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The reason why population genetics is a probabilistic theory has attracted considerable attention from philosophers. In what follows, I offer a novel account of what motivates the introduction of probabilities into classical population genetics. Probabilities make the theory easier to apply for researchers given their epistemic limitations and give the theory a recursive structure, thereby making possible inferences about the dynamics of systems over multiple generations. I argue that probabilities in population genetics can be given a credentist interpretation according to which the probabilities reflect constraints on confidence or belief.
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1. Introduction

Evolutionary theory is probabilistic, attracting considerable attention from philosophers. I offer a novel account of why classical population genetics, one quantitative version of evolutionary theory, is probabilistic. The account builds on two different responses to the same issue, that of Sober and Ariew, who invoke the generality of application that the use of probabilities affords and that of Graves, Horan and Rosenberg (GHR), who emphasize how probabilities allow researchers to generate formal models to explain the dynamics of natural systems, despite researchers’ lack of full understanding of the causal details of their target systems.
The question to which I provide a response is one of motivation. Why use a probabilistic theory when the use of a maximally deterministic one seemingly presents a superior alternative? (A maximally deterministic treatment is one that uses probabilities to quantify only the influence of fundamental indeterminism of the sort found in quantum mechanics, on standard interpretations.) I assume that the influences of at least some causes of population member reproduction are quantifiable in formal models without the use of probabilities, at least in principle.[footnoteRef:1] By virtue of its eschewal of probabilities wherever possible, a maximally deterministic theory would license the most precise inferences possible about system dynamics. Since a maximally deterministic theory seems at first glance superior for this reason, we are left with the question of what motivates the use of probabilities in classical population genetics to quantify the influence of some causes.   [1:  This assumption is weaker than the widespread assumption that the dynamics of natural systems governed by population genetics are effectively deterministic, or nearly so (see Rosenberg 1994, Graves, Horan et al. 1999, Abrams 2007)] 

I argue that the benefits provided by the use of probabilities in the classical approach are twofold. First, a probabilistic theory is less epistemically demanding than an alternative formalism that uses probabilities only to quantify instances of fundamental indeterminism of the quantum mechanical sort. Second, the use of probabilities in classical population genetics makes possible inferences that depend on the recursive structure of the classical equations, inferences that are impossible to make on an alternative treatment that uses probability only for cases of fundamental indeterminism. To argue for my view, I set forth a definite, maximally deterministic treatment of Wright-Fisher systems and contrast the maximally deterministic treatment with the classical one. 
I am particularly interested in discussing the probabilities introduced into classical population genetics by means of the “drift” parameter, variance effective population size (Nev). Nev determines the higher moments of the binomial distribution of next-generation frequencies of rival types by serving as the population size parameter in the binomial sampling equation used to infer next-generation start-of-generation allele or haplotype frequencies from this-generation post-selection frequencies of the same. My aim is to explain why classical population genetics is structured such that next-generation frequencies are calculated by means of the binomial sampling equation using Nev as population size.
Whether there are any fundamentally indeterministic processes that influence the dynamics of systems governed by evolutionary theory and whether any of these may be quantified by Nev, are issues I set aside (but for discussion see Brandon and Carson 1996, Glymour 2001, Stamos 2001, Weber 2001, Millstein 2003, Sansom 2003)). I am concerned instead with explaining why causes whose influences could be quantified without the use of probabilities are nevertheless quantified by Nev. This approach allows me to remain agnostic about whether the natural systems governed by population genetics exhibit genuinely indeterministic evolution (Millstein 2003). 
I am chiefly concerned with the motivation for calculating system dynamics using a probabilistic theory in population genetics. I discuss the distinct issue of the reference or interpretation of “probability” in classical population genetics only in section 9. There is widespread agreement that the notion of probability can be used to quantify at least two different sorts of things: (i) indeterministic chances, which are instances of fundamental indeterminism of the sort that occur in quantum mechanical systems (on standard interpretations); and (ii) credences, which differ from indeterministic chances insofar as they may be discharged, at least in principle, by an agent who learns and makes use of the right sort of understanding of her target system. I argue that the probabilities introduced by drift may be interpreted in credentist terms.
Since what makes probabilities interpretable as credences distinctive is that they can be eliminated by an agent who acquires the right sort of understanding, a full credentist interpretation of probability must specify the character of what someone must come to know to eliminate the probability. In section 9 below, I offer criteria for discharging probabilities introduced in classical population genetics in just this way. Briefly, causes whose influences are quantified by means of Nev can be handled instead by means of temporally variable selection functions, provided that researchers applying the theory know two things about the causal influences so quantified: their influence on the reproduction of genotype-/haplotype-specific population members and their distributions over genotypic/haplotypic variants in the population for the entire projection period of the model. 
	Before setting forth my own views in sections 5-9, I discuss in sections 2-4 three alternative accounts of probability in evolutionary theory. I begin with Brandon and Carson (1996), whom I label indeterminists. According to indeterminism, the probabilities in population genetics quantify nothing but indeterministic chances. Next, I consider a view I call ignorantism, defended by Rosenberg, Horan, Graves (Horan 1994, Rosenberg 1994, Graves, Horan et al. 1999). According to ignorantism, the probabilities in population genetics reflect researchers’ ignorance.
	The view defended here is aligned with another position in the debate, that of Sober and Ariew, whom I label generalists. Those authors contend that probabilities are introduced into evolutionary theory in order to give the theory generality of application. Sober and Ariew focus on how probabilities allow the use of the same or similar models over disparate populations; I focus on how probabilities allow the modeling of multiple generations of a single population using unchanging, recursively structured equations. 
