
It has  been argued that problems in computer simulation bear enough resemblance to 
recognized issues  in the philosophy of modeling that they only pose philosophical 
challenges analogous  to those found in standard analytic models  used to represent the 
natural world. Agent-based models  have become important for understanding the 
interactions  among organisms  in ecological and evolutionary systems. Like the 
complexity found in natural systems, these models  allow emergent patterns  to arise from 
lower-level processes. The use of these models presents  several philosophical problems to 
understanding how a simulation represents  and what role it can play in scientific 
discourse. One fruitful way to look at agent-based models  is  as  instantiations: a 
representational mode that recreates  a type of the system with which one is  working. I 
explore whether agent-based models  present new challenges  for philosophy of science  
and why these types  of models are relevant for understanding emergent systems. I argue 
that certain types  of ecological systems  may be examined more substantively with 
agential models. I also suggest that these models  might be described as  fictions and 
require deeper hermeneutic engagement than non-simulation models. 
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1. Introduction

Frigg and Reiss  (2009) argue that philosophical problems  in simulation bear enough resemblance to 
recognized issues  in the philosophy of modeling that they only pose challenges  analogous  to those found in 
standard analytic models  used to represent natural systems. They suggest that there are no new 
philosophical problems  in computer simulation modeling beyond those found in traditional mathematical 
modeling. Winsberg (2009) has countered that there appear to be genuinely new epistemological  problems 
in simulation modeling because the knowledge obtained from them is  ‘downward, motley, and autonomous.’ 
Here I draw out some specific ways that these epistemological problems  are manifest in complex ecological 
simulation, especially in agent-based models. These models contain novel features  that were impossible to 
anticipate prior to the computer revolution, and continue to present difficulties  and challenges of both a 
practical and philosophical nature (Humphreys 2002). 

Philos Theor Biol (2012) 4:e303

OPEN ACCESS - Freely Available at philosophyandtheoryinbiology.org

mailto:steven_peck@byu.edu?subject=
mailto:steven_peck@byu.edu?subject=


PECK — AGENT-BASED MODELS 2

OPEN ACCESS - Freely Available at philosophyandtheoryinbiology.org

In this  paper I weigh in on some of these issues  and elaborate why I think that agent-based ecological 
simulations  are more complicated, and more interesting. I will focus  on three things. First, I suggest that a 
fruitful way to look at agent-based models is  as  instantiations: a representational mode that recreates  the type 
of the system with which one is  working. Rather than a representation based upon mathematical or pictorial 
description, an instantiation recreates, in part, that same system with objects  that have formal attributes 
similar to those found in the target system. Second, I explore whether agent-based models  present new 
problems  for philosophy of science and why these types  of models  will be relevant for understanding 
emergent systems. I argue that certain types  of ecological systems may be examined more substantively with 
agential models  (Odenbaugh 2005b; De Roos  and Persson 2005). Third, I highlight that these models 
require a deeper hermeneutic engagement than analytic models. Current discussions  within philosophy of 
science that fruitfully critique models  as  fictions  offer a helpful perspective for better understanding these 
types  of systems. These viewpoints  may be useful for simulations  of various  types  and across  different 
disciplines, but my focus  will be on agent-based ecological models. I show that these models  pose many novel 
and challenging issues that require new conceptual work by philosophers of  science.

1.1 A few preliminaries on ecological theories

Before we talk about agent-based simulation in ecology, there are some things  about ecology to keep in 
mind. Ecological systems  are arguably among the most complex systems  found in nature. They often rival 
the complexity of such multidimensional and challenging sciences  as  developmental biology and 
neuroscience. The reasons for ecology’s complexity are multifarious. 

First, ecological systems  are hierarchical, with higher-level processes  constraining and influencing lower-
levels, and, in turn, lower-level processes  contributing to the structure and function of higher-levels. These 
multiple scales of  interaction can lead to complicated dynamics.

Second, ecological systems  are numerically complex; they are comprised of a large number of players  in 
networks  of interacting organisms, which structure and are structured by many abiotic elements. Food webs, 
competitive interactions  among and within species, structural dynamics  of the physical environment 
produced by both abiotic and biotic influences, animal behavior and all this  entails, are just a few pieces of 
the composite environmental milieu. For example, soils  and plant community composition can be 
dramatically influenced by differences in solar energy shaped by the topology of  landscape-level factors.

