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1 Introduction

Regarding the philosophical literature on models and modeling, Michael
Weisberg writes,

What this new literature about modeling lacks, however, is a
comprehensive account of the models that figure in the practice
of modeling. (Weisberg, 2013, 4)

Simulation and Similarity provides such a comprehensive account of mod-
els. Specifically, the work provides an account of what models are (in-
terpreted structures), the different types of model structures found in the
sciences (concrete objects, mathematical objects, and computational struc-
tures), the types of modeling (target-directed, generalized, hypothetical, and
targetless modeling), the relationships between different types of idealiza-
tions (Galilean, minimalist, and multiple models) and representational ideals
(completeness, simplicity, 1-causal, maxout, and p-generality),
the relationship between models and their targets (weighted feature-matching
account of similarity), and an examination of robustness analysis (parame-
ter, structural and representational robustness). The positions articulated
are original, illuminating, and merit serious consideration and discussion by
philosophers of science and scientists themselves. One of its admirable fea-
tures is that are a few models used regularly throughout the text – the
Lotka-Volterra predator-prey model, the San Francisco Bay model, and the
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Schelling model. This gives one a good sense of how models are constructed,
analyzed, and evaluated by building familiarity with the same ones through-
out. Additionally, it can be read by a wide variety individuals be they philoso-
phers or scientists. But, obviously I came not to praise, so I turn to issues of
disagreement and where more light should be cast.

Weisberg notes that he has offered a ”model of modeling,” he writes, ”But
just as in a representation of any other complex phenomenon, philosophical
analysis will necessarily be partial and incomplete” (Weisberg, 2013, 6). As
such, it will only be similar to the phenomena in certain degrees and in
certain respects; it will abstract and idealize possibly distorting the target
for various purposes. However, this implies that his account may be but a
semblance of scientific practice. Below I explore just how much distortion is
present.

2 Ontology, Models, and Mathematics

According to Weisberg, a model is an interpreted structure. He claims we
should distinguish between three types of structures – mathematical, con-
crete, and computational. For example, the Lotka-Volterra predator-prey
model is partly a mathematical object, the San Francisco Bay model is in
part by a concrete object, and the Schelling model is in part by a compu-
tational structure.1 However, these models are only objects or structures
in part. What structures lack which models possess is an interpretation
(Weisberg, 2013, 15). An interpretation is what he terms a construal which
includes an assignment, an intended scope, and fidelity criteria. The modeler
stipulates what parts of the structure or object denote which parts of the tar-
get. Of course, not every property of the structure denotes some property of
the target nor are all properties of the target denoted by some property of the

1Objects and structures are different if recent philosophy of mathematics is correct.
Following Zermelo, we can define the natural numbers as 0 = ∅, 1 = {∅}, 2 = {{∅}},
and more generally n = {n − 1}. Following von Neumann, we can define the natural
numbers as 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, and more generally n = {0, 1, ..., n − 1}. It
follows that on first proposal that 2 6∈ 4 and on the latter 2 ∈ 4 (Benacerraf, 1965).
Mathematical structuralists note that both proposals satisfy Peano’s axioms and claim
the natural numbers, and all mathematical structures, are not objects – which objects?
– but ”positions” in a pattern (Resnik, 1997; Shapiro, 1997; Hellman, 1989). Following
Weisberg, I will speak indiscriminately between objects and structures even if they are
importantly different.
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structure. Additionally, they implicitly or explicitly specify fidelity criteria
for the model to adequately represent target system’s ”surface” properties
(dynamic fidelity) or ”deep” causal structure (representational fidelity).

Consider one of Weisberg’s chosen models, the Lotka-Volterra predator-
prey model. Suppose that V is prey abundance, P is predator abundance,
r is the rate of increase of the prey independent of the predator, a is the
capture rate of prey by predator, b is the conversion efficiency rate of prey
captured by predators into new predators, and q is the mortality rate of the
predator independent of the prey. If make further assumptions regarding the
functional form of the equations, we can then represent our predator-prey as
follows,

dV

dt
= rV − aV P (1)

dP

dt
= baV P − qP (2)

On his view, we have provided an assignment to a mathematical object which
can be similar to a target system or type of target system. Note that (1) and
(2) do not describe a token or type of predator-prey system. They describe
the model. The model, the interpreted mathematical structure, if it is an
adequate representation, resembles the target system in accordance with the
fidelity criteria. Weisberg is very clear on this point. He writes,