2. Indeterminism 
Indeterminism is Brandon and Carson’s view that the probabilities in population genetics represent nothing but indeterministic chances, so that Nev, in particular, quantifies only indeterministic chances (Brandon and Carson 1996). For Brandon and Carson, “drift” is a kind of effect, genetic changes that occur as a result of sampling error in an indeterministic system. The authors argue that we have no scientifically legitimate reason to postulate “hidden variables” that determine differences in the reproduction rates of population members not predicted by fitness differences across genotypes (Brandon and Carson 1996, §6). Brandon and Carson explicitly draw an analogy between evolutionary theory and quantum mechanics (Brandon and Carson 1996, §4, Brandon 2005). 
I do not consider the indeterminist position at any depth here because it has already been subjected to harsh, but trenchant, critiques by others (Graves, Horan et al. 1999, Rosenberg 2001, Weber 2001, Weber 2005). The rejection of indeterminism should not be confused, however, with the view that natural systems governed by classical population genetics must be deterministic. It is widely argued that the dynamics of natural systems governed by classical population genetics are, or may well be, indeterministic (Glymour 2001, Stamos 2001, Millstein 2003). But relinquishing the view that Nev quantifies nothing but indeterministic chances means facing the key question of this paper: What makes the use of probabilities preferable for quantifying the influences of causes that could, at least in principle, be otherwise handled?
3. Ignorantism
Rosenberg, Horan and Graves have championed a different view about the source of probability in population genetics, a view I call ignorantism (Horan 1994, Rosenberg 1994, Graves, Horan et al. 1999). Rosenberg’s work, Instrumental Biology (1994), argues for the position most thoroughly, though Rosenberg has more recently recanted aspects of his earlier view (Rosenberg 2001, Bouchard and Rosenberg 2004, 697).
The motivation for ignorantism has more to do with theories of probability than it does with the details of population genetics. In Instrumental Biology, Rosenberg writes that fundamental indeterminism and ignorance are the only two ways to account for the presence of probabilities in a scientific theory (1994, 81). Rosenberg rejects the indeterministic account and so infers that it must be the case that the probabilities in evolutionary theory reflect our epistemic limitations (Rosenberg 1994; see also Horan 1994, 83). Rosenberg considers two specific sources of probability in population genetics, measurement error associated with the estimation of values for fitnesses and frequency variables, and the operation of unknown causes. 
	One way that Rosenberg accounts for the probabilities in population genetics is the statistical error involved in estimation of values for quantities, in particular, gene frequencies and fitnesses (1994, 66, 69). Rosenberg does not discuss any specifics concerning how probabilities involved in fitness and frequency measurements are connected to the probabilities that figure in formal population genetics models. Measurement error is no doubt real, but the parameter of interest to us, Nev, is simply not a function of measurement error. Census size, inbreeding, population structure, sex ratio, fluctuations in census size, variance in offspring number, these are among the sorts of things that serve as inputs into functions that determine effective population size (Wright 1938, Crow and Morton 1955, Nunney 1996, Nunney 1999). There is no function for quantifying the extent to which system dynamics are probabilistic in population genetics that takes measurement error as an input.
The second source of probability in population genetics that the ignorantists consider is drift. The ignorantists claim that drift is a placeholder for causal factors that are unknown to those applying the theory (Graves, Horan et al. 1999, 147). Rosenberg (1994) offers an imaginary scenario to help get this across. In that scenario, the tallest giraffes in a population are subject to poaching, though the researchers deploying population genetics to make inferences about the dynamics of the population are unaware of the poachers. Rosenberg asks:
What are we, who know the facts, to say about the change in gene frequencies? Surely we will not credit the change to drift. We will say that for a short time the environment changed, making long-necks maladaptive and therefore shifting gene frequencies through selection. (Rosenberg 1994, 73)

Rosenberg’s (1994) view is that more knowledgeable theorists applying population genetics would deploy relative fitness coefficients that more closely reflected more of the causal influences on population dynamics. Whatever probabilities remained would reflect researchers’ epistemic limitations. In the limit, and barring indeterminism, relative fitness coefficients could become sufficiently fine-tuned and ascribed on the basis of such deep understanding that population genetics could be used to predict system dynamics exactly. “If we knew about all the environmental forces impinging upon organisms, we would find that fitness was perfectly correlated with reproductive success” (Graves, Horan et al. 1999, 143).
	In essence, the ignorantist view applies to the case of population genetics the classical interpretation of probability put forward by Laplace (1814[1951]), according to which we treat events as equally probable in the absence of evidence that any is more likely. The researchers in Rosenberg’s scenario know nothing of the poachers and so have no evidence concerning whether taller or shorter giraffes will be among those that reproduce. Accordingly, they ascribe equal probability to each giraffe doing so regardless of height. Indeed, Rosenberg was an instrumentalist about evolutionary theory precisely because Laplace’s demon, who lacks any epistemic limitations, would have no use for it (Rosenberg 1994, ch. 4).
