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Abstract

The relation between probabilistic and explanatory reasoning is a

classical topic in philosophy of science. Most philosophical analyses

are concerned with the compatibility of Inference to the Best Expla-

nation (IBE) with probabilistic, Bayesian inference, and the impact

of explanatory considerations on the assignment of subjective prob-

abilities (Van Fraassen 1989; Okasha 2000; Lipton 2004). This paper

reverses the question and asks how causal and explanatory consid-

erations are affected by probabilistic information. We investigate (i)

how probabilistic information determines the explanatory value of a

hypothesis, and (ii) in which sense folk explanatory practice can be

said to be rational. Our study identifies three main factors in reason-

ing about a (potentially) explanatory hypothesis: cognitive salience,

rational acceptability and logical entailment. This corresponds well

to the variety of philosophical accounts of explanation. Moreover, we
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show that these factors are highly sensitive to manipulations of prob-

abilistic information. This finding suggests that probabilistic reason-

ing is a crucial part of explanatory inferences, and it motivates new

avenues of research in the debate about Inference to the Best Expla-

nation and probabilistic measures of explanatory power.
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1 Introduction

The relationship between probabilistic and explanatory reasoning is a cen-

tral topic of the epistemology of science and of the psychology of expla-

nation. It is first touched upon in the inductive-statistical model of ex-

planation by Carl G. Hempel (1965) and it has been developed further by

writers such as Wesley Salmon (1971/84) and Peter Railton (1979). Their

models attempt to capture explanatory relationships in terms of statistical

dependencies between explanans and explanandum. In the last decades,

however, Inference of the Best Explanation (IBE) and its compatibility with

probabilistic reasoning have become the focus of the philosophical debate

(Harman 1965; Van Fraassen 1989; Lipton 2004). The crucial question is

whether inferring to the hypothesis with the highest explanatory power,

or the optimal combination of explanatory virtues, can be defended as a

rational form of inference, if “rational” is explicated in the probabilistic,

Bayesian way (e.g., Oaksford and Chater 2007; Hartmann and Sprenger

2010). More precisely, it is debated whether Inference to the Best Explana-

tion (IBE) contradicts the Bayesian rule of conditionalization, or whether

IBE can be interpreted as a distinctive rule of inference that is not only

coherent with, but also supplements, Bayesian inference.

Van Fraassen (1989, ch. 7) contends that IBE either amounts to Bayesian

conditionalization, thereby being redundant as a rule of inference, or de-

viates from it, thereby being probabilistically incoherent. If IBE deviates

from Bayesian inference, by assigning a confirmatory role to explanatory

considerations, then IBE is probabilistic incoherent, on the grounds of dy-

namic Dutch book arguments (Lewis 1999). In other words, the betting

odds implied by the beliefs of an agent who assigns a probabilistic bonus

to good explanations would allow for a system of bets where he or she can

only lose. Therefore, if IBE is probabilistically incoherent, it is irrational to

follow it. If, on the other hand, IBE always agrees with Bayesian inference,

it is unclear whether this rule of inference has independent epistemic sig-

nificance, or whether it is just redundant with respect to Conditionaliza-

tion. The upshot is that IBE cannot be both a distinctive rule of inference
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and rational.

Recently, philosophers of science have tried to sketch a more sophisti-

cated picture of the interplay between probabilistic and explanatory rea-

soning. In particular, the idea that explanatory virtues boost the posterior

probability of scientific hypotheses beyond the value they receive from

Bayesian conditionalization is rejected as too simplistic. For example, Lip-

ton (2001, 2004) argues that IBE may give a good descriptive account of our

inferential practices, even if it fails to accomplish the normative ideal of

probabilistic coherence. Many popular reasoning schemes are at odds

with the axioms of probability, but they can be a useful heuristics for

probabilistic inferences in real life (e.g., Schupbach 2011a). Perhaps IBE

can play such an intermediate role between people’s actual reasoning and

the way they would reason if they were perfectly rational. In that sense,

IBE could possess independent significance as a heuristic for probabilistic

inference.

