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ABSTRACT: The pretheoretical notions of logical consequence and of a logical expression are linked in vague and 
complex ways to modal and pragmatic intuitions. I offer an introduction to the difficulties that these intui-
tions create when one attempts to give precise characterizations of those notions. Special attention is given 
to Tarski’s theories of logical consequence and logical constancy. I note that the Tarskian theory of logical 
consequence has fared better in the face of the difficulties than the Tarskian theory of logical constancy. 
Other theories of these notions are explained and criticized. 
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1. Modality and form 

The intuitive relations between the notion of logical consequence and those of form 
and modality are the basic guide when one reflects philosophically on the former no-
tion1. There are two traits of the notion of logical consequence based on these intui-
tive relations which often allow us to distinguish the logically correct arguments from 
the incorrect or the merely correct. One of these traits, based on the relation with 
modality, is this: if a conclusion follows logically from some premises then that conclu-
sion follows by logical necessity from those premises. It’s not quite clear what it is that makes a 
conclusion follow by logical necessity from some premises. A good deal of the unclar-
ity surfaces in the vagueness of the notion of consequence by logical necessity: some 
arguments are clear instances of it, some arguments are clear non-instances, but many 
arguments which are correct in some sense appear to lie in a dimly illuminated border-
line zone. Much of this vagueness appears to be due to the fact that that notion is it-
self associated (in ways which are themselves unclear and vague) to unclear and vague 
notions like analytical implication, a priori implication and implication by necessity (tout 
court). These notions transfer their vaguenesses (and their obscurities in general) to the 
notion of consequence by logical necessity, and conspire to make very fuzzy the line 
dividing the instances from the non-instances.  
 As in all cases of vagueness, some examples lie far from the line, at opposite ex-
tremes. It is reasonable to think that the argument with premise ‘The ravens I have 
seen till today are all black’ and conclusion ‘The ravens I will see tomorrow will be 
black’ is in some sense correct, but intuitively its conclusion doesn’t follow by logical 
necessity from its premise (and so it’s not logically correct). On the other hand, for 
example, there is a fairly extended intuition that from the premise ‘Some widows are 
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merry’ follows by logical necessity the conclusion ‘Some women are merry’. Note that 
these examples also lie far from the lines that divide the instances from the non-
instances of analytical implication, a priori implication and necessary implication (and 
at opposite extremes). 
 But the argument with premise ‘Some widows are merry’ and conclusion ‘Some 
women are merry’ is not logically correct, as is indicated by the second trait I referred 
to, which mentions the notion of logical form: if an argument is logically correct, then 
every argument with the same logical form is logically correct. It’s common to suppose that logi-
cal form is a certain schematic form that results approximately from replacing the non-
logical expressions of the argument by letters without a specific meaning, in a revealing 
and uniform way (with different expressions replaced by different letters but with the 
same expressions replaced always by the same letters)2. In the merry widows example, 
the logical form would look somewhat like this: 

Some F are G 
_____________ 
Some H are G 

Notice that the argument with premise ‘Some widows are merry’ and conclusion 
‘Some sofas are merry’ has this same logical form but is intuitively logically incorrect. 
Notice too that the fundamental notion in the formulation of the second trait of the 
notion of logical consequence is the notion of a logical expression. This notion is 
again considerably vague, and this vagueness conspires again with the other vague-
nesses to make the notion of logical consequence a very vague one indeed. 
 The two intuitive traits of the notion of logical consequence are the touchstone for 
the attempts at philosophical clarification of this notion. Some important attempts are 
based on the search and proposal of characterizations of logical consequence for ar-
guments of formal languages which mirror fragments of natural language, characteri-
zations given in terms of notions which are better understood (or with which one can 
at least do fruitful intellectual work). Much of the recent philosophical work on the 
topic (including my own) has concentrated on examining the adequacy and clarifying 
power of some classical characterizations. There are two main kinds of classical char-
acterizations: one based on the notion of derivability and one based on the notion of 
validity. 

