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Abstract

In this review article we present different formal frameworks for the description of generalized
probabilities in statistical theories. We discuss the particular cases of probabilities appearing
in classical and quantum mechanics, possible generalizations of the approaches of A. N.
Kolmogorov and R. T. Cox to non-commutative models, and the approach to generalized
probabilities based on convex sets.
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1 Introduction

Which is the nature of the probabilities appearing in Quantum Mechanics (QM)? The Born’s
rule tell us how to compute the probability of a given process using the formalism of QM. But is it
legitimate to speak of something like Quantum Probabilities (QP)? Some authors react against
this possibility, arguing that this is not possible, mainly because of the non-Kolmogorovian
character of the probabilities appearing in QM. Their central point is that probabilities in QM
cannot be described using classical probability theory because they do not obey Kolmogorov’s
axioms.
On the other hand, many authors support the idea that a quantum probability theory is possible
by generalizing Kolmogorov’s axioms to non boolean algebras [76, 26, 78, 61, 35, 60]. In this
sense, QP exists as a non-Boolean (or non-commutative) generalization of classical probability
theory.
However, Kolmogorov’s approach is not the only one. An alternative approach to classical
probability theory is presented by R. T. Cox [23, 22]. It is based on a study of the measure
functions compatible with the algebraic properties of the logic of an intelligent agent trying
to make probable inferences out of available data. A variant of this approach has been used
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to describe probabilities in QM [24, 36, 52, 53, 54, 55, 37, 56, 44], suggesting that they are
essentially classical.
We have already mentioned that there exists a general formal framework which includes CP
and QP as particular cases, being a generalization of Kolmogorov’s approach to non-distributive
algebras. Is there an analogue of this for the Cox approach? An affirmative answer to this
question was given in [44]. It is shown there that the typical features of QP arise whenever the
lattice of propositions of the Cox’s approach is replaced by a non-distributive one. As is well
known, the quantum-logical approach to QM characterizes this theory using a lattice-theoretical
approach in which the lattice is an orthomodular one [7, 27, 77, 8, 85, 86, 79, 39, 45, 69, 50, 51,
33, 34, 70, 29, 2, 3, 4, 5, 6]. In [44] it is shown that when the Cox’s method is applied to the
orthomodular lattice of projections of a Hilbert space, QP are derived.
Remark that generalized probabilities can also be studied in what has been called the Convex
Operational Models (COM) approach [14, 90, 9, 10, 11, 12, 13, 80, 15, 71, 16, 43]. In this
approach, the properties of the systems studied and their associated probabilities are encoded
in a geometrical way in the form of a convex set and its space of observable magnitudes. The
quantum formalism and many aspects of quantum information theory (such as entanglement,
discord, information protocols) can be suitably described using this approach [13, 80, 15, 12, 71,
43, 16, 11, 9, 10, 71]. Non-linear generalizations of QM where studied using the convex approach
in [62, 63, 64].

The present is a review article and no new technical results are presented. It can be considered
as an extension of [38], in which, due to reasons of space, we could not discuss in detail some
interesting topics. This notwithstanding, the presentation of the topics is original in the sense
that the perspective presented has not been previously published in the literature, and has
conceptual implications for the discussion about what is the meaning of CP and QP. We start
by reviewing lattice theory and the quantum logical approach to QM in Sections 2 and 3. Next,
in Section 4, we concentrate on the different approaches to CP, namely, Kolmogorov’s and Cox’s,
and in Section 5 we review the COM approach. After these notions are introduced, we discuss
QP in Section 6. We present the generalization of the Cox’s method to general non-distributive
lattices in Section 7. Finally, some conclusions are drawn in Section 8.

2 Lattice Theory

Lattices can be defined by using equations, i.e., they can be characterized as algebraic structures
satisfying certain axiomatic identities. A set L endowed with two operations ∧ and ∨ will be
called a lattice, if for al x, y, z ∈ L the following equations are satisfied

x ∨ x = x x ∧ x = x (idempotence) (1a)

x ∨ y = y ∨ x x ∧ y = y ∧ x (commutativity) (1b)

x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity) (1c)

x ∨ (x ∧ y) = x ∧ (x ∨ y) = x (absortion) (1d)

If the extra relationships

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributivity 1) (2a)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (distributivity 2) (2b)
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are satisfied, the lattice is called distributive.

Lattice theory can also be studied using partially ordered sets (poset). A poset is a set X
endowed with a partial ordering relation “<” satisfying

• For all x, y ∈ X, if x < y and y < x, then x = y

• For all x, y, z ∈ X, if x < y and y < z, then x < z

We use the notation “x ≤ y” for the case “x < y” or “x = y”. A lattice L will be a poset for
which any two elements x and y have a unique supremum and a unique infimum with respect
to the order structure. The least upper bound of two given elements “x∨ y” is called the “join”
and their greatest lower bound “x ∧ y”, called their “meet”. A lattice for which all its subsets
have both a supremum and an infimum is called a complete lattice. If furthermore there exists a
greatest element 1 and a least element 0, the lattice is called bounded. They are usually called
the maximum and the minimum respectively. Any lattice can be extended into a bounded
lattice by adding a greatest and a least element. Every non-empty finite lattice is bounded.
Complete lattices are always bounded. An orthocomplementation in a bounded poset P is a
unary operation “¬(. . .)” satisfying:

¬(¬(a)) = a (3a)

a ≤ b −→ ¬b ≤ ¬a (3b)

a ∨ ¬a and a ∧ ¬a exist and
a ∨ ¬a = 1 (3c)

a ∧ ¬a = 0 (3d)

hold.
A bounded poset with orthocomplementation will be called an orthoposet. An ortholattice, will
be an orthoposet which is also a lattice. For a, b ∈ L (an ortholattice or orthoposet), we say
that a is orthogonal to b (a⊥b) iff a ≤ ¬b. Following [74], we define an orthomodular lattice as
an ortholattice satisfying the orthomodular law:

a ≤ b and ¬a ≤ c =⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (4)

A modular lattice, is an ortholattice satisfying the stronger condition (modular law)

a ≤ b =⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), (5)

and finally, a boolean lattice will be an ortholattice satisfying the still stronger condition (dis-
tributive law)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (6)

If L has a null element 0, then an element x of L is an atom if 0 < x and there exists no element
y of L such that 0 < y < x. L will be said to be

• Atomic, if for every nonzero element x of L, there exists an atom a of L such that a ≤ x.

• Atomistic, if every element of L is a supremum of atoms.

In order to illustrate the above notions, let us consider the following examples:
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Hilbert lattice: As an example of an orthomodular lattice which will be of importance for us,
let us consider the set of closed subspaces of a Hilbert space H. They can be endowed
with a lattice structure as follows [77]. The operation“∨” is taken as the direct sum “⊕” of

subspaces, “∧” as the intersection “∩”, and “¬” as the orthogonal complement “⊥”, 0 = ~0,
1 = H, and denote by P(H) to the set of closed subspaces. Then, < P(H), ∩, ⊕, ¬, 0, 1 >
will be a complete bounded orthomodular lattice (which we will denote simply by P(H)).
As closed subspaces are in one to one correspondence with projection operators, we will
take P(H) to be the lattice of closed subspaces or the lattice of projections interchangeably.
One of the most important features of P(H) is that the distributive law (6) doesn’t holds.
P(H) is modular iff H is finite dimensional. If H is infinite dimensional, then P(H) is
always orthomodular.

Subsets of a given set As an example of a boolean lattice, consider the subsets of a given set
endowed with the operations union “∪” as “∨”, “∩” as “∧”, and set theoretical complement
as “¬”. The propositional calculus of classical logic also forms a boolean lattice.

Chinesse lantern: The (chinesse lantern)[79] is used in quantum logic to show an example of
a system which is not a quantum one neither a classical one. Its lattice of propositions
corresponds to the following Hasse diagram

1

l′ r′ n′ f ′ b′

l r n f b

0

looking at the above diagram, it is easy to see that this lattice contains two Boolean
sublattices.

The lattice of Q-bit: Given the incredible advances of quantum information theory in the last
decades, the reader may wonder how does the lattice of a q-bit looks like. Suppose then
that we are given a spin 1

2 system. As is well known, the set of all possible pure states
is isomorphic to a sphere, namely, the Bloch sphere [20]. The different sets of objective
properties, which are of the form “the particle has spin + (or −) in direction ẑ”, are
represented by rays (or points on the surface of the sphere). They can be given by 0, the
null element of the space, 1 (the maximal element of the space) or a ray. Each ray will
have associated a projection operator |+〉ẑ〈+|. Thus, the Hasse diagram of a q-bit will
have the form:
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1

· · ·¬p′¬p· · ·p′p· · ·

0

3 The Formalism of QM

In this Section we discuss some specific features of the quantum formalism [87, 85, 86, 77] which
are relevant for the problem of QP.

3.1 Elementary measurements and projection operators

The rigorous formulation of the formalism of QM was presented in a series of papers by von
Neumann, Jordan, Hilbert and Nordheim [58]. It can be said that its definitive form was accom-
plished in the book of von Neumann [87]. In QM, observable physical magnitudes are represented
by compact self-adjoint operators in a Hilbert space. Due to the spectral decomposition theorem
[75, 87], a key role is played by projection valued measures (PVM): the set of PVM can be put
in a bijective correspondence with the set A of self adjoint operators of H. Intuitively speaking,
a PVM is a map which assigns a projection operator to each interval of the real line. In this
sense, projection operators are the building blocks of any other observable in QM. In order to
give a precise definition, we need first to specify what we mean by “intervals of the real line”.
The borel sets (B(R)) are defined as the family of subsets of R such that

• it is closed under set theoretical complements,

• it is closed under denumerable unions, and

• it includes all open intervals [75].