In an even more reconciliatory mood, Lipton suggests that explana-

tory value may help to determine the prior probability and/or the like-

lihood of the explanatory hypothesis on the phenomenon of interest

(see also Okasha 2000; McGrew 2003; Weisberg 2009). In this view, IBE

should not be construed just as an inference to the explanation with the

highest posterior probability—then, there would be no need for a the-

ory of explanatory inference—, but explanatory judgments should pro-

vide constraints on the ingredients that enter the Bayesian cooking recipe

p(H|E) = p(H) p(E|H) / p(E) (Bayes’ Theorem). Instead of being a heuris-

tic for probabilistic inference, explanatory value guides such inferences. For

example, explanatory virtues such as general scope, simplicity or unifica-

tion will positively affect the prior of a hypothesis H, while others, such

as making the phenomenon E cognitively intelligible, will raise the like-

lihood of H on E, p(E|H) (Lipton 2004, 113). IBE would then not only

be compatible with, but actively supplement Bayesian Conditionalization.

Henderson (2014) even proposes that IBE emerges from Bayesianism rather

than being a constraint on Bayesian inference.

In Lipton’s account, a special role is assigned to “lovely” explanations:
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these are explanations “that would, if correct, be the most explanatory or

provide the most understanding” (Lipton 2004, 59–60). Explanatory value

is thus tightly connected to inspiring understanding in an individual rea-

soner (cf. De Regt and Dieks 2005). Accounts of explanation that stress the

cognitive value of good explanations also tend to stress the link between

understanding, causality and mechanisms—a topic that has recently re-

ceived much attention with respect to explanation in the special sciences,

including biology, psychology, economics, and so on (Machamer, Craver

and Darden 2000; Woodward 2003; Strevens 2008). Notably, even the

literature on probabilistic causation stresses that successful explanations

presuppose a causal link between explanans and explanandum (Halpern

and Pearl 2005).

Two questions which these debates have not fully elucidated are (i)

how probabilistic considerations are in themselves explanatorily relevant

and (ii) whether a powerful explanation should make the explanandum

more expected. This latter idea actually goes back to Charles Saunders

Peirce, who identified the explanatory power of a hypothesis with its

ability to render an otherwise “surprising fact” as a “matter of course”

(Peirce 1931-1935, Section 5.189). If this is correct, then a powerful explana-

tion should at least raise the subjective expectedness of the explanandum,

which suggests an analysis of explanatory power in probabilistic terms,

such as conducted recently by McGrew (2003), Schupbach and Sprenger

(2011) and Crupi and Tentori (2012). See Popper (1934/2002) and Good

(1960) for early precursors.

In the light of the philosophical debates just outlined, the present pa-

per contributes to the literature by investigating experimentally whether

and under which circumstances judgments of explanatory power are asso-

ciated with probabilistic characteristics of the potential explanation. This

investigation gives us a nuanced and empirically informed assessment of

the hypotheses that IBE is coherent with actual probabilistic reasoning,

and that explanatory power is bound up with understanding.

In particular, we constructed various vignettes where experimental

participants are given information about the priors and likelihoods of a
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potential explanatory hypothesis and are asked to make judgments on its

explanatory power, posterior probability and acceptability, as well as on

its logical, causal and cognitive relation to the explanandum. Causal infor-

mation was kept sparse in order to be able to isolate the impact of prob-

abilistic factors on explanatory judgment. By eliciting these judgments,

we sought to elucidate how these concepts cluster together, identifying a

small set of factors that accounted for most of the variation in the partic-

ipants’ judgments. Overall, our results show that explanatory judgments

are largely sensitive to subtle changes in the probabilistic setting, under-

writing the efficacy of our experimental manipulations.

The rest of the paper is structured as follows. Section 2 briefly surveys

the relevant empirical literature. Section 3 presents our experiment and

Section 4 our results. Finally, Section 5 puts the results into a broader

philosophical perspective and discusses, inter alia, the implications for

quantitative approaches to explanatory power and broader consequences

for theories of explanatory reasoning.