Third, ecological systems  are historical in nature. They are contingent on accidents  of colonization by 
differing organisms, accidents  of weather and climate, perturbations  caused by natural and human 
processes, and other influences  that affect the historical development of an ecosystem. This  contingency is 
the result of a complex evolutionary history in which species  have evolved and coevolved over millions  of 
years, creating interdependencies, reliances, mutualisms, and other symbiotic relationships that structure 
ecological communities. 

Fourth, the part-whole relationships of ecosystem components  are a fundamental aspect of these 
systems, even though in many ways  they are contingent and accidental. The species  present form 
relationships  with other components, but do not have functional relationships  to the ‘whole’ in the same way 
that the components  of organisms  do. The predator’s  regulation of prey does not serve as  a function toward 
some ecosystem goal in the same way that a predator’s  heart functions  toward pumping blood. This  is 
because ecosystems  as  a whole are not evolved structures  in the same sense that organisms  are. However, 
ecosystems do have tendencies  and capacities. For example, grassland or wetland ecosystems seem to 
function similarly in many parts  of the world despite being composed of different species  of plants, animals, 
and soil organisms. In short, ecosystems  are complex spatially, temporally, and hierarchically. They also have 
numerous contingent features due to history and geography. 

These features  have fostered the argument that there may be no laws  in ecology and that ceteris paribus 
conditions  dominate, if not swamp, most aspects  of ecological systems  (Cooper 2003). Ecological theory has 
been hard to come by and, when proposed, tends to be ecosystem, species, or location specific. Many 
instances  are so general or even cartoonish—like the ‘law’ of exponential growth—that they are hard to 
apply to actual organisms in real ecosystems  except in broadest outline (Hall 1988). Ecology has  proven to 
be a theory-poor science. Even recent attempts  at providing unifying concepts  seem limited and only 
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marginally successful. This  lack of generality, however, does  not imply that all aspects  of ecological theory 
are in vain. For example, in community ecology, widespread patterns  have been noted that rely on 
fundamental processes  that can be captured much like the theory of evolution by natural selection does, 
through pointing out how those processes  (including natural selection) create specific patterns  regardless  of 
species composition (Roughgarden 2009; Vellend 2010; Grimm et al. 2005). 

How can modeling, as  conventionally understood, make any headway with such systems? Agent-based 
simulation seems to be one way (Colyvan et al. 2009; Caprio et al. 2008). The history of computer 
simulation in ecology has been controversial; even so, its  importance as  a tool for understanding ecological 
complexity cannot be understated. Although the details of this  controversy have been explored elsewhere 
(Peck 2004), it is  important to note that the challenges  of using simulation grow out of the problems 
associated with equation-based models  that describe processes  from the top-down and miss key aspects  of 
these systems—it is  the complexity itself that we desire to explain and understand. Modeling approaches 
must not only represent, but must do so vis-à-vis this  complexity. For example, in the study of pesticide 
resistance in large agro-ecosystems, where genetic, ecological, human management, and insect behavior all 
come together, the strategy has  been to combine equations, structure, and agential behavior in ways  that can 
only be described as a creative act (Peck 2008). 

2. Instantiations as Representations  

Representation is a well-discussed topic in philosophy of science and gets  at the heart of any model of a 
system, including everything from paper and stick models of chemical systems  to advanced mathematical 
models  that represent the dynamics  of complex physical behavior. Although van Fraassen (2008) notes  that 
“representation is  not to be subjected to definition: it is  inexhaustible as  a subject,” he argues  that a 
representation is  a cultural artifact with a selective resemblance to its  target system.  Thus, models  are used 
in a context of making representations  that reveals  the structure and processes  of observable phenomena. 
The circularity in this is intentional: representations, he argues, are those things used as such.   