2. Derivability and validity 

With his use of the notion of derivability, Frege approached logical consequence in a 
way analogous, in essence, to the way employed by Aristotle and the Stoics and 
Megarians. Frege invented a formal language (that we today often decompose in a se-
ries of languages), designed especially for the formalization of mathematical argu-

                                                   
2 I don’t make an attempt to be more precise regarding the replacing method. By ‘the logical form’ of an 

argument I understand intuitively the schema which reveals as much as possible about its logical 
structure (in the sense in which a quantificational schema reveals more than a propositional schema 
of the same argument). 
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ments, and conjectured that at least every logically correct mathematical argument 
could be formalized by means of an argument in his language which would be logically 
correct in a certain technical sense3. The language invented by Frege was what we 
would now call a higher-order quantificational language, containing a first-order frag-
ment. Frege also increased tremendously the rigor of the presentation of an inferential 
system (with respect to previous attempts), to the point that he can be considered the 
creator of formal systems. 
 Using the notion of derivability in a system like Frege’s, it is possible to propose a 
very precise characterization of the set of logically correct formalized arguments of the 
system’s language. One can propose that a conclusion C logically follows from some 
premises P1, P2, P3, etc. exactly when there is a series of applications of the inference 
rules which, starting from P1, P2, P3, etc., and possibly from axioms, ends in C (when 
such a series exists one says that C is derivable from P1, P2, P3, etc.). As I will stress 
later, if the formal system is built with care, when one is done one will be able to con-
vince oneself that the derivability of a conclusion from some premises is a sufficient 
condition for the corresponding argument to be logically correct. The question 
whether one can convince oneself that it is also a necessary condition will also be ex-
amined later. 
 In logic there has been also, from Aristotle himself, an alternative (and comple-
mentary) kind of approach to the characterization of logical consequence. This kind of 
approach is based on the two intuitive traits of the notion of logical consequence. Re-
call that the second trait is that every argument with the same form as a logically cor-
rect argument is itself logically correct. So this gives a necessary condition of logically 
correct arguments, though in terms of the notion of logically correct argument. But it 
also suggests a necessary condition in terms of the notion of truth. Note that if an ar-
gument is logically correct then it’s not the case that its premises are true and its con-
clusion false; if this were the case the premises would not entail the conclusion by 
logical necessity, and then, uncontroversially, by the first trait of logical consequence, 
the argument would not be logically correct after all. So, by the second trait, an argu-
ment is logically correct only if no argument with the same logical form has true premises and a 
false conclusion; call this necessary condition ‘(Φ)’. 
 The alternative kind of approach to characterizing logical consequence uses always 
a variant of condition (Φ), proposing it in each case as both necessary and sufficient 
for logical consequence. Without doubt Tarski’s characterization is the paradigmatic 
representative of this alternative kind of approach. Tarski (1936) offered his charac-
terization for the Fregean formal languages, accepting the notion of logical form for 
arguments of these languages implicit in Frege. It is good to point out, however, that 
Tarski’s abstract method can be used, and is used, to give similar characterizations of 
logical consequence even for languages which extend Frege’s languages.  
                                                   
3 No attention will be paid here to the important question whether or how formalized arguments faith-

fully mirror natural language arguments. Often the claims in this article are about formalized argu-
ments, but also often there are abstract versions of these claims that hold for natural language argu-
ments. 
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 Tarski’s proposal is to strengthen the requisite expressed by the condition (Φ)4 so 
as to incorporate, at least partially, the idea that the non-logical expressions of a logi-
cally correct argument cannot be reinterpreted so as to make true the premises and false 
the conclusion (and not merely the idea embedded in (Φ), that a logically correct ar-
gument cannot be turned into one with true premises and false conclusion by replacing 
non-logical expressions in a fixed language). In other words, the idea that a sentence X 
is a logical consequence of a set of sentences K when every interpretation of the non-logical 
expressions in which all sentences of K are true is an interpretation in which X is true5. Or, as is 
sometimes said, when every interpretation preserves the truth of the premises in the con-
clusion. When every interpretation preserves truth it is also said that the argument is 
valid. If an argument is valid then, even if it’s not logically correct, the conclusion can 
be inferred from the premises without worry that it will be false if the premises are 
true. So all valid arguments are correct at least in this sense. 
 Tarski proposes to build a mathematically manageable version of the notion of va-
lidity by employing the apparatus developed by him for giving mathematical defini-
tions of semantic concepts, such as satisfaction, definability, and truth. Tarski’s 
method cannot be described here, but its current presentation is well-known6. It’s 
based on defining, in a way analogous to the way Tarski defines truth in a language in 
Tarski (1935), the notion of truth in a set-theoretic structure. For a Fregean language, 
a structure is a set-theoretic assignment of denotations to the non-logical expressions 
(including a set from which those denotations are drawn and which gives the range of 
the first-order variables and induces ranges of the higher-order variables). The condi-
tion by means of which one characterizes the notion of a sentence X being a logical 
consequence of a set of sentences K (of that language) is then the following: 

(TV) Every structure in which all the sentences of the set K are true is also a struc-
ture in which the sentence X is true. (We’ll abbreviate this by means of the 
notation ‘ValT(K,X)’.) 