2 Empirical Research on Explanatory Reasoning

Empirical research in cognitive and developmental psychology has started

to uncover some of the properties and mechanisms of explanatory rea-

soning. In particular, explanation has been shown to be closely related to

confirmation; explanatory considerations can contribute to making some

hypotheses more credible. Koehler (1991), for example, reviewed much

of the work on how explanation influences subjective probabilities, and

argued that merely focusing on a hypothesis as if it were the true explana-

tion of some observed data is sufficient to boost the subjective probability

assigned to that hypothesis. Explanation has also been demonstrated to

influence how probabilities are assigned to one proposition in the light of

another. Sloman (1994) found that a proposition boosted the probability

assigned to another proposition if they shared an explanation.

Furthermore, there is evidence that epistemic virtues such as the sim-

plicity, coherence, or breadth of a potentially explanatory hypothesis can
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influence its perceived probability. Lombrozo (2007), for example, found

that experimental participants rely on the simplicity of a potentially ex-

planatory hypothesis as a cue commensurate to base-rate information in

the face of probabilistic uncertainty (on how coherence considerations can

impact explanation see, e.g., Thagard (1989)).

Relatively little empirical research has focused on the link between

explanatory value and understanding. Available results points to the cog-

nitive dangers of putting too much weight on the sense of understanding

that certain explanations can induce. For example, there is evidence that

people tend to overestimate the depth of their own explanatory under-

standing. Rozenblit and Keil (2002) called this phenomenon “illusion of

explanatory depth”, and they demonstrated that this illusion is signifi-

cantly stronger for explanatory knowledge relative to other knowledge

domains (see also Keil 2006). Naturalistically minded philosophers of

explanation such as J.D. Trout (2002, 2007) argue that a sense of under-

standing is indeed frequently deceptive, induced by overconfidence and

hindsight bias rather than by explanatory power, and in any case not a

good indicator for a valuable explanation.

These empirical results are broadly in line with Lipton’s (2004) account

of the relationship between IBE and Bayesian inference: explanatory con-

siderations guide the assignments of subjective probabilities to proposi-

tions, and inferences to lovely explanations are, in some sense, bound up

with understanding. However, like its counterpart in philosophy of sci-

ence, the relevant psychological literature has mainly been concerned with

the question of how probability judgments are informed by explanatory

considerations, neglecting the question of how probabilistic and logical

information can themselves influence explanatory judgements (see also

Keil and Wilson 2000; Keil 2006; Lombrozo 2011, 2012). An answer to

this latter question will be relevant to better elucidate the relationships

between probabilistic and explanatory reasoning, explanatory value and

understanding, as well as to assess whether or not IBE is probabilistically

coherent. Furthermore, even if explanation, confirmation and acceptance

are closely related in IBE, it is far from obvious whether they correspond
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to distinct concepts in our psychology that tap onto different reasoning ca-

pacities. What is more, it is far from obvious whether these three concepts

in our psychology—if they exist—agree with their philosophical explica-

tions (Crupi et al. 2007; Schupbach 2011b; Crupi 2012).

3 Experiment and Methods

Our experiment consisted of an online questionnaire, conducted via the

LimeSurvey environment. The participants for our study were under-

graduate students of Tilburg University from the School of Economics and

Management and the School of Social and Behavioral Sciences. They were

recruited via emails from a teacher of one of their classes. Incentives were

provided in terms of points for the final exam and a prize lottery.

The respondents of the survey were 744 students, of which 671 com-

pleted the questionnaire (383 male, Mage = 21.5 (SD = 2.3)). They were

randomly assigned to one of the 12 versions of an experimental vignette.

Each participant received exactly one vignette.

Design and Material

Participants were presented with an experimental vignette where two pos-

sible events were related to two possible explanations for that event:

Vignette 1: There are two urns on the table. Urn A contains 67%

white and 33% black balls, Urn B contains only white balls. One

of these urns is selected. You don’t know which urn is selected, but

you know that the chance that Urn A is selected is 25%, and that the

chance that Urn B is selected is 75%. From the selected urn a white

ball is taken at random.

Please now consider the hypothesis that Urn A has been chosen.

The participants were then asked to assess the following seven items (the

construct names in italics were not provided to the participants) on a Likert

scale ranking from 1 (“do not agree at all”) to 7 (“fully agree”):
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• (Logical Implication) The hypothesis logically implies that a white ball

has been taken out.

• (Causality) The hypothesis specifies the cause that a white ball has

been taken out.

• (Confirmation) The hypothesis is confirmed by a white ball has been

taken out.