Representations  can be pictures, equations, and other traditional ways  of creating resemblance relations. 
Physical models also can be used to construct an instance of the target system that is smaller in scale, but for 
which the same nomological relations  are thought to hold. For example, wind tunnel experiments  on 
airplane designs  often explore the effect of smaller and more manipulable versions  of airplanes to 
comprehend different aspects  of turbulence. This  procedure creates  not just a symbolic representation of the 
target, but an instantiation. While this  term is  not commonly used in the literature, I think it provides a useful 
distinction when thinking about models and model systems, and suggests interesting applications. 

Consider a particular ecological instantiation. Schenck Memorial Forest, near Raleigh North Carolina, 
is  a 101 hectare research study site maintained by the Department of Forestry and Environmental Resources 
at North Carolina State University (Miller 1979). It was  planted on depleted croplands  among loblolly pines 
in 1939. This  forest is  now a thriving ecosystem. However, it has  both artificial and ‘natural’ aspects  of 
ecosystems. Because it was  created by researchers, the forest can be manipulated in ways  that might be 
unethical or otherwise problematic for more natural forests. It was  built for the purpose of studying forest 
processes  and their management, and it continues  to function as such. Why not just say it is an ecosystem? 
That is  accurate, after all. While it is  an ecosystem, it is  also different in that it exists  to be representative of 
ecosystem processes  for human understanding, in a way different from natural ecosystems  (acknowledging all 
the problems  with the meaning of ‘natural’). It serves  as  a reference point because it can be manipulated and 
studied. Its  historical features  have been documented and described. It exists and is  maintained for its  value 
as  representing what are thought to be spatially larger, more biotically complex, and historically less  well-
documented forests. An ‘experimental’ forest does  not seem to represent the inherent wildness  of this 
purposefully planted forest. It is more than a controlled experiment, and less than a fully natural forest. 

An instantiation is  a representation and is  used as  such (van Fraassen 2008), but it also becomes  an 
instance of the target system. It contains  many but not all of the components  of the reference system, and 
the components  stand in reciprocal relationships that are similar to how they obtain in a natural system. On 
a more abstract level, trees can be treated as objects that stand in specific relationships with other objects  in 
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Schenck Memorial Forest. These objects  have manifestations that interact in particular measurable ways 
(although not all aspects  of objects  are given or measurable), and have capacities  that can be conditionally 
manifest, surfacing only as ecosystem processes interact through time.  

Similarly, digital ecologies  are built up through the creation of objects that interact in ways thought to be 
similar to the target system (given all the usual caveats  about similarity relations). In this  way, digital objects 
are created to represent objects  in the target ecological system, but in very real respects are designed also to 
be an instantiation of an ecological system. Although it is  true that in one case the objects are trees  largely 
made of carbon atoms, and in the other the objects  are constructed from programming code, objects  qua 
objects  interact in operationally relevant ways. There are things about objects  that are relevant just because 
they are objects—regardless  of their material origin (for an extensive discussion of objects, see Bryant 2011). 
We are accustomed to this  kind of material substitution in object creation; for example, we create a wing out 
of balsawood rather than titanium to study wing performance in a wind tunnel. But sometimes it is  less 
important what the material substance is  in a model instantiation, as  long as  we use the objects  created to 
interact in appropriate ways to represent features of  our target system. 

A digital representation has certain advantages  as  an instantiation of an ecological system. Complete 
experimental control is possible in a computer simulation in which objects  are created in ways thought to 
behave analogously to objects  in a real system. In this type of ecological instantiation, processes  are 
uncovered and behaviors  emerge because the agent-based system is  an ecology itself. An ecology of digital 
objects, but an ecology nonetheless. 

I recognize that there is  an analogical leap from a planted forest to a digital ecology, but there is 
something about agent-based systems  that capture ecological aspects  and pattern generation differently from 
representations  in a pictorial or equation-based sense. They are ecological, and constructed to interact in 
ways  that the programmer cannot anticipate or control—objects  interacting with objects. Instantiation is  a 
fruitful way to think about the differences  between these types of models  and more formal mathematical 
representational systems, and can be seen by looking in some detail at the use of  agent-based models.

