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ABSTRACT: The goal of this paper is to survey, in a uniform and systematic way, the main results regarding networks 
of evolutionary processors reported so far. First, we recall the results concerning the computational power 
of these networks viewed as language generating devices. Then, we briefly present a few NP-complete 
problems and recall how they were solved in linear time by networks of evolutionary processors with line-
arly bounded resources (nodes, rules, symbols). 
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1 Introduction 

A basic architecture for parallel and distributed symbolic processing, related to the 
Connection Machine (Hillis 1985) as well as to the Logic Flow paradigm (Errico & 
Jesshope 1994), consists of several processors, each of them being placed in a node of 
a virtual complete graph, which are able to handle data associated with the respective 
node. Each node processor acts on the local data in accordance with some predefined 
rules, and then local data becomes a mobile agent which can navigate in the network 
following a given protocol. Only such data can be communicated which can pass a fil-
tering process. This filtering process may require to satisfy some conditions imposed 
by the sending processor, by the receiving processor or by both of them. 
 All the nodes send simultaneously their data and the receiving nodes handle also 
simultaneously all the arriving messages, according to some strategies (see, e.g., 
Fahlman & Hinton 1983, Hillis 1985). 
Starting from the premise that data can be given in the form of strings, (Csuhaj-Varjú 
1997) introduces a concept called network of parallel language processors with the aim of in-
vestigating this concept in terms of formal grammars and languages. 
 Networks of language processors are closely related to grammar systems, more 
specifically to parallel communicating grammar systems (Csuhaj-Varjú et al. 1994). 
The main idea is that one can place a language generating device (grammar, Linden-
mayer system, etc.) in any node of an underlying graph which rewrite the strings exist-
ing in the node, and then the strings are communicated to the other nodes. Strings can 
be successfully communicated if they pass some output and input filters. More re-
cently, (Csuhaj-Varjú & Salomaa to appear) introduces networks whose nodes are 
(standard) Watson-Crick D0L systems which communicate each other either the cor-
rect words or the corrected words. 
 In (Castellanos et al. 2001), we modify this concept in the following way inspired 
from cell biology. Each processor placed in a node is a very simple processor, an evo-
lutionary processor. By an evolutionary processor we mean a processor which is able 
to perform very simple operations, namely point mutations in a DNA sequence (inser-
tion, deletion or substitution of a pair of nucleotides). More generally, each node may 
be viewed as a cell having a genetic information encoded in DNA sequences which 
may evolve by local evolutionary events, that is point mutations. 



Carlos MARTÍN-VIDE, Victor MITRANA 

 