• (Posterior Probability) The hypothesis is probable given that a white

ball has been taken out.

• (Explanatory Power) The hypothesis explains that a white ball has

been taken out.

• (Understanding) The hypothesis provides understanding why a white

ball has been taken out.

• (Truth) The hypothesis is true.

The choice of these seven items was motivated by the crucial role that

concepts such as logical implication, causality and confirmation play in

reasoning about candidate explanations, according to different philosoph-

ical accounts of explanatory value.

After filling in this questionnaire, the participants could explain the

way they made their judgments, and we collected some demographic data.

This vignette was, in a between-subjects design, varied in three dimen-

sions, corresponding to three main independent variables:

1. Likelihood: the choice of the evidence (white or black ball) which

leads to a high or a low likelihood of the hypothesis on the evidence;

2. Target Hypothesis: the choice of the hypothesis (Urn A or Urn B)

which is either deterministic or probabilistic;

3. Prior Probability: the prior probability of the hypothesis under con-

sideration (.25, .5, or .75).
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All possible 2× 2× 3 = 12 combinations of the values of these variables

were realized in the experiment. Since the above vignette is quite abstract,

we also set up two other vignettes that are closer to cases of ordinary

reasoning, and repeated the experiment for these vignettes. Example vi-

gnettes, that copy the probabilistic structure of Vignette 1 above, are given

below.

Vignette 2: Again and again, Ruud has knee problems when playing

football. The doctors give him two options: knee surgery or a conser-

vative treatment. If Ruud chooses to go into surgery, he cannot play

football for half a year; if he chooses the conservative treatment, there

is a 33% chance that he can play again after one month; otherwise

(with a chance of 67%) he has to rest longer. You don’t know which

option Ruud chooses, but you believe that the chance that he chooses

surgery is 75%—and that the chance that he chooses the conservative

treatment is 25%. A month later a joint friend tells you that Ruud is

still unable to play football.

Please now consider the hypothesis that Ruud has chosen for the con-

servative treatment.

Vignette 3: Louise arrives by train in Twin City. Twin city has two

districts: West Bank and East Bank. In West Bank, there is only one

taxi company, namely Green Taxi Ltd., and all their cabs are green.

Green Taxi Ltd. also owns 67% of all cabs in East Bank. The other

cabs in East Bank are owned by The Red Taxi Inc., all their cabs are

red. Louise does not know which part of the city the train is entering,

but judging from her knowledge of Twin City she assumes that there

is a 75% chance that she is in West Bank (and a chance of 25% that

she is in East Bank). At some point, Louise sees a green cab from the

train.

Please now consider the hypothesis that Louise is in East Bank.
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Procedure

Participants completed the questionnaire on a university PC or their own

computer in the digital environment of LimeSurvey installed on a local

server. The use of LimeSurvey guaranteed that the data could be protected

and provided with a time stamp and information about the IP address of

the respondent. The experiment was self-paced and took approximately

10 minutes to complete. In total, the experiment thus contained 36 cells,

corresponding to twelve different combinations of the values of the inde-

pendent variables times three different scenarios.

4 Results

Prior to the analysis of the effects of vignette manipulation, we explored

the interdependencies of the seven items in the response questionnaire. To

recall, the participants were asked to judge several aspects of the hypoth-

esis with respect to the evidence: logical implication, causal relevance, ex-

planatory power, increase in understanding, confirmation, posterior prob-

ability and truth. By analyzing the interdependencies with the help of the

Pearson zero-order correlation coefficient, we determined whether the par-

ticipants clearly separate these seven concepts, or whether some of them

can be identified with each other.

The correlations are presented in Table 1. The analysis revealed that

all of the variables correlated at least with .3 with several other variables,

but at most .63. This validates the hypothesis that the participants do not

conflate cognate concepts (e.g., causality, explanatory power) with each

other, which would be reflected in correlation coefficients of greater than

.7. At the same time, the response variables were sufficiently related to

each other to motivate a factor analysis: that is, a decomposition of the

seven response variables into 2-4 constructs that explain together most of

the variation in the data.
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1 2 3 4 5 6 7

1. Logical Implication - .38 .22 .32 .46 .30 .12

2. Causality - .45 .39 .56 .63 .37

3. Confirmation - .56 .35 .47 .63

4. Post Probability - .37 .51 .46

5. Explan. Power - .60 .28

6. Understanding - .36

7. Truth -

Table 1: Zero-order correlations for 7 items (N = 671), all correlations with

p < .01.

