular, there is no reason on this representation to expect 

the probability of incidence given transmission, or Prop1 (I (t2) / T (t3) & E (t1)), to measure or 

represent any propensity whatever. Nor is there any point in introducing sub-indexes to the 

probabilities since they, unlike propensities, are not typically time-indexed (and in any case 

the events that probabilities are defined over already carry implicit indexes). Instead we 

may simply assume that Prop1 (I (t2) / T (t3) & E (t1)) = 1 if transmission is understood to 

entail incidence, or if in fact I (t2) takes place, while = 0 if I (t2) fails to take place. 23 

 The non-empiricist approach outlined here must of course be developed further. Yet, 

much progress has already been achieved, and it is the aim of this paper to show why. We 

have seen that the empiricist attempts to identify simpliciter propensities – or objective 

chances – with probabilities run into difficulties. Nevertheless the efforts and achievements 

of the empiricist tradition provide us with great insight into the content and the limits of the 

identity thesis (both ways, as Identity1 and Identity2). Its rejection correspondingly opens up 

new vistas on the relation between propensity and probability and hence helps to redefine 
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 Or, at the very least, it should be replaced with an equivalent principle stating the appropriate causal 
relations amongst propensities. Since its expression would involve “»” as opposed to conditional probability, 
there is no reason to expect any contradiction with the principles i)-iii) above, or with the Kolmogorov axioms. 
23

 These are amongst the different intuitions that the expression elicits – thanks to Alan Hajék for pointing out 
that they are inconsistent with each other, not just with Humphreys’ intuition.  
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both concepts. We are in need of a more nuanced and subtle theoretical understanding of 

the explanatory connections between propensities and probabilities, and the terminology 

provided in this article suggests a possible starting point. 
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