	Rosenberg, Horan, and Graves’ interpretation of drift is subject to several objections. Lyon (2011) points out that, to be a plausible interpretation of probability, the epistemic account must portray probabilities not as actual states of confidence (since people may be irrational) but as normative constraints on agents’ confidence ascriptions. Furthermore, those normative constraints apply only to agents in particular epistemic circumstances and not, say, to Laplace’s demon who knows too much. In effect, a credentist interpretation of probability must take the form of a hypothetical imperative: if one believes ϕ and nothing stronger, then one’s credences should be aligned with the classical probabilities (Lyon 2011, 424). Any credentist view must reflect these advances.[footnoteRef:2] [2:  Lyon argues that, when evolutionary theory is used to explain how a single system evolved, its probabilities cannot be interpreted as credences (2011).] 

The main difficulty with the ignorantist view of drift is the same as the difficulty noted above for the ignorantist account of measurement error: the ignorantists fail to show how Nev is a function of researcher ignorance. Once again, Nev is a function of a variety of variables in classical population genetics, none of which is researchers’ ignorance. 
Moreover, functions determining Nev are general in the way that epistemic limitations are not. How hard or easy it is to learn about the causal influences acting on a population depends on how easy it is for researchers to determine facts about it. This in turn depends upon peculiarities of both the researchers and the target organisms. But the value of Nev for a target population does not depend on such peculiarities. So, for instance, the census size of a population will always matter to Nev, and, all else being equal, populations of the same size get the same value for Nev no matter how hard the organisms are to count, something that varies widely with organism attributes and researcher skill.
Still further, the ignorantist account of drift is subject to counterexample. Millstein urges that the causal influence of Rosenberg’s poachers counts as selection rather than drift, despite researchers’ ignorance (Millstein 1996, §3). Millstein is right that the poachers’ influence cannot be quantified by Nev. Researchers who remained ignorant of the poachers would make poor inferences concerning the dynamics of height-determining alleles in the giraffe population if they quantified the poachers’ influence by means of Nev. To see why, note that the distribution of next-generation frequencies determined by Nev is symmetrical around post-selection frequency. Thus, any cause quantified by that term must be just as likely to increase the frequency of genetic variations that cause height as it is to decrease them. Since the poachers are more likely to thwart the reproduction of taller giraffes, they produce a decrease in the mean frequency of genetic variations that increase height. 
The ignorantists’ primary concern has been to resist, by means of incisive criticism, the indeterminist view of probability in population genetics. The specifics of their accounts of probability, however, are not based upon population genetics theory or practice and patently conflict with these. Below, I look to definite features of classical population genetics modeling to provide a robust credentist interpretation of probability in classical population genetics.
4. Generalism
The account put forward here of the motivation for introducing probabilities into classical population genetics is a version of the view developed by Sober in The Nature of Selection (1984); the account has more recently been defended by Ariew (1998). According to this view, which I dub generalism, what motivates the use of probabilities in evolutionary theory is the generality of application of formal models that the use of probabilities affords. What Ariew and Sober find valuable I call horizontal generality, the applicability of the same generalizations over distinct populations: “This generalization subsumes evolution in a wide variety of cases: from the saguaros of the Sonoran desert to the turtles of the Galapagos to the Drosophila of Maynard Smith’s lab” (Ariew 1998, 250). Part of the value of stochastic population genetics is supposed to lie in the patterns of behavior that general models expose. General patterns demand general explanations that micro-level explanations may miss (Sober 1984, 126-27, Ariew 1998, 250). 
	I emphasize below how the introduction of probabilities into classical population genetics creates a different sort of generality, vertical generality: the same equations apply to a single population through time thereby allowing recursive inferences about the dynamics of the system over arbitrary times. The benefits of vertical generality have chiefly to do with inference, not explanation. But Sober and Ariew’s view, which emphasizes explanatory benefits of horizontal generality, and the one proffered here, which emphasizes the inferential benefits of vertical generality, are clearly compatible and closely related. 
	In more recent work, Sober has argued that generality is but one virtue of explanation among many, and that sometimes detailed explanations are more valuable than general ones (2010, 146). He has also stressed the objectivity and reality of probabilities against the ignorantists’ subjectivism. But a credentist interpretation of probability need not be subjectivist in any important sense. A credentist interpretation must be subjective insofar as it is about the minds and belief states of individual agents; it may nevertheless place objective constraints on their reasoning and behavior.
	The appearance of incompatibility between credentist interpretations of probability and realism/objectivism about probability results, perhaps, from an ambiguity in the contrast between objective and subjective. On the one hand, we might contrast invariant “objective” facts that all subjects must recognize with “subjective” desires and tastes that may vary from person to person. On the other hand, we might contrast how things are in the “objective” world with how things are in the “subjective” minds of agents. Following Lyon (see section 3 above), the credentist stance taken here is that probability supplies hypothetical imperatives. These are naturally interpreted as objective constraints on reasoning and conduct, though probability remains about the contents of the minds of agents (which, it should be remembered, are as much a part of the furniture of the world as anything).
	Helpful here, maybe, is an analogy to the reductio ad absurdum mode of argument. The constraint that one ought not endorse inconsistent beliefs is arguably objective in an important sense. Adherence to it, anyway, is no subjective matter of taste; no one should violate the constraint and those who do will really go wrong. In another, less interesting sense, the constraint is subjective, insofar as it is a constraint upon beliefs, and hence is subject-relative: a reductio that works on one person may well fail on another who has a different set of commitments. Probabilities and probability theory may equally be understood as real and objective in the important sense that they supply strict constraints whose violation leads to false assertions about reality, despite being subjective in the sense that they supply constraints upon subjects’ mentation. Millstein has defended just this attitude to probabilities in evolutionary theory. She follows Giere in insisting that even though propensities may be relative to a particular specification of the target natural system supplied by the researcher’s perspective, they are nevertheless real and objective (Giere 1973, Millstein 2003, 1323-4).