Factor Analysis

The factorability of the 7 items was examined with a Principle Compo-

nent Analysis (PCA). The Kaiser-Meyer-Olkin measure of sampling ade-

quacy was .82 and the Bartlett’s test of sphericity was significant (χ2(21)

= 1790.77, p < .0001). The initial eigenvalues showed 51% of variance ex-

plained by the first factor, 16% explained by the second factor, and 10% ex-

plained by the third factor. A visual inspection of the scree plot revealed a

’leveling off’ of eigenvalues after the three factors, therefore, a three factor

solution using the oblique rotation was conducted, with the three factors

explaining 77% of the variance. All items had primary loadings over .7,

viz. Table 2, which presents the factor loading matrix (loadings under .30

suppressed). In the remainder, we will restrict our analysis to these three

factors.

The names for these factors are derived from the clustering that Table

2 indicates. Factor 1, Cognitive Salience, clusters explanatory power to-

gether with cognitive values that are often seen as related, such as causal

coherence and enhancement of understanding (De Regt and Dieks 2005;

Strevens 2008). Factor 2, Rational Acceptability, captures those cognitive

values that hang together with the acceptability of a hypothesis: its prob-
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1 2 3 Communality

Logical Implication .94 .94

Causality .86 .74

Confirmation -.84 .77

Post Probability -.72 .67

Explan. Power .81 .73

Understanding .87 .78

Truth -.88 .75

Table 2: Factor loadings and communalities based on a principle compo-

nent analysis with oblimin rotation for 7 items (N = 671).

ability, its confirmation by the evidence, and finally, its truth. The strong

correlations between these values are not surprising: confirmation raises

posterior probability, which is in turn an indicator of the truth of a theory

(e.g., Howson and Urbach 2006). Finally, Factor 3 captures the logical re-

lation between hypothesis and evidence. Since no other response variable

is loaded on this factor, it figures as Entailment, showing the link to the

response variable Logical Implication.1

Tests of Experimental Manipulation

We conducted three analyses of variance (ANOVAs) to test the effects of

the independent variables, Target Hypothesis, Likelihood and Prior Prob-

ability, on Cognitive Salience, Rational Acceptability and Entailment, re-

spectively.2

1The internal consistency for two of the three scales (the third scale only consisted of

one item) was examined using Cronbach’s alpha, resulting in alpha .82 for Factor 1 and

.79 for Factor 2. Composite scores were calculated for each of the three factors using the

mean of the items with primary loadings on each factor. The descriptive values for the

newly constructed scales were M = 3.65, SD = 1.91 for Explanatory Value, M = 3.63, SD =

1.87 for Rational Acceptability, and M = 3.75, SD = 2.40 for Logical Implication.
2A prior analysis of the effect of the vignette on the three dependent variables re-

vealed that Explanatory Value (but not Rational Acceptability and Logical Implication)

was also affected by the vignette manipulation. For clarity of exposition, the statistics is
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Target Hypothesis

Likelihood Probabilistic Deterministic

High 3.06 (.12) 4.67 (.12)

Low 4.68 (.12) 1.95 (.13)

Table 3: Estimated Marginal Means and SE of Explanatory Value by

Target Hypothesis and Likelihood (N = 671).

First, we tested the effects of the experimental manipulation on Cog-

nitive Salience. There was a main effect of Target Hypothesis, F(1, 659) =

21.56, p < .001 ,η2
p = .03, and Likelihood, F(1, 659) = 21.09, p < .001 ,η2

p =

.03 on Cognitive Salience, with no main effect of Prior Probability, F(2, 659)

< 1, p = .82. The significant main effects can only be interpreted in the

light of the interaction effect between Target Hypothesis and Likelihood,

F(1, 659) = 323.65, p < .001 ,η2
p = .33—see Table 3 for the descriptives.