When we talk about models, write about them, or show a pic-
ture or diagram, we are employing a model description. These
descriptions must be distinguished from the models themselves.
(Weisberg, 2013, 33)

As another example,

Equations or other kinds of statements specify mathematical ob-
jects and these objects satisfy their descriptions. However, un-
like in the case of concrete models, mathematical models can be
studied and manipulated only via their descriptions. While the
Lotka-Volterra model itself is not a set of equations, it can be
studied only through proxies such as these equations. This is
probably the main reason that scientists often informally refer to
equations as models; their attention is focused on these equations.
(Weisberg, 2013, 37)
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The first question I have concerns whether the distinction between types
of structures mentioned above is really substantive. Relational structures
consist in a set of objects with relations on them. So, if models are rela-
tional structures, then a model M would be an ordered pair of objects D
and relations R; M =< D,R >. In the three cases above, we have relational
structures which differ with regard to the objects or relations included. A
mathematical model takes a mathematical object like the real numbers and
defines a set of mathematical relations, e.g. functions, on them. These func-
tions are what are captured by equations like (1) and (2). A concrete model
is a set of concrete objects with ”physical” relations on them which include
the intrinsic and extrinsic properties of interest. Finally, a computational
model is a set of states and a set of procedures/algorithms, e.g. transition
rules, defined on them. The is a straightforward unity amongst models. They
are interpreted relational structures.

Weisberg never examines whether models are interpreted relational struc-
tures. This view does not imply concrete models are of interest only because
of their mathematical properties nor denies that we ”compare models to tar-
gets in structural, behavioral, and other nonobviously mathematical ways”
(Weisberg, 2013, 21). It would still be true that ”concrete models are much
richer in properties than just the mathematical ones” (Weisberg, 2013, 21)
since there is no restriction on what R includes if D is a set of concrete partic-
ulars.2 He might think that the above proposal conflates how mathematical
and computational models explain.

However, I think it is important to distinguish between these
mathematical models and computational models because of how
they are used in giving scientific explanations. When one invokes
a computational model to explain some phenomenon, one is typi-
cally using transition rules or algorithm as the explanans... Con-
versely, in the types of models I am calling mathematical models,
the mathematical structure, or relationship among variables, car-
ries the explanatory power. (Weisberg, 2013, 20)

But, there is no such difference. In a computational model, transition rules
describe the relations between states. Likewise, in a mathematical model,

2It is not clear what is means for a concrete particular to have a mathematical prop-
erty. Suppose Jill is first in line and Jack is second. Does Jill have the mathematical
property being first in line? Or, is this simply a spatial relationship between Jill and Jack
represented using mathematical concepts Field (1980)?
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equations describe the relations between variables. An explanans can be
constructed from the states and variables or from the rules and equations.
Computational and mathematical models are in the same boat. All of this is
a friendly amendment to Weisberg’s approach since it is says models really
are interpreted relational structures.

Nevertheless, with or without my friendly amendment, there is a serious
worry lurking behind Weisberg’s proposal. Consider the following passage.

For my purposes, I need only to assume that it makes sense to talk
about mathematical objects such as functions and state spaces
and that these objects are identical to the equations we use to de-
scribe them. Any metaphysical theory, even a highly deflationary
one, that allows us to make sense of these aspects of mathemati-
cal practice is sufficient for my purposes. Which of these theories
is true, of course, is a much more complicated issue. (Weisberg,
2013, 29)

First, given that Weisberg claims models and model descriptions are distinct,
he cannot accept a deflationary view where models are just model descrip-
tions (e.g. equations). Second, if models are distinct from model descriptions
and there are mathematical models, then Weisberg is committed to the ex-
istence of mathematical objects and hence mathematical realism. Now, one
might think ”So what?”; why bind one’s position on models and model-
ing to a compatibility with mathematical anti-realism? The third worry is
that Weisberg’s mathematical realism is incompatible with his account of the
model-world relation.

