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ABSTRACT 

The view that chances are relative frequencies of occurrence within actual, finite 
reference classes has long been written off. I argue that it ought to be reconsidered. 
Focussing on non-deterministic chance, I defend a version of finite frequentism in 
which reference classmates are required to have qualitatively identical pasts. While my 
analysis can evade or resist several standard objections, it has a counterintuitive 
consequence: non-trivial chances entail the existence of light cones that are perfect 
intrinsic duplicates. In mitigation, I argue that our scientific knowledge is consistent 
with the hypothesis that there are many such duplicates in the actual world. Moreover, 
my analysis has some striking advantages: it is simple, it is metaphysically 
undemanding, and it makes possible a satisfying explanation of the chance–credence 
connection. 
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1  Introduction 
I will be defending a finite frequentist analysis of chance. The word ‘chance’ can, of 
course, be used in many ways. Roughly speaking, I am interested in the sorts of 
chances that (even) a Laplacean super-intelligence—a being with complete knowledge 
of the past, complete knowledge of the laws of physics, and unlimited computational 
resources—might care to know. Quantum chances are the chief motivating examples, 
but I should stress at the outset that this is not a paper on the interpretation of quantum 
theory. I will have more to say about the analysandum in the next section. In the 
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meantime, I need to apologise for my analytical strategy. 
 Finite frequentism is the view that ‘the probability of an attribute A in a finite 
reference class B is the relative frequency of actual occurrences of A within B’ (Hájek 
[1997], p. 212). (‘Actual’ should not be read rigidly. The idea is that probabilities in a 
given world are relative frequencies in that world.) Relative frequencies satisfy all the 
probability axioms. They are mathematically simple and metaphysically unmysterious. 
Moreover, measuring a probability is very often a matter of measuring a relative 
frequency, so it is not surprising that some ‘computer scientists, statisticians, 
physicists, economists… seem to speak as if probability simply is relative frequency’ 
(ibid., p. 210, original emphasis). However, finite frequentism has almost no support in 
the philosophical literature.1 As a template for analyses of chance, it faces a battery of 
standard objections: (i) chances do not put logical constraints on frequencies; (ii) non-
trivial chances may attach to one-off, sui generis trials; (iii) chance is an irreducibly 
modal notion; (iv) chances may take irrational values (e.g. 1/√2); (v) frequencies are 
explanatorily impotent; (vi) frequencies do not display the kinds of counterfactual 
dependencies we associate with chances.2 So far these are good grounds for caution 
but poor grounds for dismissal. The first three objections are as much of a threat to 
Lewisian analyses as they are to finite frequentism; Lewisian analyses are nonetheless 
taken seriously. The fourth counts specifically against finite frequentism, but it doesn’t 
look like a clincher. (Is there an intuition that chances can be irrational? Certainly. Is 
that intuition non-negotiable? Surely not.) The fifth and sixth will seem compelling 
only to those who assume that frequencies are not law-governed. But perhaps some 
frequencies are law-governed. I will have more to say about all these objections in §5. 
In the meantime, I want to formulate—and take a first stab at motivating—my specific 
proposal. It is best approached by way of the notorious reference class problem. 
 Consider the structure of our chance talk. We speak of the chance that a 
particular radium nucleus will decay in the next hour, period; we do not speak of the 
chance relative to this or that ensemble of nuclei. Anyone proposing to reduce chances 
to frequencies must be able to explain, in some tolerably general way, how chance-
bearers pick out chance-defining reference classes. It is widely agreed that finite 
frequentists have no good explanation to give.3 Why the consensus? Let’s follow 
tradition and consider an epidemiological example. Joe is an obese white male smoker. 
Accordingly, the proportion of obese white male smokers who get cancer is of more 
interest to him than the proportion of all smokers who get cancer; it is a better (though 

                                                
1 Criticising it in 1997, Alan Hájek feared readers might complain that his target was ‘at best of 
historical interest as far as the philosophical literature is concerned … unworthy of much scrutiny in 
these more enlightened times’ ([1997], p. 212). Gillies ([2000]) does not mention the position at all in a 
book-length survey of interpretations of probability. Handfield ([2012]) does, but describes it as 
‘obviously incorrect’ (p. 108). I know of only one contemporary philosopher who has come close to 
endorsing finite frequentism: John Roberts ([unpublished]) defends ‘the possibility of interpreting—or 
perhaps, reconstructing—the probabilistic laws found in scientific theories as laws about frequencies’. 
Given the state of the literature, Roberts and I are natural allies. However, our projects are significantly 
different. The most obvious difference is one of subject matter: law-governed probabilities needn’t be 
chances in my sense; conversely, it is not clear that chances are necessarily law-governed. (I hope my 
analysis allows for chance laws, but it allows for lawless chances too.) There are also strategic 
differences. I offer an a priori solution to the reference class problem; Roberts delegates the task of 
defining appropriate reference classes to scientists. I justify Principal-Principle-shaped credence 
constraints by appealing to a self-location indifference intuition; Roberts appeals to a principle 
connecting confirmability and lawlikeness. I shall refer—gratefully—to Roberts’s paper in §8, when I 
discuss laws. Until then, it makes sense for me to develop my case independently. 
2 Hájek ([1997]) makes all these objections. 
3 See, e.g., (Hájek [1997], p. 214, Handfield [2012], pp. 106–7). 
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still inadequate) proxy for his chance of getting cancer. Narrowing the reference class 
further might be expected to improve the proxy. However, one mustn’t narrow it too 
far, or one ends up with just Joe. (The ‘relative frequency of actual occurrences’ of an 
attribute in the class {Joe} can take only trivial values, 0 or 1. That won’t do.) The 
finite frequentist must claim that there is a sweet spot to be found here: a privileged 
reference class that is exactly narrow enough, and with respect to which relative 
frequencies are analytically equivalent to Joe’s chances. The claim is implausible on 
its face. There is a strong intuition that, presented with some supposedly privileged 
reference class, we will always be able to stump the finite frequentist by asking ‘why 
not a little narrower?’, or ‘why not a little broader?’, or ‘why not a similarly-sized 
class with different members?’ 

I shall argue that this intuition is mistaken. There is, in fact, a good solution to 
the reference class problem: two chance bearers are reference classmates iff they have 
qualitatively identical pasts. This condition is simple, general and pretty evidently not 
ad hoc: it is the natural way to enforce the principle that the past is not chancy. 
Admittedly, the condition is also rather demanding. Indeed, it is so demanding that 
many readers will want to dismiss it as a sure-fire route to singleton reference classes. 
They should think again. The universe is a big place. It might, for all we know, be 
much bigger than its presently surveyable portion. Joe might have many 
doppelgangers, and some of those doppelgangers might have past light cones that 
match Joe’s in every detail. It is not obvious that Joe’s reference class (so defined) is a 
singleton.4 Readers willing to concede this point—and I shall defend it properly in 
§3—may still be inclined to reject my analysis as a non-starter. ‘According to your 
proposal’, they will complain, ‘the humdrum claim that Joe has a 43% chance of 
getting cancer entails the extraordinary claim that Joe has many actual, past-light-cone-
matching doppelgangers. That is patently absurd.’ My response is that the former 
claim is not humdrum. Indeed, were it not for the surprising success of a deeply 
puzzling physical theory—quantum mechanics—we would not even be discussing it.5 

The structure of the paper is as follows. In §2, I clarify the analysandum, and 
set out a relativistic framework for handling chance talk. In §3, I sketch the analysis, 
and offer a preliminary defence. In §4, I articulate the analysis in detail. In §5, I argue 
that my version of finite frequentism evades many of the usual objections. One 
significant exception is the complaint that finite frequentism prohibits irrational 
chances; here I advocate bullet-biting. (I also defer discussion of chance laws to §8.) In 
§6, I show that my analysis makes possible a simple and satisfying explanation of the 
chance–credence link. That explanation is driven by a self-location indifference 
intuition with two signal strengths: (i) it is finitistic, so there are no doubts about the 
appropriate measure; (ii) it is indefeasible, thanks to the narrowness of the reference 
classes involved. In §7, I anticipate the objection that chances would be unknowable 
(at least in non-trivial cases) if my analysis were correct. In response, I sketch a 
reassuring confirmation-theoretic story. In §8, I argue that my analysis allows for the 
existence of chance laws. There is admittedly a countervailing intuition here: many 
readers will feel that chance regularities would be mere coincidences if my analysis 
were correct. I outline reasons for distrusting that intuition. Summing up in §9, I 
conclude that finite frequentism does not deserve its poor reputation: my analysans is, 

                                                
4 Nor is it obvious that the class is finite. If it is infinite, then the analysis I defend implies that Joe’s 
chance of getting cancer is either trivial or undefined (see §4). 
5 ‘Joe has a 43% chance of getting cancer’ would be a humdrum claim if it was intended as shorthand 
for, e.g., ‘43% of the obese white male smokers surveyed in study X subsequently developed cancer’, 
but ‘chances’ of that sort are not my topic. 
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in fact, a serious contender for the chance role.6 
 
 

2  Target 
I aim to give an analysis of non-deterministic chance in relativistic spacetimes. Most 
philosophers interested in chance have worked within a Newtonian framework. I break 
with that convention only because my particular strategy turns out to run more 
smoothly if non-trivial light cone structure is assumed from the outset. Before we get 
to the analysis, however, we need to marshal our categories, and here it does make 
sense to begin with the Newtonian case. 

If we attach chances to (Newtonian) times, we can spell out the defining 
characteristic of non-deterministic chance as follows: if at time t an outcome is 
determined by history and law, then the chance of that outcome at t must be 1.7 An 
immediate implication is that the past is not chancy, for any outcome which has 
already occurred is determined by history, and hence, trivially, is determined by 
history and law. With minor tweaking, we can eliminate the implicit appeal to a 
physical arrow of time. For example, we can attach chances not to times simpliciter, 
but to oriented times. An oriented time is a logical construct comprising (i) a time and 
(ii) a formal tag designating one temporal direction as past. Let t range over oriented 
times, and let t’s history be the maximally specific intrinsic property of the region of 
spacetime t designates as its past. Then we can give a time-symmetric characterisation 
of non-deterministic chance: if at oriented time t an outcome is determined by history 
and law, then the chance of that outcome at t must be 1. We should prefer the time-
symmetric version. It is more general, and it leaves open the possibility that the correct 
analysis of temporal asymmetry might refer, non-question-beggingly, to facts about 
chance. 

How does this picture change when we introduce light cone structure? Suppose 
you wish to talk about the things that are nomically determined, or that are non-
trivially chancy, ‘now’. Presumably ‘now’ picks out a time slice of some sort. Let’s tag 
the time slice with an orientation label that matches your psychological arrow of time. 
Then we can say that your past region is the union of past light cones of points in the 
time slice.8 What is the time slice’s spatial extent? That will depend on context. If you 
are in a cosmology seminar, the ‘now’ you have in mind might conceivably be a time 
slice of the entire universe. In most other contexts you will probably intend to pick out 
something spatially restricted—a time slice of you, perhaps extended to include your 
immediate environment, or to embrace some relevant community (e.g. consider 
conversational contexts in which you and your interlocutors are implicitly committed 
to a shared referent for ‘now’). And of course you may wish to associate chances with 
time slices of various other systems—radium nuclei, coin-tossing apparatuses etc. 

Based on the discussion so far, it is tempting to say that all and only oriented 
time slices—whether of people, communities, radium nuclei, spacetimes or 
whatever—are potential chance bearers. However, a time slice in one coordinate 
system need not be a time slice in another, and it would be a disappointment if chances 
turned out to be tied to particular coordinate systems. A better bet is to exploit the 
natural coordinate-free generalization of the time slice concept. A space-like surface is 
                                                
6 Might it also be the strongest contender? Of course I would like to think so, but I will not attempt to 
make that case here. 
7 In other words, there is never any chance of a law being broken. In imposing this requirement I am 
following Lewis ([1994], p. 480). 
8 I shall adopt the convention whereby a point is included in its own past light cone. 
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a surface of up to three dimensions such that no point on the surface lies in a light cone 
of any other point on the surface.9 Since they have no temporal ‘thickness’, we can 
think of space-like surfaces as snapshots of portions of the universe. That is a 
coordinate-free observation, but if we do introduce a time coordinate, the associated 
surfaces of simultaneity will be space-like. (For example, anything that deserves the 
label ‘person time slice’ will be a space-like surface.) My chance bearers will be 
oriented space-like surfaces. An oriented space-like surface is a logical construct 
comprising (i) a space-like surface and (ii) a formal tag designating one temporal 
direction as past.10 Non-deterministic chance can then be characterised as follows: if at 
oriented space-like surface s an outcome is determined by history (the maximally 
specific intrinsic property of s’s past light cone union) and law, then the chance of that 
outcome at s must be 1. Call this the nomic necessity principle. 