3. Agent-based Models  

In agent-based models  (ABMs), also called individual-based models  (Railsback and Grimm 2012), the 
individual participants  in an ecological system are represented by digitally created agents, i.e., discrete 
computer objects  with attributes  designed to match agents  and their environment in the target system.1 They 
have been used very successfully in social sciences to explore questions  of regularity in social behavior and in 
the ecological sciences  (Grimm and Railsback 2005). Agent-based systems are useful for understanding the 
complex interactions  of organisms  in ecological and evolutionary biology, as  well as  the cognitive division of 
labor in science (e.g., see Weisberg and Muldoon 2009). Like the complexity found in natural systems, these 
models  allow complex patterns  to “bubble-up” or emerge from lower-level interactions  among agents. 
Digital organisms, for example, allow representation at multiple temporal and spatial scales, including the 
ecological, genetic, and evolutionary details  of their local interactions. In addition, these types  of modeling 
approaches—like their natural counterpart and target systems—are highly contingent on the specifics of 
time and place, and depend on the historical nature of the digital environment that has structured the 
ecosystem in and through modeling time. 

This interplay of organisms  and environment captures  inherent complexity that is  difficult to handle 
using standard analytic mathematical models, which rely on sets  of complex equations  to represent the 
various  states of the target system. ABMs  are fundamentally different from typical analytic models  in that 
they are not necessarily equation-based, and the problems  they can engender usually do not arise from the 
challenges created by using numerical methods  to find approximate solution sets for analytic equations. 
There are, however, many of the familiar problems  in trying to navigate between generality, precision, and 
realism (Weisberg 2006, 2007; Levins 2006).

 Hauhs and Lange (2006) draw a useful distinction between what they refer to as  algorithmic models  and 
interactive simulations. Algorithmic models  follow a kind of ‘natural law’ approach in which the theories 
and laws  of the system are mapped out with formal sets  of equations.  Although these sets  are complex, they 
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progress  according to state transition equations. In interactive simulations, choices are made in which new 
possibilities  can unfold. They use the example of a chess  game or a flight simulator in which new 
opportunities  and scenarios  develop in unanticipated ways  when different moves  are made. This  is  similar to 
what happens in agent-based ecological models. The agents  can adapt, move, and change in ways that 
capitalize on local conditions and circumstances, which thereby moves  the simulation forward to new states 
that are explicitly dependent on what has  happened historically within the model. The local interaction of 
agents  can generate emergent patterns that are unanticipated or programmed specifically; genuine novelty is 
produced in ABMs. 

How does  this  occur? What allows  these kinds  of systems to unfold in new ways? These models  often are 
built straight from code and designed to mimic the ecological system itself, in effect, creating a digital 
ecology that represents the natural ecological system. Much like computer game animations  and 
manipulations, these models  are world-representing in ways  that are interactive and code-based. Of course, 
all computer modeling involves  building and executing code, but in ABMs the stage of representing the 
target systems by formal equations is often bypassed. 

ABMs produce challenges  to thinking about both modeling and scientific representation. The typical 
ABM will contain computer code that defines the agent organisms and their attributes, and how these 
attributes affect interactions among agents  within the digital ecology. Analytic models  may play a role in 
ABMs, such as one of the components  of a complex simulation, but not necessarily, and when they do the 
manner of interaction is more complex. Winsberg (2010) points  out that models  often represent natural 
processes  at different scales  or under different circumstances  using different theoretical commitments. For 
example, if processes  operate at different scales, then different theories  might be used to separately describe 
the two interacting scales. To solve the problem of modeling cross-scale interaction effects, different sets  of 
equations  using the theoretical commitments  thought to obtain at each scale pass  information between the 
scales  in order to get a multi-scale representation of the process. ABMs  differ in that the aim is  for the agents 
themselves to create the conditions  under which the multi-scale structure arises  from the effects  of the 
interactions among agents.

ABMs only represent the agent states themselves  and the relationships  that obtain from the interaction 
of the agents in their digital world. The behavior of the model emerges  from these interactions—with all of 
the usual problems  of choosing what to model, what to include or exclude, the level of abstraction, the type 
of idealizations, etc. In these respects, there are problems that are common to both analytic models and the 
simulations  of ABMs. These problems  are inherent in any modeling enterprise, but they can exhibit novel 
aspects  that demand new philosophical consideration. For example, consider this  description of 
computational modeling:

We may say that, as a matter of fact, scientists  reach certain conclusions  by using computational models 
that are (1a) usually built starting from a piece of theory (though without deducing them from theory), 
(1b) not deduced from data (and background knowledge, say) and (1c) constructed using a variety of 
different sources and techniques including approximations, idealizations and so forth (Frigg and Reiss 
2009, 7). 