5. Maximally deterministic versus classical population genetics
The way I approach the question of why some causes are treated probabilistically in population genetics is to look at the liabilities of treating those same causes without the use of probabilities. We can get a clearer picture of the gains that issue from a probabilistic treatment if we understand the alternative option better.
Philosophers have traditionally juxtaposed probabilistic population genetics with deterministic classical mechanics. Below, I set out an alternative to classical population genetics that is maximally deterministic but otherwise much more similar to classical population genetics than physical theory is. I then compare the maximally deterministic treatment with the classical treatment of the same system, focusing on liabilities of the maximally deterministic treatment that the classical one does not share. 
	Consider the classical approach first. We will discuss a classical, Wright-Fisher system of equations for modeling a system with distinct haplotypes exhibiting discrete generations in which post-selection frequencies for each i of n distinct haploid types at time t,[image: ], is a function of initial frequencies for the same haplotypes,[image: ], weighted by haplotype-specific fitnesses, wi, and the reciprocal of average fitness:[footnoteRef:3] [3:  I choose haploids to avoid complications introduced by sex differences and transitions between lifecycle phases. I equally leave aside mutation and migration among substructures. ] 

[image: ]					(1)
To be predictively accurate, (1) would have to be embellished for some systems: the fitnesses must be set by functions in a variety of cases, such as frequency-dependent selection and temporally variable selection (discussed at length below). Most importantly for our discussion, however, is how the left-hand side of (1) is fed into a binomial sampling equation with Nev serving as population size to generate the probability distribution of next-generation initial frequencies:
			(2)
where P(j) is the probability of j A alleles or type i haploids at the start of the next generation (Rice 2004, p. 75).		
Consider next an alternative formal representation. Let there be G causes of haplotype reproduction. Each cause takes on Hg values. Let [image: ] represent the fraction of haplotypes i that take value h for cause g at generation t. Let wigh quantify the influence on the reproduction of haplotype i from the hth value for cause g, excluding the influence of causal interactions among the G. Let u take a range of dummy coded values 1 … q such that u takes a different value for each non-identical combination of values for the G causes, where any combination of causal values features exactly one value for every cause of haplotype reproduction. Let every possible combination of causal values so determined appear from u = 1 … q. Let wiu quantify the influence on haplotype reproduction of the interactions among the G causes that result from the haplotype taking the values for causal variables associated with each value for u. Let  represent the fraction of haplotypes i that take the combination of causal values associated with u at time t. Operate as follows:
 				(3)
When the variables in (3) are replaced by numerical values for a given population, the equation predicts with maximum accuracy the dynamics of the system.[footnoteRef:4] [4:  Technically, maximally accurate prediction requires G include only a subset of causes of haploid reproduction. A natural subset to use includes all the causes of the haploid reproduction minus any colliders on any path containing two causes, minus any descendants of such colliders, minus either of any pair of causes such that one screens off the other. ] 

	Equation (3) is set forth as a maximally deterministic equation, but it must be recognized that it only serves as such when given a specific interpretation: All the variables must be replaced with actual numerical values whenever physically possible. In particular, the  parameters must be assigned definite numerical values whenever physically possible. Only those  parameters that quantify fundamentally interdeterministic causes, such as radioactive decay, may be set by probability functions. Nothing about the syntax of (3) forces this interpretation of the equation, but in the discussion henceforth I will assume it. The point of (3) is not to have a flexible formalism that can accommodate researchers in a range of epistemic situations, but instead to have an official, maximally deterministic counterpart to the pair of (1) and (2) with whose operation the classical treatment can be contrasted.	 
	It may be helpful to have a discussion of how (3) works in a definite case. Consider the first term of the numerator of (3). Each sum within this term adds together the effects of the various possible values for a single cause. Suppose that choice of nesting site (N) is a cause of haplotype reproduction with two values, safe (S) and unsafe (U). The first term of the numerator quantifies this cause (though not its interactions). The fraction of a given haplotype that choose a safe nesting site is multiplied by the influence on reproduction of that nesting site choice. The fraction/influence product associated with the safe site is then added to the parallel fraction/influence product associated with the unsafe site. The sum of the fraction/influence terms for nesting site reflects how nesting site affects haplotype reproduction (again, without interactions). If one simply proceeds to quantify all the causes by summing the fraction/influence products for each of their values, and then multiplies the sums together, the result is the first term in the numerator of (3) (see Hedrick (2005, 177) for an application of this technique in the classical population genetics context). 
	The second term in the numerator of (3) quantifies interactions among causes. Suppose the haplotypes are subject to predation from the air. Aerial predation (A) has two possible values, predated (P) and ignored (I). Suppose that choosing an unsafe nesting site is deleterious only in the presence of aerial predators who patrol only a portion of the population’s territory. Were (3) to include only the first term in the numerator, it could not be used to quantify the influence of nesting site and predation together: there is no single value we should assign to the influence of unsafe nesting sites on reproduction, since its value depends on that of another cause, aerial predation. The second term of the numerator provides the necessary flexibility to accommodate this dependency.