The principle is structurally similar to the time-symmetric Newtonian 
version above. Indeed, the only difference is that the relativistic chance bearer category 
can accommodate a geometrically richer range of past regions. One consequence of 
that difference is worth flagging. In a (time-symmetrically) deterministic Newtonian 
spacetime, at any oriented time t, history and law determine everything; thus, there can 
be no non-trivial non-deterministic chances; thus, the hallmark of deterministic chance 
will be ‘objective chance values other than 0 and 1, in a deterministic world’ (Schaffer 
[2007], p. 113). In relativistic spacetimes, things are not so simple. Let s0 be your 
present person time slice, oriented to align with your psychological arrow of time. 
(Notice that s0 is spatially localised: it is an oriented time slice of you, not of the 
universe.) Suppose that s0’s history fails nomically to determine whether you will be 
eaten by bears aged 90. The corresponding chance, at s0, may then be non-trivial. Now 
ask: does our supposition rule out determinism-compatible stories about your future 
death? The answer is that it does not. It may yet be that your future death has a 
complete set of determining causes on every space-like section through its past light 
cone (‘past’ here is still the temporal direction designated by s0). Indeed, it may yet be 
that your future death has a complete set of determining causes on every space-like 
section through either of its light cones, and the same may go for every other event in 
the spacetime. In other words, the nomic necessity principle allows for the possibility 
of non-trivial non-deterministic chances in deterministic spacetimes. Readers who 
think they detect a whiff of absurdity here need to divest themselves of Newtonian 
intuitions. In particular, the Newtonian principle that deterministic spacetimes leave no 
room for non-determining histories does not generalise to the relativistic case; and 
where there are non-determining histories there may be non-trivial non-deterministic 
chances. ‘But surely a scientific theory might imply indeterminism by postulating 
chances of a certain kind?’ Yes indeed—and the kind in question is a subspecies of 
non-trivial non-deterministic chance. Its definition is straightforward but technical, so I 
relegate it to a footnote.11 

                                                
9 Light cones extend in both temporal directions, so this definition is time-symmetric as well as frame-
invariant. 
10 The tagging is possible only if the surface is orientable, that is, only if a consistent past/future 
designation can be made for the surface as a whole. Exotic spacetimes may contain space-like surfaces 
that are not orientable. My analysis will imply that such surfaces cannot be associated with chances. 
11 Let s be any oriented space-like surface. A point p lies in s’s future domain of dependence D+(s) iff 
every causal curve through p that is maximally extended in the direction of s’s past intersects s. Put less 
formally, the condition is that p’s past light cone has a cross-section that lies wholly within s. Processes 
indeterministic in at least one temporal direction exist if, for some s, there is a non-trivial chance at s 
that D+(s) has some intrinsic property. My definition of D+(s) is largely standard (see, e.g., Torretti 
[1996], p. 124). Notice, however, that since s designates its own ‘past’ and ‘future’ directions, my 
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From now on, I will use ‘chance’ without qualification to denote the 
analysandum described above. Thus, to repeat, chances attach to oriented space-like 
surfaces, and they respect the nomic necessity principle. There are certainly other 
concepts to which the label ‘chance’ could reasonably be applied; these concepts are 
not my topic. 

Reflexive attributions of present chance (‘my present chance of getting cancer 
is 43%’; ‘the chance here, now, of that nucleus decaying in the next hour is 12%’) are 
ground-zero for discussions of the chance–credence connection (§6). The chance 
bearer in any such case will be a time slice of the relevant agent, oriented to align with 
the agent’s psychological arrow of time. From now on, I will speak simply of person 
slices, and I will make the following simplifying assumption: the context of a reflexive 
attribution—agent’s intentions included—precisely determines the relevant person 
slice. I do not assume that agents always (or indeed ever) know, precisely, the 
geometry of these slices. Readers may nevertheless object that my assumption is 
unrealistic. In lieu of a defence, I offer an excuse: vagueness worries about self-
location indexicals are not specially problematic for finite frequentists. I shall set them 
aside. 
 
 

3  Sketch and Skirmish 
If chances are actual frequencies, and chance bearers are oriented space-like surfaces, 
then the chance at s of some particular outcome is the frequency with which some 
particular property of oriented space-like surfaces is instantiated in s’s reference class. 
For example, the hypothesis that you are going to be eaten by bears aged 90 can be re-
described as the hypothesis that s0 is a person slice of someone who is eaten by bears 
aged 90. The frequency with which that property (person slice of person who is eaten 
by bears aged 90) is instantiated in s0’s reference class is then the chance, at s0, of the 
unfortunate outcome. Similarly, the frequency with which the property such that seven 
is prime is instantiated in s0’s reference class—one, on any sensible definition of 
‘frequency’—is the chance, at s0, that seven is prime. 

The finite frequentist’s central task is to explain how chance bearers pick out 
reference classes. I trailed my proposal in §1, but before we return to it, let us step 
back and consider more carefully the anatomy of the reference class problem. Good 
analyses of chance need to respect certain platitudes. One platitude connects chance 
with rational credence. Let Q be the proposition that you will live to be 100. Let X be 
the proposition that your present chance of living to be 100 is 0.15. Whatever your 
evidence, your present credence function C must, on pain of irrationality, satisfy 
C(Q|X) = 0.15.12 However, if some version of finite frequentism is correct, X reports a 
mere actuarial statistic: 15% of some class of actual person slices are slices of people 
who live to be 100. It is no news that actuarial statistics might influence a rational 
person’s confidence in his own prospects. What is harder to understand, at least at first 
sight, is how a single such statistic could screen out all other rational-credence-
influencing factors. Suppose you spend your days exercising, eating salad, and 
pursuing fulfilling but stressless projects. Might you not reasonably expect to beat the 
actuary? Won’t you (probably) outlive your reference classmates? The finite 
frequentist must deny this. It is clear what his strategy will be: he will say that your 

                                                                                                                                        
definition is time symmetric. 
12 There is some small print: the constraint must be satisfied unless C(X)=0, in which case C(Q|X) is not 
defined. 
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reference classmates share your healthy habits. Indeed, he will insist that they resemble 
you in whatever respects are necessary to ensure that your conditional credence C(Q|X) 
cannot rationally depart from the actuarial odds. But what are these rational-credence-
determining respects? The reference class problem would appear to be 
epistemologically challenging. Another platitude is encoded in the nomic necessity 
principle. If physical laws and facts about history together entail that you will live to 
be 100, then your present chance of reaching 100—and thus the frequency of eventual-
centenarian slices in your reference class—had better be 1. So the reference class 
problem is metaphysically constrained too. 

Still, if the finite frequentist’s reference class problem were simply the problem 
of accommodating the chance–credence and nomic platitudes, it would rather 
obviously invite the solution trailed earlier. To wit: the reference class that defines 
your present chance of reaching 100 is the class of person slices whose past light cone 
unions are qualitatively identical to (i.e., are perfect intrinsic duplicates of) yours. Call 
these person slices your cone counterparts. Your present chance of reaching 100 
would, on this suggestion, be the frequency of eventual-centenarian slices among your 
cone counterparts. More generally, the chance that x has property A would be the 
frequency of As among x’s cone counterparts. This analysis will need some polishing 
(§4), but we can see already that it promises to respect the chance–credence and nomic 
platitudes. Your cone counterparts resemble you in every respect that can possibly be 
relevant to your appraisal, now, of the hypothesis that you will live to be 100. It does 
not seem unreasonable to suppose that an actuarial statistic relative to this very narrow 
reference class might indeed screen out all other rational-credence-influencing factors 
(for a full discussion, see §6). And whatever else laws of nature are, they are at least 
true universal generalizations. Thus, if law and facts about your history entail that you 
will live to be 100, it follows that all your cone counterparts are slices of people who 
will live to be 100, and hence that the chance—so analysed—is unity.13 
 Unfortunately, the reference class problem is not simply the problem of 
accommodating the chance–credence and nomic platitudes. We must also 
accommodate the intuition that chances can take non-trivial values. Here we face a 
difficulty: it is natural to worry that cone counterpart classes will always be singletons, 
and hence that the associated frequencies will be limited to the trivial values 0 and 1. 
Now, it will (I hope) be agreed on all sides that larger cone counterpart classes are 
possible. No metaphysical principle prohibits them. What critics will claim is that 
hypotheses postulating their actual existence are incredible, and, therefore, that my 
analysis has the ridiculous implication that hypotheses postulating non-trivial chances 
should be dismissed out of hand. My aim in the next few paragraphs is to show that 
this charge is unfair. I begin by arguing—rather briskly—that there are no compelling 
a priori grounds for denying the existence of non-trivial cone counterpart classes. Then 
I argue that there are no compelling empirical grounds, either. Along the way, I 
anticipate and block a couple of other, more modest, critical strategies. 

The a priori argument for denying the existence of non-trivial cone counterpart 
classes goes like this: for the actual world to contain qualitatively identical but 
numerically distinct light cones would require an extraordinary coincidence; it follows 
that one ought to assign negligible credence to the hypothesis that such replicas exist. 
Both the premise and the inference are problematic. The inference depends upon an 
implicit, and manifestly unsafe, assumption about the size of the actual world. After 
all, given a big enough world, it would be extraordinary if extraordinary coincidences 
                                                
13 Here I take for granted that the frequency of As in a class all of whose members are As is 1, 
irrespective of cardinality. I give a formal definition of ‘frequency’ in §4. 
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didn’t occur. The premise would be false—replicas would not be coincidences—if the 
laws of nature imposed upon the actual world a ‘Grand Pattern’ with light-cone shaped 
(or at any rate very large) motifs. It is difficult to see how such laws could be ruled out 
on a priori grounds. (I will have more to say about laws in §8.) 

Before we can properly assess the empirical case against non-trivial cone 
counterpart classes, we need to consider a more modest a priori argument. This 
argument purports to show that the geometry of spacetime puts strict limits on the 
range of possible cone counterpart classes. It starts from the superficially plausible 
premise that, necessarily, any two light cones overlap unless they point in opposite 
temporal directions (Figs. 1 and 2).	
  Call this the overlap thesis. An immediate 
consequence is that replica light cones must either point in opposite temporal 
directions or each satisfy very restrictive internal symmetry constraints. (Notice that a 
‘generic’ light cone—one that does not have strong internal symmetries—cannot 
overlap with a replica of itself.) If I conceded this claim but stuck to my analysis, I 
would have to say that non-trivial chances require either strongly symmetric pasts or 
massive violations of the familiar arrow of time; furthermore, since we have only two 
temporal directions to play with, I would have to say that chances other than 0, ½ or 1 
require strongly symmetric pasts, period. That is an unattractive position. Luckily, I do 
not need to defend it, because the overlap thesis is only superficially plausible. To 
begin with what some will regard as a cheap shot, it is false if worlds need not be 
spatiotemporally unified: a world consisting of many disjoint spacetimes will contain 
many mutually disjoint light cones. Whether such worlds are possible is a 
controversial philosophical question. I would like to believe that they are (more on this 
later), but for the sake of argument, let us suppose that they are not. We should still 
reject the overlap thesis, because disjoint co-oriented light cones occur in several 
possible spacetimes. Fig. 3 is a cartoon example; grown-ups may prefer the 
Friedmann-Lemaître-Robertson-Walker models of open universes found in standard 
cosmology textbooks (e.g. Ellis et al. [2012], p. 174-6). 
 The a priori arguments are unthreatening as they stand. Nonetheless, we should 
ask whether the second, more modest, argument can be given an empirical makeover. 
Does the scientific evidence suggest that co-oriented light cones in our spacetime 
always overlap? As it happens, the inflationary models presently favoured by 
cosmologists imply that past light cones of points in the observable universe—i.e., in 
our past light cone—do always overlap (ibid., pp. 240–1). (Future light cones of points 
in our past light cone overlap by definition: we fall in all of them.) However, the word 
‘observable’ is crucial here: these models do not imply the unrestricted claim that co-
oriented light cones in our spacetime inevitably overlap. Our spacetime may, for all we 
know, be much larger than our past light cone; indeed, recent work in the philosophy 
of cosmology has stressed the extent to which the global structure of our spacetime is 
underdetermined by the observations we can (even in principle) make.14 Thus, global 
cosmology—insofar as it is empirically grounded—seems unlikely to be a stumbling 
block. 
 We are now ready to assess the most obvious empirical argument against the 
existence of non-trivial cone counterpart classes. It goes like this: astronomical surveys 
have detected no hints of replica light cone structures; therefore, they probably don’t 
exist. It faces the (by now familiar) objection that the actual world may be much larger 
than its presently surveyable portion. However, some may think the objection smacks 
of special pleading. ‘Surely’, they will say, ‘our failure to observe unicorns counts 

                                                
14 See, e.g., (Ellis [2007], pp. 1203–6, 1230–2; Manchak [2009]; Butterfield [forthcoming]). 
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strongly against the hypothesis that unicorns exist. Why should the same not go for 
replica light cones?’ I have two responses. First, our failure to observe unicorns does 
not count strongly against the hypothesis that they exist. We have no idea how many 
planets support life. If the number were sufficiently vast, it would not be surprising if 
white, single-horned, horse-like creatures existed on some of them. Second, the 
empirical case against replica light cones is much weaker than the empirical case 
against unicorns, because it is vulnerable to a sampling bias objection. Light cone 
overlap worries boomerang here to my advantage. If the inflation cosmologists are 
right that co-oriented light cones of points in our past light cone inevitably overlap, 
then our past light cone is an especially unpromising place to look for traces of non-
trivial cone counterpart classes.15 Astronomers’ failure to detect replica light cones, 
then, is less telling than zoologists’ failure to detect unicorns. To the question ‘what 
would our world look like if most oriented space-like surfaces had non-trivial cone 
counterparts?’, an entirely plausible answer is ‘just as it in fact looks’.16 

I conclude that my proposed solution to the reference class problem does not 
trivialise chance. That claim would have been much harder to defend had I insisted on 
working within a Newtonian framework. (Newtonian pasts, being spatially 
unrestricted, must overlap unless they are oppositely oriented or belong to disjoint 
spacetimes.) Luckily, we have excellent grounds for believing that we live in a 
relativistic world, so my analytical framework is realistic as well as convenient. 