Consider a simple model of a pendulum,

m

(
d2x

dt2

)
= −

(
mg

l

)
x (3)

where x is position, m is mass, g is the gravitational constant, and l is the
length of the pendulum. For a pendulum with very little friction, with small
angles of swing, and very short time intervals, there are fidelity criteria such
that this model can adequately represent a pendulum’s oscillations. However,
on Weisberg’s view, this requires that the interpreted mathematical object
and pendulum are relevantly similar and this is subject to what I will call
Hughes’ Objection. R.I.G. Hughes wrote,
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...[W]e may model an actual pendulum, a weight hanging by a
cord, as an ideal pendulum. We may even be tempted to say
that in both cases the relation between the pendulum’s length
and periodic time is approximately the same, and that they are
in that respect similar to each other. But the ideal pendulum
has no length, and there is no time in which it completes an
oscillation. It is an abstract object, similar to material pendulums
in no obvious sense (Hughes, 1997, 330)3

An object can have the properties periodic time and length only if it is spa-
tiotemporal. Mathematical objects are not spatiotemporal. Hence, they
cannot have the properties periodic time and length. Two objects are similar
only if they share properties. Mathematical objects and pendulums cannot
share the properties periodic time and length. Therefore, they cannot be
similar with respect to periodic time and length.

It is important to note two things. First, this argument generalizes to
any target which is a concrete particular and model which is in part a math-
ematical object where the properties are had only by concrete particulars.
Second, note the the account of similarity as sharing of properties is presup-
posed by Weisberg’s own weighted feature matching account of similarity.
Expressions in his account include Ma ∩Ta and Mm ∩Tm; the intersection of
model attributes Ma and target attributes Ta and the intersection of mech-
anisms between Mt and Tt. If no attributes or mechanisms are shared, then
his measure S(m, t) = 0 since the numerator |Ma ∩ Ta|+ |Mm ∩ Tm| = 0 and
the relevant terms in the denominator |Ma−Ta|+ |Ta−Tm|+ |Tm−Ta| 6= 0.
That is, there attributes and mechanisms the model has the target lacks and
vice versa. Thus, the claim, ”This actual pendulum is similar in its period
and length to a model described by (3)” is false and necessarily so.4

3Hughes to my knowledge is the first philosopher of science to press this objection.
However, Martin Thomson-Jones (2010) has offered it as well with Toon (2012) following
suit. The first philosopher, of course, was Plato. In Book VII of The Republic, ”[The]
science [of geometry] is in direct contradiction with the language employed by its adepts....
[They talk] of squaring and applying and adding and the like....whereas in fact the real
object of the entire subject is...knowledge...of what eternally exists, not of anything that
comes to be this or that at some time and ceases to be.” (Cooper and Hutchinson, 1997)

4Mathematical objects, if they exist, can have non-essential properties. For example,
suppose my favorite number is 76. If the number 76 has the property of being Jay’s
favorite, it has it accidentally not essentially. Some might object that this is a ”Cambridge
property.” Fair enough.
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Weisberg could respond to this argument in three ways it seems to me.
First, he could claim that mathematical objects and structures are not ab-
stract but concrete (Field, 1980). If mathematical entities are concrete, they
could possess properties like periodic time and length. However, this is un-
likely to work. Consider the claim that the set of real numbers is larger than
the set of natural numbers even though both sets have an infinite number of
members. If concrete particulars are its truthmakers, then must be lots and
lots and lots of truthmakers (i.e. their cardinality must be least 2ℵ0 !). As
philosopher of mathematics Stewart Shapiro writes,

...[I]t seems reasonable to insist that there is some limit to the size
of the physical universe. If so, then any branch of mathematics
that requires an ontology larger than that of the physical universe
must leave the realm of physical objects if these branches are not
to be doomed to vacuity. Even with arithmetic, it is counterin-
tuitive for an account of mathematics to be held hostage to the
size of the physical universe (Shapiro, 1997, 86).5

Second, Weisberg could respond to Hughes’ Objection by denying that
mathematical objects exist. This fares no better than the first response.
Necessarily, if x and y are similar, then x and y exist. Hence, if it is true that
mathematical objects do not exist, then it is false to claim that mathematical
objects are similar to empirical systems. Thus, Weisberg faces the following
dilemma. With respect to properties like periodic time and length, either
there are models which are mathematical objects in which case they cannot
be similar to concreta or there are no models which are mathematical objects
in which case they cannot be similar to concreta.

A third response is this. Hughes’ Objection depends on the claim that
mathematical objects cannot have the spatiotemporal properties that pen-
dulums do. However, suppose that the target is represented as a relational
structure. For example, if a our model M =< D,Ri > and the target model
is M∗ =< D∗, R∗i >, then they can share properties. For example, M and
M∗ can be isomorphic, homomorphic, etc. This it seems to me is Weisberg’s
best option, and in a different context, he seems to endorse it.