	To make the example more definite, imagine a deterministic system in which nesting site and aerial predation are the only causes of system dynamics, focus interest on a single haplotype, i =1, and break out the sums and products in (3) for the case at hand:
 (4)
Suppose we treat the case of haplotypes that take a safe nesting site as a base case. Organisms in safe nesting sites are unaffected by predators, such that , while , making unsafe nesting sites lethal to all offspring. Further, we set both  and , thereby quantifying no influence from aerial predation in the first term of (4). To accommodate the fact that unsafe nesting sites are lethal only in the presence of predators, we set the interaction term w14 to 1 (where α14 is the fraction of haplotypes with unsafe ignored nests). This way, the fitness of the haplotypes in unsafe nesting sites is restored to 1 for that fraction of the haplotypes that nest in unsafe sites but are ignored by the predators. In effect, unsafe nesting sites are initially treated as always lethal in the first term of (4), and then this is modified in the last term such that they are made lethal only in the presence of aerial predators. The other interactions terms, w11, w12, w13, are set to zero.
	It is worth emphasizing that the second term of (3) introduces a “correction” term for every possible interaction among all the causes. Were we to add a third two-valued cause to the above simple system, say, egg color, either blue or white, the interaction term of (3) would feature eight terms, one for each combination of causal values from our three two-valued causes. If blue eggs are especially hard for aerial predators to spot, then the formalism would include a positive correction term to account for this: α15 would pick out the fraction of unsafe predated nests with blue eggs, while w15 would take the value 0.5 to account for how, say, half such nests are overlooked by predators due to the color of the eggs they contain. Generally, the sum in (3) will feature a number of interactions terms equal to the product of the number of values of each cause modeled, though often these terms will be set to zero, as, for instance, would be the term for blue eggs in unsafe ignored nests. Critically, there are enough correction terms in (3) such that even if every cause of haploid reproduction interacts with every other cause such that changing the value for any cause affects the influence of all the others for each of their values, (3) will nevertheless have the requisite expressive capacity to correct for the interactions.[footnoteRef:5]  [5:  Strictly speaking, (3) has too much expressive capacity since one combination of causal values can be treated as a base case needing no correction.] 

	The quantification of interactions by additional terms is widely practiced in formal modeling of biological systems, most familiarly in quantitative genetics where interaction terms are added to linear equations to handle cases of epistasis (see, e.g., Kirkpatrick, Johnson et al. 2002). The technique is exploited here with maximum generality to generate a perfectly general equation applicable to any system governed by classical population genetics. The technique is useable, essentially unchanged, for diploids, where alleles rather than haplotypes are picked out by frequency terms, and diploid-specific causes, such as alleles at nearby loci, sex differences and meiosis, are handled just as environmental influences are.[footnoteRef:6]  [6:  Essentially, (3) is generated by assigning values in accordance with what Abrams calls organism circumstance probabilities and organism effect propensities; compare the first term in the numerator of (3) with Abrams’ equation (2) (Abrams 2007, 126). ] 

6. The advantages of classical population genetics
Our focal question, why classical population genetics quantifies the influence of some causes using probabilities when these could be otherwise handled, can now be approached by means of the question of why we use classical equations (1) and (2) rather than (3). An inquiry into the merits of modeling systems using (1) and (2) as compared to using (3) should show why classical population genetics quantifies causal influences by means of the probabilities introduced in (2).
	I detect two ways in which (1) and (2) are more attractive than (3). First, (3) is more epistemically demanding than the pair of (1) and (2); second, (1) and (2) are recursively structured and (3) is not. Both these advantages are closely related to the explanations of probability proffered by both the generalists and ignorantists.
Consider first the epistemic barrier to deploying (3). Every cause of system dynamics is considered separately in (3), as are all the interactions among these, such that deploying the equation would require knowing enough to specify the influence on reproduction of every cause of reproduction for all population members as well as exactly what fraction of which haplotypes take exactly which values for each cause. Getting in position to deploy the maximally deterministic (3), even for a single generation, is a huge epistemic challenge, one that would be essentially impossible to meet outside a laboratory (Rosenberg 1994).
What’s worse, the [image: ]parameters in (3) are time-indexed. To deploy (3), a researcher would have to know facts about future values of causes. She would have to get a grip not only on how many haplotypes of each sort would be affected by, say, forest fires in one generation, but also the same figure for all future generations over which she applies her model, something that would require accurately predicting future forest fires as well as the future locations of haplotype-identified future population members with respect to the fires (for a in-depth discussion of these sorts of challenges, see Glymour (2006)).
Consider now how classical models, with a couple of important exceptions (see section 9 below), feature time indices on frequency terms only. Since distributions of next-generation initial frequencies can be inferred using the classical equations for the current generation, the equations can be used recursively to infer frequencies at arbitrary future times. Classical models may be, and typically are, used to make inferences about the dynamics of target systems over multiple generations. Unlike (3), (1) and (2) need not be updated on a generation-by-generation basis.[footnoteRef:7] [7: Glymour (2006) denies that classical population genetics models can serve to reliably predict system dynamics on the grounds that the causes quantified by fitnesses in classical models change in their distributions over genotypes across generations. That fitnesses are used in this way is then gainsaid by Gildenhuys (2011, see also Glymour 2013). Here I simply assume that classical population genetics does not systematically fail to do what it is designed to do, and hence can be used to make reliable inferences about reproduction rates over multiple generations.] 