Critics prepared to concede that I have dealt with the triviality worry may wish 
to press two follow-up objections.17 First objection: any adequate analysis of chance 
ought to accommodate without undue strain a wide variety of chance values. In 
particular, it ought to accommodate fractions with irreducibly large denominators, e.g. 
46.347% (46347/100000) or 3.63 × 10-10 (363/1012). If my analysis is correct, such 
chances require large cone counterpart classes. That looks like bad news: even the 
most broadminded reader may baulk at the suggestion that she has trillions of past-
light-cone-matching doppelgangers. Second objection: suppose we grant—just for the 
sake of argument—that past-light-cone matching doppelgangers are two-a-penny. We 
thereby grant that the actual world is friendly to my analysis. So what? There remains 
the intuition that finely-graded chances are metaphysically possible in small worlds, 
and my analysis cannot save this intuition. Let me take the objections in turn. The first 
boils down to a hunch about the size of the actual world—to wit, that cone counterpart 
                                                
15 Suppose instead that the inflation cosmologists are wrong. It remains the case that we could detect 
replicas of our own past light cone only if our past light cone overlapped with replicas of itself. Thus, 
there is a weaker version of the sampling bias objection whose fortunes are not tied to those of any 
particular cosmological theory. 
16	
  So far I have not mentioned the ‘many-worlds’ interpretation of quantum mechanics (MWI). This 
may have struck some readers as odd. MWI is, after all, a scientifically respectable view according to 
which the actual world is very much larger than its presently surveyable portion. (The many ‘worlds’ of 
MWI are not distinct possible worlds in a metaphysician’s sense, but parts of the actual world.) 
However, I cannot plausibly argue from MWI to my analytical claim about chance. There are two 
obstacles. First, MWI is unfriendly to any attempt to count reference classmates, because its 
individuation of ‘worlds’ is to some extent arbitrary (Greaves [2007], pp. 120–121). Second, certain 
quantum mechanical chance ascriptions are incompatible with my analysis. I think I can shrug this fact 
off (§5.4), but it would be pushing my luck to claim that quantum theory as it stands, on any standard 
interpretation, provides me with positive support. Never mind! Making clear sense of quantum 
mechanics is notoriously difficult. I respect its authority to the extent that I take seriously the hypothesis 
that non-trivial chances (a) exist and (b) sometimes take values that can be calculated, to high degrees of 
accuracy, by physicists. However, I do not think I am under any great pressure to adopt a quantum 
mechanical worldview. (That said, I would of course be delighted if some future iteration of or 
successor to quantum theory turned out to be more friendly to my analysis.) 
17 I am grateful to an anonymous referee for pressing both. 
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class cardinalities might perhaps run to three, or fifty, or a thousand, but no higher. 
Precisely where the line is being drawn is not clear, and it is very difficult to see what 
could motivate any particular choice. (We saw some apparently principled reasons for 
drawing the line at cardinality one above, but those reasons turned out to be 
uncompelling.) It seems to me that we have little reason to trust such hunches. I should 
acknowledge, though, that my analysis would be unattractive if the hunches could be 
supported by convincing arguments.18 The second objection is more damaging. There 
surely is a pre-theoretical intuition to the effect that finely-graded chances are possible 
in small worlds. Since this is an intuition about chance, and not about the contingent 
structure of the actual world, philosophical analysts must take it seriously; and I cannot 
save it. That is a real cost, but I do not think it is a deal-breaker. Any Humean analysis 
of chance will conflict with the intuition that there could be non-trivial chances 
without the allegedly necessary chance-making patterns. Consequently, any Humean 
analysis will face some version of the small world objection. To see this, consider an 
almost-empty world, containing one or two radium nuclei and nothing else. Pre-
theoretical intuition rules that arbitrary decay chances are possible. Humeans must 
demur: given the limited supply of raw material in this world, few (if any) chance-
making patterns can be realised. Of course, my chance-making patterns demand much 
more raw material—more spacetime and more stuff—than the patterns proposed by, 
say, David Lewis. Nevertheless, the small world intuitions we have to resist are 
recognisably intuitions of the same type, and it would be against the spirit of the 
Humean project to regard either as sacrosanct. 
 
 

4  Articulation 
In §1–3 I sketched a finite frequentist analysis of chance and, I hope, offered just 
enough argumentative support to motivate a more thorough discussion. In this section, 
I complete the articulation of the analysis. 

Oriented space-like surfaces serve as the bearers of chance and the constituents 
of reference classes. To save ink, I shall from now on refer to them as objects. 

 
Definition. An object is an oriented space-like surface. 

 
Objects designate their own past temporal directions. Thus, each object picks out a 
past light cone union—the union of past light cones of points in the object. To define 
reference classes, we must specify an equivalence relation over objects. The previous 
section’s sketch suggests that the relation should be qualitative identity of past light 
cone unions. That is very nearly adequate, but it has undesirable implications in certain 
special cases. I will pause to explain the problem, and then fix it; but the issue is a 
narrowly technical one, and readers who skim this paragraph will be able to follow the 
rest of the paper without difficulty. Consider a spacetime bound between qualitatively 
distinct initial and final Cauchy surfaces (maximally extended space-like surfaces). 
Attach orientations to these bounding surfaces so that each lies in the other’s 
designated past. We now have two objects, each of which picks out the same past light 
cone union—to wit, the whole spacetime. Since numerical identity implies qualitative 
                                                
18 Although I do not believe that the requisite arguments will be forthcoming, they are conceivable. 
Perhaps future metaphysicians will prove (or will accept that David Lewis has proved) that the actual 
world is spatiotemporally unified, and future cosmologists will—pace Ellis, Manchak and Butterfield—
put an upper bound on the size of our own spacetime. Taken together, these advances could rule out 
large cone counterpart classes. 
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identity, our first-draft equivalence relation counts the oriented Cauchy surfaces as 
reference classmates. That is very much against the spirit of the analysis; after all, the 
surfaces are qualitatively distinct. The problem here is that an object’s past light cone 
union, conceived simply as a set of spacetime points, need not encode orientation 
information. So, once again, I will appeal to a logical construct: 

 
Definition. An object’s cone is the oriented union of the past light cones of 
points in the object. The orientation is inherited from the object.19 

 
The point of this definition is to support another: 
 

Definition. Two objects are cone counterparts iff they have qualitatively 
identical cones. 

 
Our pathological case is now blocked. The spacetime we imagined had qualitatively 
distinct initial and final Cauchy surfaces. Call them blue and red. The oriented Cauchy 
surfaces defined above pick out identical light cone unions, but they pick out 
(numerically and qualitatively) distinct cones: one is oriented red-to-blue, the other 
blue-to-red. 

With that epicycle in place, I can formally define my reference classes: 
  

Definition. An object’s reference classmates are, precisely, its cone 
counterparts. 

 
It remains to define ‘frequency’. In a finite reference class, the frequency of a property 
is just the fraction of objects in the class that have the property in question. I shall 
extend the concept to embrace two trivial infinite cases: the frequency of a property is 
zero if no object in the (finite or infinite) reference class has the property, and unity if 
they all do. Let us tendentiously denote the frequency of As in x’s cone counterpart 
class Chx(A): 
 

Chx (A) =
def

Number of As in x's cone counterpart class
Total number of x's cone counterparts

(if x's cone counterpart class is finite)

0 (if no cone counterpart of x  is an A)
1 (if every cone counterpart of x  is an A)

!

"

#
#
#

$

#
#
#

 

 
My proposal is that this quantity is chance. Chx(A) is the chance that object x has 
property A; furthermore, any chance is the chance that some object has some property. 
When it is necessary to distinguish analysans and analysandum, I shall refer to Chx(A) 
as a cone counterpart frequency. 

If x’s cone counterpart class is finite, then Chx(A) is sure to be defined. If x’s 
cone counterpart class is infinite, then Chx(A) will be defined only in trivial cases.20 
Since non-trivial infinite cone counterpart classes are metaphysically possible, the 
analysis commits me to defending the metaphysical possibility of chance ‘gaps’: 
<object, property> pairs that do not pick out any chance. That is not a commitment I 

                                                
19 Notice that a union of past light cones of points in an object is necessarily orientable. 
20 Recall that a fraction cannot have an infinite denominator. 
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welcome, but it is surely not a reductio. The philosophically urgent task is to explain 
how there could be well-defined chances, not—I take it—to demonstrate that there 
could never fail to be.21 (I admit that my analysis would cease to be appealing if we 
discovered that all or most cone counterpart classes were actually infinite. However, it 
is very difficult to see how we could make such a discovery.) 

Ned Hall once complained that ‘no reductionist has in fact ever provided an 
exact recipe that would show how categorical facts fix the facts about objective 
chance’ (Hall [2004], p. 111). I think I have provided just such a recipe.22 
 
 

5  Standard Worries 
Finite frequentism, Alan Hájek tells us, ‘runs afoul of many important intuitions’ 
([1997], p. 213); that is why it is ‘about as close to being refuted as a serious 
philosophical position ever gets’ (ibid., p. 226). Most versions of finite frequentism 
will, of course, run afoul of the chance–credence and nomic platitudes. I have already 
indicated how my particular choice of reference class allows me to respect them. I 
need to say a good deal more about rational credence, but before turning to that crucial 
topic, I want to deal with the other supposedly threatening intuitions. 
 

5.1  Frequency tolerance 
Let us stipulate that a fair coin’s chance of landing heads when tossed lies, always, in a 
narrow interval around 0.5. (It is implausible that real coins are chancy. Never mind!) 
Now, suppose you toss a fair coin 1,000 times. You would expect to get roughly equal 
numbers of heads and tails. However, it is of the essence of chance that you might not. 
Indeed, the coin might land heads every time. Generalizing, chances would appear to 
be frequency tolerant. Although a rational agent will allow the putative chances to 
guide his expectations, chances do not put logical constraints on frequencies.23 That, at 
any rate, is the standard story, and if it’s right, finite frequentism stands refuted: 
tinkering with reference classes won’t help. 

The standard story can be resisted. It begins well: the intuition about the coin 
tossing experiment is very strong. However, the generalization—the claim that chances 
put no logical constraints on frequencies of any kind—is problematic. Why are we 
inclined to accept it? The main reason, I suggest, is that it looks like an innocent 
summary of our intuitions about particular cases. It isn’t. To demonstrate this, it will 
be sufficient to show that my version of finite frequentism respects the coin tossing 
intuition, and any similar intuition about any imaginable experimental set-up. That my 
analysis nevertheless clashes with the generalization is a worry only to the extent that 

                                                
21 Certainly the gappiness raises no mathematical difficulty. Associated with any object x is a probability 
space (Ω, F, P). Ω is x’s cone counterpart class, F is a set of subsets of Ω, and P is the probability 
function that assigns to any member S of F the cone counterpart frequency Chx(AS), where AS is any 
property whose extension within Ω is S. F takes one of two forms. If Ω is finite, then F is the power set 
of Ω: the set of all Ω’s subsets. If Ω is infinite, F comprises just the empty set and Ω itself, and we get a 
very boring probability space. But either way, all the Kolmogorov axioms are satisfied, including 
(though only vacuously) countable additivity. 
22 Lewisian reductionists can be criticised for failing fully to define simplicity, strength, fit and the 
exchange rates governing trade-offs between these virtues. Lewisian analyses of chance do not provide 
‘exact recipes’ in Hall’s sense. 
23 Except, perhaps, in trivial cases (chances of 0 and 1), but even that is controversial. If there are 
continuous chance distributions, then outcomes with zero chance are logically possible. My analysis 
does not allow for such distributions. 
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there is a direct intuition in favour of the generalization: an intuition that cannot be 
appeased by reassuring stories about coins and dice and radium nuclei. Perhaps there is 
such an intuition, but if so it strikes me as (a) weak and (b) just the sort of intuition one 
should be willing to give up in exchange for an otherwise satisfying analysis. 
 I want to show that my analysis allows for the possibility that a fair coin 
happens to land heads every time it is tossed. As usual, we face the difficulty of 
finding objects to stand in for ‘times’; as usual, the appropriate choice will depend on 
details of the case and the context. Since we are not presently concerned with the 
credence functions of rational agents, let us take the objects to be (suitably oriented) 
pre-toss time slices of some particular coin placed in a coin-tossing apparatus. Suppose 
each of these objects belongs to a cone counterpart class roughly half of whose 
members instantiate the ‘next toss lands heads’ property. (If my analysis is correct, we 
are thereby supposing that the coin is fair.) Crucially, each pre-toss time slice will 
belong to a different cone counterpart class. The stable chance of the coin landing 
heads puts strong constraints on the statistics of these classes, but it puts no constraint 
whatsoever on the individual coin’s sequence statistics. In particular, the coin might 
land heads every time. I hope it is obvious that I will be able to tell a similar story 
about any other repeatable trial. If reference classes are cone counterpart classes, then 
reference class statistics and sequence statistics are logically independent.24 

Some readers will complain that I have secured sequence-level frequency 
tolerance at ruinous cost. Prima facie, the ‘stability’ of my ‘fair’ coin’s chance of 
landing heads is just a coincidence. That the cone counterpart frequencies have 
hovered near 0.5 so far (though how would we know?) would appear to provide no 
reason whatsoever for expecting them to remain near 0.5 in the future. I will address 
the important issues raised by this objection in §7 and §8. Here, in the meantime, is a 
brisk preview. Nobody ought to insist that it is metaphysically necessary that any 
particular coin’s chance of landing heads remains stable over time. The attractive 
claim is that stability is sometimes nomically necessary. For example, one might 
conjecture that coin-tossing set-ups with certain locally-ascertainable properties are 
always fair, and that this is a consequence of the laws of nature. My analysis is 
undoubtedly compatible with the existence of chance regularities; the crucial question 
is whether it is compatible with their being law-like. Some readers will think it 
intuitively obvious that the answer is ‘no’. I will argue that there are principled 
grounds for distrusting this intuition. Come what may, though, I remain immune to one 
of the best-known objections to finite frequentism. ‘If the frequentist has his way’, 
Hájek complains, ‘we can't say that the chance of the coin landing heads really was 
1/2, but that there was an unusually high proportion of tails in the actual sequence of 
tosses. And yet that could be a very natural thing to say’ ([1997], p. 219). That could 
indeed be a natural thing to say, and I can say it. 