Then, a PVM is a map M defined as follows

M : B(R)→ P(H), (7a)

satisfying

M(0) = 0 (7b)

M(R) = 1 (7c)

M(∪j(Bj)) =
∑
j

M(Bj), (7d)

for any disjoint denumerable family Bj . Also,

M(Bc) = 1−M(B) = (M(B))⊥ (7e)

Fixing an element A ∈ A, the intended interpretation of the associated PVM MA((a, b)) = P(a,b)

is “the value of A lies between the interval (a, b)”. In this sense, projections represent elementary
tests or propositions in QM. As we reviewed in the previous Section, projection operators can
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be endowed with a lattice structure, and thus, also elementary tests. This lattice was called
“Quantum Logic” by Birkhoff and von Neumann [7]. We will refer to it as the von Neumann-
lattice (LvN (H)) [77].
As shown in [7], an analogous treatment can be done for classical systems. In that theory, an
observable represented by a real function f in phase space, assigns to each Borel subset E the
subset f−1(E) of the phase space Γ. As an example, to the proposition “the value of f lies
between the interval (a, b)” it corresponds a subset f−1(a, b) of Γ. Thus, in CM, propositions or
elementary tests are associated to subsets of the phase space, and logical connectives “∨”, “∧”
and “¬”, are represented by union, intersection and (set theoretical) complement of subsets of
Γ. The resulting lattice is a Boolean one.

During the thirties, von Neumann and collaborators, continued studying formal developments
related to the quantum formalism. One of the results of this investigation was the development
of the theory of rings of operators (better known as von Neumann algebras [77, 65, 66, 88, 67]), as
an attempt of generalizing certain algebraic properties of Jordan algebras [58]. The subsequent
study of von Neumann algebras showed that they are closely related to lattice theory. Murray
and von Neumann provided a classification of factors (von Neumann algebras whose center is
formed by the multiples of the identity) using orthomodular lattices in [65, 66, 88, 67]. On the
other hand, lattice theory is deeply connected to projective geometry [81], and one of the major
discoveries of von Neumann was that of continuous geometries, which do not possess “points”
(or “atoms”) and are related to type II factors. Far from being a mere mathematical curiosity,
type II factors found applications in statistical mechanics and type III factors play a key role in
the axiomatic approach to Quantum Field Theory (QFT) [76, 77].
The quantum logical approach of Birkhoff and von Neumann was continued by other researchers
[45, 69, 60, 85, 86, 35, 2, 3, ?] (and see [39, 27, 50] for complete expositions). One of the key
results of this approach is the representation theorem of C. Piron [69]. He showed that any
propositional system can be coordinatized in a generalized Hilbert space. A later result by Solèr
shows that adding extra assumptions, it can only be a Hilbert space over the fields of the real
numbers, complex numbers or quaternions [82].

3.2 Quantal Effects

Projective measures are not the only way in which observable quantities can be described in
QM. There exists a more general notion, namely, that of quantal effect. And it turns out that
this notion can be generalized to arbitrary statistical theories. We will start by reviewing the
general case before we consider the quantum one. If the state space of a given probabilistic
theory is given by the set Σ, let us denote by X to the set of possible measurement outcomes of
an observable quantity. Then, if the system is in a state s, a probability p(x, s) is assigned to
any possible outcome x ∈ X. This probability should be well defined in order that our theory
be considered as a probabilistic one. In this way, we must have a function

p : X × Σ 7→ [0, 1]

(x, s)→ p(x, s) (8)

To each outcome x ∈ X and state s ∈ Σ, this function assigns a probability p(x, s) of x to occur
if the system is in the state s. In this way, a triplet (Σ, p(· , · ), X) is assigned for each system of
any probabilistic theory [60]. Thinking of s as variable, we obtain the mapping s 7→ p(·, s) from
Σ → [0, 1]X . This implies that all the states of Σ can be identified with maps which generates
a canonical vector space. Their closed convex hull forms a new set Ω representing all possible
probabilistic mixtures (convex combinations) of states in Σ. Given an arbitrary α ∈ Ω and any
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outcome x ∈ X, we can define an affine evaluation-functional fx : Ω → [0, 1] in a canonical
way by fx(α) = α(x). More generally, we can consider any affine functional f : Ω → [0, 1] as
representing a measurement outcome, and thus use f(α) to represent the probability for that
outcome in state α.
Due to the fact that QM is also a probabilistic theory, it follows that it can be included in the
general framework described above. In QM, the set of all affine functionals defined as above
are called effects. The generalization of the notion of PVM (which is based on projections)
to an observable based on effects will be called a positive operator valued measure (POVM))
[17, 41, 68, 30, 25, 18, 31] and in QM will be represented by a mapping

E : B(R)→ B(H). (9a)

such that

E(R) = 1 (9b)

E(B) ≥ 0, for any B ∈ B(R) (9c)

E(∪j(Bj)) =
∑
j

E(Bj), for any disjoint familly Bj (9d)

A POVM is thus a measure whose values are non-negative self-adjoint operators on a Hilbert
space, and the above definition reduces to the PVM case when these operators are also projec-
tions. It is the most general formulation of the description of a measurement in the framework of
quantum physics. Positive operators E(B) satisfyng 0 ≤ E ≤ 1 are called effects and generate
an effect algebra [30, 25])and we will denote it by E(H). In a similar way as in the general
setting, in QM a POVM defines a family of affine functionals on the quantum state space C of
all positive hermitian trace-class operators of trace one (which corresponds to Ω in the general
probabilistic setting):

E(B) : C → [0, 1] (10a)

ρ 7→ tr(Eρ) (10b)

4 Classical Probabilities

This Section is devoted to classical probability theory. But what do we mean with this notion?
There exists a vast literature and tendencies disputing the meaning of CP. We will not give a
detailed survey of the discussion here, but we discuss two of the most important approaches to
CP. These are the one given by A. N. Kolmogorov [57] and the one given by R. T. Cox [23, 22].