 ‘TV’ stands for “Tarskian validity”. The subindex ‘T’ is used to stress the fact that 
‘ValT(K,X)’ denotes Tarskian validity and that this is different from the validity rela-
tion. As I’m using here the notion of an interpretation which appears in the charac-
terization of validity, this is a very imprecise and intuitive notion, while the notion of a 
structure appearing in a characterization of Tarskian validity is a fairly precise and 
technical one. Every Fregean formal language can be endowed with a condition of 
Tarskian validity using the Tarskian method. The same is true of many languages 
which extend the Fregean languages, and for which minimally reasonable notions of a 
structure have been defined. A notion of structure is minimally reasonable when it is 
                                                   
4 Tarski (1936) formulates a requisite closely related, if not identical, to condition (Φ), which he calls ‘(F)’. 
5 This condition is meant to take into account the fact that Fregean languages are interpreted by interpret-

ing not merely their non-logical constants but also their first-order variables (which can be taken to 
be non-logical expressions); in interpreting them, a domain is given over which they range. 

6 A detailed exposition of Tarski’s 1936 method, and of some differences between it and the way in which 
Tarski’s idea is presented nowadays, will be found in Gómez-Torrente (2000a); for related issues see 
also my (1996) and (2000b). 
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clear that every structure models the power of one or several interpretations to make 
true the premises and false the conclusion of some argument7. 

3. Soundness and completeness 

As pointed out earlier, if one builds a formal system with care, one will be able to 
convince oneself that all arguments whose conclusion is derivable from their premises 
in the system are logically correct. The reason is that one can have used one’s intuition 
very systematically to obtain that conviction: one can have included in one’s system 
only axioms of which one is convinced that they are logical consequences of every set 
of premises; and one can have included as rules of inference rules of which one is 
convinced that they produce sentences that follow logically from the sentences to 
which they are applied. Using another terminology, this means that, if one builds one’s 
system with care, one will be convinced that the derivability characterization of logical 
consequence for arguments of the formal language in question will be sound with re-
spect to logical consequence. 
 It is equally obvious that if one has at hand a notion of Tarskian validity for a for-
mal language which is based on a minimally reasonable notion of structure, then all 
logically correct arguments (of that language) will be Tarski-valid. The reason is sim-
ple: if an argument is not Tarski-valid then there is a structure which makes true its 
premises and false its conclusion; but this structure ought then to model an interpreta-
tion (or interpretations) in which the premises are true and the conclusion false; so it 
would in principle be possible to construct an argument with the same logical form, 
whose non-logical expressions would have, by stipulation, the particular interpreta-
tions drawn from that collective interpretation, and which would have true premises 
and a false conclusion. But then the two intuitive traits of logical consequence uncon-
troversially imply that the original argument is not logically correct. Using another 
terminology, we can conclude that the Tarskian validity characterization is complete with 
respect to logical consequence. 
 Let’s abbreviate ‘X is derivable from K in system S’ by ‘DerS(K,X)’ and ‘X follows 
logically (in the intuitive sense) from K’ by ‘LC(K,X)’. Then, if S is a system built with 
care, the situation can be summarized thus: 

 (1) DerS(K,X) ⇒  LC(K,X) ⇒  ValT(K,X). 
The first implication is the soundness of derivability; the second is the completeness 
of Tarskian validity. But in order to convince ourselves that the characterizations of 
logical consequence in terms of DerS(K,X) and ValT(K,X) are appropriate we should 
convince ourselves that the converse implications hold too: 

   ?  ? 

(2) ValT(K,X) ⇒  LC(K,X) ⇒  DerS(K,X). 