Closely related to frequency tolerance worries are worries about undermining 
futures. A future is said to be undermining if it presently has a non-zero chance of 
occurring, but is such that its actual occurrence would require the present chance to be 
different. Good analyses of chance ought not to allow for such absurdities. They ought 
to respect Bigelow, Collins and Pargetter’s Basic Chance Principle (BCP): any 
outcome whose chance exceeds zero is compossible with that chance and with history 
to date (Bigelow et al [1993], p. 459). Reassuringly, my analysis entails the BCP. 
Suppose Chx(A)=p>0. An immediate consequence is that at least one of x’s cone 
counterparts is an A. Thus, being an A is compossible with x’s history to date and x’s 
                                                
24 Again, except in trivial cases. My analysis implies that a coin whose chance of landing heads is 
always zero will never land heads. 
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cone counterpart frequencies. In fact, I can weaken the BCP’s antecedent and 
strengthen its consequent. To guarantee the presence of an A among x’s cone 
counterparts, it is sufficient that Chx(A) exceed zero or be undefined; and since cone 
counterparts are worldmates, x’s cone counterparts are subject to the same laws as x. 
Thus, we have the following principle: if ¬(Chx(A)=0), then being an A is compossible 
with x’s history, x’s cone counterpart frequencies, and the laws that hold in x’s world.25 
(I am treating ‘Chx(A)’ as a Russellian definite description, so that the principle’s 
antecedent is true when Chx(A) is undefined.) 
 

5.2  Leibniz’s dictum 
Leibniz thought that probability was a kind of ‘graded possibility’.26 We are interested 
specifically in chance, but the thought remains appealing. If a coin has a 10% chance 
of landing heads, then it will possibly land heads. If it has a 70% chance, one is 
tempted to say that the possibility is greater. Of course, neither metaphysical nor 
nomic possibility comes in degrees, so the temptation is problematic. Nonetheless, one 
might hope that a good analysis of chance would concede something to Leibniz. Finite 
frequentism seems destined to disappoint: one who identifies chances with actual 
frequencies would appear to be rejecting both the letter and the spirit of Leibniz’s 
dictum. 

On reflection, things are not quite so clear. Consider—in fact, for a page or so 
please entertain—David Lewis’s analysis of metaphysical possibility de re: it is de re 
possible for an individual x to be an F iff x has, in some world or other, a counterpart 
that is an F (Lewis [1986a], p. 8). Counterparthood is a relation of qualitative 
similarity. Precisely which relation is something Lewis leaves vague: different 
precisifications will be appropriate in different contexts. Strictly speaking, cone 
counterparthood cannot be among the admissible precisifications. That is because 
Lewis’s counterpart relation is defined over concrete entities, while cone counterparts 
are logical constructs (thanks to their orientation tags). This categorical mismatch is a 
purely technical inconvenience. We can rid ourselves of it by tweaking Lewis’s 
formalism. Let us stipulate that oriented space-like surfaces are to be counted among 
the res, i.e., counted among the bearers of de re possibility. It is then not much of a 
stretch to describe the following as a Lewisian formula: 
 

It is de re possible given history for object x to be an A iff x has (in some world 
or other) a cone counterpart that is an A. 
 

Modifying the formula to pick out more restricted de re modalities is straightforward. 
It is de re possible given history and law for object x to be an A iff x has, in some 
nomically accessible world, a cone counterpart that is an A. It is de re possible given 
history, law and chance for object x to be an A iff x has, in some nomically accessible 
world, a chance-matching cone counterpart that is an A. And so on. A de re 
formulation of the BCP is now analytic: 
 

for any object x, if ¬(Chx(A)=0), then x is possibly A, 
 
where the possibility in question is possibility given history, cone counterpart 

                                                
25 Schaffer ([2007]) argues persuasively that the BCP’s consequent indeed ought to be strengthened to 
hold chances and laws fixed. 
26 ‘Probabilitas est gradus possibilitas’ (cited in Hacking [1971], p. 345). 
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frequencies and law. 
 That is all very well, but possibility given history, cone counterpart frequencies 
and law cannot be the possibility that is graded by Chx(A). Chx(A) surveys only x’s 
worldmates; the possibility it grades must be similarly restricted. Let us call the 
restricted possibility in question L-possibility (‘L’ for ‘Leibniz’). x is L-possibly A iff x 
has a cone counterpart in its own world that is an A. L-possibility entails possibility 
given history, law and cone counterpart frequencies (whence the BCP); the converse, 
of course, does not hold. ‘But L-possibility does not deserve its name! Whether actual 
objects are L-“possibly” A is settled by how things actually are!’ The observation is 
correct, but the complaint is unfair. If the Lewisian picture is right, then L-possibility 
really is a species of metaphysical possibility de re.27 Moreover, L-possibility is non-
trivial, in the sense that a non-A object can be L-possibly A. 
 Let us take stock. My analysis of chance, when conjoined with a (lightly 
customized) Lewisian account of metaphysical possibility de re, does a good job of 
saving certain modal intuitions. In particular, Chx(A) becomes, literally, a graded 
possibility, with the extreme values 0 and 1 corresponding to L-impossibility and L-
necessity respectively. Readers inclined to accept Lewis’s modal realism will naturally 
regard this as good news. However, many readers won’t be inclined to accept modal 
realism, and I do not wish to endorse it myself. (In fact, for reasons that will soon be 
clear, I hope it is false.) Do I have any good news to celebrate? I think I do. There 
might be non-Lewisian ways to make an honest metaphysical modality of L-
possibility, but that is a topic for another occasion.28 There is certainly a viable fudge: 
even if Chx(A) is not, strictly speaking, a graded possibility, we can appeal to the 
virtues of modal realism—virtues that fall short of truth—to argue that Chx(A) is rather 
like a graded possibility. I shall leave this as a sketch, because the details don’t much 
matter. If you are a non-believing admirer of modal realism, then you will 
acknowledge its allure. If you acknowledge its allure, you should agree that we can 
appease Leibniz (up to a point) by appealing to cone counterparts in lieu of genuine 
possibilia. 
 

5.3  Single case chance 
Finite frequentism entails that chance-bearers belonging to singleton reference classes 
can bear only trivial chances: 0 or 1. This is standardly seen as counterintuitive. After 
all, ‘[m]any experiments are most naturally regarded as being unrepeatable—a football 
game, a horse race, a presidential election, a war, a death, certain chancy events in the 
very early history of the universe. Nonetheless, it seems natural to think of non-
extreme probabilities attaching to some of them’ (Hájek [1997], p. 221). These 
examples pose no special difficulty for me. To accommodate non-trivial chances of 
any sort, I have to posit replica light cones; and replica light cones may host replica 
horse races etc. 
 But there is a more troublesome version of the single case problem. Let’s hear 
from Hájek again: 
 

Certain statements are ‘single case’ in virtue of their very logical form: for 
example, universal generalizations and existential claims. Some people think 

                                                
27 Assuming, with the later Lewis, that numerically distinct counterparts may be worldmates (Lewis 
[1986a], p. 232, n. 22). 
28 L-possibility at least has the right formal properties: if x is A, it is L-possibly A; if x is L-necessarily A, 
it is A; x is L-possibly A iff x is not L-necessarily not-A. 
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that non-trivial (objective) probabilities attach to such statements—as it might 
be, ‘the probability that all ravens are black is 0.9’, or ‘the probability that there 
exist tachyons is 0.1’. If there is sense to be made of such probabilities, then it 
is not the frequentist who can make it, for such statements only get one 
opportunity to be true or false. (Ibid., p. 221.) 

 
The worry now is not that certain reference classes must be singletons, but rather (if I 
may put it in my terms) that certain properties will be instantiated either by all objects 
or by none. Consider the property being such that tachyons exist. If tachyons exist, 
every object has that property; if tachyons do not exist, none do. Thus, the chance that 
tachyons exist must—it seems—be either 1 or 0. Bullet-biting may be an option here: 
as Hájek implicitly acknowledges, the intuition at stake is not overwhelmingly strong. 
However, my preferred strategy is to meet the intuition half way by appealing to 
restricted quantifiers. Roughly: the sentence ‘tachyons exist’ should, at least in some 
contexts, be taken to express the indexical proposition that tachyons exist in this 
cosmic vicinity. That is vague as it stands, but if readers are willing to grant the 
assumption that the world might not be spatiotemporally unified, there is a natural 
precisification: identify cosmic vicinities with complete spacetimes.29 On this proposal, 
a cosmologist who claims that there is a 10% chance that tachyons exist speaks truly 
iff 10% of her cone counterparts live in tachyon-containing spacetimes.30 And, mutatis 
mutandis, I could handle other ‘single case’ examples—chancy universal 
generalisations, chancy Big Crunches—in the same way. Going this route would force 
me to reject David Lewis’s identification of possible worlds with maximal individuals 
(individuals spatiotemporally related to all and only their own parts), for Lewis’s view 
makes it a necessary truth that the world is spatiotemporally unified.31 The dialectical 
pressure I face here is nothing to celebrate, but nor is it cause for great alarm: Lewis’s 
view is not widely accepted, and among the reasons for its unpopularity is the very 
implication I find inconvenient.32 
 

5.4  Missing values 
If any version of finite frequentism is true, then all irrational chances ‘go missing’ 
(Hájek [1997], p. 224): it will be logically impossible for chances to take values such 
as 1/√2. Is this a problem? There is perhaps an a priori intuition that chances can take 
irrational values. (The Kolmogorov axioms permit it.) On the other hand, those who 
remember schoolroom probability exercises may be tempted by the thought that 
chances are necessarily fractions. These are brute hunches; probably neither should be 
given much weight. However, I must also contend with the fact that irrational chances 
are postulated by quantum mechanics, one of our best-confirmed physical theories. 
This undoubtedly counts against finite frequentism, but the blow is not fatal. Quantum 
mechanics is plagued by notorious conceptual difficulties. We do not know—and 

                                                
29 See (Bricker [2001]) for a defence of the suggestion that there might, for all we know, be many actual 
spacetimes. (Bricker speaks of many actual worlds. I prefer to reserve ‘actual world’ for the totality of 
everything actual.) 
30 Of course, in typical scientific contexts, one who utters the sentence ‘there is a 10% chance that 
tachyons exist’ will not be making a chance claim at all; rather, he will be recommending a particular 
credence assignment. This is a useful reminder that chancy existentials are a rather peculiar case. 
31 Some readers may wonder whether I have another option: embrace modal realism, but drop the 
requirement that cone counterparts be worldmates. I cannot sensibly go this route. Lewis’s pluriverse is 
(wildly) infinite, and infinite cone counterpart classes rule out non-trivial cone counterpart frequencies. 
32 See, e.g., (Bigelow and Pargetter [1990], pp. 189–92). 
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arguably should not believe—that it is true as it stands. What we must acknowledge is 
that it has an outstanding empirical track record. However, since irrational numbers 
can be approximated arbitrarily closely by rationals, inferences from the empirical 
track record of quantum mechanics to the existence of irrational chances are not very 
compelling. 
 

5.5  Explanation 
Hájek takes finite frequentism to be an operationalist doctrine: it defines chance ‘in 
terms of … the results of trials of the relevant sort’. But chances are also supposed to 
explain the results of such trials, and ‘you can't explain something by reference to 
itself’ (Hájek [1997], p. 219, original emphasis).33 My version of finite frequentism is 
so distant from operationalism that readers may worry that it makes chances 
unknowable. I will tackle that objection in §7. What matters here is that explanations 
of experimental data that appeal to cone counterpart frequencies are not circular: 
explanans and explanandum are manifestly distinct. 
 Non-circularity is a low bar. Can a positive case be made for the explanatory 
relevance of cone counterpart frequencies? I don’t expect to be able to satisfy 
everyone: the concept of explanation is vague, and we have nothing approaching an 
uncontroversial analysis.34 That said, a prima facie case is implicit in the chance–
credence story I sketched in §3. Consider the hypothesis that 95% of your cone 
counterparts are person slices of people who will observe certain patterns in their 
radium decay data. If the hypothesis is true, you should expect to observe those 
patterns. If you do go on to observe them, then the hypothesis provides an explanation 
in the following sense: your observation is unsurprising given the hypothesis. 