5In Hartry Field’s nominalization of Newtonian mechanics, he claims we can replace
mathematical objects with space-time points and regions. Whether space-time points and
regions are concrete is another thing since they lack extension, mass, and ”locations”
(Resnik, 1997)
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But how can mathematical and computational models be com-
pared to concrete targets? What possible similarities do they
have? I think this objection can easily be resolved. Mathemati-
cal and computational models, as well as concrete models in some
cases, are compared to mathematical representations of targets,
not the targets themselves. Each state of the target is mapped to
some mathematical space. In simple, dynamical models, the map-
ping is such that the major determinable properties (e.g., species
abundance, pressure, time, temperature, etc.) of the target are
mapped to dimensions of a state space, and specific states are
mapped to points in this space. Now one interpreted mathemat-
ical object can be compared to another, and we avoid problems
about comparing mathematical properties to concrete properties.
(Weisberg, 2013, 95)

Still, mathematical and concrete objects still don’t share properties. Con-
sider an isomorphism between M and M∗. There is a function f such that
< o1, ...., on > ∈ R if and only if f(o1), ..., f(on) > ∈ R∗. At best, we have
shown that there is a second-order property of isomorphism shared between
two relational structures. However, there is no R or R∗ respectively such that
an element of D and D∗ both have it. Therefore, even if here are mappings
between interpreted relational structures there are no shared spatiotemporal
properties between mathematical and concrete objects. Additionally, Weis-
berg is no fan of isomorphism and partial isomorphism accounts of the model-
world relationship. Hence, his account of the model world relationship cannot
rest on such shared second-order properties.6

From here, the path only darkens. One could claim that, at least in
the mathematical case, ”Models are created by their descriptions” (Weis-
berg, 2013, 33). How could writing down an equation create a mathematical
object? Likewise, one could claim that we simply stipulate that elements
of mathematical structures denote features of targets but this seems wholly

6Some of his criticisms of isomorphism apply mutatis mutandis to his account. If
isomorphism cannot capture relationships between features of models and targets because
it is relation between structures, then a set-theoretic similarity measure has the same
problem since it is between sets (Weisberg, 2013, 139-40). Additionally, he worries that
there are two many mappings from models to targets (i.e. target models). But, if modeler’s
intentions can pick out the contexually relevant similarities in the feature set, then they
can pick out the contextually relevant mappings.
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mysterious. Besides presupposing mathematical realism, how can we stipu-
late that a non-spatial, non-temporal object stands for a concrete one? We
can stipulate that an expression means such-and-such and that an equation
represents some target but this is a very different matter.

In summary, Weisberg has committed himself to a form of mathematical
realism. Second, the form of mathematical realism he has committed himself
to makes its well nigh impossible for mathematical models to be similar to
target systems. Third, the most plausible way out of the problem simply
pushes it back by claiming that models are similar to target models but we
are left with the same problem with how target models represent targets.7

3 Fictionalism

After the ruckus over mathematical objects, one might think that fictional-
ism about models looks very appealing. Weisberg is no fictionalist however.
Though some of his criticisms of specific fictionalist positions have force, I
am unconvinced that fictionalism about models in general has been shown
false. There are variety of fictionalist views so let’s consider a few of them.

The first view is the simple fictions account which says that, ”mathemat-
ical models are imaginary systems that would be concrete if they were real”
(Weisberg, 2013, 49). As purported confirmation of it, consider what John
Maynard Smith writes (Maynard Smith, 1989, 22),

Imagine a population of replicating RNA molecules. There is
some unique sequence, S, that produces copies at a rate R: all
other sequences produce copies at a lower rate, r... A sequence
produces an exact copy of itself with probability Q. If x0 and
x1 are the numbers of copies of S and non-S respectively, then
ignoring deaths, dx0/dt = RQx0, dx1/dt = rx1 + R(1−Q)x0.

7As a radical revision, it would be interesting to see Weiberg’s account coupled with
a structuralist account of mathematics. Mathematical model descriptions would be state-
ments which claim targets instantiate mathematical structures. There would be worries –
e.g. an idealized model could not be instantiated by a target system. Interestingly, Resnik
and Shapiro are both ante re realists accepting that mathematical structures exist inde-
pendent of instantiation. However, they think we can recognize simple patterns amongst
concreta thus have a posteriori knowledge of them. Hellman’s version is nominalistic – it
is a ”mathematical structuralism without structures.” I am indebted to Elaine Landry for
helping me think through modeling and mathematical structuralism.
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However, since Maynard Smith’s imaginary population of RNA does not exist
then it cannot be similar to any target system of interest. If they are to share
properties, then they both must exist. Hence, they cannot be similar.

