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ABSTRACT: The aim of the present paper is to provide a model-theoretic explication of Nelson Goodman’s concept
of extensional isomorphism. The term “extensional isomorphism” has been infomally introduced by Nelson
Goodman in the beginning paragraph of his The Structure of Appearance. After some conceptual clarifications
Goodman’s concept of isomorphy turns out to be closely related to some variant of set-theoretic definability
and some variants of syntactical interpretability.
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1. Introductory remarks

The concept of extensional isomorphism was introduced by Nelson Goodman in an in-
formal manner in the beginning paragraph of his The Structure of Appearance. It was Good-
man’s intention to generalize the concept of explicit definability. Goodman considers the
conditions of identity of the extensions of the definiendum and the definiens too strong
for some philosophical purposes, especially in the context of so called constructional
systems. For such purposes, he argues, the requirement of extensional identity should
be replaced by a suitably formulated condition of isomorphy between the extensions of
the terms in question. The aim of this paper is to reconstruct Goodman’s idea in terms
of model-theoretic semantics and to show how is such a reconstruction related to some
widely discussed notions of set-theoretic definability and syntactic interpretability.

2. Goodman’s extensional isomorphism: an informal exposition

2.1. Goodman’s original definition
Extensional isomorphism was conceived by Goodman as a relation between expressions
belonging to two interpreted languages. According to Goodman an expressions α is
extensionally isomorphic to an expression β if there exists an injective mapping of a
certain kind which transforms the extension of β onto that of α. In his The Structure
of Appearance Goodman provides the following characterization of this special kind of
isomorphy:

A relation R is isomorphic to a relation S in the sense here intended if and only if R can be
obtained by consistently replacing the ultimate factors in S. Consistent replacement requires only
that each not-null ultimate factor be replaced by one and only one not-null element; that different
not-null ultimate factors be always replaced by different not-null elements; and that the null-class
be always replaced by itself. Since the replacing elements need not be ultimate factors (...), this
sort of isomorphism is not symmetric; for if R is isomorphic to S, still there may be no way of
replacing the ultimate factors in R so as to obtain S. (Goodman 1977, pp. 10–11)
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One of the crucial notions used in the above passage is that of an ultimate factor of
a given relation which is characterized by Goodman in the following way.

We may think of the extensions of definienda and definientia in question as relations — that is,
as classes of couples, classes of triples, and classes of longer sequences of any uniform length.
(...) By the components of a sequence I shall mean the elements that occupy entire places in the
sequence.(...) On the other hand, if we progressively dissolve each component that is a sequence
into its components, and every component that is a class into its members, and continue this until
we reach elements that have no further members or components, we have what I call the ultimate
factors of the sequence.(...) The ultimate factors of a relation or other class are reached in similar
fashion. (...) An ultimate factor is always either an individual or the null class. (Goodman 1977,
p. 10)

This rather sketchy characterization is followed by an appealing geometrical example
where geometrical points are represented as couples of intersecting lines and some basic
relations between points are reconstrcuted in terms of relations between sets of lines.

The present paper attempts to develope the ideas expressed in these two quotations.
Goodman’s idea of extensional isomorphy gives rise to a number of philosophical
questions which have been already discussed in literature (compare: Hellman (1978)).
Our principial concern here will be with some purely logical problems which are widely
neglected in the literature und which derive from the purported analogy between the
concept of extensional isomorphy and the usual notion of an explicit definition. We
should focus on these logical problems putting aside the ontological motivation behind
the concepts in question.

2.2. Steps towards a model-theoretic explication
Let us consider two languges L1 and L2 which are interpreted over two collections of
individuals A and B, respectively. This means that to each n-ary primitive predicate P
fromL1 (resp.L2) is assigned ann-ary relation onA (resp. onB) which is a set ofn-tuples
of individuals from A (resp. from B). These fixed interpretations can be represented
as structures of the form A = (A,PA1 , . . . , P

A
m ) and B = (B,RB1 , . . . , R

B
k ). Let

SET(A) and SET(B) be the families of all sets over A and B, respectively. Intuitively,
these families consist of all sets whose ultimate factors belong to A∪ {∅} and B ∪ {∅},
respectively. This is far from being precise but it seems to be clear enough for the
proposes of an informal exposition. We shall call structures of the form (A, SET(A),∈,
PA1 , . . . , P

A
m ) full ε-structures.