The cognitive salience of the hypothesis was high in two cases: (1)

when the actually observed event was impossible under the alternative

explanation (in other words, when the hypothesis provided the only avail-

able explanation), and (2) when the actually observed event was logically

implied by the candidate explanation. This result confirms the philosoph-

ical thesis that both the epistemic status of the explanans and the expect-

edness of the explanandum under the explanans play an important role

in explanatory reasoning (e.g., Okasha 2000; Lipton 2004; Schupbach and

Sprenger 2011). There were no other significant interaction effects ( F(2,

659) < 1, n.s.).

Target Hypothesis

Likelihood Probabilistic Deterministic

High 3.07 (.10) 3.56 (.10)

Low 5.61 (.10) 1.98 (.11)not included here because the size and direction of the significant main effects and the

interaction effect remained the same when vignette was included as a factor.
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Table 4: Estimated Marginal Means and SE of Rational Acceptability

by Target Hypothesis and Likelihood (N = 671).

Second, with respect to Rational Acceptability, there was again a main

effect of Target Hypothesis, F(1, 659) = 234.77, p < .001 ,η2
p = .26, and

Likelihood, F(1, 659) = 21.45, p < .001 ,η2
p = .03, with no main effect of

Prior Probability, F(2, 659) = 1.68, p = .19. There was an interaction ef-

fect between Target Hypothesis and Likelihood, F(1, 659) = 401.09, p <

.001 ,η2
p = .38, see Table 4 for the descriptives. The interaction effect is

easy to explain: The candidate explanation is strongly accepted whenever

the alternative hypothesis is incompatible with the observed evidence.

Conversely, a candidate explanation scores low on this factor when it is

itself incompatible with the observed evidence. The score is rather mid-

dling when the evidence is inconclusive and posteriors are non-extreme, in

agreement with philosophical analyses of rational hypothesis acceptance.

There were no other significant interaction effects ( F(2, 659) <= 1, n.s.).

Target Hypothesis

Likelihood Probabilistic Deterministic

High 3.03 (.15) 5.92 (.15)

Low 3.72 (.15) 2.19 (.16)

Table 5: Estimated Marginal Means and SE of Entailment by Target

Hypothesis and Likelihood(N = 671).

Third and last, we assessed the impact of the experimental manipula-

tions on Entailment. There was a main effect of Target Hypothesis, F(1,

659) = 20.11, p < .001 ,η2
p = .03, and Likelihood, F(1, 659) = 97.93, p <

.001 ,η2
p = .13, with no main effect of Prior Probability, F(2, 659) = 1.23,

p = .29. There was an interaction effect between Target Hypothesis and
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Likelihood, F(1, 659) = 207.11, p < .001 ,η2
p = .24, see Table 5 for the de-

scriptives. Briefly, the response values of Logical Implication respect the

ranking given by the (objective) likelihoods p(E|H), demonstrating the

consistency of the participants with the probabilistic information in the

vignettes. In particular, a logical implication between explanans and ex-

planandum receives the highest value and logical incompatibility receives

the lowest value. There were no other significant interaction effects.

5 Discussion

Overall, the results of our study shows that explanatory value is, as Lom-

brozo (2012, 270) reports, a complex psychological phenomenon related to

several other cognitive processes such as deductive and inductive reason-

ing, causal reasoning, and reasoning about truth. The correlations between

participants’ judgments on individual items suggest that it may be com-

plicated to tease apart the specific roles of these processes in determining

explanatory judgments and making explanatory inferences.

Such a complexity might explain the disagreement about existing

philosophical accounts of scientific explanation. Each of the three most

prominent philosophical accounts of explanation attempts to explicate the

concept of scientific explanation by focusing on a particular aspect of ex-

planatory value. Hempel (1965) ties explanatory value to derivability, on

the grounds that for a hypothesis to successfully explain an explanan-

dum, the explanandum must be a logical consequence of the explanans.