60 

 Each node is specialized just for one of such evolutionary operations. Further-
more, the data in each node is organized in the form of multisets of strings, each copy 
being processed in parallel in such a way that all the possible evolutionary events that 
can take place do actually take place. 
 Our mechanisms introduced in (Castellanos et al. 2001) are further considered in 
(Castellanos et al. submitted) as language generating devices and their computational 
power in this respect is investigated. Furthermore, filters, based on the membership 
condition, used in (Csuhaj-Varjú 1997) are simplified in some versions defined in 
(Castellanos et al. 2001, submitted). More precisely, the new filters are based on ran-
dom-context conditions. 
 In spite of these simplifications, these mechanisms are still powerful. In (Castel-
lanos et al. submitted) one proves that networks with at most six nodes having filters 
defined by the membership to a regular language condition are able to generate all re-
cursively enumerable languages, no matter the underlying structure. This result is not a 
surprise, since similar characterizations have been reported in the literature (see, e.g., 
[Kari 1991, Kari et al. 1997, Kari & Thierrin 1997, Martín-Vide & Pãun 1998). Then, 
we consider networks with nodes having filters defined by random-context conditions 
which seem to be closer to the biological possibilities of implementation. Even in this 
case, rather complex languages like non-context-free ones can be generated. In 
(Martín-Vide et al. submitted) one considers a natural extension of networks of evolu-
tionary processors, namely hybrid networks of evolutionary processors, in which each 
deletion or insertion node has its own working mode (at any position, in the left end, 
or in the right end) and its own way of defining the input and output filter. Thus, in 
the same network nodes in which deletion is done at any position and nodes in which 
deletion is done in the right end only may co-exist. Also the definition of the filters of 
two nodes, though both are random-context ones, may differ. These networks turned 
out to generate all recursively enumerable languages (Csuhaj-Varjú et al. submitted). 
 Networks of evolutionary processors (NEP) may be used for solving problems in 
the following way. For any instance of the problem, the computation in the associated 
NEP is finite. In particular, this means that there is no node processor specialized in 
insertions. If the problem is a decision problem, then at the end of the computation 
the output node provides all solutions of the problem encoded by strings, if any; oth-
erwise, this node will never contain any word. If the problem requires a finite set of 
words, this set will be in the output node at the end of the computation. In other 
cases, the result is collected by specific methods which will be indicated for each prob-
lem. 
 Despite of their simplicity, these mechanisms are able to solve hard problems in 
polynomial time. In (Castellanos et al. 2001) it is presented a linear solution for an 
NP-complete problem, namely the Bounded Post Correspondence Problem, based on 
networks of evolutionary processors able to substitute a letter at any position in the 
string but insert or delete a letter in the right end only. 
 This restriction was discarded in (Castellanos et al. submitted), but the new variants 
were still able to solve another NP-complete problem, namely the “3-colorability 
problem”, in linear time. 
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 In (Martín-Vide et al. submitted), following the descriptive format for three NP-
complete problems presented in (Head et al. 1999), one presents a solution to the 
Common Algorithmic Problem. 
 This model may be viewed as a biological computing model in the following way. 
Each node is a cell having a genetic information encoded in DNA sequences which 
may evolve by local evolutionary events, that is point mutations (insertion, deletion or 
substitution of a pair of nucleotides). Each node is specialized just for one of these 
evolutionary operations. Furthermore, the biological data in each node is organized in 
the form of multisets of strings, each copy being processed in parallel such that all the 
possible evolutionary events that can take place do actually take place. Definitely, the 
computational process described here is not exactly an evolutionary process in the 
Darwinian sense. However, the rewriting operations we have considered might be in-
terpreted as mutations and the filtering process might be viewed as a selection proc-
ess. Recombination is missing, but it was asserted that evolutionary and functional re-
lationships between genes can be captured by taking into consideration local muta-
tions only (Sanko et al. 1992). Furthermore, we were not concerned here with a possi-
ble biological implementation, though a matter of great importance. 
 A similar concept is that introduced in (Csuhaj-Varjú & Mitrana 2000), inspired by 
the evolution of cell populations, which might model some properties of evolving cell 
communities at the syntactic level. Cells are represented by strings which describe 
their DNA sequences. 
 Informally, at any moment of time, the evolutionary system is described by a col-
lection of strings, where each string represents one cell. Cells belong to species and 
their community evolves according to mutations and division which are defined by 
operations on strings. Only those cells are accepted as surviving (correct) ones which 
are represented by a string in a given set of strings, called the genotype space of the 
species. This feature parallels with the natural process of evolution. It is worth men-
tioning that any recursively enumerable language is a language of a species of an evo-
lutionary system with point mutations of restricted forms. In the aforementioned pa-
per, a connection between Lindenmayer systems (language theoretical models of de-
velopmental systems) and evolutionary systems is established, namely the growth 
function of any deterministic 0L system can be obtained from the population growth 
relation of some (deterministic) evolutionary system. 

2 Basic Definitions  

We start by summarizing the notions used throughout the paper. An alphabet is a finite 
and nonempty set of symbols. The cardinality of a finite set A is written card(A). Any 
sequence of symbols from an alphabet V is called a string (word) over V. The set of all 
strings over V is denoted by V* and the empty string is denoted by ε. The length of a 
string x is denoted by |x|, while the number of occurrences of a letter a in a string x 
is denoted by |x|a. Furthermore, for each nonempty string x we denote by alph(x) the 
minimal alphabet W such that x∈W*. 
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 We say that a rule a→b, with a, b∈V∪{ε}, is a substitution rule if both a and b are 
not ε; it is a deletion rule if a≠ε and b=ε; it is an insertion rule if a=ε and b≠ε. The set of 
all substitution, deletion, and insertion rules over an alphabet V are denoted by SubV, 
DelV, and InsV, respectively. 
 Given a rule as above σ and a string w∈V*, we define the following actions of σ 
on w: 

• If σ≡a→b∈SubV, then: 
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• If σ≡ε→a∈InsV, then: 
σ*(w)={uav:∃u,v∈V*(w=uv)}, σr(w)={wa},σl(w)={aw}. 