                                                   
7 As a later note mentions, the converse property, that each interpretation’s validity-refuting power is 

modeled by some structure, is also a natural but more demanding requirement of adequacy on a no-
tion of structure. 
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But obtaining this conviction, or the conviction that these implications don’t in fact 
hold, turns out to be difficult for a great many languages, even Fregean languages for 
which Tarski originally intended his characterization. I’ll examine some difficulties 
raised by a particular kind of Fregean languages shortly. But before that, I’ll mention a 
remark of Kreisel (1967) that establishes that the implications in (2) hold in some 
cases. 
 Among the formal languages for which (1) holds there are many for which it is 
possible to give a mathematical proof that derivability (in some specified systems) is 
complete with respect to Tarskian validity, i.e. a proof of 

 (3) ValT(K,X) ⇒  DerS(K,X). 
Kreisel called attention to the fact that (3) together with (1) implies that Tarskian 
validity is sound with respect to logical consequence, i.e., that the first implication of 
(2) holds. (Strictly speaking, this is a strong generalization of Kreisel’s remark8.) This 
means that when (3) holds the notion of Tarskian validity offers an extensionally cor-
rect characterization of logical consequence9. Also, (3), together with (1), implies that 
the notion of derivability is complete with respect to logical consequence and hence 
offers an extensionally correct characterization of this notion. 
 An especially significant case in which (3) and (1) hold and so (2) holds, is that of 
first-order quantificational languages (for certain typical formal systems S)10. This 
means that one can convince oneself that both derivability and Tarskian validity (de-
fined in appropriate ways for those languages) are extensionally correct characteriza-
tions of the intuitive notion of logical consequence for those languages. The situation 
is not so clear in other languages of special importance for the Fregean tradition, the 
higher-order quantificational languages. 

4. Higher-order languages 

It can be proved that already for a second-order language there is no formal system11 
S in which derivability is sound with respect to Tarskian validity and which makes true 
(3)—for the notion of Tarskian validity as usually defined for such a language. We 

                                                   
8 Something closer to Kreisel’s remark is this: a version of (1) holds for Fregean languages with ‘LC(K,X)’ 

replaced by ‘X is true in all the class structures (with a class as domain of the individual variables) in 
which all the sentences of K are true’ (or, ‘the argument (K,X) is class-valid’); then (3), together with 
this version of (1), implies that Tarskian validity is sound with respect to this notion of class-validity. 

9 An interesting application of this pattern of reasoning is Hanson’s (1997) argument that his intuitive 
characterization of first-order logical consequence is coextensional with first-order Tarskian validity. 

10 Perhaps a qualification is necessary in view of the fact that sentences like ‘∃x(x=x)’ are Tarski-valid 
consequences of the empty set of premises. (Certainly, even if some interpreted sentences of that 
form may be logically necessary, intuitively some others are not.) That fact is due to the usual conven-
tion of not contemplating empty universe structures when defining Tarskian validity. But Tarski’s 
method for defining validity can be used and the corresponding (3)-type theorem proved for more 
inclusive conventions. 

11 In the technical sense of ‘formal system’ arising from any intuitively adequate characterization of the 
notion of effective enumerability, e.g., in terms of recursive functions. 
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may call this result the incompleteness of second-order formal systems with respect to Tarskian va-
lidity. In fact a stronger result holds: there is no set of second-order sentences for 
which a formal system sound with respect to Tarskian validity allows the derivation of 
all the Tarskian consequences of the set; said another way: for every set of sentences J 
and every system S sound with respect to Tarskian validity there will be a sentence X 
such that ValT(J,X) but it is not the case that  DerS(J,X). Let’s call this result the strong 
incompleteness of second-order formal systems with respect to Tarskian validity. 
 In this situation it’s not possible to apply Kreisel’s argument for (2). In fact, the in-
completeness of second-order formal systems shows that, given any formal system S 
satisfying (1), one of the implications of (2) is false (or both are): either derivability in S 
is incomplete with respect to logical consequence or Tarskian validity is unsound with 
respect to logical consequence. A similar conclusion holds for cases of incompleteness 
in other formalized languages. 
 Different authors have extracted opposed lessons from incompleteness. A com-
mon reaction is to think that Tarskian validity must be unsound with respect to logical 
consequence. An intuitive idea occasionally appealed to in this connection is the idea 
that logically correct arguments, or at least those among them with a finite set of 
premises, must be arguments in which the conclusion is able to be drawn by humans 
from the premises through a priori reasoning. To this idea it is often added that every a 
priori reasoning must be reproducible in an effective way, if it must be capable of being 
performed by human beings. From all this, together with the strong incompleteness of 
second-order systems, the conclusion is reached that there must be arguments with a 
finite number of premises which are Tarski-valid but are not justifiable by a priori rea-
soning. 
 This way of arguing is incorrect, at least if understood as follows. Suppose that (i) 
every (human) a priori reasoning must be reproducible by a formal system. We accept 
also, of course, that (ii) for every finite set of premises and for every formal system S 
sound with respect to Tarskian validity there is a Tarski-valid argument with those 
premises and whose conclusion is not derivable from them in S. But from all this it 
doesn’t follow that (iii) for every finite set of premises there is a Tarski-valid argument 
with those premises and such that for every formal system S sound for Tarski-validity its 
conclusion is not derivable from the premises in S. From (iii) and (i) it follows of 
course that there are Tarski-valid arguments that are not justifiable by (human) a priori 
reasoning. But the step from (ii) to (iii) is a typical quantificational fallacy. From (i) and 
(ii) it doesn’t follow that there is any Tarski-valid argument which is not justifiable by 
(human) a priori reasoning. The only thing that follows (from (ii) alone under the as-
sumptions that Tarskian validity is sound and that logically correct arguments with a 
finite set of premises are (humanly) a priori knowable implications) is that no formal 
system by itself can model all the a priori reasonings that people are able to make to ex-
tract Tarski-valid conclusions from (finite) sets of premises; but it’s not sufficiently 
clear that this should be intrinsically problematic12. 