Hempelians will not be convinced. ‘The essence of scientific explanation’, they 
will insist, is ‘nomic expectability—that is, expectability on the basis of lawful 
connections’ (Salmon [1989], p. 57, original emphasis). Since my radium decay 
‘explanation’ does not invoke any laws, they will judge it to be—at best—incomplete. 
If they also assume that cone counterpart frequencies are never law-governed, they 
will draw a stronger conclusion: that such frequencies are explanatorily impotent in 
principle. Even non-Hempelians may feel that there is something importantly right 
about this line of attack. For example, one might think that unification of diverse 
phenomena is the only essential feature of explanation, but nevertheless suspect that 
unification will, in practice, almost always involve appeal to lawful regularities. 

In §8 I will argue that, superficial appearances to the contrary notwithstanding, 
my analysis does allow for chance laws. If that argument is successful, I can stand firm 
on the explanatory front. The chances that we have any hope of knowing about are the 
law-governed ones; and law-governed chances can be cited in explanations without 
falling foul of Hempelian strictures. 
 

5.6  Counterfactual chances 
There is no radium-224 nucleus in your atom trap. But if there were, its chance of 
decaying in the next four days would be slightly more than 50%. Can a finite 
frequentist make sense of this fact? If he insists on appealing only to actual reference 
classes, then there is a worry: the reference class might be empty (Hájek [1997], p. 

                                                
33 I am grateful to an anonymous referee for drawing my attention to this objection.  
34 Even the claim that chance has an explanatory role is somewhat controversial: see, e.g., (Woodward 
[1989]). If chances are credence guiding but not explanatory, then the objection considered here does 
not get started. 
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220). In particular—to focus on my version of finite frequentism—it might be that no 
cone, anywhere, is qualitatively identical to the cone an oriented time slice of a 
radium-224 nucleus would have were it in your trap now. On the other hand, perhaps 
there are such cones. Readers might expect me to stress the latter point, and to plead 
once again the virtues of a ‘big actual world’ hypothesis.35 Not this time! 
Counterfactual chances are chances in non-actual worlds, and the chances in a non-
actual world w are—according to my analysis—cone counterpart frequencies in w.36 
The story I need to tell about the atom trap is as follows: if there were an oriented time 
slice of a radium-224 nucleus in your trap, then it would have many cone counterparts, 
of which slightly more than 50% would have the decays-within-four-days property. 
Furthermore, if there were an oriented time slice of an unobtainium nucleus in your 
trap, then it too would have many cone counterparts, and their decay statistics would 
be whatever they needed to be to make the half-life come out right.37 Some will object 
that the counterfactual dependencies envisaged here are intolerably mysterious. I reply 
that we should understand them nomically: the laws of nature permit certain structures 
(e.g., time slices of radium or unobtainium nuclei) to occur only within large cone 
counterpart classes, and they impose strict constraints on the statistical characteristics 
of those classes. The proposed laws are, of course, radically non-local. Once again, I 
must defer further discussion to §8. 
 
 

6  Chance and Credence 
A reminder: if Q is the proposition that you will live to be 100, and X is the proposition 
that your present chance of living to be 100 is 0.15, then—whatever your evidence—it 
is a requirement of rationality that your present credence function C be such that 
C(Q|X), if defined at all, equals 0.15. This is a platitude. It ought to follow more or less 
naturally from the correct analysis of chance. That is not to say that it must be an 
entailment of the correct analysis. In arguing from the analysis to the credence 
constraint, we are—I shall assume—entitled to appeal to a priori intuitions about 
rationality. Unless hypotheses about chance are taken to have normative content, it is 
hard to see how such appeal can be avoided. In any case, beggars can’t be choosers. 
No existing analysis of chance scores well on the chance–credence front.38 The 
particular objection faced by finite frequentism is that hypotheses about reference class 
frequencies will not, in general, screen out all case-specific evidence; but the objection 
loses its force if reference classes are defined narrowly enough. This thought, noted 
but left undeveloped in §3, provided much of the initial motivation for my analysis. It 
is time to spell it out. 
 

6.1  An indefeasible indifference intuition 
Let X’ be the hypothesis that a fraction 0.15 of your cone counterparts are slices of 
people who live to be 100. Suppose C(X’)≠0. I claim it is then a requirement of 
rationality that C(Q|X’)=0.15. A rough-and-ready argument goes as follows. Suppose 
                                                
35 I owe this suggestion to an anonymous referee (who does not endorse it). 
36 Finite frequentism can reasonably be characterized as the view that ‘chances are actual frequencies’, 
but—as noted in §1—‘actual’ should be read non-rigidly. 
37 Here I am imagining (with Lewis [1994]) that there are no unobtainium nuclei in the actual world, but 
that there are nevertheless facts about what their decay chances would be if they existed. 
38 David Lewis prided himself on scoring least badly: he could—he claimed—see ‘dimly but well 
enough’ how his own analysis might ground a Principal-Principle-shaped constraint (Lewis [1994], p. 
484). I shall be making rather stronger claims for my analysis. 
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God, who you know always tells the truth, (i) tells you that you have a finite number of 
cone counterparts, (ii) gives you names for all of them, (iii) tells you which are (and 
which are not) person slices of people who reach 100, and (iv) does not tell you which 
cone counterpart is your present person slice.39 Reading through God’s list, you 
discover that 15% of your cone counterparts are centenarian slices. Since precisely one 
of the cone counterparts is your present person slice, and since each is an equally 
plausible candidate for that distinction, there is a very strong intuition that you should 
be 15% confident that you will live to be 100. There is an equally strong intuition that 
the percentage is all that matters: so long as this is held constant, your confidence that 
you will live to be 100 should be invariant under permutations, expansions or 
contractions of God’s list. But if God simply tells you that X’ is true, he’s given you 
the percentage. (He has also thereby revealed that you have a finite number of cone 
counterparts.) Thus, C(Q|X’) ought to be 0.15. 

The chain of thought just sketched depends crucially on a self-location 
indifference intuition. I think the intuition is compelling as it stands; furthermore, I 
doubt that a non-question-begging proof of its correctness is possible. Those inclined 
to dismiss indifference intuitions across the board should reflect on the uncontroversial 
fact—admitted even by Hájek—that ‘[rational] opinion is guided by finite frequency 
information’ (Hájek [2011]). Why should this be? It is difficult to imagine an 
explanation that did not appeal to indifference intuitions of some sort.40 Generically, of 
course, these intuitions will be defeasible. If you have good evidence that you have 
just stepped off a 200 meter cliff, then you need no longer take account of your 
insurance provider’s actuarial data when forming an opinion about your likely life 
span. (You are falling towards the sea; your actuarial reference classmates are not.) 
One great virtue of cone counterpart frequencies is that they support indefeasible 
indifference intuitions. Even as you fall towards the sea, your conditional credence 
C(Q|X’) should—if defined—be 0.15. After all, your cone counterparts are in 
qualitatively identical predicaments, yet, if X’ is true, 15% of them are slices of people 
who will see their hundredth birthdays. Strong evidence of imminent catastrophe is 
evidence against X’, but it is no reason for you to adjust your conditional credence. In 
the remainder of this section, I want to articulate the indefeasible indifference intuition 
as a general credence constraint, to defend that constraint against objections, and, 
finally, to plead its virtues as a chance–credence bridge principle. 
 Before I attempt to generalise, I ought to deal with a technical worry. C(Q|X’) 
is, by definition, C(Q)/C(X’). If C(X’)=0, then C(Q|X’) is undefined, and the 
indifference constraint—that C(Q|X’) should be 0.15 if it is defined—is vacuously 
satisfied. Now, some readers may worry that C(X’) has to be zero, on pain of 
irrationality, and that the indifference constraint is therefore toothless. Probably they 
have something like the following argument in mind: 
 

Any apparent grounds for favouring hypothesis X’ will, on closer inspection, 
turn out to be grounds for favouring—and favouring roughly equally—
members of a family of mutually incompatible hypotheses {a fraction p of my 

                                                
39 By definition, your cone counterparts receive qualitatively identical deliverances. Thus, unless all or 
none of your cone counterparts are centenarian slices, God cannot reveal your fate. 
40 Witness Jonathan Schaffer ([2003], p. 32): ‘Suppose the only relevant information one has is that 
there are ten positives in one hundred trials. What credence ought one to assign to there being a positive 
result on the seventeenth trial? I think the answer is .1, though I am afraid I do not have a deeper 
explanation to offer’. Though he does not say so, it seems clear that Schaffer is appealing to an 
indifference intuition. 
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cone counterparts live to be 100 | 0.15-δ ≤ p ≤ 0.15+δ}, where δ>0. But there 
are infinitely many hypotheses in that family. The only way to favour them 
‘roughly equally’ is to assign each zero credence. 

 
The argument’s premise is dubious: conceivably, symmetry or other theoretical 
considerations might favour one particular fraction over arbitrarily close 
approximations. Still, I can—and should—immunise myself against this line of attack 
by switching to interval-based credence constraints. Let I be a real interval (open, half-
open or closed) and let X’I be the hypothesis that there exists p ∈ I such that a fraction 
p of your cone counterparts live to be 100. I claim that your credence function must, 
on pain of irrationality, respect the following constraint: 
 

If C(Q|X’I) is defined, then C(Q|X’I) ∈ I. 
 
The driving intuition remains the same: indefeasible indifference.41 But since no one 
will want to argue that C(X’I) is required to be zero for all I, the interval constraint is 
certainly not toothless. 

In the following subsection, I will work my way, in stages, towards a general 
credence principle. Until the very final stage, I will suppress the interval formalism 
and work with hypotheses ascribing precise cone counterpart frequencies. This aids 
readability and makes no substantive difference to the argument. (Readers who want to 
formulate interval versions of the provisional principles should have no difficulty 
doing so.) 
 

6.2  Articulating the credence principle 
I shall need to introduce some new notation. First up is ‘*’. ‘*’ is a reflexive indexical 
that picks out an agent’s present person slice.42 So, for example, if you believe A*, you 
believe that your present person slice has property A. Where there is no danger of 
confusion, I shall sometimes use ‘*’ to refer to the owner of the credence function we 
are discussing. We can now write down what looks at first sight like an innocent 
generalisation of the lifespan example: 
 

Rational credence functions must satisfy C(A*|Ch*(A)=p)=p for any A, p for 
which the conditional credence is defined. (CP1) 

 
I shall assume that properties are individuated finely enough that we don’t need to 
keep separate track of modes of presentation. 

Unfortunately, CP1 is not an innocent generalisation of our lifespan example. It 
faces counterexamples. I will describe one, sketch a general framework for thinking 
about similar cases, and then present an amended credence constraint. Let B1 be the 
property is a person slice of a person who one day meets Barack Obama. Now 
consider the hypothesis Ch*(B1)=0.01. The hypothesis implies that at least one of your 
cone counterparts has property B1. Can you appeal to an indifference intuition here? 
Surely you cannot. Spatiotemporally distant cone counterparts are most unlikely to be 
B1s. Obama, after all, lives on Earth in the twentieth and twenty-first centuries. You 

                                                
41 For example: conditional on the hypothesis that between 15% and 30% of your cone counterparts live 
to be 100, your confidence that you will live to be 100 should not be less than 15% or more than 30%. 
42 Reminder: a person slice is a time slice of a person oriented to match the person’s psychological 
arrow of time. 
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might meet him, but short-lived creatures born on the other side of the universe 
haven’t a prayer. Furthermore, you have excellent evidence that you have no non-
trivial cone counterparts in your spatiotemporal vicinity. It follows that rationally 
permissible values of C(B1*|Ch*(B1)=0.01) are near unity. At any rate, it certainly isn’t 
a requirement of rationality that C(B1*|Ch*(B1)=0.01), if defined, must be 0.01. 
 The way to block such counterexamples is to restrict the range of properties to 
which the credence constraint applies. Encouragingly, the hypothesis that 
Ch*(B1)=0.01 is a rather peculiar one. It does not correspond to any thought we can 
articulate without explicitly referring to cone counterparts. Perhaps you believe that 
your present chance of meeting Obama is 1%. If so, you surely do not believe that 1% 
of your cone counterparts meet the man you refer to as ‘Barack Obama’. What you 
might believe—were you to accept the letter and spirit of my analysis—is that 1% of 
your cone counterparts meet the man they refer to as ‘Barack Obama’. Let us say that y 
has property B2 iff y is a person slice of a person who one day meets the man y refers 
to as ‘Barack Obama’.43 Good news: it plausibly is a requirement of rationality that 
C(B2*|Ch*(B2)=0.01), if defined, is 0.01. What is the difference that makes the 
difference here? It seems to have something to do with the fact that in picking out 
property B1, but not in picking out property B2, you enjoy—and know that you enjoy—
a semantic privilege that is not shared with other members of your cone counterpart 
class. Coming to grips with this phenomenon will enable us to patch up CP1. 
 Suppose you (currently) have non-trivial cone counterparts; let x be one such. 
Suppose further that you entertain the proposition B1*. Some sentence tokened by you 
serves, given your context, to pick out that proposition. The same sentence is tokened 
by x, where it serves, given x’s context, to pick out a different proposition. 
Furthermore, some open sentence tokened by you serves, given your context, to pick 
out property B1. Its extension is the set of person slices of people who one day meet 
Barack Obama. The same open sentence is tokened by x, where it serves, given x’s 
context, to pick out a different property. Its extension is the set of person slices of 
people who one day meet a particular duplicate of Barack Obama. I shall say that x 
entertains a counterpart proposition and self-attributes a counterpart property. I shall 
denote the former x(B1*) and the latter x(B1). Formally, x(.) is a function that takes as 
its argument a proposition or property picked out by * and returns, as its value, the 
counterpart proposition or property picked out by x. If we let H and A range over 
(respectively) propositions and properties picked out by *, we can define the function 
as follows: 
 
x(H) is the proposition picked out for x by any sentence that picks out H for * 
x(A) is the property picked out for x by any open sentence that picks out A for *  
 