Two sorts of inferences about multi-generational dynamics are commonplace. Analytic inferences concerning future frequencies can be made when causal influences quantified by Nev are idealized away and (1) alone is used. When (2) is retained and Nev given a realistic value, inferences about system dynamics can still be made by means of simulations or, in a limited range of cases, by means of diffusion theory. These techniques, too, depend on the recursive structure of the equations.[footnoteRef:8] [8:  Equations determining a single value for effective population size for populations of fluctuating census size exhibit another instance in which classical equations are specially structured to function recursively (Rice 2004, 111) ] 

	The benefits of the classical treatment are achieved by quantifying the influences of some causes probabilistically in (2). On the classical treatment, we divide the burden of quantifying causal influences over haplotype reproduction into two steps. Some causal influences are handled in (1): they are quantified by the w parameters, either in the form of fitness values or fitness functions. Other causal influences are handled in (2); these are treated as having a random influence on system dynamics and their influences are quantified en masse by Nev. Which causes are quantified in each step is a matter of considerable debate among philosophers (Beatty 1984, Millstein 2002, Gildenhuys 2009, Ramsey 2013), but standard examples of causes quantified in (2) include lightning strikes, forest fires and meiosis (see section 7 below for a full explicit characterization).
	Using classical models, researchers may quantify the influence of lightning strikes and the like by means of a time-invariant Nev parameter even though the strikes do not kill off the same fraction of each rival haplotype in every generation. By contrast, (3) must be updated as the lightning kills off different fractions of population members in each generation. The cost of quantifying lightning and such by means of Nev in (2), however, is a loss of precision; a distribution of possible future haplotype frequencies is inferred by means of (1) and (2), whereas (3) yields exact haplotype frequencies for deterministic systems and maximally precise ones for indeterministic ones. 
	We have, then, a pair of answers to our key question concerning the motivation for probabilities in the classical treatment. Probabilities make possible two things: (i) an alleviation of the need to understand the exact fraction of population members who take each value for every cause of reproduction, and (ii), the opportunity to make inferences about the dynamics of target systems using inferential techniques that depend upon recursive structure.
These answers clearly build upon both the ignorantist and generalist positions. The generalists are right that generality of application is achieved by using classical treatments such as (1) and (2) rather than maximally deterministic ones such as (3). In particular, classical equations exhibit vertical generality, generality across multiple generations of a single population that makes possible inferences about system dynamics over multiple generations.
For their part, the ignorantists are correct that introducing probabilities into the theory makes the theory easier to deploy and hence a more realistic option for researchers with limited understanding of target systems. Researchers’ epistemic limitations do explain why there are probabilities in population genetics. Still, the position taken here is different in important ways from ignorantism; I discuss the differences in detail in the following section.
7. Nev as a catch-some
Recall that, in the classical treatment, the influence of some causes is quantified by fitness parameters in (1), while the influence of others is quantified by Nev in (2). In this section, I discuss the specifics of a particular proposal concerning what is quantified by Nev, that of Gildenhuys (2009), so as to contrast explicitly the classical and maximally deterministic treatments of the same causes.
	Note, first, that the issue of what causes are quantified by Nev in (2) is distinct from the question of whether the notion of drift should be given a causal interpretation. Some writers argue that drift should be understood as an effect or a product (Brandon and Carson 1996, Walsh, Lewens et al. 2002), though these writers do not observe strict adherence to the product conception of drift (see Gildenhuys (2009, §3)). But only Brandon and Carson (1996) deny that Nev quantifies causal influences of some sort or another. Besides, it is well understood how a variety of causal influences influence Nev (see discussion below).
	Gildenhuys’ (2009) position on what is quantified by drift is justified by the formal structure of classical models. In particular, Gildenhuys uses as a crucial premise that (2) issues in a binomial distribution for next-generation haplotype frequencies. A binomial distribution is symmetrical around post-selection frequency and Nev controls the variance in the binomial distribution only; its mean is determined by (1). That the distribution is symmetrical means that the causal influences quantified by Nev must be such that they are equally likely to increase as to decrease the frequency of either haplotype. This constraint allows us to specify necessary conditions for quantifying a cause by means of Nev.
	As argued in Gildenhuys (2009, §7.1), causes of next-generation frequencies must have the following features to be quantified by Nev: they must not interact with the variations used distinguish haplotypes, they must lack statistical associations with these same variations, and they must be non-degenerately distributed. Gildenhuys calls causes that meet these conditions NINPICs.
	Gildenhuys’ (2009) defense of the above characterization considers each criterion in turn. Causes that interact with geno- or haplotype, that is, ones with different influences on the reproduction of the different types, will not be just as likely to increase or decrease each type’s frequency. Instead, interactive causes will increase the reproduction rate of whichever type is least adversely affected or most benefited by them. Similarly, causes of reproduction that exhibit statistical associations with haplotypic variations will not be just as likely to sway frequencies either up or down. A deleterious cause will decrease the reproduction rate of whichever type is most often affected by it (and mutatis mutandis for causes that promote reproduction). Lastly, degenerately distributed causes (“non-pervasive” causes in Gildenhuys (2009)) have the same influence on every population member, and hence cannot randomly swing frequencies in any direction (see Gildenhuys (2009 §7.1) for a longer discussion). 