Weisberg considers three more detailed accounts of fiction, that of Lewis
(1978), Walton (1990), and Levy (2012). On Lewis’ account, p is true in
fiction F if, and only if, the counterfactual ”p would have been true had
F been told as known fact” is true in every belief world of the author’s
community. A belief world of some community is any possible world where
all the overt beliefs of the community are true. So, consider a world in
which the stories of Sherlock Holmes are told as known fact and where the
beliefs of Sir Arthur Conan Doyle and his compatriots are true. This is
a world in which it is true that ”Sherlock Holmes lives on Baker Street.”
Hence, it is fictionally true for us. Analogously, Maynard Smith’s RNA
model description is fictionally true insofar as they are asserted as known
fact and the beliefs of Maynard Smith and his compatriots are true in at
least one possible world. Now, like many philosophers, Lewis’ modal realism
leaves me with an ”incredulous stare.” I simply find it too epistemically costly
to accept the existence of non-actual possible worlds of which we can have
no epistemic access.

Kendall Walton’s account of fiction in Walton (1990) is importantly dif-
ferent from Lewis’ and involves props, principles of generation, and make-
believe. In a game of make-believe, there are props about which participants
agree to certain conventions; i.e. principles of generation. When the props
are present they make-believe certain states of affairs to be the case. For
example, if we agree that tree stumps are bears or images of green slime on
a movie screen are a monster, then when we see those props we make-believe
that there are bears or monsters present respectively. In fact, we may even
have quasi-emotions towards them such as quasi-fear towards the green slime.
Moreover, in our respective games, it will be fictionally true that there are
bears or monsters present respectively. Thus, props and principles of gen-
eration generate fictional truths. With respect to Maynard Smith’s RNA
model, presumably the prop is the model description and given the conven-
tions amongst population geneticists we make-believe that they are true and
they are in the relevant game of make-believe.

Weisberg’s major objection to Roman Frigg’s Waltonian fictionalism (Frigg,
2010) is this,

If mathematical models are games of make-believe, they dont re-
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semble anything in the physical world because they are scientists’
mental states. Thus, Frigg has to give us an account of how we
can learn about real targets from games of make believe. This
is a nontrivial matter because now we are owed an account of
how something inside a modelers head can be compared with the
properties of a target. (Weisberg, 2013, 54)

There is a problem here but I think Weisberg has misdescribed it. His worry
is how can a mental representation be similar to a target system. However,
Waltonian fictionalism is not committed to that claim. Rather, the Walto-
nian fictionalist would claim that Maynard Smith is taking a certain attitude
to a prop; specifically, his make-believing that the differential equations are
true of RNA populations. If this is so, it is fictionally true that they are true
of some RNA population. In effect, the model doesn’t apply outside of the
game to some target, rather, the target enters the game. Whatever we learn
about it, we learn about it in the make-believe.8 The more serious objection
is sometimes models like Maynard Smith’s are explanatory and predictively
accurate. However, if modeling is a form of make-believe, then this scientific
success is make-believe as well. The predictive and explanatory success due
to modeling only occurs in a game. This view invokes a ”incredulous stare”
too.9

The last fictionalist view Weisberg considers is Arnon Levy’s de re ac-
count (Levy, 2012). We make-believe of some actual target that it has prop-
erties that it doesn’t have. So, of some population of RNA, Maynard Smith
make-believes that the model description truly describes it. One problem
for this view is that there must be an object which we make-believe has
some property. However, if there is no such object then we cannot make-
believe of it that it has certain properties. Otherwise, it is not a de re view.
The question is then are there objects which modelers posit which are non-
existent? As one example, sometimes philosophers suggest that population

8This is reminiscent of Bas van Fraassen’s claim that scientists be ”theoretically im-
mersed” in the scientific world picture (van Fraassen, 1980).

9Toon (2012) has recently defended a form of Waltonian fictionalism. He thinks we
compare fictions and the world. For example, we might compare the periodic time of an
make-believe pendulum and actual pendulum. We can do this, but why? Why think the
fiction tell us anything about actual pendulums unless it actually the model descriptions
”mimic” the world? The comparison even if possible is unmotivated. As with art, why
compare fiction and the world unless the former says something true about the latter?
And if this is so, the claims are true of both.
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geneticists posit infinite populations and then claim there are no such things.
In response, the de re fictionalist could claim there are populations and we
might make-believe that they are infinite in size.10 Thus, it seems that the
de re view is more credible than either Lewis’ or Walton’s view applied to
modeling.