 α∈{*,l,r} expresses the way of applying an evolution rule to a word, namely at any 
position (α=*), in the left (α=l), or in the right (α=r) end of the word, respectively. 
For every ruleσ, action α∈{*,l,r}, and L⊆V*, we define the α-action of σ on L by: 

( ) ( )
w L

L wα ασ σ
∈

= ∪ . 

 Given a finite set of rules M, we define the α-action of M on the word w and on the 
language L by: 

( ) ( ) ( ) ( ),  ,
M w L

M w w M L M wα α α α

σ

σ
∈ ∈

= =∪ ∪  respectively. 

 In what follows, we shall refer to the rewriting operations defined above as evolu-
tionary operations, since they may be viewed as linguistic formulations of local gene 
mutations. For two disjoint subsets P and F of an alphabet V and a word over V , we 
define the predicates: 

ϕa(w;P,F)≡ P⊆alph(w) ∧ F∩alph(w)=∅ 
ϕb(w;P,F)≡ alph(w)⊆P ∧ F∩alph(w)=∅ 

ϕc(w;P,F)≡ P⊆alph(w) ∧ FÚalph(w) 

ϕd(w;P,F)≡ alph(w)⊆P ∧ FÚalph(w) 

ϕe(w;P,F)≡ alph(w)∩P≠∅ ∧ F∩alph(w)=∅. 
 The construction of these predicates is based on random-context conditions defined by 
the two sets P (permitting contexts) and F (forbidding contexts). 
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 For every language L⊆V* and β∈{a,b,c,d,e}, we define: 
ϕβ (L,P,F)={w∈L|ϕβ'(w;P,F)}. 

 An evolutionary processor over V with random-context filters is a tuple (M,PI,FI,PO,FO), 
where: 

• Either M⊆SubV or M⊆DelV or M⊆InsV. The set M represents the set of evo-
lutionary rules of the processor. As one can see, a processor is “specialized” 
in one evolutionary operation, only. 
• PI,FI⊆V are the input permitting/forbidding contexts of the processor, 
while PO,FO⊆V are the output permitting/forbidding contexts of the proces-
sor. 

 We denote the set of evolutionary processors over V by EPV. 
 An evolutionary processor over V with membership filters is a tuple (M,I,O), where M has 
the same meaning as above and I,O are subsets of V*. 
 We denote by EPV the set of evolutionary processors, no matter their filters, over 
V. 
 A hybrid network of evolutionary processors with random-context filters (HNEP(RCF) for 
short) is a 7-tuple Γ=(V,G,N,C0,α,β,i0), where: 

• V is an alphabet. 
• G=(XG,EG) is an undirected graph with the set of vertices XG and the set of 
edges EG, each edge being given in the form of a set of two nodes. G is called 
the underlying graph of the network. 
• N:XG→EPV is a mapping that associates with each node x∈XG the evolu-
tionary processor with random-context filters N(x)=(Mx,PIx, FIx,POx,FOx). 
• C0:XG→V* is a mapping that identifies the initial configuration of the net-
work. It associates a finite set of words with each node of the graph G. 
• α:XG→{*,l,r}:α(x) gives the action mode of the rules of node x on the 
words existing in that node. 
• β:XG→{a,b,c,d,e} defines the type of the input/output filters of a node. More 
precisely, for every node x∈XG and a language L⊆V*, the following filters are 
defined:  

input filter: ρx(L)=ϕβ(x)(L;PIx,FIx), 
output filter: τx(L)=ϕβ(x)(L;POx,FOx). 
That is, ρx(w) (resp. τx) indicates whether or not the string w can pass 
the input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) 
is the set of strings of L that can pass the input (resp. output) filter of 
x. 