4.1 Kolmogorov

Kolmogorov presented his axiomatization of classical probability theory [57] in the 30’s as follows.
Given an outcome set Ω, let us consider a σ-algebra Σ of subsets of Ω. A probability measure
will be a function µ such that

µ : Σ→ [0, 1] (11a)
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satisfying
µ(∅) = 0 (11b)

µ(Ac) = 1− µ(A), (11c)

where (. . .)c means set-theoretical-complement and for any pairwise disjoint denumerable family
{Ai}i∈I

µ(
⋃
i∈I

Ai) =
∑
i

µ(Ai) (11d)

Conditions (11) are known as axioms of Kolmogorov [57]. The triad (Ω,Σ, µ) is called a probabil-
ity space. Probability spaces obeying Eqs. (11) are usually referred as Kolmogorovian, classical,
commutative or boolean probabilities [35].
It is possible to show that if (Ω,Σ, µ) is a Kolmogorovian probability space, the inclusion-
exclusion principle holds

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) (12)

or (as expressed in logical terms)

µ(A ∨B) = µ(A) + µ(B)− µ(A ∧B) (13)

As remarked in [74], Eq. (12) was considered as crucial by von Neumann for the interpretation
of µ(A) and µ(B) as relative frequencies. If N(A∪B), N(A), N(B), N(A∩B) are the number of times
of each event to occur in a series of N repetitions, then (12) trivially holds.
This principle does no longer hold in QM, a fact linked to the non-boolean QM-character.
Thus, the relative-frequencies’ interpretation of quantum probabilities becomes problematic.
The QM example shows that non-distributive propositional structures play an important role
in probability theories different from that of Kolmogorov.

4.2 Cox’s approach

Since the beginning of probability theory, there has been a school of thought known as Bayesian-
ism, which treated probabilities in a different manner as the one discussed in the previous section.
To them, probabilities were not to be regarded as a property of a system, but as a property of
our knowledge about it. This position is present as early as in the XIX century in one of the
milestones in the development of this theory [59]. In his work, Laplace proposed a way to assign
probabilities in situations of ignorance that would eventually be known as “Laplace principle”.
Later works would try to formalize and give coherence to Bayesian probability [48] [28]. In this
section we will center our attention on one of this attempts [23, 22], due to R. T. Cox.
While attaining equivalent results to Kolmogorov, Cox’s approach is conceptually very different.
In the Kolmogorovian approach probabilities are naturally interpreted (but not necessarily) as
relative frequencies in a sample space. On the other hand, in the approach developed by Cox,
probabilities are considered as a measure of the degree of belief of an intelligent agent (which
may as well be a machine), on the truth of a proposition x if it is known that proposition y
is true. In this way, Cox intended to find a set of rules to inferential reasoning that would be
coherent with classical logic and would reduce to it in the case of premises with definite truth
values.
To do this, he departed from two general axioms and presupposed the calculus of classical
propositions which, as is well known, forms a boolean lattice [19]. By doing so, he derived
classical probability theory as an inferential calculus on boolean lattices. We will sketch here
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the arguments presented in his book [23]. For a more detailed exposition on the deductions, the
reader is referred to [22, 23, 46, 89, 52, 53, 55].
The two axioms used by Cox [23] are

• C1 - The probability of an inference on given evidence determines the probability of its
contradictory on the same evidence.

• C2 - The probability on a given evidence that both of two inferences are true is determined
by their separate probabilities, one on the given evidence, the other on this evidence with
the additional assumption that the first inference is true.

A real valued function ϕ representing the degree to which a proposition h (usually called hy-
pothesis) implies another proposition a is postulated. Thus, ϕ(a|h) will represent the degree
of belief of an intelligent agent of how likely it is that a is true given that he knows that the
hypothesis h is true.
Then, requiring the function ϕ to be coherent with the properties of the calculus of classical
propositions, he derives the rules for manipulating probabilities. Using axiom C2, the associa-
tivity of the conjunction (a∧ (b∧ c) = (a∧ b)∧ c)), and defining the function F [ϕ(a|h), ϕ(a|h)] ≡
ϕ(a ∧ b|h) : R2 → R; he arrives at a functional equation for F (x, y):

F [x, F (y, z)] = F [F (x, y), z] (14)

Which, after a rescaling and a proper definition of the probability P (a|h) in terms of ϕ(a|h),
leads to the well known product rule of probability theory:

P (a ∧ b|h) = CP (a|h ∧ b)P (b|h) (15)

The definition of P (a|h) in terms of ϕ(a|h) is omitted, as one ultimately ends up using only the
function P (a|h) and never ϕ(a|h). In an analogous manner, using axiom C1, the law of double
negation (¬¬a = a), Morgan’s law for disjunction (¬(a∨ b) = ¬a∧¬b) and defining the function
f [P (a|h)] ≡ P (¬a|h) : R→ R, he arrives at the following functional equation for P (a|h)