According to the informal characterization quoted above, Goodman’s notion of
isomorphy can be reconstructed in terms of full ε-structures as a certain relation of em-
beddability between two such structures A and B. Goodman’s informal requirements
amount to the existence of an injective function f from A∪ SET(A) intoB ∪ SET(B)
such that:

[G 1] f preserves the membership relation,
[G 2] f transforms the empty set onto itself,
[G 3] f transforms A and each PAi onto sets which are definable in B (in the usual

sense of “definable”).
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The elements of f [A] serve as counterparts of the individuals in A. Hence, the
image f [A] of A (i.e. the structure (f [A], f [SET(A)],∈, . . .)) can be regarded as a
certain definable substructure of B. In the following we shall give a precise model-theoretic
description of the substructure relation which corresponds to the above conditions.

It seems to be natural to expect that if A is embeddable in such a way into B then
at least each sentence framed in terms of L1 ∪ {∈} which is true in A (more precisely:
in (A, SET(A),∈)) can be uniformly translated into a sentence fomulated in terms of
L2 ∪ {∈} which is true in B, and that such a translation commutes with the logical
opeartions and preserves to some extend the set-theoretic relations expressed by each
translated sentence. In other words, if a structure is embeddable in another one in the
sense indicated above then, as may be reasonably expected, the theory of A should be
reducible to the theoryB via a translation. All sentences about the objects in the universe
of A can be in some sense reinterpreted as sentences about sets whose ultimate factors
are elements of the universe of B. Moreover, such a translation should be induced by the
embedding f in question in the sense that for each formula ϕ of the translated language
and any tuple of objects ā from the universe of the embedded structureA : ϕ is satisfied
inA by ā if and only if the corresponding tuple f(ā) satisfies in B the translation τ(ϕ).
The question as to whether there is a canonical form of a translation corresponding to
that kind of embedding is the second main problem to the solution of which the paper
is intended to contribute. In order to give a precise answer to these questions we shall
first provide a portion of conceptual background.

3. Goodman-embeddings and syntactical interpretations

3.1. ε-structures
In this paper we shall reconstruct Goodman’s notion of isomorphy as a relation between
twomodels. Let us begin with a precise description of the relata. The following definition
generalizes of the informal notion of a full ε-structure.

Definition 1. An ε-structure for a vocabulary L = {P1, . . . , Pm} is a structure of the form
A = (A, SetA, εA, PA1 , . . . , PAm ), such that A is a non empty set, each PAi is a relation on A
whose arity equals the arity of the corresponding predicate Pi, SetA is a subset of A, εA is a binary
relation on A, and A is a model the following axioms, where ϕ is any formula of L ∪ {Set, ε}:

[Set] ∀x(∃y(yεx) → Set(x))

[Ext] ∀x∀y(Set(x) ∧ Set(y) ∧ ∀z(zεx↔ zεy) → x = y))

[Urel] ∃x(Set(x) ∧ ∀y(yεx↔ ¬ Set(y)))
[Comp] ∀x(Set(x) → ∃y(Set(y) ∧ ∀z(zεy ↔ zεx ∧ ϕ(z)))), x /∈ Fr(ϕ(z)).

Intuitively, an ε-structure for a given vocabulary L is a semantical interpretation of
the extended vocabulary L∪ {Set, ε} which satisfies some fairly minimal set-theoretical
postulates. The universe of each such structureA contains objects of two kinds: individu-
als called sets of A (which are elements of SetA) and individuals which are called urelements
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of A. εA is called the membership relation of A. The postulate [Set] says intuitively that ure-
lements do not have any members. [Ext] requires any two sets having the same elements
to be identical. By [Urel], in each ε-structureA the collection UrelA =df A \ SetA of all
urelements in A corresponds to the element of SetA which satisfies in A the formula
∀y(yεx↔ ¬ Set(y)). [Comp] implies that the extension of each formula expressible in
L ∪ {Set, ε} corresponds in an analogous way to an element of SetA. The postulates
imply that each ε-structure A contains exactly one element of SetA, denoted by ∅A,
which does not have any members. Observe that we do not assume the fields of the
relations PAi to be included in UrelA. In other words, some of the relations PAi may
hold between sets in A and urelements in A. We call a k-ary relation R on A definable in
A if and only if there exists a formula ξ(x̄) in the language L∪ {ε, Set} with k pairwise
dictinct free variables such that R = {ā ∈ Ak : A |= ξ(x̄)[x̄ : ā]}. An ε-structure
A = (A, SetA, εA, PA1 , . . . , PAm ) is said to be definable in an ε-structure B if and only if
A, εA, SetA, and PA1 , . . . , PAm are definable in B. The following notion of a definable
substructure will play a crucial role by the clarification of Goodman’s ideas.