• i0∈XG is the output node of the HNEP. 
 We say that card(XG) is the size of Γ. If α(x)=α(y) and β(x)=β(y) for any pair of 
nodes x,y∈XG, then the network is said to be homogeneous. If the set of rules existing in 
any node contains at most one rule, then the network is said to be elementary. If all the 
sets defining the filters are empty (each node can be left and entered by any string), 
then the network is said to be free. 
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 A hybrid network of evolutionary processors with membership filters (HNEP(MF) for short) 
is a 6-tuple Γ=(V,G,N,C0,α,i0), where: 

• V and G are defined as above. 
• N:XG→EPV is a mapping which associates with each node x∈XG the evolu-
tionary processor with membership filters N(x)=(Mx,Ix,Ox). 
• C0,α,i0 are defined as above. For every node x∈XG and a language L⊆V*, 
the following filters are defined: 

input filter: ρx(L)={w∈L∩Ix}, 
output filter: τx(L)={w∈L∩Ox}. 

 In a similar way, we define the homogeneous and elementary HNEP(MF)s, respec-
tively. We use the notation HNEP if the filter type does not matter. 
 In the theory of networks some types of underlying graphs are common, e.g., 
rings, stars, grids, etc. We shall discuss here networks of evolutionary processors with 
their underlying graphs having these special forms. Thus, a HNEP is said to be a star, 
ring, or complete HNEP if its underlying graph is a star, ring, or complete graph, respec-
tively. The star, ring, and complete graph with n vertices is denoted by Sn, Rn, and Kn, 
respectively. 
 A configuration of a HNEP Γ as above is a mapping C:XG→V* which associates a 
set of strings with every node of the graph. A configuration may be understood as the 
set of strings which are present in any node at a given moment. A configuration can 
change either by an evolutionary step or by a communication step. When changing by an 
evolutionary step, each component C(x) of the configuration C is changed in accor-
dance with the set of evolutionary rules Mx associated with the node x and the way of 
applying these rules α(x). Formally, we say that the configuration C' is obtained in one 
evolutionary step from the configuration C, written as C⇒C', iff: 

C'(x)= ( )x
xMα , for all x∈XG. 

 When changing by a communication step, each node processor x∈XG sends one 
copy of each string it has that is able to pass the output filter of x to all the node proc-
essors connected to x, and receives all the strings sent by any node processor con-
nected with x providing that they can pass its input filter. 
 Formally, we say that the configuration C' is obtained in one communication step from 
configuration C, written as C�C', iff: 

( ) ( )( ) ( )( ) ( )( ) ( )( )( )
{ },

'
G

x y x
x y E

C x C x C x C y C xτ τ ρ
∈

= − ∪ ∩∪ , for 

all x∈XG. 
 Let Γ be an HNEP. A computation in Γ is a sequence of configurations 
C0,C1,C2,..., where C0 is the initial configuration of Γ, C2i⇒C2i+1 and C2i+1�C2i+2, for all 

i≥0. By the previous definitions, each configuration Ci is uniquely determined by the 
configuration Ci-1. If the sequence is finite, we have a finite computation. If one uses 
HNEPs as language generating devices, then the result of any finite or infinite compu-
tation is a language which is collected in the output node of the network. 
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 For any computation C0,C1,..., all strings existing in the output node at some step 
belong to the language generated by the network. Formally, the language generated by Γ 

is L(Γ)= ( )00 ss
C i

≥∪ . 

 The time complexity of computing a finite set of strings Z is the minimal number s 

such that Z⊆ ( )00

s

tt
C i

=∪ . 

3 Computational Power  

Clearly, HNEPs with membership filters defined by finite languages can generate 
regular languages only. If one allows membership filters defined by regular languages, 
we have: 

Theorem 1 (Castellanos et al. submitted) 
1. Each recursively enumerable language can be generated by a complete homogeneous HNEP(MF) 
of size 5. 
2. Each recursively enumerable language can be generated by a star homogeneous HNEP(MF) of 
size 5. 
3. Each recursively enumerable language can be generated by a ring homogeneous HNEP(MF) of 
size 6. 
 These results are not surprising, since similar characterizations have been obtained 
for other computing devices based on insertion and deletion operations (see, e.g., 
Csuhaj-Varjú & Mitrana 2000, Kari 1991, Kari et al. 1997, Kari & Thierrin 1996, 
Martín-Vide et al. 1998). 
 It is worth mentioning here that, unlike other parallel language generating devices, 
the above HNEP(MF)s generate a language in a very efficient way, namely all strings 
that can be generated by a grammar, each of them in n steps, are generated altogether 
by a HNEP(MF) in at most 10n steps. 
 What is the generative power of smaller HNEP(MF)s? We do not have a complete 
answer. However, the following statements follow from the proof of Theorem 1 in 
(Castellanos et al. submitted). 