Independent of these particular proposals, Weisberg provides four argu-
ments against fictionalism about models – the argument from interscientist
variation, the the limited representational capacity of fictions, the inability
of fictions view to account for modeling practice, and variation in the face of
modeling practice. Suppose we consider the Maynard Smith’s equations as
a prop for make-believe. Weisberg writes,

As proponents of the fictions account like to emphasize, math-
ematical descriptions are extremely sparse. If the mathemati-
cal description exhausted the focal properties of the model, then
models would be correspondingly sparse in their portrayal of fic-
tional scenarios. Fictions then cease to look at all like real-world
scenarios, militating against the claim that models can be com-
pared to real systems in a straightforward way. (Weisberg, 2013,
58)

However, as he notes, every fictionalist assumes there something like Lewis’
belief world or Walton’s principles of generation. Hence, there is more in a
make-believe than just the prop of equations. Thus, there is no more reason
to think that there is more problematic variation here than there is amongst
viewers watching movies or reading novels. Sure, there will be differences
of interpretation but this is true on Weisberg’s view too. Consider how
much debate there is over interpreting parameters in mathematical models.
So, there is variation in both the sciences and the arts, but neither seems
particularly objectionable.11

10I doubt we even need to be fictionalists regarding ”infinite population size.” Population
geneticist are claiming that as N gets larger and larger, the difference between actual and
expected reproductive success becomes as small as you like. I owe this point to Michael
Strevens.

11As a problem case, Weisberg thinks that one make-believes regarding a predator-prey
system that it must include make-believing that it has a spatial arrangement (Weisberg,
2013, 60). But, this is not given by make-believing the model description is true. But
insofar as one make-believe (1) and (2) are true this includes make-believing that the
system has spatial arrangement given by the term aV P . They are make-believing the
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A second objection is that is the fictionalist cannot account for the dif-
ferent representational capacities of models. He writes,

Fictionalists regard the Lotka-Volterra model as an imaginary
system composed of a predator population and a prey popula-
tion. Setting aside, for a moment, how specific this has to be (are
the predators sharks?), the model is composed of concrete, dis-
crete organisms that interact with one another. But the equations
used to describe the Lotka-Volterra model do so in terms of pop-
ulations. This means that no individual organism is represented,
in the mathematics, only populations of organisms. (Weisberg,
2013, 61)

According to Weisberg, the fictionalist considers ”a model of predation has
to be composed of concrete populations of discrete and distinct individuals”
(Weisberg, 2013, 62). But, their fictional model must be of individual or-
ganisms. Individuals are precisely what the Lotka-Volterra model leaves out.
This however misconstrues fictionalism. The fictionalist makes-believes that
the model description is true. Thus, the model is silent regarding anything
not specified by (1) and (2) and the common beliefs of the relevant commu-
nity. They need not have any particular beliefs or make-beliefs about the
”discrete and distinct individuals.”

A third objection is that Fictionalism distorts modeling practice. Accord-
ing to Weisberg, modeling often involves indirect representation. One writes
down a set of equations specifying a model and the model is relevantly sim-
ilar to the target. However, the Fictionalist makes-believe of some object
or objects that it has certain properties or some prop is true of it. Thus, it
is a form of direct representation. First, making-believing create an opaque
context and thus one can make-believe that p without make-believing that
q. So, if we make-believe about some predator and prey, we haven’t thereby
make-believed about sharks, rays, squid, cod, and lobster in the Adriatic Sea.
Second, one might deny that modeling is a form of indirect representation.
For example, one might claim that models are ”statements with adjustable
parameters” which when properly specified, then the model can be true of
some target of interest. Models just are abstract or idealized representations

prey and predator randomly associate in accordance with the ”law of mass action” –
they approximate ”perfect mixing.” Thus, the spatial arrangement is given by the model
description.
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and presumably are a species of familiar genus. Of course, we can study
those statements independently of any application if we like but they insofar
as they are representational they represent targets in the world. Consider
an analogy. Pablo Picasso’s Les Demoiselles d’Avignon can be viewed and
appreciated independently of whether this depiction abstracts or idealizes
five prostitutes. But, we might be interested in that art historical question
too.