	One essential difference, then, between the classical treatment and the maximally deterministic one lies in the treatment of causes that lack both interactions and statistical associations with haplotypic variations and are non-degenerately distributed. In (3) these are treated no differently than other causes, but on the classical treatment, the influences of these causes are quantified en masse in (2). Moving from the maximally deterministic treatment to the classical one would accordingly require distinguishing all the causes meeting Gildenhuys’ conditions for drift from among the G causes.[footnoteRef:9] These would then each be treated, by means of (2), as contributing to the creation of a sample of reproducers from candidates. The way in which the causes create the sample, along with other demographic factors such as hierarchical structure, would determine the value of Nev for the system (see Nunney (1999, eq. 14) for a general equation for Nev). I consider a specific example of how the influence of an arbitrary NINPIC is quantified on the classical and maximally deterministic treatments in the appendix.  [9:  Moving from the maximally deterministic treatment to the classical one would require other transformations as well.] 

	It is worthwhile to note that the classical formalism does not further restrict, beyond the ways just rehearsed, what causes may be quantified by Nev. In particular, causes quantified by Nev may occur at any point in any lifecycle phase: there is no selection phase followed by a drift phase in the lifecycles of natural populations on the classical treatment. This last fact may be obscured by the practice of calculating the influence of selection on next-generation frequency first, by means of (1), while calculating the influence of drift afterwards, by means of (2). The mathematical order does not mirror the natural one, however. Among causes upon which the value of Nev is thought to depend heavily are droughts, extreme winters, floods, hurricanes, parasites, and disease (Frankham 1995, 100-01). Of these, many will fell juvenile as well as mature organisms. Moreover, the effect of sea currents on the dissemination of gametes has an immense influence on Nev in some populations of marine organisms, the “Hedgecock effect” (Hedgecock 1994). Furthermore, nest predators and brood parasites, which equally operate very early in the lifecycle, may have a large influence on Nev (Hedrick 2005). Also, some processes that occur at definite moments in the lifecycle may be quantified either in (1) or in (2) depending on how they work: the process of meiosis is quantified in the diploid version of equation (1) if meiosis is biased, while it is quantified in equation (2) if it is fair. Generally, there is no association between the types of causes quantified in (1) or (2) and the time at which the causes strike within a generation. What determines whether a cause counts as selection or drift is not timing, but whether the cause is a NINPIC.
	It is worth recalling, too, that the probabilities introduced by means of Nev in (2) do not exhaust the probabilities that may be introduced into the classical formalism. Probabilistic functions may be introduced into (1) to capture a myriad of processes, including selection. To take a well-known example, sub-groups may be picked out from a macro-population by means of random samplingin cases where sub-group membership contributes to determinations of fitness, and this process may be captured by probabilistic functions introduced into (1) (see, e.g., Kerr and Godfrey-Smith 2002). But probabilities of this sort have been set aside; my interest lies specifically in the motivation for introducing “drift” into the classical treatment.
8. NINPIC credentism and GHR ignorantism
It is worth emphasizing how the position taken here is different from that of the ignorantists. I do not argue that one can stuff just any cause about which we are ignorant into Nev. We saw earlier how Millstein exposed the failure of this strategy. Instead, only causes meeting Gildenhuys’ conditions for drift can be quantified by Nev. Unlike Rosenberg’s poachers, NINPICs are just as likely to swing population frequencies in each every direction such that their influences can be reliably, if not precisely, quantified as contributing to a sampling process governed by (2). 
The view defended here is that probabilities do not track ignorance such that more of the second means more of the first. Instead, researchers may be ignorant of some facts about some causes and still use the classical formalism. In particular, researchers may be ignorant of the fraction of population members taking particular values for NINPICs. But predictive accuracy together with vertical generality will require that some causes be quantified by fitness coefficients or fitness functions in (1) rather than by Nev. This distinction is a principled one, having to do with the character of the causes and nothing to with what anyone knows about them (Millstein 1996).
	To see this last point, consider a possible ignorantist response to the position taken here. NINPICs, it might be alleged, are not importantly different from causes like the poachers, even though the poachers interact with the variations that distinguish the rival types in the population and NINPICs do not. After all, NINPICs may swing haplotype frequencies one way or another, and better knowledge of their influence would allow one to quantify them deterministically. Similarly, the poachers (and other interactive causes) affect haplotype frequencies and better knowledge of their influence would again allow them to be quantified deterministically. So, the objection goes, that while NINPICs are different from non-NINPICs, the difference is not a difference that makes a difference to the successful quantification of the influences in the quantitative treatment.
	My response is twofold. The first aspect is to insist upon the constraints imposed by formal structure of classical population genetics: the distribution for next-generation haplotype frequencies must be binomial, given how effective population size functions in (2). Interactive causes tend to swing frequencies in a particular direction and so simply cannot be quantified by a binomial distribution as NINPICs can. Drift is not akin to error terms in structural equation models. The distributions of error terms are not fixed in advance. Instead, error terms must be given an appropriate distribution based on empirical data such that they reliably quantify unknown causal influences, including ones that may, on average, increase or decrease the values of effect variables.
	Secondly, it is helpful to focus upon the recursive use of classical models because doing so magnifies the cost of quantifying in (2) causal influences that tend to move haplotype frequencies in a definite direction. For the sake of simplicity, assume no other non-NINPICs affect giraffe height besides the poachers. Over multiple generations, the poachers will bring down mean giraffe height; at the very least, the probability that they do so is high, much greater, anyway, than 0.5. But, if we quantify the poachers’ influence using (2), we fail to draw this conclusion: we infer that mean giraffe height is just as likely to increase as to decrease in the long run. When a model is used recursively, the cost of quantifying interactive causes like the poachers by means of Nev in (2) is compounded. 