Theorem 2 
1. Each context-sensitive language can be generated by a complete or star homogeneous HNEP(MF) 
of size 4. 
2. Each context-sensitive language can be generated by a ring homogeneous HNEP(MF) of size 5. 
3. Complete and star homogeneous HNEP(MF)s of size 4 can generate non-recursive languages. 
4. Ring homogeneous HNEP(MF)s of size 5 can generate non-recursive languages. 
 In what follows we discuss the generative power of HNEP(RCF)s. Let us denote 
by |x|a the number of all occurrences of a letter a in a string x. In [1] one proves that 
the language L={x∈{a,b,c}*||x|a=|x|b=|x|c≥1} can be generated by a complete 
homogeneous HNEP(RCF) of size 6. The construction can be carried over star ho-
mogeneous HNEP(RCF)s. Therefore, we get: 
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Theorem 3 (Castellanos et al. submitted) 
The families of regular and context-free languages are incomparable with the family of languages gen-
erated by complete or star homogeneous HNEP(RCF)s. 
 The next result obtained in (Martín-Vide et al. submitted) is rather surprising since 
the size of the HNEP(RCF), hence its underlying structure, does not depend on the 
number of states of the given automaton. In other words, this structure is common to 
all regular languages over the same alphabet, no matter the state complexity of the 
automata recognizing them. Furthermore, all strings of the same length are generated 
simultaneously. 

Theorem 4 (Martín-Vide et al. submitted) 
Any regular language L over an alphabet with n symbols can be generated by a complete 
HNEP(RCF) of size 2n+3. 
 Obviously, the HNEP(RCF) constructed accordingly to the proof of the above 
theorem in (Martín-Vide et al. submitted) which generate a given regular language L 
depends on the number of states of the finite automaton defining L as well, but the 
underlying graph remains the same for all regular languages over the alphabet of L. 
For instance, if the number of states of an automaton accepting L is m, then the total 
number of symbols in the alphabet of the constructed HNEP(RCF) is 2n+2nm+m, 
while the total number of evolutionary rules is 2nm+2n. 
 Since each linear grammar can be transformed into an equivalent linear grammar 
with rules of the form A→aB,A→Ba,A→ε only, the proof of the theorem from 
(Martín-Vide et al. submitted) can be adapted for linear grammars as well. Moreover, 
the statement remains valid for HNEP(RCF)s with other types of underlying struc-
ture. 

Theorem 5 
Any regular and linear language L over an alphabet with n symbols can be generated by a com-
plete/star/ring HNEP(RCF) whose size depends linearly on n, only. 
 A natural problem arises: is it possible a similar characterization of recursively 
enumerable languages? Surprisingly enough, the answer is affirmative. 

Theorem 6 (Csuhaj-Varjú et al. submitted) 
Any recursively enumerable language over an alphabet V can be generated by a complete or star 
HNEP(RCF) of size 26+3⋅ card(V). 
 This last result suggests the possibility of constructing a “universal” HNEP(RCF) 
with a fixed underlying structure for all recursively enumerable languages over a given 
alphabet. 
 The minimal size of a complete or star HNEP(RCF) generating an arbitrary recur-
sively enumerable language over a fixed alphabet remains to be further investigated. 
 However, we can state: 

Theorem 7 (Csuhaj-Varjú et al. submitted) 
1. The language generated by any HNEP(RCF) of size one is regular. 
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2. There exist context-free non-regular (even non-linear) languages which can be generated by com-
plete, free, homogeneous HNEP(RCF)s of size 2. 
3. There exist context-sensitive non-context-free languages which can be generated by complete or ring 
homogeneous HNEP(RCF)s of size 4. 
4. There exist non-recursive languages which can be generated by complete or star HNEP(RCF)s of 
size 28. 
5. The family of languages generated by complete or star HNEP(RCF)s having no deletion node co-
incides with the family of context-sensitive languages. 
 This theorem raises a series of open problems: 

1. Are there HNEP(RCF)s of size smaller than 4 able to generate non-
context-free languages? 
2. Is it true that HNEP(RCF)s of size two generate context-free languages 
only? 
3. Which is the smallest HNEP(RCF) able to generate a non-context-sensitive 
language? And a non-recursive language? 