                                                   
12 The issue is related to the question whether some particular Turing machine can model human reason-

ing in general or mathematical human reasoning in particular. I dare to say that the common argu-
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 Etchemendy (1990) proposed this other argument for the unsoundness of Tar-
skian validity. (What follows is a reconstruction.) The first premise is that there are 
familiar second-order sentences A and B such that 

(a) ValT(∅,A) iff CH; 

(b) ValT(∅,B) iff ¬CH. 
Here ‘CH’ stands for some natural formulation of the continuum hypothesis. The 
equivalences (a) and (b) are true and provable in set theory. The next premises are: 

(c) it is not analytically true that CH; 
(d) it is not analytically true that ¬CH. 

(c) and (d) are perhaps not as obvious as one might want, but might be conceded for 
the sake of argument. The final premise is 

 (e) for every sentence X, if it is not analytically true that ValT(∅,X) then X is not 
true by virtue of the meanings of its logical expressions. 

From (a) and (c) on the one hand and (b) and (d) on the other Etchemendy derives  

(f) it is not analytically true that ValT(∅,A); 

(g) it is not analytically true that ValT(∅,B). 
In fact, (f) and (g) clearly don’t follow from (a), (b), (c) and (d), since there is no rea-
son to think that (a) and (b) state analytical equivalences. But (f) and (g) may again be 
conceded for the sake of argument. From (e), (f) and (g) it follows that neither A nor 
B are true by virtue of the meanings of their logical expressions. However, either 
ValT(∅,A) or ValT(∅,B), since either CH is true or ¬CH is. Therefore, concludes the 
argument, there are Tarskian consequences of the empty set of premises which are not 
true by virtue of the meanings of their logical expressions. Given the reasonable as-
sumption that a sentence is true by virtue of the meanings of its logical expressions iff 
it is a consequence of the empty set of premises by virtue of the meanings of its logi-
cal expressions, from this conclusion it follows that there are Tarski-valid arguments 
whose conclusion doesn’t follow from their premises by virtue of the meanings of 
their logical expressions. And this suggests that these Tarski-valid arguments are not 
cases of logical consequence. 
 The main problem with this argument is perhaps that thesis (e) is not fully trans-
parent and, as I understand it, I doubt that its denial is incompatible with the vague 
content of the general notion of analyticity and of the special notion of truth by virtue 
of the meanings of the logical expressions13. It may even be shown that some second-

                                                                                                                                 
ments for a negative reply to this question are inconclusive, but this is not the same as an argument 
for a positive reply, or even for the presumption that a positive reply is even likely to be correct. 

13 (e) may be fallaciously mistaken for a more transparent thesis which Etchemendy has forcefully de-
fended: 
 (h) for every sentence X, it is not analytically true that [if ValT(∅,X) then X is true by virtue of the 

meanings of its logical expressions]. 