9. Interpretation
The previous sections defended a stance on the motivation for introducing probabilities into population genetics, but this stance does not settle how the probabilities should be interpreted. In this section, I argue that the probabilities in population genetics can be given a definite credentist interpretation. Recall that probabilities are interpreted as credences when they are interpreted as setting normative constraints on agents’ confidence ascriptions. The credentist interpretation rests upon the possibility, available at least in principle, of using time-indexed terms in classical models—temporally variable selection functions—to quantify the influence of causes whose influences are usually quantified by Nev.
Crucial to the use of (1) and (2) for making inferences about system dynamics over multiple generations is the absence from (1) and (2) of time-indexed, right-hand side quantities that are not governed by recursive equations. There are two exceptions to the general rule that systems of classical equations feature recursions upon frequency variables alone. Systems undergoing niche construction are modeled using an expanded set of recursive equations, including ones for environmental variables that figure in fitness functions (Laland, Odling-Smee et al. 1999). A second exception is the case of systems undergoing temporally variable selection. In such systems, future distributions of a temporally varying, interactive cause of population member reproduction cannot be inferred from past states of the system, making recursive deployment of classical equations impossible. Instead, time-indexed fitness variables are used to quantify the influence of the cause (Haldane and Jayakar 1963, Hedrick 2010, 176-78) .
Though time-indexed fitnesses are requisite for interactive causes that vary unpredictably, nothing bars the use of time-indexed right-hand side fitnesses in classical models even for causes that do not interact with haplotypic variations. This is important. NINPICs, by definition, do not interact with haplotype variations and hence need not be modeled by means of time-indexed fitnesses in (1). But that NINPICs are non-interactive merely makes quantification of their influences by means of Nev possible; it does not make such quantification mandatory. A researcher who somehow got a grip on what fraction of population members would take what values for a NINPIC need not quantify it by means of Nev in (2), provided she also knows its influence on reproduction. Instead, she may quantify it by using time-indexed fitness functions like the ones used for temporally varying interactive causes.
To see this, suppose a researcher knows that a disease, D, a NINPIC, is deadly for all haplotypes. Suppose further she knows what fraction of each haplotype contracts the disease in each generation over the next hundred generations, the time frame about which she seeks to infer system dynamics. Essentially, she knows the values in (3) of [image: ]and[image: ] for all i for t = 1, …, 100. Though it is standard to quantify the influence of the disease by means of Nev, this (fantastically) epistemically well-placed researcher could quantify the disease instead by replacing the wi’s in (1) by time-indexed fitness coefficients [image: ], where
[image: ]				(4).
(4) would provide for a non-probabilistic quantification of the influence of the disease, and the left-hand side of (4) is useable in the place of wi in (1) by anyone who can specify the requisite w and α parameters on the right-hand side of the equation.
Given that quantification by means of Nev is optional even for those causal influences that are suitably quantified by that term, and given further that there exists within the theory a procedure for modeling other temporally varying causes using time-indexed fitness functions in (1), the probabilities in the theory can be given a definite credentist interpretation. The probabilities introduced by Nev can be understood to set out normative constraints upon the beliefs of researchers who occupy a specific epistemic situation, that of being unable to use time-indexed fitness functions to quantify the influence of causes ordinarily quantified in (2) by Nev. Thus, the interpretation of probability set forth here allows us to say what someone would have to learn to remove probabilities from an application of the theory. 
10. Conclusion
I have approached the question of why population genetics is a probabilistic theory by considering the advantages of the classical approach over an alternative maximally deterministic one. The advantages I detect for the standard treatment provide a partial vindication of two of the main accounts of the motivation for introducing probability into population genetics: Probabilities are introduced into classical population genetics because of epistemic barriers that prevent the use of a deterministic alternative, and also because they give generality to the equations that makes possible their recursive deployment.
Appendix
To see how NINPICs are modeled differently in the classical and maximally deterministic formalisms, that is, to set up a translation scheme between the formalisms, I consider how an arbitrary NINPIC is modeled in each to show how to move back and forth from one formalism to the other. I consider a simple population whose effective population size is completely determined by its census size (Nc) and its variance in offspring number (Vk). That is, the population lacks hierarchical structure, inter-generational variations in census size, inbreeding, biased sex ratio, and other demographic features that alter Nev (for the impact on Nev of these demographic variables, see Nunney (1999). Suppose that in generation z, the population is beset by lethal nest predators, a NINPIC that both doubles Vk and halves Nc.
	Quantifying the influence of the nest predators in (3) is a matter of setting appropriate values in the first term. Suppose in a population of two competing haplotypes, the nest predators destroy  of the haplotype i = 1 and  of i = 2 in generation z. In (3), the nest predators are quantified by means of a cause g = w with two values, x for predated nestlings and y for ignored ones, such that these terms are introduced into equation (3):
 

Of course, the nest predators will not predate exactly the same fractions of each haplotype in each generation. The values for and will almost certainly be different from the values for and . Modeling the dynamics of the population across these two generations would require knowing the new fractions of each haplotype taking each value for nest predation in generation z + 1, and so on for further generations.
	Quantifying the influence of the nest predators by means of (2) is a matter of appropriately altering the values of the arguments determining Nev. In the population at hand,  (Gildenhuys 2009). If, absent the nest predators, Vk = A and Nc = B, then quantifying the influence of the nest predators in (2) is a matter of letting Vk = 2A and letting Nc = ½B. Note that this value for Nev remains unchanged across generations. 
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