P (a|h)r + P (¬a|h)r = 1 (16)

With r an arbitrary constant. Although in principle different values of r would give rise to
different rules for the computation of the probability of the negation of a proposition, as taking
different values of r account for a rescaling of P (a|h), one could as well call P ′(a|h) ≡ P (a|h)r

probability and work with this function instead of P (a|h). For simplicity, Cox decides to take
r = 1 and continue using P (a|h).
Using equations (14), (16), the law of double negation and Morgan’s law for conjunction (¬(a∧
b) = ¬a ∨ ¬b), he arrives to the sum rule of probability theory:

P (a ∨ b|h) = P (a|h) + P (b|h)− P (a ∧ b|h) (17)

As it turns out, P (a|h) –if suitably normalized– satisfies all the properties of a Kolmogorovian
probability (Eqs. (11)).
Because of the importance of Cox’s theorem to the foundations of probability, it has been target
of a thorough scrutiny by many authors. Some have pointed out inconsistencies behind the
implicit assumptions made during its derivations, most notably the assumptions behind the
validity of equation 14. Since then, there have been different proposals to save Cox’s approach
by proving it through less restrictive axioms. In [40], a discussion of the status of Cox proposal
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is presented as well as a counterexample to it. For a review on the subject, it is recommended
to consult [89].
Once the general properties of the function P (a|h) are established, the next problem is to find
a way to determine prior probabilities (probabilities conditional only to the hypothesis h). Al-
though formally one could assign prior probabilities in any way coherent with the normalization
used [73], in practical situations one is compelled to assign them in a way that they reflect the
information contained in the hypothesis h. A possible way to do this is by using the MaxEnt
principle[46][47], which we will review shortly in the next Section. Other ways of assigning prior
probabilities include the Laplace principle [48] and coherence with symmetry transformations
[49]. Nevertheless, the existance of a general algorithm for assigning prior probabilities is still
an open question.

4.3 MaxEnt Principle

This principle asserts that the assignment of the prior probabilities from a hypothesis h should
be done by maximizing the uncertainty associated with its distribution while respecting the
constrains imposed over them by h. Although this may sound paradoxical, by maximizing the
uncertainty of the prior probabilities one avoids to assume more information than the one strictly
contained in h.
Taking Shannon’s information measure S[P ] = −

∑
i P (ai|h)log[P (ai|h)] as the measure of the

uncertainty associated with the distribution P , MaxEnt principle can be restated as: the prior
probabilities corresponding to the hypothesis h are given by the distribution that maximizes S[P ]
subject to the constraints imposed by h on P . The simplest example is given by the hypothesis
h that imposes no constraints on P , in which case P results to be the uniform distribution and
the MaxEnt principle reduces to Laplace’s. Different kinds of constraints result on different
prior probability distributions (PPD) [47]. In [72] a table of some of the distributions obtained
this way is presented. It must be pointed out that, although given a set of constraints its
corresponding PPD can readily be computed, there is no general way of translating a hypothesis
h into equivalent constraints.
By means of the MaxEnt principle, classical and quantum equilibrium statistical mechanics can
be formulated on the basis of information theory [46]. Assuming that your prior knowledge
about the system is given by the values of n expectation values of physical quantities Rj ,
i.e., 〈R1〉, . . . , 〈Rn〉, then the most unbiased probability distribution ρ(x) is uniquely fixed by
extremizing Shannon’s logarithmic entropy S subject to the n constraint

〈Ri〉 = ri; for all i. (18)

In order to solve this problem, n Lagrange multipliers λi must be introduced.
In the process of employing the MaxEnt procedure one discovers that the information quan-

tifier S can be identified with the equilibrium entropy of thermodynamics if our prior knowledge
〈R1〉, . . . , 〈Rn〉 refers to extensive quantities [46]. S(maximal), once determined, yields com-
plete thermodynamical information with respect to the system of interest [46]. The MaxEnt
probability distribution function (PDF), associated to Boltzmann-Gibbs-Shannon’s logarithmic
entropy S, is given by [46]

ρmax = exp [(−λ01− λ1R1 − · · · − λnRn)], (19)

where the λ’s are Lagrange multipliers guaranteeing that

ri = − ∂

∂λi
lnZ, (20)
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while the partition function reads

Z(λ1 · · ·λn) = tr[exp−λ1R1−···−λnRn ], (21)

and the normalization condition

λ0 = lnZ. (22)

In a quantum setting, the R’s are operators on a Hilbert space H while ρ is a density matrix
(operator).