 (h) is certainly plausible, but to go from (h) to (e) is to commit a modal fallacy. 
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order sentences X pre-theoretically and spontaneously called logically true by logicians 
(and presumably true by virtue of the meanings of their logical expressions) are such 
that the claim that ValT(∅,X) is presumably not analytically true14. 
 In general, there are no fully satisfactory philosophical arguments for the thesis 
that Tarskian validity is unsound with respect to logical consequence in higher-order 
languages15. Are there then any good reasons to think that derivability (in any system 
sound for Tarskian validity) must be incomplete with respect to logical consequence? I 
don’t think there are any absolutely convincing reasons either. Let’s examine an argu-
ment in defense of this incompleteness, with which we will illustrate a fundamental 
difficulty—a difficulty which, by the way, could also be adduced to cast doubts on the 
ultimate value of the preceding arguments for the unsoundness of Tarskian validity. 
 The argument for incompleteness appears in Tarski (1936)16. Tarski notes that in 
some higher-order languages, e.g. in the language of a simple theory of finite types, it 
is possible to formalize arguments of the following form, without using numerals as 
primitives and without taking the predicate ‘natural number’ as primitive, but using 
only expressions of higher-order languages usually taken as logical (higher-order quan-
tifiers in particular), plus variables and any predicate P: 

P(0),  
P(1),  
P(2), 
... 
_______ 
For every natural number n, P(n) 

 
(instead of ‘...’ one would have the rest of sentences of the form P(n), for every natural 
number n>2). We may call these arguments ω-arguments. Now, by Gödel’s first incom-
pleteness theorem, for every formal system S of the language of the simple theory of 
finite types which is sound with respect to Tarskian validity there will be an ω-
argument such that its conclusion is not derivable in S from its premises. We may call 
this the ω-incompleteness of the formal systems of the language of finite types. 

                                                   
14 For more on the problems of Etchemendy’s argument see Gómez-Torrente (1998/9) and Soames 

(1999). 
15 There is another type of arguments for the unsoundness of Tarskian validity in the second-order case. 

In McGee (1992) there is a good example. The idea in these arguments is to find sentences X such 
that ValT(∅,X) but which are intuitively false in a class structure. These arguments thus question the 
claim that each interpretation’s validity-refuting power is modeled by some set-theoretic structure, a 
claim which is surely a corollary of the first implication in (2). (A critical analysis of McGee’s argu-
ment can be found in Gómez-Torrente (1998/9).) But these arguments offer a challenge only to the 
idea that validity is adequately modeled by set-theoretic validity, not to the soundness of a characteri-
zation of logical consequence in terms of validity itself, or in terms of a species of validity based on 
some notion of structure different from the usual set-theoretic one. (The arguments we have exam-
ined in the text would have deeper implications if correct, for they offer a challenge to a characteriza-
tion in terms of validity as well). 

16 For a more detailed historical exposition see Gómez-Torrente (1996). 
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 Tarski stresses the fact that ω-arguments are valid, in the sense that there is no in-
terpretation of P (and the variables) that makes the premises true and the conclusion 
false. Certainly the conclusion can be concluded without worry from the premises. 
Perhaps it can even be said that ω-arguments are cases of implication by logical neces-
sity, and of analytical implication17—though perhaps not of humanly a priori knowable 
entailment, since they have an infinite number of premises. A detailed evaluation of 
Tarski’s claims ought to examine these matters more deeply18. 
 From ω-incompleteness Tarski concludes that derivability (in any formal system) 
must be incomplete with respect to logical consequence—and this leads him to pro-
pose his own characterization in terms of Tarskian validity. But a fundamental prob-
lem is that this conclusion is based on the assumption that the expressions typically 
cataloged as logical in higher-order languages, and in particular the quantifiers in quan-
tifications of the form ∀X (where X is a higher-order variable), are in fact logical ex-
pressions. If this assumption is made, then Tarski’s observation may well convince us 
that every higher-order formal system sound for Tarskian validity, hence every system 
satisfying (1), will leave out some arguments which are cases of implication by logical 
necessity, and such that all arguments with the same form are cases of implication by 
logical necessity. And this makes it certainly very reasonable to think that if higher-
order quantifiers are logical expressions, then derivability, in any formal system satisfy-
ing (1), must be incomplete with respect to logical consequence. But in the absence of 
additional considerations, a critic may question the assumption on which the argument 
is based, and deny relevance to the argument. (The assumption that the higher-order 
quantifiers are logical actually underlies any conviction one may have that (1) holds for 
any one particular higher-order system.) This same critic could for the same reason 
deny that the arguments presented above against the soundness of Tarskian validity 
are relevant at all. 
 This brings us directly to the last topic we’ll examine in this article. What expres-
sions are logical? (Or, what comes to the same: what forms are logical?) 