Definition 2. A is a definable ε-substructure of B if and only if
1. A is definable in B,
2. εA = εB ∩A2,
3. ∅A = ∅B.

Corollary 3. If A is a definable ε-substructure of B then SetA ⊆ SetB.

Proof. Let a ∈ SetA. Then either a = ∅A = ∅B ∈ SetB or for some d ∈ A : dεAa
which, by Definition 2, implies that for some d ∈ B : dεBa, and hence (by [Set])
a ∈ SetB.

The above definition permitts some sets in a ε-structure B to become urelements in
some of their definable ε-substructures. This feature may be regarded as quite odd, but it
is of crucial importance for the purposes of the present paper for the main idea behind
Goodman’s notion of isomorphism and the paradigmatic examples given by him in order
to illustrate his idea are exactly of this kind. The notion of a definable ε-substructure
already defined is closely connected to the notion of an initial substructure which is used
in the study of models of set theories. According to a standard definition, A is called an
initial substructure of B if and only if A ⊆ B, SetA = SetB ∩A, the interpretations of all
primitive predicates of L in A are just the restrictions of their interpretations in B, and
for all a ∈ A and for all b ∈ B : bεAa⇔ bεBa (compare: Barwise (1975, p. 34)). The
following definition generalizes this idea.

Definition 4. A is a definable initial substructure of B if and only if
1. A is definable in B,
2. for all a ∈ A and for all b ∈ B : bεAa⇔ bεBa,
3. SetA ⊆ SetB.
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Corollary 5. If A is a definable initial substructure of B then ∅A = ∅B and UrelA ⊆ UrelB.
(Hence: SetA = SetB ∩A and UrelA = UrelB ∩A.)

Proof. Definition 4 implies that ∅A ∈ SetB and that there is no a ∈ B such that aεB∅A.
Hence, by [Ext], ∅A = ∅B. Consider now an a ∈ UrelA and assume that a /∈ UrelB.
Clearly, a 6= ∅B and a ∈ SetB. Hence, there is a b ∈ B such that bεBa. By Definition 4
again there is a b ∈ B such that bεAa. Hence a /∈ UrelA, which is a contradiction.

The next lemma shows that the only difference between these two kinds of sub-
structure amounts to the status which the urelements of the substructure have in the
superstructure.

Lemma 6. Let A be a definable ε-substructure of B. The following conditions are equivalent.

1. A is a definable initial substructure of B.
2. For all a ∈ A and all b ∈ B : bεBa⇒ b ∈ A.
3. UrelA ⊆ UrelB.

Proof. The implication 1 ⇒ 2 is obvious. We prove the implication 2 ⇒ 3. Assume 2
and suppose that a ∈ UrelA \UrelB. Then a 6= ∅B and so for some b ∈ B : bεBa. By
2 b ∈ A and so, by Definition 2, bεAa which leads to a contradiction. Now we prove
the implication 3 ⇒ 1. Let A and B satisfy the condition 3. By Corollary 3 we have
SetA ⊆ SetB. Hence, it remains to show that for all a ∈ A and all b ∈ B : bεAa
⇔ bεBa. The implication from left to right is an obvious consequence of the fact
that εA = εB ∩ A2. To show the converse implication assume that bεBa but not
bεAa. Then a /∈ UrelB ∪{∅B} and hence, by UrelA ⊆ UrelB and ∅A = ∅B, we have
a ∈ SetA \{∅A}. Let, by [Comp] and by the fact that A is definable in B, a∗ be the
element of SetB such that for all d ∈ B : dεBa∗ ⇔ dεBa and d ∈ A. Since bεBa and
non bεBa∗, we have: a 6= a∗. But, clearly, for each d ∈ A : dεAa∗ ⇔ dεAa. Since
a ∈ SetA \{∅A} we have also a∗ ∈ SetA, and since a 6= a∗ we conclude that A does
not satisfy [Ext], which is impossible.

3.2. Goodman-embeddings
Now we turn back to the problem of clarifying Goodman’s original idea. Using the con-
ceptual resources provided in the previous section we define now the concept of a
Goodman-embedding which is in our opinion an adequate formal counterpart of Good-
man’s informal notion of isomorphism.