5 Convex Operational Models

As seen in Section 3.2, an arbitrary statistical theory can be endowed with a convex set of states
Ω and a set of generalized observables (effects) in a natural way. Generalized observables will
be reasonably represented by affine functionals and we will call A(Ω) to the space of all affine
functionals. This key observation leads to a general approach to statistical theories based on
the study of the geometrical properties of convex sets. This is the starting point of the COM
approach. In this Section we concentrate on elementary notions of COM’s, and we refer the
reader to [11] for en excellent presentation of the subject (and we follow them in this Section).
We saw that a probability a(ω) ∈ [0, 1] is well defined for any state ω ∈ Ω and an observable a.
In the COM approach, it is usually assumed that there exists a unitary observable u such that
u(ω) = 1 for all ω ∈ Ω. Thus, in analogy with the quantum case, the set of all effects will be
encountered in the interval [0, u] (the order in the general case is the canonical one in the sapce
of affine functionals). A (discrete) measurement will be represented by a set of effects {ai} such
that

∑
i ai = u. Ω can be naturally embedded in the dual space A(Ω)∗ using the map

ω 7→ ω̂

ω̂(a) := a(ω) (23)

Let V (Ω) be the linear span of Ω in A(Ω)∗. Then, it is reasonable to consider Ω finite dimensional
if and only if V (Ω) is finite dimensional. For the sake of simplicity, we will restrict ourselves to
this case (and to compact spaces). As is well known, this implies that Ω can be expressed as
the convex hull of its extreme points. the extreme points will represent pure states (in the QM
case, pure quantum states are indeed the extreme points of C). It can be shown that for finite
dimension d, a system will be classical if and only if it is a simplex1. It is a well known fact that
in a simplex a point may be expressed as a unique convex combination of its extreme points.
This characteristic feature of classical theories no longer holds in quantum models. Indeed, in the
case of QM, there are infinite ways in which one can express a mixed as a convex combination of
pure states (for a graphical representation, think about the maximally mixed state in the Bloch
sphere).
Interestingly enough, there is also a connection between the faces of the convex set of states of a
given model and its lattice of properties (in the quantum-logical sense), providing an unexpected
connection between geometry, lattice theory and statistical theories. Faces of a convex set are
defined as subsets which are stable under mixing and purification. This is means that F is a
face if each time that

x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1, (24)

1A simplex is the convex hull of d+ 1 linearly independent pure states.
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then x ∈ F if and only if x1 ∈ F and x2 ∈ F [20]. The set of faces of a convex set form a lattice
in a canonical way and it can be shown that the lattice of faces of a classical model is a boolean
one. On the other hand, in QM, the lattice of faces of the convex set of states C (defined as the
set of positive trace class hermitian operators of trace one), is isomorphic to the von Neumann
lattice of closed subspaces P(H) [20, 8].

Let us turn now to compound systems. Given a compound system, its components will have state
spaces ΩA and ΩB. Let us denote the joint state space by ΩAB . It is reasonable to identify
ΩAB with the linear span of (V (ΩA) ⊗ V (ΩB)) [11]. Then, a maximal tensor product state
space ΩA⊗max ΩB can be defined as the one which contains all bilinear functionals ϕ : A(ΩA)×
A(ΩB) −→ R such that ϕ(a, b) ≥ 0 for all effects a and b and ϕ(uA, uB) = 1. The maximal tensor
product state space has the property of being the biggest set of states in (A(ΩA) ⊗ A(ΩB))∗

which assigns probabilities to all product- measurements. The minimal tensor product state
space ΩA ⊗min ΩB is simply defined by the convex hull of all product states. A product state
will then be a state of the form ωA ⊗ ωB such that

ωA ⊗ ωB(a, b) = ωA(a)ωB(b), (25)

for all pairs (a, b) ∈ A(ΩA)×A(ΩB). Given a particular compound system of a general statistical
theory, its set of states ΩAB —we will call it ΩA ⊗ ΩB from now on— will satisfy

ΩA ⊗min ΩB ⊆ ΩA ⊗ ΩB ⊆ ΩA ⊗max ΩB (26)

As expected, for classical compound systems (because of the absence of entangled states), we
will have ΩA ⊗min ΩB = ΩA ⊗max ΩB. For the quantum case we have the strict inclusions
ΩA ⊗min ΩB ⊆ ΩA ⊗ ΩB ⊆ ΩA ⊗max ΩB. The general definition of a separable state in an
arbitrary COM is made in analogy with that of [91], i.e., as one which can be written as a
convex combination of product states [12, 71]:

Definition 5.1. A state ω ∈ ΩA ⊗ΩB will be called separable if there exist pi ∈ R≥0, ωiA ∈ ΩA

and ωiB ∈ ΩB such that

ω =
∑
i

piω
i
A ⊗ ωiB,

∑
i

pi = 1 (27)

If ω ∈ ΩA ⊗ ΩB is not separable, then, it will be reasonably called entangled [20, 83, 84]. As
expected, entangled states exist only if ΩA ⊗ ΩB is strictly greater than ΩA ⊗min ΩB.

The COM approach already shows that, given an arbitrary statistical theory, there is a gener-
alized notion of probabilities of measurement outcomes. These probabilities are encoded on the
states in Ω. And we have seen that there are many differences between classical state spaces and
non-classical ones: this is expressed in the geometrical properties of their convex state spaces
and in the correlations appearing when compound systems are considered. Indeed, QM and clas-
sical probability theories are just particular COMs among a vast family of possibilities. In the
next Section, we will study with more detail the axiomatization of the probabilities appearing
in non-classical models.