 Is it possible to generate all recursively enumerable languages with elementary 
HNEP(RCF)s? Again, the next result, proved in (Csuhaj-Varjú et al. submitted), seems 
interesting. 

Theorem 8 (Csuhaj-Varjú et al. submitted) 
Any recursively enumerable language can be generated by an elementary, complete or star 
HNEP(RCF). 

4 Solving NP-Complete Problems 

We survey in this section the NP-complete problems solved so far by HNEP(RCF)s. 
We start with one problem known to be NP-complete, namely the Bounded Post 
Correspondence Problem (BPCP) (Constable et al. 1974, Garey & Johnson 1979), 
which is a variant of a much celebrated computer science problem, the Post Corre-
spondence Problem (PCP), known to be unsolvable Garey & Johnson 1979) in the 
unbounded case. 
 An instance of the PCP consists of an alphabet V and two lists of strings over V: 

u=(u1,u2,...,un) , v=(v1,v2,...,vn). 
 The problem asks whether or not a sequence i1,i2,...,ik of positive integers exists, 
each between 1 and n, such that: 

ui1ui2...uik=vi1vi2...vik. 
 The problem is undecidable when no upper bound is given for k, and NP-
complete when k is bounded by a constant K≤n. A DNA-based solution to the 
bounded PCP is proposed in (Kari et al. 2000). 

Theorem 9 (Castellanos et al. 2001) 
The bounded PCP can be solved by a complete HNEP in size and time linearly bounded by the 
product of K and the length of the longest string of the two Post lists. 
 The next problem is the so called 3-Colorability Problem. This problem consists of 
deciding whether each vertex in an undirected graph can be colored by using three 
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colors (say red, blue, and green) in such a way that, after coloring, no two vertices that 
are connected by an edge have the same color. 

Theorem 10 (Castellanos et al. submitted) 
The 3-Colorability Problem can be solved in O(m+ n) time by a complete simple NEP of size 
7m+2, where n is the number of vertices and m is the number of edges in the input graph. 
 It is rather interesting that the underlying graph of the HNEP(RCF) proposed in 
(Castellanos et al. submitted) for solving this problem does not depend on the number 
of nodes of the given instance of the problem. In other words, the same underlying 
structure may be used for solving any instance of the 3-Colorability Problem having 
the same number of edges but no matter the number of nodes. Again, as in the case 
of language generating, the other parameters of the network depend on both numbers, 
of nodes and edges, but they still remain linearly bounded by such numbers. For in-
stance, the total number of symbols is 7n+m+1, while the total number of rules is 
16m+3n+1. 
 In the sequel, following (Head et al. 1999), we discuss the common descriptive 
format for three NP-complete problems called the Common Algorithmic Problem in 
the aforementioned work. The three problems are: 

1. The Maximum Independent Set: given an undirected graph G=(X,E), 
where X is the finite set of vertices and E is the set of edges given as a family 
of sets of two vertices, find the cardinality of a maximal subset (with respect 
to inclusion) of X which does not contain both vertices connected by any 
edge in E. 
2. The Vertex Cover Problem: given an undirected graph, find the cardinality 
of a minimal set of vertices such that each edge has at least one of its ex-
tremes in this set. 
3. Satisfiability Problem: for a given set P of Boolean variables and a finite set 
U of clauses over P, does a truth assignment for the variables of P exist satis-
fying all the clauses in U? 