Definition 7. We call any injective mapping f a Goodman-embedding (G-embedding, for
short) of A into B if and only if the structure f [A] is a definable ε-substructure of B. We call f a
simple G-embedding of A into B if f [UrelA] ⊆ UrelB.

It is easy to check that a mapping f is a G-embedding of an ε-structure A into an
ε-structure B if and only f satisfies the conditions [G1] - [G3] (compare: section 2.2 of
this paper) together with the following requirements:
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[G 4] f maps SetA onto a definable subcollection of SetB,
[G 5] f transforms the universe of A onto a colection of objects from B which is

definable in B.

The last two conditions do not follow from Goodman’s informal considerations.
They seem, however, to be in accordance with Goodman’s ideas While the general con-
cept of a G-embedding is closely connected to the notion of a definable ε-substructure,
the concept of a simple G-embedding, which is a special variant of the former, turns
out to correspond in an analogous way to the notion of a definable initial substruc-
ture. Observe that for each object a ∈ A such that f(a) is a set in B, the collection
{f(b) : bεAa} (which is identical with {dεBf(a) : d ∈ δB} where δ is a formula which
defines in B the image ofA under f ) corresponds to a set u in B such that for all z ∈ A:
if zεBu then zεBf(a). The converse impication, however, does not hold in general. In
fact, it holds only for simple G-embeddings.

Lemma 8. For each G-embedding f of A into B the following conditions are equivalent.

1. f is a simple G-embedding of A into B.
2. f [A] is a definable initial substructure of B.
3. For each a ∈ A : f(a) ∈ UrelB or f(a) = {f(b) : bεAa}.

Proof. Let f be a G-embedding ofA into B. We prove the implication 1⇒ 2. Assume 1.
f [A] is then a definable ε-substructure ofB. Moreover, since f is an isomorphism (in the
usual model-theoretic sense) from A onto f [A], we have Urelf [A] = f [UrelA]. Since f
is simple we have Urelf [A] ⊆ UrelB which, by Lemma 6, implies that f [A] is a definable
initial substructure of B. To show the implication 2 ⇒ 3 assume that f(a) ∈ SetB.
Now it is sufficient to prove that for each d ∈ B: if dεBf(a) then d ∈ {f(b) : bεAa}.
Let dεBf [A]. Since f [A] is a definable ε-substructure of B, we have, by Lemma 6,
d ∈ f [A]. So for some b ∈ A : d = f(b). By ε-preservation of f we have bεAa. Hence,
d ∈ {f(b) : bεAa}. Now we prove the implication 3⇒ 1. Assume 3 and suppose that
for some a ∈ UrelA : f(a) ∈ SetB. By definition of a G-embedding, f(a) 6= ∅B. But
then for some b ∈ B : bεBf(a) and, by 3, for some d ∈ A : dεAa and f(d) = b, which
is impossible, since a ∈ UrelA.

Let us turn to the main question of this paper — to the problem of a syntactic
characterization of the relation of G-embeddability. We will show that the existence of a
G-embedding ofA into B implies the existence of a certain interesting kind of effective
translation of all sentences true in A into sentences true in B.

3.3. Goodman-embeddings and syntactical interpretations
Let us make again some terminological clarifications. Under a translation code for L1 ∪
{Set, ε} in L2 ∪ {Set, ε}, where L1 = {P1, . . . , Pm}, we shall understand a tuple
c = 〈δ, σ, η, ξ1, . . . , ξm〉 of formulas in L2 ∪ {Set, ε} such that Fr(δ) = Fr(σ) =
{v1}, Fr(η) = {v1, v2} and Fr(ξi) = {v1, . . . , vk}, for each k-ary ξi (i ≤ m).
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The formulas δ and σ are called the domain formula and the set formula of c, re-
spectively. Each translation code c of this kind induces a translation which is de-
fined as the function τc from Fm(L1 ∪ {Set, ε}) into Fm(L2 ∪ {Set, ε}) such
that τc(x = y) = x = y, τc(Set(x)) = σ(x/v1), τc(xεy) = η(x/v1, y/v2),
τc(Pi(x1, . . . , xk) = ξ(x1/v1, . . . , xk/vk), τc(¬ϕ) = ¬τc(ϕ), τc(ϕ ◦ ψ) = τc(ϕ) ◦
τc(ψ) (where ◦ ∈ {∧,∨,→,↔}), τc(∀xϕ) = ∀x(δ(x/v1) → τc(ϕ)), and τc(∃xϕ) =
∃x(δ(x/v1) ∧ τc(ϕ)). On the semantical level c generates also a certain mapping Γc,
called the canonical construction for c which is defined for all those ε-structures A for L2

in which the formula ∃v1δ is true. For each such structure A we define Γc(A) as
the tuple (δA, σA, ηA, ξA1 , . . . , ξ

A
m, ). Clearly, Γc(A) is then a semantical interpretation

for L1 ∪ {Set, ε} though not necessarily an ε-structure for L1. The following lemma
connects the both items in an expected way. Since it can be demonstrated by an easy
induction, we state it without proof.