For ABMs, much of this  is  not true in ecological systems. (1a) is  rarely true because of the difficulty of 
finding general ecological theories  that apply across  a wide range of organisms, and the deeper suspicion 
that we do not have any in the same sense as models  found in the physical sciences. Because we usually do 
know something about agential behavior through data, and it is  used to construct the simulation, (1b) is  not 
true. (1c) is true but involves  such a variety of considerations in ABMs  that it is  unclear whether Frigg and 
Reiss  have imagined them in what they propose here. In short, ABMs are a new and different beast. But in 
light of these major differences, and additional interpretive problems  (see below), there is  a natural question 
of why we would even use ABMs at all. This  question has  been the focus  of a rather rigorous debate in 
ecology about whether simulation models are ever useful for making general claims  about nature (for a 
review, see Peck 2004). They not only should be used, but they are a crucial tool for understanding ecological 
systems because they are inference-generating representations. 
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ABMs present several new problems for understanding how models  represent their target systems, and 
what role they can play in scientific discourse. The suggestion that simulation models present no new 
challenges to the philosophy of modeling may be true for typical simulations  based on systems of analytic 
models. However, ecological simulation—in the sense of instantiations  from ABMs—does  seem different 
enough from standard modeling to pose representational problems  that warrant distinct scrutiny. This is 
especially true when the simulation models are not derived from systems of equations, but instead built up 
directly from rule-based computer language coding.

3.1 Examples from ant behavioral ecology
 
Some of the challenges  with representations  derived from ABMs begin to appear when we examine how 

these models  are constructed. First, the representation is  constructed in a nested hierarchy of code-based 
structures. For example, the ‘creature’ may be represented as  an algorithmically coded object defined by a 
series  of variables  denoting its  attributes. These might include things  like location, health, whether it has  fed, 
how much energy it has  remaining, sex, genetic code, or a host of other attributes  thought to be relevant in 
representing the target agent. This  is  a representation more akin to creating a ‘picture’ of attributes  relevant 
to the modeled agent. Second, the ecological arena must be constructed by representing the ecological 
environment in which the organisms act. This  may be dynamic and change as  the model progresses. Third, 
the process  rules  of the simulation must be specified. What happens when the agents  interact? Do they mate, 
feed, kill, defend territory, or reproduce and create new agents? What happens is  dependent on the ecology 
for which the representation is  intended, but all ABMs must contain rules  for agent interaction and 
environment specific behavior. Time and ordering relations must be modeled as  well. An extraordinarily 
complex computer code is required to handle the agents and their interactions. 

Examples from ant ecology can be used to illustrate these aspects of how ABMs are constructed, as  well 
as  how they differ from other simulation models  (such as  those used in the physical sciences), and even how 
they become experiments. Robinson et al. (2008) constructed a simulation model based on experiments 
conducted on Pharaoh’s  ant, Monomorium pharaonis. Figure 1A shows the state changes in the modeled ant-
agent behavior depending on environmental context. Figure 1B shows  the experimental set-up designed to 
capture actual ant agential interaction. While the details  of these findings are important for ant ecology, I 
want to draw out some of the philosophical problems orbiting around how the model was  built, how it was 
used, and what was learned from it. 

The ABM is  derived from a set of previous  foraging experiments, literature review, and heuristic pictures 
that are realized in Figure 1B, but there is  little theoretical guidance of the kind found in physical science 
modeling.

The aim of this  model is to investigate how the foraging success  of a colony of trail-laying ants is 
affected by the combined use of attractive and repellent trail pheromones, and in particular to 
determine the advantages of  having a repellent pheromone (Robinson et al. 2008, 252).