Implicit in this definition is an assumption: if two sentences are propositionally 
equivalent for *, then they are propositionally equivalent for x; similarly, if two open 
sentences pick out the same property for *, then they pick the same property for x. 
That assumption perhaps requires some defence. Let’s begin with the propositional 
case. Propositions serve, for us, as arguments of rational credence functions.44 That 
means we must individuate them rather finely. For example, the sentence ‘water is 
H2O’ does not have the same propositional content—for speakers of standard 
                                                
43 Read the definite description à la Russell: if ‘Barack Obama’ does not pick out anyone for y, then y 
lacks property B2. 
44 I claim that this is a role of propositions, not necessarily the sole or defining role. I want to remain as 
neutral as possible on the metaphysics of propositions. 
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English—as ‘water is water’. (Proof: you can legitimately doubt that water is H2O, but 
not that water is water.) Given such a fine individuation, there is no temptation to 
suppose that the propositional equivalence or inequivalence of a pair of sentences 
could depend, for person slice y, on events lying outside y’s cone. If someone claims 
that two sentences are propositionally inequivalent for y on the supposition that y’s 
future (or absolute elsewhere) takes a certain form, we will retort that the sentences are 
propositionally inequivalent for y period; and if our interlocutor denies this, we will 
argue that his individuation of propositions is inappropriately coarse-grained.45 The 
upshot is that we can plausibly maintain that the propositional equivalence or 
inequivalence for y of sentences S1 and S2 supervenes on y’s history. A matching 
supervenience principle for open sentences and properties (to wit: whether open 
sentences O1 and O2 pick out the same property for y supervenes on y’s history) is an 
immediate consequence, so long as the individuation of properties conforms—in the 
following sense—with that of propositions: for any given person slice, open sentences 
O1 and O2 pick out distinct properties iff O1* and O2* pick out distinct propositions. 
‘Proposition’ and ‘property’ are of course terms of art that can be construed in various 
ways. Ultimately, I must stipulate that they be construed in ways that respect our 
supervenience principles. I have argued that the stipulation is a natural one given the 
central role rational credence functions play in this paper, but strictly speaking I need 
only insist that it is coherent. Readers who will grant that—and I can think of no 
grounds for doubting it—should grant that x(.) is well defined. 

We can now repair CP1. I shall state my proposal and then defend it. An 
instance of CP1 is a requirement of rationality if * knows that the extension of x(A) 
does not depend on x (where x now ranges over all *’s cone counterparts, * included). 
If * knows that the extension of x(A) is constant in this sense, then he can deduce the 
following: (1) the truth value of x(Ch*(A)=p) is constant; (2) Ch*(A)=p implies that 
x(A*) is true for a fraction p of *’s cone counterparts. Both are important. (1) ensures 
that the condition hypothesis in CP1 does not itself break the indifference symmetry. 
(2) ensures that the condition reports an epistemic success rate. Together, (1) and (2) 
clear the way for the indefeasible indifference intuition. Here, then, is a revised 
credence principle: 
 

Rational credence functions must satisfy C(A*|Ch*(A)=p)=p for any A, p such 
that 
(i) the conditional credence is defined, and 
(ii) C(the extension of x(A) is constant)=1, where x ranges over *’s cone 

counterparts.   (CP2) 
 
Notice that if a rational credence function satisfies clause (ii), the certainty involved 
must be rational: * must be entitled to be sure that the extension of x(A) is constant. 
Luckily, this requirement is rather easily met. For example, you should not doubt that 
the extension of x(B2) is constant. You pick out property B2 using the open sentence ‘y 
is a person slice of a person who one day meets the man y refers to as “Barack 
                                                
45 An example might help. Here are two sentences whose propositional equivalence or inequivalence for 
an English speaker might be claimed to turn on events that lie outside the speaker’s cone: ‘iron has 
atomic number 26’; ‘the element most abundant by mass in the next meteor to strike my planet has 
atomic number 26’. Nevertheless, it is obvious that, whatever my future actually holds, I could sincerely 
and rationally assert the first sentence while denying the second. Thus, if propositions are to serve as 
arguments of rational credence functions, the two sentences are propositionally inequivalent for me, 
whatever the referent of ‘the element most abundant by mass in the next meteor to strike my planet’ 
turns out to be. 
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Obama”’. It is obvious that an object will satisfy your tokening of this open sentence if 
and only if it satisfies each of your cone counterparts’ tokenings. To understand this, 
you do not require exotic knowledge of cosmically far-flung regions of spacetime; 
what you need is a limited appreciation of the role your context plays in fixing the 
semantic content of your utterances. 
 We began with a simple credence principle that turned out to be incorrect. We 
have fixed it, at the cost of some small-print: clause (ii) of CP2. Does the need for this 
clause reflect badly on my analysis? That depends: if the clause prevents me from 
saving standard chance–credence intuitions, it is bad news; otherwise, it is neutral. 
There is no hint of bad news in the discussion above. In particular, the B1 case is 
unalarming, because p-substitution instances of Ch*(B1)=p—unlike p-substitution 
instances of Ch*(B2)=p—were never in the running to serve as analyses of pre-
theoretically intelligible chance ascriptions. In fact, the B1/B2 story is reassuring. It 
suggests that prima facie plausible proposals for cone counterpart frequency analyses 
of present chance ascriptions will not fall foul of clause (ii). At any rate, the kinds of 
context sensitivity that block our indifference intuition seem easy enough to avoid. 
 CP2 governs conditionalisation on present cone counterpart frequency 
ascriptions. It says nothing about conditionalisation on stronger hypotheses that 
happen to entail such ascriptions. This is a significant limitation, because we will in 
due course want to consider how scientific theories postulating cone counterpart 
frequency regularities might be confirmed. Luckily, if there is a compelling 
indifference intuition in favour of CP2, there is an equally compelling intuition in 
favour of a somewhat stronger principle: 
 

Rational credence functions must satisfy C(A*|Ch*(A)=p ∧ T)=p for any A, p, T 
such that 
(i) the conditional credence is defined, 
(ii) C(the extension of x(A) is a constant function of x)=1, and 
(iii) C(the truth value of x(T) is a constant function of x)=1, where x ranges 

over *’s cone counterparts.   (CP3) 
 
Clause (iii) ensures that conditioning on T does not break the indifference symmetry. 
To illustrate, let’s begin from a familiar instance of CP2: 
   

C(Ch*(B2)=0.01)≠0 → C(B2*|Ch*(B2)=0.01)=0.01.  (1) 
 
(I have absorbed clause (i) into the antecedent of a material conditional.) Conditional 
on the hypothesis that 1% of your cone counterparts meet the man they refer to as 
‘Barack Obama’, you should be 1% confident that you will meet the man you refer to 
as ‘Barack Obama’, so long as the conditional credence in question is defined. Our 
stronger principle, CP3, yields 
 

C(Ch*(B2)=0.01 ∧ T)≠0 → C(B2*|Ch*(B2)=0.01 ∧ T)=0.01, (2) 
 
for any proposition T that satisfies clause (iii). Everyone meets at least one famous 
politician is one such proposition: if you entertain the proposition, so do all your cone 
counterparts. Substituting it for T in (2), we get an intuitively compelling credence 
constraint. The reason it is intuitively compelling—just as compelling as (1) —is that 
the second conjunct in the condition does nothing to break the indifference symmetry. 
The same is true if we substitute I have met many of Barack Obama’s friends for T. 
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Here, the counterpart propositions are not identical, but they are materially equivalent: 
if you have met many of Barack Obama’s friends, then for any x in your cone 
counterpart class, x has met many friends of the man x refers to as ‘Barack Obama’. 
Once again, the indifference symmetry is unthreatened. On the other hand, I will meet 
many of Barack Obama’s friends does not satisfy clause (iii), and if we substitute it for 
T in (2), the result manifestly is not a requirement of rationality. 

Finally, let’s extend the credence principle to handle intervals. 
 

Rational credence functions must satisfy C(A*|Ch*(A)∈I ∧ T)∈I for any A, T 
and interval I such that 
(i) the conditional credence is defined, 
(ii) C(the extension of x(A) is a constant function of x)=1, and 
(iii) C(the truth value of x(T) is a constant function of x)=1, where x ranges 

over *’s cone counterparts.   (CP4) 
 
CP4 is a generalisation of CP3, and CP3 is a generalisation of CP2.46 Nevertheless, the 
indefeasible indifference intuition that supports CP2 supports CP4 just as strongly. I 
will not need to refer to CP2 or CP3 again. 
 

6.3  Appraising the credence principle 
So far, I have described the indefeasible indifference intuition that I think supports 
CP4, and I have explained the motivation for clauses (i)–(iii). I have not attempted, 
and will not attempt, to derive CP4 from more basic and less controversial principles. 
Those inclined to look favourably on indifference intuitions will—I hope—agree that 
no such derivation is required. However, they will want to be reassured that CP4 can 
resist certain familiar objections. 

Indifference principles that instruct us to spread our (conditional or 
unconditional) credences ‘uniformly’ across infinite sets of epistemic alternatives are 
notoriously problematic. Prima-facie-compelling examples have often turned out, on 
refection, to be inconsistent, ambiguous, or arbitrary (van Fraassen [1989], pp. 303–5), 
or to require violations of countable additivity (Ross [2010]). I needn’t discuss these 
sorrows in detail, because CP4—to the extent that it is an indifference principle—is 
finitistic.47 Its measure over cone counterparts (a simple fraction) is well defined and 
well motivated, and the principle certainly is not inconsistent. Still, readers might 
worry that it is hubristic. The rational appraisal of hypotheses is a complex matter. 
When we do it well, it is usually thanks to the hard-won wisdom of scientists or other 
topic specialists. A philosopher who proposes substantive, general constraints on the 
enterprise should not necessarily expect to be taken seriously. Notice, though, that CP4 
is an indifference principle for self-locating belief. It governs, or purports to govern, 
the distribution of credence within (not between) sets of hypotheses whose members 
differ only in respect of *’s location in the world. It does not seek to arbitrate between 
rival descriptions of the world. That already draws much of the sting from the hubris 
objection. CP4 might yet have implications for scientific practice. However, the best 
reason for thinking that it might is that chances might be cone counterpart frequencies; 
                                                
46 To obtain CP3 from CP4, set I to be [p, p], and notice that Ch*(A)∈[p, p] is logically equivalent to 
Ch*(A)=p. To obtain CP2 from CP3, set T to be any tautology. 
47 Recall that the only well-defined cone counterpart frequencies that can arise in infinite cone 
counterpart classes are the trivial frequencies 0 and 1. The associated credence constraints are not in any 
interesting sense indifference constraints: they are requirements of logic. For example, 
C(Ch*(A)=1 ∧ T)≠0 → C(A*| Ch*(A)=1 ∧ T)=1: if all your cone counterparts are As, then you are an A. 
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and if chances are cone counterpart frequencies, then CP4’s implications—roughly, 
that the Principal Principle is true—are conservative. 
 Appeals to self-location indifference intuitions are not uncommon in the 
philosophical literature. Consider the much-discussed Sleeping Beauty case. Beauty is 
put to sleep, and depending on the outcome of a fair coin toss, she is woken once 
(heads) or twice (tails). Before any second waking, Beauty’s memory of her first 
waking is erased; more generally, the experimental protocol ensures that wakings are, 
from Beauty’s point of view, indistinguishable. Beauty knows all this. On waking, 
what should Beauty’s credence be in the proposition the coin landed heads? Most 
authors think the answer is ⅓; David Lewis argued for ½. What matters for our 
purposes is the common ground: halfers and thirders agree that Beauty should assign 
equal credence to the coin landed tails and this is my first waking and the coin landed 
tails and this is my second waking. These two hypotheses differ only in respect of 
Beauty’s (present person slice’s) location in the world, and Beauty could have no good 
reason to favour one over the other. Adam Elga ([2004]) has attempted to parlay such 
relatively uncontroversial intuitions into a general self-location indifference principle. 
As Brian Weatherson ([2005]) notes, Elga runs into trouble on two fronts: his principle 
is not finitistic (cue countable additivity worries), and he appeals to a relation of 
subjective indistinguishability defined over agent predicaments. This relation is most 
naturally taken to be intransitive; deserves the same credence as, by contrast, is 
transitive, and the mismatch is fatal. My principle draws on similar intuitions, but is 
much less ambitious than Elga’s. CP4’s indifference demands are finitistic, and is a 
cone counterpart of is unquestionably an equivalence relation. 
 My case for CP4, then, boils down to this: it is an articulation of a compelling 
indifference intuition, and it is not vulnerable to the objections that have, historically, 
given indifference principles a bad name. Notice what the case does not require. It 
does not require that readers buy a ‘package deal’ account of natural law, chance and 
inductive confirmation (compare Lewis [1994], pp. 478–80). You should accept CP4 
whatever your views on law, and whatever your views on chance. Your views on 
inductive confirmation will be an obstacle only if they prompt you to reject the self-
location indifference intuition, and it is hard to see how they could. 