5. Logical expressions 

The principles guiding logicians (both implicitly and explicitly) in cataloging certain 
expressions as logical have been essentially pragmatic principles with a considerably 
vague content. Typically, logic has been seen as a discipline that deals with general rea-
soning, reasoning applicable in all argumentative fields. It is therefore reasonable to 
think that one principle underlying choices of expressions as logical is the principle 

                                                   
17 This is not to say that Tarski relies or would have relied on intuitions about logical necessity or analyti-

cal implication to make his point: he doesn’t and he wouldn’t. (See Gómez-Torrente (2000b) and 
(1996) for arguments that Tarski lacked a theoretical use for modal notions.)  

18 It is interesting to note that Etchemendy, who probably would draw the borderline of the vague no-
tions of logical consequence and analytical implication quite close to the zone of the clear instances, 
takes ω-arguments to be clearly logically correct and analytical implications (at least in first-order 
formalizations with ‘0’ and ‘successor’ as primitive, but presumably also in higher-order formaliza-
tions without arithmetical primitives). 



Logical Consequence and Logical Expressions 
 

 

141 

that logic must deal with arguments which are correct in virtue of the properties of 
expressions employed in general reasoning, expressions not specific of any argumenta-
tive field but common to all. 
 This principle suggests only a necessary condition of logical expressions19. Doubt-
less there are other implicit principles at stake. Logicians probably require implicitly 
that logical expressions be very relevant in general reasoning, or that their study be useful 
in the resolution of particularly significant problems in reasoning, to mention only two 
possibilities. If this is the right conception, then there is a great deal of vagueness and 
complexity in the intuitive concept of a logical expression. The pragmatic principles 
underlying the use of this concept leave much (perhaps too much) space for divergent 
conceptions, and for incompatible ideas on what expressions are logical. Nevertheless, 
this doesn’t mean that the question of what expressions are logical is arbitrary, since 
the mentioned principles are not compatible with just any idea about what expressions 
are logical. Vagueness does not imply arbitrariness. 
 Logicians and philosophers of logic have often tried to offer philosophically richer 
characterizations of the notion of a logical expression than the one(s) suggested by the 
vague pragmatic principles just mentioned. These attempts usually characterize the no-
tion of a logical expression (or of the logical expressions to be found in a restricted set 
of expressions) in terms of alleged semantic, epistemic or mathematical peculiarities of 
the logical expressions. I conjecture that these attempts will not succeed, since it must 
be nearly impossible to model closely the vague and pragmatic notion of a logical ex-
pression in those terms. I’ll briefly describe a couple of attempted characterizations, 
which are representative of the two main kinds of approaches in the literature20, and 
I’ll indicate that they look deficient, which confirms the conjecture. 
 The first characterization is also due to Tarski, and is based on the idea that a per-
mutation of a universe of discourse induces permutations throughout the hierarchy of 
types of objects determined by that universe. Thus, a permutation P of a universe of 
individuals U induces a permutation of the class of n-adic relations of elements of U, a 
permutation of the class of m-adic relations of n-adic relations of relations of elements 
of U, etc. Let’s say that an object o of a certain type t is invariant under all permuta-
tions of the universe of discourse if, for every permutation P of this universe, the per-

mutations ˜ P  induced by P in the class of notions of type t are all such that ˜ P (o)=o. 
Let’s say that den(C, U) is the denotation of a expression C in a universe U. Then the 
property by means of which Tarski characterizes the logical expressions (more exactly, 
the logical expressions which get denotations in a hierarchy of types of objects) is this: 

                                                   
19 The fact that contemporary professionals of logic often study expressions which are not common to all 

argumentative fields does not show per se that the principle is conceptually incorrect nor even that it 
misdescribes logical practice. It shows at most that logical techniques are applied not merely to the 
study of logically correct arguments but also to the study of correct arguments tout court. 

20 A more detailed analysis of a number of questions having to do with  the notion of a logical expression 
will be found in Gómez-Torrente (2002). (See also Sher (1991) for a good discussion of the notion 
and a defense of a characterization close to (TLC) below.) 
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 (TLC) For every universe U and every permutation P of U, ˜ P (den(C, U))=den(C, 
U). (See Tarski and Givant (1987), p. 57.) (Let’s abbreviate this by ‘C is a 
Tarskian logical expression’.) 