Finally, Weisberg correctly notes unlike Maynard Smith, modelers do not
always begin with, ‘Imagine that...’ Often they will simply stipulate that
certain expressions stand for objects and properties as Karlin and Feldman do
when they write, ”Let’s x1, x2, x3 and x4 her the frequencies of chromosomes
AB,Ab, aB, and ab respectively, and r the recombination fraction” (Karlin
and Feldman, 1969, 65). When adding cover for prey in a predator prey
model, Maynard Smith avoids the ‘imagine that’ locution,

Suppose that some number xr of the prey can find some cover or
refuge which make them inaccessible to the predator. Volterra’s
equations without damping then become, ẋ = ax−cy(x−xr), ẏ =
−ey + c

′
y(x− xr). (Maynard Smith, 1989, 25)

But, not every game of make-believe explicitly begins ‘Imagine that...’, ‘Pre-
tend that...’, or ‘Make-believe that...’ When we watch films, read novels, play
games, etc. only rarely do we begin with such pronouncements. Likewise,
we can begin a game of make-believe by using other locutions like, ‘Let...’
and ‘Suppose...’.12 Consider children pretending they are superheroes. One
might say, ”Okay, you be Batman and I will be Superman.” This is much like
what Karlin and Feldman do above. So, I do not think modeling practice
undercuts fictionalism about models.

I want to make one last point regarding fictionalism. Often Weisberg
assumes that when one engages in make-believe or fiction, this requires that
one forms a mental image of some state of affairs. If so, then one would have
to explain how a mental representation is similar to some object or other
(Cummins, 1989, Ch. 2). However, according to the fictionalists above,
fiction and make-believe involve attitudes to propositions. We suppose that,
make-believe that, imagine that, etc. If this is right, then we need not form

12I don’t think however that whenever someone says, ”Suppose...” we are engaging in
make-believe. Likewise, I don’t think saying that models contain assumptions suggests
make-believe either any more than reductio ad absurdums or conditional proofs involve
games of make-believe.
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any mental images regarding what the propositions are about. We might
do this, but it is not required. And, if it is not required then it is not an
objection against fictionalism.

4 A Deflationary Approach to Models and

Modeling

Recent philosophical work on models and modeling arose out of analysis of
analogy in science (Hesse, 1966; Campbell, 2013), and a critique of theo-
ries as axiomatic systems (Suppe, 1977; Suppes, 1960; van Fraassen, 1980).
On the one hand, scientists use analogs to understand and predict features
of systems. Waves of water are like sound waves, particles are like billiard
balls, etc. As Mary Hesse suggested, scientists look for positive, negative,
and neutral analogies between one thing and another. On the other hand,
many philosophers thought that theories could not be axiomatic systems ac-
cording to the Received View of Theories. For example, if axiomatic systems
are relative to a language, then an axiomatized evolutionary theory in En-
glish would be distinct from an axiomatized evolutionary theory in French.
But, axiomatizing then misses the real structure of scientific theories. The
thought was, what really matters is not the language in which the theory is
expressed but the objects or structures that make it true. Thus, the Seman-
tic View of Theories claimed scientific theories are metalogical models. More
liberal model-based views appeared too. For example, some claim that sci-
entific theories are models which satisfy model descriptions and hypotheses
which are of the form, ”M is similar to S in a certain respects and to certain
degrees.” However, this has very awkward implications. If theories are pairs
< model, hypotheses >, then theories are not truth-apt; they are neither
true nor false. And, if theories are neither true nor false, then they cannot
believed, confirmed, make-believed to be true, etc (Chakravartty, 2001). My
worry with recent literature on models and modeling is that models have been
reified and the ”philosophically irrelevant technical questions” that worried
Bas van Fraassen are answered with ”solutions to purely self-generated prob-
lems” (van Fraassen, 1980, 56). Weisberg’s work keeps contact with scientific
practice and its concerns and is rarely subject to this worry, but I do worry
that this is true of some philosophical writings on model and modeling.