Lemma 9 (Translation Lemma). Let c be a translation code forL1∪{Set, ε} inL2∪{Set, ε}
with a domain formula δ. Then for each formula ϕ(x1, . . . , xn) in L1 ∪{Set, ε}, each ε-structure
A for L2 in which ∃v1δ is true, and all a1, . . . , an ∈ δA:

Γc(A) |= ϕ[x1 : a1, . . . , xn : an] ⇔ A |= τc(ϕ)[x1 : a1, . . . , xn : an].

τc is called a relative interpretation of a set of sentences T1 in L1 ∪ {Set, ε} into a set
of sentences T2 in L2 ∪ {Set, ε} if T2 ` ∃xδ and T2 ` τc(ϕ), for each formula ϕ in
L1 ∪ {Set, ε} such that T1 ` ϕ. The following result is an obvious consequence of the
previous lemma.

Proposition 10. A is definable in B if and only if there exists a relative interpretation τc of Th(A)
into Th(B) such that Γc(B) = A.

In this paper we are mainly interested in syntactical interpretations which preserve ε,
i.e. such that τc(xεy) = xεy. Interpretation of this kind are called ε-interpretations. It is
an immediate consequence of the Translation Lemma that if τc is an ε-interpretation
then for each structure A in the domain of Γc the relation εΓc(A) is just the restriction
of εA to the universe of Γc(A).

Let us now consider two special kinds of such interpretations which turn out to be
closely related to the two concepts of a definable substructure introduced above.

Definition 11. Let τc be an ε-interpretation of a set of sentences T1 in L1 ∪ {Set, ε} in a set of
sentences T2 in L2 ∪ {Set, ε} with domain formula δ and set formula σ.

1. τc is called a weakly transitive ε-interpretation of T1 into T2 if and only if T2 `
∀v1(σ(v1) → (Set(v1) ∧ ∀v2(v2εv1 → δ(v2)))).

2. τc is called a transitive ε-interpretation of T1 into T2 if and only if τc is a weakly
transitive ε-interpretation of T1 into T2 and T2 ` ∀v1(δ(v1)∧¬σ(v1)) → ¬ Set(v1)).

The following proposition is the main formal result of this paper.
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Proposition 12. Let A and B be ε-structures for L1 and L2, respectively. Let f be a function
from A into B.

1. f is a G-embedding of A into B if and only if there exists a weakly transitive ε-interpretation
τc of Th(A) into Th(B) such that f is an isomorphism from A onto Γc(B).

2. f is a simple G-embedding of A into B if and only if there exists a transitive ε-interpretation
τc of Th(A) into Th(B) such that f is an isomorphism from A onto Γc(B).

Proof. We start with 1. First we prove the implication from right to left. Let τc be a
weakly transitive ε-interpretation of Th(A) into Th(B) such that f is an isomorphism
of A onto Γc(B) (i.e., f [A] = Γc(B)). We show that the last structure is a definable
ε-substructure of B. Clearly, Γc(B) is definable in B and εΓc(B) = εB ∩ (δB)2, where δ
is the domain formula of c. It remains to show that ∅Γc(B) = ∅B. Obviously, we have
Γc(B) |= Set(x)∧ ∀y ¬(yεx) [x : ∅Γc(B)]. By the Translation Lemma and the fact that
τc is an ε-interpretation we conclude that B |= Set(x) ∧ ∀y ¬(yεx) [x : ∅Γc(B)]. By
[Ext] we have then ∅Γc(B) = ∅B.