Thus, C is a Tarskian logical expression when it denotes, in every universe, a notion 
invariant under permutations. Tarski gave a plausible convention on how to assign 
denotations in the typical hierarchies to all the classical quantifiers and the truth-
functional connectives, and under this convention they turn out to be Tarskian logical 
expressions. 
 The fact that higher-order quantifiers are cataloged as logical expressions by Tar-
ski’s characterization supports his argument for the incompleteness of derivability that 
we explained at the end of section 4. But consider the predicate ‘MW’, which we could 
add to a quantificational language, with the intuitive meaning “is a male widow”. This 
predicate denotes the empty set in all actual and possible universes, since there are no 
male widows, nor can there be. So ‘MW’ is a Tarskian logical expression. But in none 
of the typical uses of ‘logical expression’ compatible with its vague meaning would 
‘MW’ count as logical. There are of course many other similar though more compli-
cated examples with expressions having denotations in higher types of the hierarchy 
of objects of a universe. These examples seem to show conclusively that the Tarskian 
characterization of the concept of a logical expression doesn’t satisfy the requirement 
of determining a set of expressions compatible with the use (vague as it is) of ‘logical 
expression’. 
 The second characterization I’ll mention is due to Hacking (1979). It employs the 
following condition: 

 (H) The denotation of C is determined by a set of rules of a Gentzenian sequent 
calculus which are used in the inferences involving C21. (Let’s abbreviate this 
by ‘C is a Hackingian logical expression’.) 

Hacking’s characterization is given together with a result which claims that the 
Gentzenian rules of the intuitively logical expressions of first-order quantificational 
languages “determine” the conventional Tarskian denotations of these expressions. 
Hacking also affirms that it is possible to show that the denotations of higher-order 
quantifiers are not “determined” by their Gentzenian rules (hence they are not Hack-
ingian logical expressions). 
 If it is true that the Gentzenian rules of the intuitively logical expressions of first-
order quantificational languages “determine” their denotations, then (H) is not a suffi-
cient condition for an expression to be logical in the intuitive sense. The reason is that 
it is possible to imagine, or simply to stipulate, the existence of expressions governed 

                                                   
21 A different version of (H) has been proposed by other authors, Kneale (1956) being perhaps the first: 

 (K) The sense of C is determined by a set of rules of a Gentzenian sequent calculus which are used in 
the inferences involving C. 

 But (K) doesn’t seem to be a property of many uncontroversial logical expressions, since the senses 
of these appear to be richer than any senses that can be “determined” by their typical Gentzenian 
rules (on this see Gómez-Torrente (2002)). 
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in part by the same Gentzenian rules as an intuitively logical expression, which are, 
nevertheless, intuitively non-logical. Consider the first-order quantification ‘for some 
x, if there are no male widows, or for every x, if there are male widows’, which we can 
stipulate to be synonymous with the expression ‘∃x’, with ‘∃’ a primitive with the 
mentioned sense22. ‘∃’ has the same denotation as the usual first-order existential 
quantifier (in every universe). Unlike normal existential quantifiers, ‘∃’ is not intuitively 
a logical expression. But if Hacking’s result is true, then ‘∃’ satisfies condition (H), 
since the typical Gentzenian rules for the existential quantifier govern the use of ‘∃’, 
and then its denotation is “determined” by a set of Gentzenian rules which are used in 
the inferences involving ‘∃’. ‘∃’ is a Hackingian logical expression, but not a logical ex-
pression. On the other hand, the thesis that (H) gives a necessary condition of logical 
expressions is not so clearly false as the thesis that it gives a sufficient condition, but it 
is far from compelling. 
 In my view, then, characterizations like Tarski’s and Hacking’s don’t provide a 
good basis for accepting or rejecting higher-order quantifiers as logical expressions. 
The vague principles with which we started this section don’t have clear implications 
about this, either. It is tempting to think, though, that the vagueness of these latter 
principles is compatible both with taking higher-order quantifiers as logical and with 
denying them this status. But if both options are acceptable, we should probably work 
under the hypothesis that they are logical when we evaluate arguments such as those 
we saw in section 4. The Tarskian argument for the incompleteness of derivability 
looks then a bit better than the examined arguments for the unsoundness of Tarskian 
validity. A little more can be said about all these arguments, and probably more will be 
said in the future. But I will stop here. 
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