6 Quantum Probabilities

In this Section we discuss QP. We start first by reviewing the usual approach, in which Kol-
mogorov’s axioms are extended to non-Boolean lattices (or algebras) [76]. Next, we review a
relatively recent approach to the probabilities appearing in QM which uses distributive lattices
[37, 36, 56].
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6.1 The Orthodox Approach

As we have seen in Section 3.1 , elementary tests in QM are represented by closed subspaces
of Hilbert space. These subspaces form an orthomodular atomic lattice P(H). In order to
assign probabilities to these elementary tests or processes, many texts proceed by postulating
axioms which are similar to those of Kolmogorov [77, 87, 8]. The Boolean Σ-algebra appearing
in Kolmogorov’s axioms (Eqn. (11)) is replaced by P(H):

s : P(H)→ [0; 1] (28a)

such that:
s(0) = 0 (0 is the null subspace). (28b)

s(P⊥) = 1− s(P ), (28c)

and, for a denumerable and pairwise orthogonal family of projections

Pj , s(
∑
j

Pj) =
∑
j

s(Pj). (28d)

In this way, a real number between 0 and 1 is assigned to any elementary test. Despite of the
similarity with Kolmogorov’s axioms, the probabilities defined above are very different, due to
the non-Boolean character of the lattice involved. This feature led to many authors to assert
that there are no quantum probabilities (just because they are not Kolmogorovian). Gleason’s
theorem [32, 21] asserts that if the dimension of H ≥ 3, any measure s satisfying (28) can be
put in correspondence with a trace class operator (of trace one) ρs:

s(P ) := tr(ρsP ) (29)

On the other hand, using equation (29) any trace class operator of trace one defines a measure
as in (28). In this way, equations (28) define the usual probabilities of QM.
We have mentioned above that (11) and (28) are not equivalent probability theories. For exam-
ple, Eq. (12) is no longer valid in QM. Indeed, for suitably chosen quantum events A and B we
have

s(A) + s(B) ≤ s(A ∨B) (30)

The probability theory defined by (28) may be considered as a generalization of classical prob-
ability theory in the following sense: while in an arbitrary statistical theory a state will be a
normalized measure over a suitable C∗-algebra, the classical case is recovered when the algebra
is commutative [35, 76]. Difficulties which appear when one tries to define a quantum conditional
probability. For a complete discussion about these matters and a comparison between classical
and quantum probabilities, see [35] and [76].

6.2 Cox’s Method Applied To Physics

A novel derivation of Feynman’s rules for quantum mechanics was presented in refs. [37], [36],
and [56]. An experimental logic of processes for quantum systems is presented, and this is done
in such a way that the resulting lattice is a distributive one. This is a major difference with
the approach described in Section 6.1, because the lattice of projections in a Hilbert space is
non-distributive.
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The logic of processes is constructed as follows. Given a sequence of measurements M1,. . .,Mn
on a quantum system, yielding results m1, m2, . . ., mn, a particular process is represented as a
measuring sequence A = [m1,m2, . . . ,mn].
Next, conditional (logical) propositions [m2, . . . ,mn|m1] are introduced. Using them, a proba-
bility is naturally associated to a sequence A with the formula

P (A) = Pr(mn, . . . ,m2|m1) (31)

representing the probability of obtaining outcomes m2, . . ., mn conditional upon obtaining m1.
Let us see how this works with a concrete example in which the mi’s has two possible values, 0
and 1. Then A1 = [0, 1, 1] and A2 = [0, 0, 1, 1] represent measuring sequences of three and four
measurements respectively. P(A)=Pr(1,1—0), represents the probability of obtaining outcomes
m2 = 1 and m3 = 1 conditional upon obtaining m1 = 0.
Measurements can be coarse grained as follows. Suppose that we want to coarse grain M2. Then,
we can unite the two outcomes 0 and 1 in a joint outcome (0, 1). Then, a new measurement

M̃2 is created. Thus, a possible sequence obtained by the replacement of M2 by M̃2 could
be [1, (1, 2), 1]. Analogous constructions can be done for other measurements. In this way an
operation can be defined for sequences:

[m1, . . . , (mi,m
′
i), . . . ,mn] := [m1, . . . ,mi, . . . ,mn] ∨ [m1, . . . ,m

′
i, . . . ,mn] (32)

And another operation can be defined reflecting the fact that sequences can be compounded as
follows

[m1, . . . ,mj , . . . ,mn] := [m1, . . . ,mj ] · [mj , . . . ,mn] (33)

With these operations at hand, it is easy to show that if A, B and C are measuring sequences,
then

A ∨B = B ∨A (34a)

(A ∨B) ∨ C = A ∨ (B ∨ C) (34b)

(A ·B) · C = A · (B · C) (34c)

(A ∨B) · C = (A · C) ∨ (B · C) (34d)

C · (A ∨B) = (C ·A) ∨ (C ·B), (34e)

Equations (34) show explicitly that “∨” is commutative and associative, “·” is associative, and
that there is right- and left-distributivity of “·” over “∨”.
Equations (34) define the algebraic “symmetries” of the experimental logic of processes. As in
the approach of Cox to classical probability, these symmetries are used to derive Feynman’s
rules [37]. But at this step, a crucial assumption is made: each measuring sequence will be
represented by a pair of real numbers [37]. This assumption is justified in [37] by appealing to
Bohr’s complementarity principle.
If measuring sequences A, B, etc. induce pairs of real numbers a, b, etc., then, due to equations
(34), the associated real numbers should satisfy

a ∨ b = b ∨ a (35a)
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(a ∨ b) ∨ c = a ∨ (b ∨ c) (35b)