If CP4 is true, how far does that strengthen the case for my analysis? I think it 
strengthens it very considerably. Conjoined with the analysis, CP4 becomes a chance–
credence bridge principle. Many such principles have been discussed in the literature, 
all more or less in the ballpark of Lewis’s original Principal Principle, but mine has 
some significant advantages. Most importantly, it involves no heroic abstractions: true 
or false, it is unquestionably intelligible. The same cannot be said for all its cousins. 
Some versions of the Principal Principle, Lewis’s original formulation included, are 
constraints on initial credence functions.48 Their authors assume—explicitly or 
implicitly—that a rational agent’s current credence function is her initial credence 
function conditionalised on her total evidence proposition. The italicised concepts are 
manifestly problematic. CP4, by contrast, is a constraint on current credence functions. 
There is no appeal to total evidence propositions; in fact, there is no mention of 
evidence at all. This brings us to a second attractive feature: CP4 has—and requires—
no admissibility clause.49 Suppose you have a crystal ball with an impeccable track 
record. The ball assures you that you will live to be 100. You trust the prediction, and 
you are entitled to do so. The case is peculiar, but it poses no special difficulty for me. 
                                                
48 For example, (Lewis [1986b] and Schaffer [2003]). Meacham ([2010]) points out that some versions 
of the Principal Principle that are not so formulated ought (by their own lights) to be. 
49 NB that clause (iii) is not an evidential restriction. 
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Your conditional credence C(Q|X’) still ought to be 0.15.50 After all, your cone 
counterparts have counterpart balls with equally impressive track records. Cone 
counterpart frequencies screen out the deliverances of crystal balls in precisely the 
same way that they screen out less exotic types of evidence. 

The lack of an admissibility clause does not expose my bridge principle to 
counterexamples, but it does limit its scope. Suppose you know that a fair coin has 
been tossed (NB the past tense). What should your current credence be that it landed 
heads? The tempting answer is that your credence should be 0.5, so long as you have 
no inadmissible evidence. That answer is compatible with CP4, but it is not a 
consequence of CP4. Should I be worried? I think I should be relieved. The tempting 
answer is controversial, at least in some circumstances: witness the Sleeping Beauty 
case. Furthermore, and relatedly, the concept of inadmissible evidence is notoriously 
difficult to pin down. In CP4, I have a well-defined and well-motivated bridge 
principle that I can defend against all comers while preserving my freedom of 
manoeuvre on other philosophical fronts. That is a good position to be in. The situation 
would be very different if my account threatened to undermine retrospective chance–
credence intuitions—but it does not. Suppose chances are cone counterpart 
frequencies, and suppose you know that a fair coin was tossed on a particular day in 
1898. What object does the chance of 0.5 attach to? For this example, it doesn’t much 
matter; let’s take it to be an oriented time slice of the coin, shortly before it was tossed. 
What you know, then, is that the oriented time slice in question belongs to a non-trivial 
cone counterpart class, half of whose members have ‘heads’ futures, and half ‘tails’. 
How confident should you be that the coin—the coin that you successfully refer to—
landed heads? Of course it depends on your evidence. You might reasonably be very 
confident indeed: perhaps the result was recorded by a reliable witness, or perhaps you 
have good reason to believe that world history would have turned out very differently 
had the coin landed tails; ‘thirders’ might also want to imagine analogues of the 
Sleeping Beauty case. But if you have no evidence that directly bears on the result of 
the coin toss, and no reason to think that you are in anything like Sleeping Beauty’s 
predicament, then there is a strong intuition that your credence that the coin landed 
heads ought to be 0.5. This is a defeasible (but, by hypothesis, undefeated) indifference 
intuition. The bottom line is that I have not made a mystery of our retrospective 
chance–credence intuitions. I leave them as I found them: messy, and unfriendly to 
exceptionless principles. 

 
 

7  Confirmation 
If the radium nuclei in your lab have non-trivial cone counterparts, then they are 
scattered widely throughout the actual world; they may even be spatiotemporally 
disconnected. You are in no position to survey them. Any knowledge you have of the 
decay statistics associated with such classes must be inferred with the help of a 
scientific theory—a theory telling you that objects with such-and-such locally 
ascertainable characteristics are associated with cone counterpart frequencies of a 
particular sort. But what grounds could you possibly have for believing the theory? 
Some readers will think it obvious that the answer is ‘none’. They will complain that 
my analysis makes (non-trivial) chances unknowable. I shall defend a different 

                                                
50 Unless your confidence in the ball’s prediction is total (C(Q)=1), in which case C(Q|X’), if defined, 
must be 1. CP4 then requires that C(X’)=0, to ensure that C(Q|X’) is not defined. The result is intuitive: 
if you are certain you will reach 100, you must also be certain that there is no chance that you won’t. 
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answer: you might have strong confirming evidence. 
Let’s begin by rehearsing a familiar confirmation-theoretic story. A scientific 

theory that postulates stable patterns of chance will inevitably ascribe high chances to 
certain outcomes. For example, if a coin always has a 50% chance of landing heads 
when tossed, then there is a high chance that the long-run proportion of heads in many 
thousands of observed tosses will lie close to 50%. Thanks to the chance–credence 
link, this qualifies as an empirical prediction: one can test the hypothesis that a coin is 
fair by tossing it many times. More generally, one can test a theory that postulates 
stable patterns of chance by measuring frequencies. Can anything like this story be 
made to work if chances are cone counterpart frequencies? Since my analysis leaves 
the chance–credence link intact, the prospects look good. Suppose theory T0, when 
conjoined with some routine auxiliary propositions justifiably believed by you, entails 
that 99.9% of your cone counterparts will observe a particular statistical pattern in their 
radium decay data. Then, on the supposition that T0 is true, you should expect to 
observe the pattern. So T0 is testable. 

That was rather brisk. Let’s fill in some formal details. Suppose theory T0 

entails (∀x)(Bx → Chx(A0) ∈ I0), where quantification is over objects, A0 is such that 
you can reasonably expect one of your future person slices to learn, retrospectively, 
whether your present person slice has property A0, I0 is a narrow interval near (but not 
including) unity, and your present credence function C satisfies C(B*) ≈ C(B*|T0) ≈ 1, 
because (say) you have good empirical evidence that B*.51 Suppose also that you are 
rational. It follows that C(Ch*(A0)∈I0 | T0) ≈ 1. I now want to show that C(A0*|T0) must 
be high. Notice first that the following inequality is a requirement of probabilistic 
coherence: 

 
C(A0*|T0) ≥ C(A0* | Ch*(A0)∈I0 ∧ T0) C(Ch*(A0)∈I0 | T0). 

 
Thus, since C(Ch*(A0)∈I0 | T0) ≈ 1, C(A0*|T0) cannot be much less than 
C(A0* | Ch*(A0)∈I0 ∧ T0). But if conditions (i) through (iii) of CP4 are satisfied, then 
the latter must lie within I0—in which case C(A0*|T0) cannot be much less than unity, 
and we can reasonably describe T0 as making a testable prediction: on the supposition 
that T0 is true, you should expect A0* to be true. 

We have just seen that cone counterpart frequency regularity hypotheses might 
in principle have empirical content. However, it does not follow that the epistemology 
of chance is unproblematic for me. I anticipate that readers will have worries on two 
fronts. First: can the confirmation-theoretic template I have sketched actually be 
applied? Can I, for example, describe plausible candidates for the A0, B and T0 roles in 
the radium decay case? Second: wouldn’t any non-trivial cone counterpart frequency 
regularity qualify as a cosmic coincidence? If so, then theories postulating such 
regularities deserve little credence, however impressive their empirical track records.52 
I shall focus on the first worry in this section, and present my case for resisting the 
‘cosmic coincidence’ intuition in the next. 

Suppose you have a sample of radium on your bench. A scientific theory of 
radium decay should tell you what sort of decay statistics to expect; my task is to 
explain how a theory postulating cone counterpart frequency regularities might do that. 
                                                
51 The supposition that I0 does not include unity is not essential to the argument in this paragraph, but I 
want to focus attention on non-trivial cone counterpart frequencies. 
52 This claim is not in tension with my confirmation-theoretic sketch. If T0 postulates a cosmic 
coincidence, then rationally permissible values of C(T0|A0*) will be small, even if C(A0*|T0) is required 
to be near unity. 



	
   	
   	
  

	
   	
   28	
  

Empirical predictions will have the logical form A0*. As noted in §2, we have some 
flexibility in how we choose to interpret ‘*’. I shall suppose that its referent—your 
present person slice—extends far enough into your environment to encompass the 
radium sample. It is then natural to take A0 to be the property picked out, for you, by 
an open sentence of the following form: 
 

The proportion of radium nuclei intersected by y that decay within t(y) lies in 
interval I1, 
 

where y ranges over objects, and t(y) denotes some specific portion of y’s future-
pointing cone, defined relative to y (e.g. the next hour or between six and eight hours 
later).53 Notice that A0* is, as required, an empirically contentful hypothesis: it says 
that the proportion of radium nuclei in your sample that decay within t(*) lies in 
interval I1. Notice also that you ought to be certain that the extension of x(A0) is the 
same for every x in your cone counterpart class. (Proof: when your cone counterparts 
say ‘radium’, they pick out the same natural kind you do. Furthermore, they have the 
same spatiotemporal concepts, the same concepts of decay and interval, and so on.) 
That means we can to appeal to CP4 without falling foul of clause (ii). So far so good; 
we now need to consider the theory, T0, that is supposed to support this prediction. 

We want T0 to entail (∀x)(Bx → Chx(A0)∈I0), and we want the latter 
proposition to say that radium samples of a particular kind have a high chance of 
manifesting decay statistics in the range specified by A0. B is a property of objects. 
What will it look like? Being a B will at least involve being a space-like surface that 
encompasses a sufficiently large radium sample.54 Perhaps there will be further 
intrinsic restrictions (on nuclear excitation states and so on). However, we should not 
expect B to be an intrinsic property of objects. One reason is that radioactive decay 
overwhelmingly favours one temporal direction. That means it is sensitive to some 
physical arrow of time; but the direction of a physical arrow at a given space-like 
surface will not, in general, be settled by intrinsic properties of the surface.55 There is 
also a second reason. Consider the prediction that roughly half of a sample of radium-
228 nuclei will undergo nuclear decay within 5.75 years. The prediction fails if the 
sample gets annihilated by a blob of antimatter after only 10% of its nuclei have 
decayed. If you make the prediction on the strength of your knowledge of radium-
228’s half-life, then presumably you believe that environmental conditions in the 
sample’s vicinity will remain within certain bounds over the time period in question: at 
the very least, you believe that the sample won’t get bombarded by antimatter. Now, 
we are imagining that T0 is a theory about radium decay, not a theory about the 
trajectories of antimatter blobs. We should not expect it to tell us that radium samples 
with certain intrinsic characteristics are fated never to meet with antimatter blobs; 
rather, we should expect it to tell us that radium samples with certain intrinsic 
characteristics which happen not to encounter antimatter blobs will (probably) display 
certain decay patterns. So, to recap, we should expect open formula By to be satisfied 
by all and only objects that (i) are space-like surfaces through radium samples with 
appropriate intrinsic characteristics, (ii) are aligned with the physical arrow of time 

                                                
53 y’s future-pointing cone is the union of future light cones of points in y, where the future direction is 
the temporal direction y does not designate as its past. 
54 The minimum size of the sample will depend on the details of the statistical pattern encoded by A0.  
55 This is perhaps most obvious if one considers a small space-like surface. A snapshot of a microscopic 
portion of, say, a hot cup of tea might provide few clues about the direction of the thermodynamic 
arrow. 
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implicated in radium decay, and (iii) have future cones whose initial segments are free 
from certain specified kinds of interference. The spatiotemporal region constrained by 
(iii) will be related to the timeframe set by A0 (roughly speaking, it will be the smallest 
initial segment of y’s future cone that contains t(y)). Since radioactive decay chances 
are known to be rather insensitive to local conditions, we should not expect the 
intrinsic or the extrinsic constraints to be very exacting. Where does this leave the 
knowability of B*? Clearly there is no question of B* being infallible knowledge, for it 
is (or at any rate entails) a substantive hypothesis about *’s future. All we require, 
however, is that * could reasonably assign B* high credence, given suitable evidence. 
That requirement is not very demanding. If you think scientists are ever in a position to 
make justified predictions about decay statistics, you will grant that they (sometimes) 
have justified beliefs about certain intrinsic characteristics of their samples, about the 
relevant arrow of time, and about the absence now and in the future of certain 
disrupting environmental conditions.56 

My initial sketch envisaged a single universal generalisation of the form 
 
(∀x)(Bx → Chx(A0)∈I0).     (3) 

 
However, if T0 is to be a general theory of radium decay, then it had better entail 
infinitely many instances of the form, covering radium samples of all sizes, and decay 
statistics over all time frames and at every level of probability. I therefore now relax 
the requirement that I0 be an interval near unity, and stipulate instead that for a 
regularity to qualify as an instance of (3), I0 must exclude the extreme values 0 and 1. 
(Without that stipulation, the claim that some instances of (3) are testable would be 
trivial: consider the intervals [0,0] and [1,1].) I do not propose to pursue the question 
of how T0 might best be axiomatised. That issue will arise for anyone who, seeking 
relativistic generality, wishes to associate chances with space-like surfaces; qua 
frequentist I am under no special obligation to tackle it. An issue I am obliged to tackle 
is that of smoothness. Scientifically-tutored common sense tells us that the chance that 
a given radium nucleus decays within t seconds should—given some not-very-
restrictive environmental assumptions—be a smoothly increasing function of t. By 
choosing an appropriate object (e.g. an oriented time slice of a radium nucleus in a 
suitable environment), I can express that intuition within my relativistic framework; 
what I cannot do—since cone counterpart frequencies are ‘quantised’ in units of the 
reciprocal of cone counterpart class cardinality—is reconcile it with my analysis. A 
fortiori, T0 won’t save it. However, for any δ > 0, T0 could imply that the decay-
within-t cone counterpart frequency lies within the interval [p(t)-δ, p(t)+δ], where p(t) 
is a smoothly increasing function of t. Thus, smoothness to any degree of precision 
short of perfection is in principle within reach. Let us suppose that T0 does a good job 
on the approximate smoothness front. The supposition has a significant (but by now 
familiar) consequence: T0 will imply that certain types of object belong to very large 
cone counterpart classes. 