 For detailed formulations and discussions about their solutions, the reader is re-
ferred to (Garey & Johnson 1979). 
 These problems can be viewed as special cases of the following algorithmic prob-
lem, called the Common Algorithmic Problem (CAP) in (Head et al. 1999). Let S be a 
finite set and F be a family of subsets of S. Find the cardinality of a maximal subset of 
S which does not include any set belonging to F. The sets in F are called forbidden sets. 
 Let us show how the three problems mentioned above can be obtained as special 
cases of CAP. For the first problem, we just take S=X and F=E. 
 The second problem is obtained by letting S=X and F containing all sets 
o(x)={x}∪{y∈X|{x,y}∈E}. The cardinality one looks for is the difference between 
the cardinality of S and the solution of the CAP. 
 The third problem is obtained by letting S=P∪P', where P'={p'|p∈P}, and 
F={F(C)|C∈U}, where each set F(C) associated with the clause C is defined by: 

F(C)={p'|p appears in C}∪{p|¬p appears in C}. 
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 From this, it follows that the given instance of the Satisfiability Problem has a solu-
tion if and only if the solution of the constructed instance of the CAP is exactly the 
cardinality of P. 

Theorem 11 (Martín-Vide et al. submitted) 
Any instance of the CAP can be solved by a complete homogeneous HNEP(RCF) of size m+2n+2 
in O(m+n) time. 
 The price paid for homogeneousness is the following: the total number of symbols 
is 2n+4n+4, but the total number of rules is rather high, that is 

mn+6n+2+ ( )
1

m
ii

card F
=∑ . The same problem can be solved in a more economic way 

with HNEP(RCF)s, namely: 

Theorem 12 
Any instance of the CAP can be solved by a complete HNEP(RCF) of size m+n+1 in O(m+n) 
time. 
 Now, the needed resources are: m+3n+3 symbols and m+3n+1 rules. 

5 Conclusions and Further Work  

We have surveyed a computational model whose underlying architecture is a complete 
graph having evolutionary processors placed in its nodes. Being a bio-inspired system, 
a natural question arises: how far is this model from the biological reality and engi-
neering possibilities? More precisely, is it possible to exchange biological material be-
tween nodes? Can the input/output filter conditions of the node processors be bio-
logically implemented? What about a technological implementation? We hope that at 
least some answers to these questions are affirmative. 
 Furthermore, one can take different directions of research. A deeper study of the 
free HNEP(RCF)s appears to be of interest since it is likely that these networks have 
better chances to get implemented. The description of the dynamics of evolving cell 
populations is an intriguing question which is in the focus of interest in current com-
puter science. Results on the dynamics of cell (string) population in HNEPs might be 
a fruitful further direction of research. Last but not least, HNEPs in which other ob-
jects than strings are the mobile data navigating in the network seem to be promising. 
A first step in this direction was done in (Mitrana & Subramanian in progress), where 
these objects are pictures (two-dimensional strings). 

BIBLIOGRAPHY 
Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J. M. (2001) "Solving NPcomplete problems with 

networks of evolutionary processors" in J. Mira, A. Prieto (eds), Connectionist Models of Neurons, Learning 
Processes, and Artificial Intelligence (Proceedings of the Sixth International Work-Conference on Artificial 
and Natural Neural Networks (IWANN 2001), vol. I, Lecture Notes in Computer Science 2084), Ber-
lin: Springer, 621–628. 

Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J. M. (in press) "Networks of evolutionary proces-
sors". Acta Informatica. 

Constable, R., Hunt, H., Sahni, S. (1974) "On the computational complexity of scheme equivalence", 
Technical Report No. 74-201, Department of Computer Science, Cornell University, Ithaca NY, 
1974. 



Carlos MARTÍN-VIDE, Victor MITRANA 

 

70 

Csuhaj-Varj´u, E. (1997) "Networks of parallel language processors" in Gh. Pãun, A. Salomaa, (eds.) New 
Trends in Formal Languages: Control, Cooperation, and Combinatorics, Lecture Notes in Computer Science 
1218, Berlin: Springer, 299–318. 

Csuhaj-Varj´u, E., Dassow, J., Kelemen, J., Pãun, Gh. (1994) Grammar Systems. A Grammatical Approach to 
Distribution and Cooperation, London: Gordon and Breach. 

Csuhaj-Varj´u, E., Martín-Vide, C., Mitrana, V. (submitted) "Hybrid networks of evolutionary processors: 
completeness results". 

Csuhaj-Varj´u, E., Mitrana, V. (2000) "Evolutionary systems: a language generating device inspired by 
evolving communities of cells", Acta Informatica 36, 913–926. 