Let me sketch an alternative deflationary approach (Callender and Co-
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hen, 2009; Downes, 1992), which utilizes some of the resources Weisberg has
provided which I very much admire. Moreover, like Weisberg, I think sci-
entist’s intentions are extremely important; my account like Weisberg’s is
a ”Generalized Griceanism” (Callender and Cohen, 2009).13 Scientists use
various vehicles to represent the world including concrete objects, equations,
graphs, pictures, etc. These representational vehicles and the content they
express are the models. Weisberg writes,

While the Lotka-Volterra model itself is not a set of equations,
it can be studied only through proxies such as these equations.
This is probably the main reason that scientists often informally
refer to equations as models; their attention is focused on these
equations. (Weisberg, 2013, 136-7)

Here I disagree; I think when a student is asked in a mathematical modeling
class to ”write down a model” that is what they are doing. We devise those
representations by abstracting or idealizing target systems, which as Weis-
berg argues are abstractions from phenomena (c.f. Bogen and Woodward
(1988)). When representing, we abstract when properties of the target are
not included in the representation and idealize when we introduce in our rep-
resentation properties that the target does not have. Galilean, minimalist,
and multiple model idealizations all begin here. Moroever, scientists use those
vehicles to further various ends such as understanding (p-generality, 1-
causal, simplicity), anticipating (maxout), and intervening (1-causal)
in the natural world. These representational vehicles can be more or less
accurate; some of them are truth-apt. As a simple example, suppose we
want to represent density-dependent population growth of a population of
organisms in general. We say, ”Let ‘N ’ stand for the population abundance,
let ‘r’ stand for its rate of increase independent of other species, and ‘K’
represent the maximum number of organisms an environment in general per-
mits.” We can then use mathematical formalisms, in this instance, calculus,
to represent how this population in general changes with respect to time,

dN

dt
= rN

(
1− N

K

)
(4)

13Generalized Griceanism is committed to the idea that utterance or sentence meaning
can be understood in terms of speaking meaning and this can be understood naturalisti-
cally in other terms.
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This equation represents populations. It does not represent a mathematical
object which represents populations. And that is as it should be since if
for every mathematical model description denotes a mathematical model,
then inconsistent mathematical model descriptions would have to describe
impossible objects.

Now, we can study this representation and it properties independently
of whether or not it is true or false of populations and their growth rates.
Modeling can be indirect insofar as we analyze and investigate models in-
dependently of testing or evaluating them for their truth. However, we can
also determine if they are true, or as I prefer to say, ”true enough” (Elgin,
Teller). A model is true enough when it is imprecisely true with regard to
appropriate fidelity criteria. For example, suppose we estimate our param-
eters r and K giving us r∗ and K∗and place confidence intervals on them
r∗ ± x1 and K∗ ± x2. As a result, then (4) is transformed into,

(r∗ ± x1)N

(
1− N

(K∗ ± x2)

)
(5)

Our abstract model can be imprecisely true of populations. For various
reasons (Odenbaugh, 2005), we may choose to not work with true enough
models. False models can further a variety of aims by providing simple base-
lines, conceptual frameworks, etc (Odenbaugh, 2005). Additionally, we may
simply be interested in finding the best fitting model through some mea-
sure of goodness-of-fit or model selection criterion. We need not articulate
a measure of similarity de novo because statisticians have already developed
them. This is no problem for scientific realism provided that when we aim
to truthfully represent the system of interest we can show there are true
enough models available that could do the work (Wimsatt, 1987). No sci-
entific realist should think that representational accuracy is the only aim of
science. Additionally, we can devise families of models varying parameter
values, functional forms, or representational frameworks and see if there are
robust theorems that follow from independent models. That is, we can see
if the families exhibit parameter, structural, or representational robustness.
If we can replace idealizations in models of family with true enough assump-
tions, we can show that those idealized models are harmless (Odenbaugh,
2011). What about those idealizations as opposed to abstractions? These
are properties the model represents the system as having which it does not.
Our models cannot be imprecisely true with respect to them; if a model im-
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plies it has target has property when it doesn’t then it is false. However,
as Wimsatt (1987) has noted, our representations are ”piecewise approxima-
tions to reality”; Giere (1988) notes models are similar in certain respects and
to certain degrees. But that is because parts of models can be imprecisely
true even when they are false as a whole. We need not be interested in our
model being imprecisely true or more generally representationally accurate
in its entirety.

This the briefest summary of a deflationary approach which recognizes
that models and modeling are ubiquitous. Modelers exploit ordinary prac-
tices that are found not only in the sciences but in the arts and ordinary life.
We need not reify models and modeling; they are extensions of representa-
tion and communication tools we use all the time. And this sketch is in part
an extension of Weisberg’s excellent and thought-provoking Simulation and
Similarity.
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