We show now the implication from left to right. Let f [A] be a definable
ε-substructure of B. Since f [A] is definable in B, there exists a translation code
c = 〈δ, σ, η, ξ1, . . . , ξm〉 for an appropriate language for A in a language for B such
that Γc(B) = f [A]. By Translation Lemma, for all ϕ such that Th(f [A]) ` ϕ we have
Th(B) ` τc(ϕ). Hence τc is an interpretation of Th(f [A]) (and hence of Th(A)) into
Th(B). Since εΓc(B) = εf [A] = εB ∩ (δB)2, we conclude, using the Translation Lemma,
that τc[xεy] and xεy define the same relation inB. So we can assume that τc[xεy] = xεy
which shows that τc is an ε-interpretation of Th(A) into Th(B). It remains to show
that Th(B) ` σ(v1) → Set(v1) ∧ ∀v2(v2εv1 → δ(v2)). If a ∈ σB ⊆ δB = A then
by Γc(B) = f [A] we have: a ∈ Setf [A]. Since f [A] is a definable ε-substructure
of B we have, by Corollary 3, a ∈ SetB. Let b ∈ B be such thatB bεBa. We show
that b ∈ δB. Assume the contrary. Let, by [Comp], a∗ be the element of SetB such
that for all d ∈ B : dεBa∗ ⇔ (dεBa and d ∈ δB). Since bεBa and non bεBa∗, we
have, by [Ext] : 6= a∗. But a∗ ∈ Setf [A]. For if a∗ = ∅B then a∗ = ∅f [A], and if
a∗ 6= ∅B then for some d ∈ B : dεBa∗, i.e. for some d ∈ A : dεAa∗. Moreover, for
all d ∈ A : dεAa∗ ⇔ dεAa. Hence, by [Ext] : a = a∗, which leads to a contradiction.
Therefore for all b ∈ B : bεBa ⇒ b ∈ δB. This shows that τc is a weakly transitive
ε-interpretation of Th(A) into Th(B) and f is an isomorphism from A onto Γc(B).

Now we prove 2. We start with the implication from right to left. Let τc be a
transitive ε-interpretation of Th(A) into Th(B) such that f is an isomorphism from
A onto Γc(B). Since τc is a weakly transitive ε-interpretation of Th(A) into Th(B) so,
by 1, f is a G-embedding of A into B We show that f [UrelA] ⊆ UrelB. Suppose that
a ∈ Urelf [A] = f [UrelA]. Hence a ∈ δB \ σB. By transitivity of τc we conclude that
a /∈ SetB and so a ∈ UrelB. Thus f is a simple G-embedding of A into B. We show
now the converse implication.

Assume now that f is a simple G-embedding of A into B. By Lemma 8 f [A] is a
definable initial substructure of B and hence, by Lemma 6, a definable ε-substructure of
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B such that Urelf [A] ⊆ UrelB. By 1 there exsits a weakly transitive ε-interpretation
of Th(A) into Th(B) such that Γc(B) = f [A]. Let δ and σ be the domain and the set
formula of c, respectively. If a ∈ δB ∩ (¬σ)B, then a ∈ Urelf [A] and hence a ∈ UrelB
which means that a /∈ SetB. Thus Th(B) ` ∀v1(δ(v1) ∧ ¬σ(v1)) → ¬ Set(v1)).
Therefore, τc is a transitive ε-interpretation of Th(A) into Th(B).

The above considerations enable us to derive the following purely syntactical partial
characterization of G-embeddings.

Corollary 13. Let A and B be ε-structures for L1 and L2, respectively.
1. If A is G-embeddable into B then Th(A) is weakly transitively interpretable into Th(B).
2. If A is simply G-embeddable into B then Th(A) is transitively interpretable into Th(B).

The converse implications do not hold in general. The existence of appropriate
counterexamples is an easy consequence of the Upward Löwenheim-Skolem Theorem.
To see this consider two ε-structuresA andB such thatA is (simply) G-embeddable into
B and choose a cardinal κ > card(B). By the Upward Löwenheim-Skolem Theorem
there exists an elementary extension C of A such that card(C) = κ. Since being an
ε-structure is an elementary property C is an ε-structure with Th(C) = Th(A). By
Corollary 13 Th(C) is (weakly) transitively interpretable into Th(B) but there is no
G-embedding of A into B for card(B) < card(C). It is also easy to find ε-structures A
and B such that A is G-embeddable into B and card(UrelB) < card(UrelA). Clearly,
in such a case there is no simple G-embedding of A into B and hence no transitive
interpretation τc of Th(A) into Th(B) such that Γc(B) = A. But this does not preclude
the transitve interpretability of Th(A) into Th(B). It would be of some interest to find
out whether there exist two infinite ε-structures A and B such that A is G-embeddable
into B but there is no transitive interpretation of Th(A) into Th(B).
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