(a · b) · c = a · (b · c) (35c)

(a ∨ b) · c = (a · c) ∨ (b · c) (35d)

c · (a ∨ b) = (c · a) ∨ (c · b) (35e)

The reader can easily verify that equations (35) are satisfied by the field of complex numbers
(provided that the operations are interpreted as sum and product of complex numbers). How
can we assure that complex numbers are the only field which satisfies equations (35)? In order to
single out complex numbers among other possible fields, additional assumptions must be added,
namely, pair symmetry, additivity and symmetric bias (see [37, 36, 56] for details). Once these
conditions are assumed, the path is clear to derive Feynman’s rules by applying a deduction
similar to that of Cox, to the experimental logic defined by equations (34).

7 Generalization of Cox’s method

As we have seen in previous Sections, there are two versions of CP, namely, the approach
of R. T. Cox [23, 22] and the one of A. N. Kolmogorov [57]. The Kolmogorovian approach
can be generalized in order to include non-Boolean models. In what follows, we will see that
Cox’s method can also be generalized to non-distributive lattices, and thus the non-commutative
character of QP can be captured in this framework [44, 42].

7.1 Generalized probability calculus using Cox’s method

As we have seen in Section 4, Cox studies the functions defined over a distributive lattices
and derives classical probabilities. In [44] it is shown that if the lattice is assumed to be non-
distributive, the properties of QP described in Section 6.1 can be derived by applying a variant of
the Cox’s method as follows (see [44]). Suppose that propositions of our system are represented
by the lattice of elementary tests of QM, i.e., the lattice LvN (H). This lattice isomorphic to
the lattice of projections P(H) of the Hilbert space H. The goal is to show that the “degree of
implication” measure s(· · · ) demanded by Cox’s method satisfies Eqs. (28). This means that we
are looking for a function to the real numbers s, such that it is non-negative and s(P ) ≤ s(Q)
whenever P ≤ Q.
The operation “∨” in P(H) is associative. Then, if P and Q are orthogonal projections, the
relationship between s(P ), s(Q), and s(P ∨Q) must be of the form

s(P ∨Q) = F (s(P ), s(Q)), (36)

with F a function to be determined. If a third proposition“∨” and following a similar procedure
to that of Cox, the following functional equation is found

F (F (s(P ), s(Q)), s(R)) = F (s(P ), F (s(Q), s(R))). (37)

The above equation can be solved up to rescaling [52, 53, 55, 1], and we find

s(P ∨Q) = s(P ) + s(Q). (38)
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whenever P ⊥ Q. It can be shown that for any finite family of orthogonal projections Pj ,
1 ≤ j ≤ n [44]:

s(
∞∨
j=1

Pj) =
∞∑
j=1

s(Pj), (39)

and we recover condition (28d) of the axioms of quantum probability. By exploiting the prop-
erties of the orthogonal complement acting on subspaces, it can also be shown [44] that

s(P⊥) = 1− s(P ), (40)

which is nothing but condition (28c). On the other hand, as 0 = 0 ∨ 0 and 0⊥0, then s(0) =
s(0) + s(0), and thus, s(0) = 0, which is condition (28b). In this way, the Cox’s method applied
to the non-distributive lattice LvN (H) (or P(H)) yields the same probability theory as the one
provided by equations (28) for the quantum case.
What happens if the Cox’s method is applied to an arbitrary atomic orthomodular lattice L?
Now we must define a function s : L −→ R, such that it is always non-negative s(a) ≥ 0 ∀a ∈ L
and is also order preserving a ≤ b −→ s(a) ≤ s(b). In [44] it is shown that under these rather
general assumptions, in any orthomodular lattice and for any orthogonal denumerable family
{ai}i∈N, s must satisfy (up to rescaling)

s(
∨
{ai}i∈N) =

∞∑
i=1

s(ai) (41a)

s(¬a) = 1− s(a) (41b)

s(0) = 0. (41c)

In this way, a generalized probability theory is derived (as in (28)). Equations (41) define non-
classical (non-Kolmogorovian) probability measures, due to the fact that in any non-distributive
orthomodular lattice, there always exist elements a and b such that

(a ∧ b) ∨ (a ∧ ¬b) < a, (42)

But in any classical probability theory, s(a ∧ ¬b) + s(a ∧ b) = s(a) is always satisfied.

8 Conclusions

We have presented a new approach to probabilities appearing in QM. While there exist two
alternative formalisms to CP (the Kolmogorovian and the one due to R. T. Cox), we have also
shown that these two approaches can be extended to the non-commutative case. In this way,
we find that CP are just a particular case of a more general mathematical framework in which,
the lattice is distributive. QP is also a particular case of a vast family of theories for which
the propositional lattice is non-distributive. Thus, we have a precise formal expression of the
notion of QP. Of course, these formal frameworks does not exhaust the philosophical debate
around the existence or not of a well defined notion of QP; notwithstanding, the extension of
the Cox’s method to the non-distributive case and the possibility of including a description of
the probabilities in QM in it, constitutes a precise step towards understanding the notion of QP
offering a new point of view of this notion.
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