Finally, if T0 is to have empirical content, the conditions of CP4 must be 
satisfied. We have already noted that A0 satisfies clause (ii). Clause (iii) does not look 
any more threatening. So long as T0 is a general scientific theory, the sentence you use 
                                                
56 Recall that I am assuming that, in any given context, ‘*’ picks out one particular oriented space-like 
surface, but not that the tokening agent knows, with precision, what that oriented space-like surface is 
(§2). For B* to be knowable, it is important that the truth value of B* be relatively insensitive to small 
perturbations in the referent of ‘*’. This requirement seems likely to be fulfilled, for—as already 
noted—we should not expect B’s instantiation conditions to be very exacting. 
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to pick it out will be free of proper names and self-location indexicals such as ‘here’, 
‘now’ and ‘*’. The type of indexicality we should expect is that associated with natural 
kind terms (‘water’ refers—for us—to the natural kind in our oceans), but this won’t 
be a problem, because cone counterparts’ natural kind terms are coreferential.57 The 
truth value of x(T0), then, will be the same for any x in your cone counterpart class. 
That leaves clause (i). Perhaps theories postulating non-trivial cone counterpart 
frequency regularities are, ex ante, very implausible. If that is right, then 
C(Ch*(A0)∈I0 ∧ T0) ought to be very small for an agent who has yet to gather much 
relevant evidence—but it is hard to imagine a convincing argument for the claim that it 
must be exactly zero. Absent such an argument, there is no good reason to doubt that 
C(A0* | Ch*(A0)∈I0 ∧ T0) could be defined. 
 I conclude that a theory postulating cone counterpart frequency regularities 
might indeed make testable predictions. 
 
 

8  Laws 
I have already asked readers to take seriously the suggestion that the actual world 
might accommodate a rich range of cone counterpart frequencies. My final task is to 
persuade them to take seriously the further suggestion that some cone counterpart 
frequency regularities might be nomically necessary. Which regularities, exactly? 
Whichever are required to save the nomic facts about chance. Cone counterparts may 
be arbitrarily widely dispersed, so the laws I have in mind will not be local laws. For 
example, whether a particular radium sample respects or violates a hypothesised 
chancy decay law over some period will not, on my account, supervene on the intrinsic 
properties of the region of spacetime occupied by the sample over the period, nor 
indeed on the intrinsic properties of the spacetime neighbourhood, however generously 
it is defined (unless we are maximally generous, and count as the neighbourhood the 
whole of the actual world). Laws of this sort would be irreducibly global constraints on 
global statistics. Could there really be such laws? I cannot prove that the answer is 
‘yes’. Instead, I shall argue that it is not obvious that the answer is ‘no’. 
 The stakes here are considerable. If I were not permitted to appeal to lawful 
cone counterpart frequency regularities, then I would struggle to account for the role of 
chance-ascribing hypotheses in explanations (§5.5) and in counterfactual conditionals 
(§5.6). Worse, I would struggle to avoid the conclusion that chances are unknowable. I 
hinted at this last point in the previous section; let me now spell it out. If there are no 
lawful cone counterpart frequency regularities, then the regularities entailed by T0 (the 
radium-decay theory envisaged above) are coincidental regularities. It is sometimes 
rational to believe hypotheses that postulate coincidences. However, it is never rational 
to believe hypotheses that postulate bigger coincidences than are required to explain 
one’s evidence. For example, it might in certain circumstances be rational to believe 
that a fair coin happened—by coincidence—to land heads ten times in a row, but it 
would not be rational to believe this on the strength of five observed tosses. Now, the 
regularities postulated by T0 are universal regularities; and if T0 is non-vacuously true, 
then the world is a very big place. It could never be rational to believe, on the strength 
of local evidence, that such universal regularities coincidentally happen to hold. 
                                                
57 One can perhaps imagine freak cases where this will not be true. Let ‘futurium’ denote the element 
predominant by mass in the next meteor to hit our planet. I am inclined to deny that ‘futurium’ counts as 
a natural kind term. But if it does count, then cone counterparts’ natural kind terms need not always be 
coreferential. For clause (iii) to be satisfied, the referents of any natural kind terms that appear in the 
sentence used to pick out T0 must be settled by *’s history. This is not a very demanding constraint.	
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Notice, however, that T0 does not postulate that the regularities are coincidences: it just 
postulates that the regularities do, in fact, hold. The claim that they would be 
coincidences is a substantive philosophical thesis. My task in the remainder of this 
section is to show that we have good grounds for doubting it. 
 The coincidence thesis seems to be supported by the following observation: if 
the truth of T0 were nomically necessary—if, for various values of B, A0 and I0, being a 
B nomically necessitated belonging to a cone counterpart class whose proportion of 
A0s lay in interval I0—then physical law would be non-local in a radical and hitherto 
unsuspected way. I don’t wish to challenge the observation. On reflection, though, it is 
not clear that it provides much support for the thesis. Why shouldn’t there be laws of 
the envisaged sort? Is there a metaphysical prohibition? There might be, but I have no 
idea how one would prove it. Those who wish to make the attempt ought to be 
demoralised by the following observations. First, if anything remotely like Lewis’s 
‘best systems’ account of laws is right, then instances of (3) plausibly will qualify as 
laws in radium-containing worlds at which T0 is true: they are simple, and they are 
very informative. Second, the best-known non-Lewisian account of law, that due to 
Armstrong ([1983]), Dretske ([1977]) and Tooley ([1977]) —henceforth ‘ADT’—is 
unthreatening. ADT hold that it is a law that all Fs are Gs just in case a relation of 
necessitation holds between corresponding universals, Fness and Gness. Are there 
worlds in which our generalisations qualify? ADT do not appear to be under any 
pressure to answer affirmatively, but nor, qua defenders of their theory, are they 
obliged to answer negatively. Their theory does not tell them what universals there 
(possibly) are, and it is a standard complaint that it doesn’t say much about the 
necessitation relation either. The most we can say is that ADT leave room for an 
independent intuition to the effect that no instance of (3) is a law in any possible 
world. I suspect many readers will feel that intuition; I confess to feeling it (weakly) 
myself. We shouldn’t trust it. It can be explained away too easily as a spurious 
surrogate for a vaguer, but also safer, intuition: laws à la (3) would be spooky. They 
surely would be, but metaphysical possibility is a broad church. If talking donkeys are 
possible, why not spooky laws? 

I hope I have convinced readers to take seriously the possibility that instances 
of (3) might be laws in some worlds. But even—and perhaps especially—if I have, I 
foresee the following protest. ‘Damn your talking donkeys and your spooky laws. 
Physics teaches us what actual laws look like, and they don’t look like (3).’ The 
protester concedes, if only for the sake of argument, that instances of (3) are laws in 
some worlds. He presumably also admits that some instances might, for all we know, 
be actual truths. What he insists upon is that no instance is an actual law. Fleshed out, I 
imagine his case would look something like this: 

 
If it is nomically required that the proportion of A0s in any B’s cone counterpart 
class lies within I0, then (since laws support counterfactuals) radium nuclei are 
caught up in webs of non-local counterfactual dependency. For example, 
decays of the radium nuclei in your lab would be prevented or compelled by 
(respectively) the decays or non-decays of sufficient numbers of distant 
doppelgangers. But this is absurd. Physical intuition tells us that the decays of 
widely separated radium nuclei are counterfactually independent—and we 
should trust physical intuition, because it is a distillation of lots of diverse 
empirical evidence. 

 
One might dispute the strength of the intuition appealed to here. After all, quantum 
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mechanics provides well-known examples of counterfactual dependency that (on the 
standard view) are not underwritten by local mechanisms. Readers familiar with that 
physics might be very slightly less scandalised by my mooted decay laws. Still, I don’t 
want to deny the datum: physical intuition surely is hostile to the suggestion that 
instances of (3) are actual laws. My claim is that physical intuition is untrustworthy in 
this case, because it has no legitimate empirical basis. To think otherwise is to think 
that our experiences (and the intuitions they shape) would somehow be different if 
instances of (3) were laws. But how would our experiences be different? Obviously we 
would not notice the counterfactual dependencies mentioned above; cone counterparts 
are too remote. Perhaps a case could be made for the following subjunctive 
conditional: if the laws of physics included spooky constraints on cone counterpart 
frequencies, then they would include spooky constraints on various measurable 
frequencies too (where a frequency is measurable if we can obtain statistically 
significant samples from the relevant reference class). I have no idea whether this 
conditional is true, but fortunately I don’t need to resist it. Robustly regular measurable 
frequencies are two-a-penny. The hypothesis that some of these regularities are 
nomically required may be suspect in all sorts of ways, but it can hardly be said to 
clash with experience.58 
 Intuitions are stubborn things. Some readers will, I expect, remain confident 
that any non-trivial cone counterpart frequency regularities would be coincidences. 
They may even be right. What I hope I have shown in this section is that they are not 
obviously right. 
 
 

9  Summing Up 
The analysis of chance I have defended is reductive, simple, and metaphysically 
undemanding. It makes no appeal to modal concepts, or to objective measures of 
simplicity or informativeness. It commits us to no particular analysis of laws. So far 
these are generic strengths: almost any species of finite frequentism could claim them. 
My version, however, has some special advantages. 
 

• Cone counterpart classes are well defined. If you buy the analysis you get a 
complete solution to the reference class problem. 

• The analysis makes possible a simple and satisfying explanation of the chance–
credence connection. 

• The analysis implies that the past is not chancy. Add the not-very-contentious 
assumption that laws of nature hold universally, and it also implies the nomic 
necessity principle. 

• The analysis saves the intuition that a fair coin could land heads every time it is 
tossed. 

• The analysis saves something of the spirit of Leibniz’s dictum. If cone 
counterpart frequency is not strictly speaking a graded possibility, it is at least a 
promising ersatz. 

                                                
58 Roberts [unpublished] argues that there could be laws—and, for all we know, actual laws—that 
constrain ‘the frequency with which Fs are Gs’ to lie in a particular interval. The radium decay laws I 
envisaged above are not quite instances of this form (they say that all Bs belong to cone counterpart 
classes whose A0 frequencies lie in a particular interval; this is compatible with there being an infinite 
number of such classes, and hence with the non-existence of any overall frequency of A0s within the Bs). 
Nevertheless, the ‘spookiness’ worry, if it is a worry at all, is a worry for both of us—and I think 
Roberts allays it rather successfully. 
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There are also some disadvantages. No version of finite frequentism can 

accommodate irrational chances. Thus, the analysis is incompatible with the strict truth 
of certain quantum mechanical chance ascriptions. It is compatible with their 
approximate truth. However, if actual chances are roughly as quantum mechanics 
presents them, then the analysis requires that the actual world is vastly larger than its 
presently surveyable portion. These implications are unwelcome, but they are not 
absurd. The conceptual foundations of quantum mechanics are, after all, problematic; 
and there is no known upper bound on the size of the actual world. 

Two recalcitrant intuitions remain: first, that non-trivial chances should at least 
be possible in small worlds; second, that non-trivial cone counterpart frequency 
regularities would be mere coincidences. Both are damaging, but I do not think either 
is fatal. I sketched grounds for doubting the second intuition in the previous section. 
By contrast, I have made no direct attempt to discredit the first. Instead, my suggestion 
is that the analysis’s advantages—listed above—are attractive enough that we should 
consider giving it up. (As I noted in §3, no Humean account of chance will save every 
version of the small world intuition. ‘So much the worse for Humeanism’, some will 
say; but there are plenty of Humeans all the same.) 

The arguments in this paper do not prove that chance is cone counterpart 
frequency, but I think they do show that cone counterpart frequency can be taken 
seriously as a contender for the chance role. Finite frequentism’s reputation as a non-
starter is undeserved. 
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Figures 
 
 

 
 

 
Fig. 1 Overlapping, co-oriented light cones 

 

 

 
Fig. 2  Disjoint, oppositely-oriented light cones 

 
Fig. 3  Disjoint, co-oriented light cones in a past-finite universe 
(wavy line marks boundary of spacetime) 

 