Csuhaj-Varj´u, E., Salomaa, A. (to appear) "Networks of Watson-Crick D0L systems" in M. Ito, (ed.) Pro-
ceedings of the 3rd International Colloquium on Words, Languages and Combinatorics, Singapore: World Scien-
tific. 

Errico, L., Jesshope, C. (1994) "Towards a new architecture for symbolic processing" in I. Plander, (ed.) 
Artificial Intelligence and Information-Control Systems of Robots’94, Singapore: World Scientific, 31–40. 

Fahlman, S. E., Hinton, G. E., Seijnowski, T. J. (1983) "Massively parallel architectures for AI: NETL, 
THISTLE and Boltzmann machines" in Proceedings of the AAAI National Conference on AI, Los Altos 
CA: William Kaufman, 109–113. 

Garey, M., Johnson, D. (1979) Computers and Intractability. A Guide to the Theory of NP-Completeness, San 
Francisco CA: W.H. Freeman. 

Head, T., Yamamura, M., Gal, S. (1999) "Aqueous computing: writing on molecules" in Proceedings of the 
Congress on Evolutionary Computation 1999, Piscataway NJ: IEEE Service Center, 1006–1010. 

Hillis, W. D. (1985) The Connection Machine, Cambridge MA: MIT Press. 
Kari, L. (1991) On Insertion and Deletion in Formal Languages, Ph.D thesis, University of Turku, 1991. 
Kari, L., Gloor, G., Yu, S. (2000) "Using DNA to solve the Bounded Correspondence Problem", Theoreti-

cal Computer Science 231, 193–203. 
Kari, L., Pãun, Gh., Thierrin, G., Yu, S. (1997) "At the crossroads of DNA computing and formal lan-

guages: characterizing RE using insertion-deletion systems" in Proceedings of the 3rd DIMACS Workshop 
on DNA Based Computing, Philadelphia PA, 318–333. 

Kari, L., Thierrin, G. (1996) "Contextual insertion/deletion and computability", Information and Computa-
tion 131/1, 47–61. 

Martín-Vide, C., Mitrana, V., Pérez-Jiménez, M. J., Sancho-Caparrini, F. (submitted) "Hybrid networks of 
evolutionary processors". 

Martín-Vide, C., Pãun, Gh., Salomaa, A. (1998) "Characterizations of recursively enumerable languages by 
means of insertion grammars", Theoretical Computer Science 205/1-2, 195–205. 

Mitrana, V., Subramanian, K. G., Tãtãrˆam, M. (in press) "Networks of pictural processors". Romanian 
Journal o Information Science and Technology. 

Sanko, D. [et al.] (1992) "Gene order comparisons for phylogenetic inference: evolution of the mito-
chondrial genome" in Proceedings of the National Academy of Sciences of USA 89, 6575–6579. 

Carlos MARTÍN VIDE C. Martin-Vide is professor at Rovira i Virgili University (Tarragona), where he 
manages the Group of Research in Mathematical Linguistics. He works in theory of formal languages. 
He has published more than 200 scientific articles. He is Editor in Chief of Grammars (Kluwer) and Di-
rector of the International PhD School in Formal Languages and Applications.  

Address: Research Group on Mathematical Linguistics, Rovira i Virgili University, Pl. Imperial Tàrraco 1, 
43005 Tarragona, Spain. E-mail: cmv@correu.urv.es 

Victor MITRANA is professor in Faculty of Mathematics at University of Bucharest and Ramón y Cajal 
Researcher at Rovira I Virgili University (Tarragona). He works in theory of formal languages, recombi-
nation and computation with DNA, bioinformatic and combinatory. He has published around 100 scien-
tific articles. 

Address: Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest, Roma-
nia. E-mail: mitrana@funinf.cs.unibuc.ro  

C. MARTÍN VIDE and V. MITRANA are editors of the following books: Where Mathematics, Computer Sci-
ence, Linguistics and Biology Meet (Kluwer, 2001), Grammars and Automata for String Processing: 
From Mathematics and Computer Science to Biology, and Back (Taylor and Francis, 2003) and Formal 
Languages and Applications (Physica, 2003, with G. Pãun) 