Schupbach and Sprenger (2011) and Crupi and Tentori (2012) generalize

Hempel’s account to making the explanandum more expected (instead

of deriving it), and they use probabilistic relevance relations for spelling

out explanatory value. According to causal-mechanical accounts such as

Salmon (1971/84), Woodward (2003), and Strevens (2008), explanatory

value lies in the identification of causal mechanisms. For unificationist

models such as Friedman (1974) and Kitcher (1981), explanatory value is

a matter of providing a unified account of a range of different phenomena

that could yield understanding. If explanatory value is indeed a complex
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psychological phenomenon, and insofar as these accounts aim to capture

the value of explanation, it is not surprising that disagreements about the

correct account of explanation will persist, and that explanatory value can-

not be mapped neatly on one of these accounts.

In the light of this diversity, a rapprochement between competing the-

ories of scientific explanation seems desirable. The goal of a philosophical

account of explanation should be to capture the complexity of explanatory

value. Precisely characterizing the heterogeneity of explanatory judgment,

isolating the factors and processes that contribute to the assessment of a

potentially explanatory hypothesis, is thus an important direction for fu-

ture research in psychology as well as in philosophy and epistemology of

science.

Three more specific conclusions can be drawn from the results of our

study.

First, our factor analysis separated the items “causality”, “understand-

ing” and “explanatory power” (→ Cognitive Salience) from the items

“confirmation”, “posterior probability”, “truth” (→ Rational Acceptabil-

ity) and “logical implication” (→ Entailment). This corresponds to three

types of factors that figure in philosophical accounts of explanatory rea-

soning: cognitive, logical and probabilistic relations. On the one hand,

this finding substantiates previous results that indicated the existence of

a tight connection between explanatory power, causality and a sense of

understanding (Lipton 2004; Keil 2006; Lombrozo 2007; Trout 2007). On

the other hand, the finding indicates that folk reasoning about potential

explanations can neatly distinguish between the concepts of Rational Ac-

ceptability and Cognitive Salience of a hypothesis. This suggests that the

explanatory value attributed to a hypothesis need not indicate its accept-

ability, spelling trouble for IBE.

Second, participants’ judgments on the three main factors we

identified—Cognitive Salience, Rational Acceptability and Logical

Implication—were strongly affected by changes in explicit probabilistic

information. Hence, explanatory reasoning is not only bound up with

causal mechanisms: it is heavily affected by logical and probabilistic rela-
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tions between hypothesis and evidence. In other words, our results sug-

gests that probabilistic reasoning might be a crucial ingredient of explana-

tory inferences—at least in situations, such as our vignettes, where there

is a limited set of competing explanations. Future research may investi-

gate whether this result stays robust if we extend the type of vignettes to

scenarios where more explicit causal mechanisms are given, and where

a potentially unlimited number of hypotheses compete for being the best

explanation. In the light of the strong link between causal and explanatory

judgments, it also seems promising to explore a dual model of explanatory

reasoning, e.g., a model where a judgment on explanatory power com-

bines the plausibility of a causal mechanism with probabilistic relevance

for the phenomenon of interest.

Third, the compatibilist research program about IBE and probabilis-

tic inference is not supported by our findings. The concepts of posterior

probability, degree of confirmation and truth, that all relate to the rational

acceptability of the explanans, cluster together, but they are quite remote

from explanatory power. Attributions of explanatory value to a hypothe-

sis often diverge from the acceptability of the hypothesis. This poses an

important challenge for those who defend explications of IBE according to

which explanatory value is a reliable guide to truth. Broader applications

in philosophy of science abound. For example, arguments for scientific

realism often postulate a link between explanation and truth, where the

truth of our best scientific theories is supported by the observation that it

is the best explanation for the success of science (Boyd 1983; Psillos 1999).

All this does not rule out that Inference to the Best Explanation may,

under favorable circumstances, be a good heuristic for Bayesian inference,

and that participants use it in some of these cases. In fact, our study is

silent on this latter issue. It just demonstrates that sound probabilistic

inference and explanatory power are quite different concepts, and that

subjects recognize this difference.

To sum up, our results demonstrate that probabilistic reasoning is an

important part of explanatory inferences. Overall, we see that for a proper

understanding of explanatory reasoning, it is essential to investigate the

18



precise relationship between explanatory power and other cognitive val-

ues, as well as the subtle relationship between explanatory value and prob-

abilistic inference. These topics have been relatively neglected in the psy-

chological and philosophical literature. With our study, we hope to make

a small step forward toward a genuinely pluralistic and naturalized phi-

losophy of explanation.
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