Their goal is to reproduce agents  that behave in certain ways  that formally resemble the foraging ants—to 
construct an instantiation of the system. This  differs  from attempts  to represent or depict using a 
mathematical model. The ABM is  built up from MatLab code (Robinson et al. 2008, Supplemental 
Information), which captures the heuristics in Figure 1. For example, ant-agent decision is coded as:

If  cellt[ATT]> μdetect

cellt[ATT] → cellt+1[ATT = cellt[ATT]+μpos ]
Else
cellt[ATT] → cellt+1[ATT = cellt[ATT] ]
End
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Pheromone decay is  modeled with standard exponential decay functions  in this  model, but the equations  are 
embedded in code differently than what is  found when physical behavior is  described with systems  of 
analytic equations. In addition, the equations  in the ABM are constructed in a more ad hoc fashion. Here the 
creation and running of the code is  an attempt to instantiate a specific experimental situation directly, which 
in turn is  thought to inform questions  about ant foraging behavior in nature. The computer acts  as a tool to 
investigate ants  by recreating the system in a controllable way. This  control means  the model is  easily and 
inexpensively manipulated. To examine ant foraging behavior in the laboratory experimentally would 
require vast resources; to do so in the field would be nearly impossible. The computer objects  are given the 
individual attributes of ants  and the behavioral rules  that ants  are thought to follow in their interactions  with 
other ants  and in their environment. Patterns  observed in the ABM can be checked against real world ants 
and then expanded to make claims that go beyond what is manageable in the laboratory or in field studies. 

The ABM also produces emergent and self-organizing behavior, which helps to explain a feature of ant 
foraging (repellent pheromone increases  the robustness  and flexibility of foraging) and offers  ideas  for further 
experiments. In the complex situation modeled here, it is unlikely that these results  concerning ant behavior 
could be discovered apart from the agent-based approach (or at least not captured so easily). The model then 
becomes inference-generating in ways useful to myrmecologists in their ongoing inquiry into ant behavior.

3.2 Do agent-based models present unique features to philosophy of  science? 

ABMs allow us to instantiate a system in ways  that were difficult before the computer revolution. Still, 
they stand, as all models do, autonomously from the world they were intended to represent:

...although the behavior of the computer models  is determined only by the program and the internal 
logic of the computer and is  thus deterministic, it still is  outside the complete control of the modelers 
since they are not omniscient with regard to deductive consequences. Indeed, researchers  that devise 
computer simulations  often refer to their work as experiments  and thereby emphasize the autonomy of 
their models (Schlimm 2009, 528; see also Morrison and Morgan 1999).

One place to look for new types  of philosophical problems  in ABMs  is  with respect to the generation of 
emergent behavior from agent interaction. “Emergence” can mean many things  and tends to be a fraught 
concept. I am using it in the sense of Bedau (2008), who distinguishes  three concepts  of emergence 
(nominal, weak, and strong). In all three types, the foundational element of emergence is  the idea that a 
property is  emergent if it is  a property that can be possessed by the macro scale but not the micro scale. A 

Figure 1 — A: Schematic map of  ant-agent behavior found in the model described in the text (from Robinson et 
al. 2008, 251). In this model, ants are represented as agents that move though the different behaviors outlined in 
the connecting edges in this flow diagram. The ant-agents change feeding behavior state according to the nodes, 
illustrated by the boxes, which represent states that individual ants can enter into during a run of  the model. B: 
Experimental set-up used as the target system for the agent-based model described in the text and used to 
explore ant behaviors (from Robinson et al. 2008, 251).

A B
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classic example of this  is the liquidity possessed by water in a container that is  not possessed by a single 
water molecule. 

Nominal emergence obtains  when wholes  are dependent on their parts  but also autonomous  from their parts 
in the sense that the parts  do not have the properties  of the whole.  Nominal emergent properties  result from 
the parts  coming together to make a whole. To take a biological example, a herd of wildebeest is  a herd just 
as  a result of individual wildebeest aggregating in a certain way. The herd emerges  because of individual 
behavior, but can have advantages like many eyes watching for predators. 

Strong emergence obtains  when properties  of a system exhibit “supervenient powers  that create irreducible 
causal powers” (Bedau 2008, 158). Although these properties  are dependent on the micro-level properties, 
they manifest causal powers that cannot be reduced. These are sometimes  thought to be extra-scientific in 
that they cannot—in principle—be explored through reductive methods. The subjective experience of the 
mind is  sometimes claimed as  an example but there is  skepticism about whether strong emergence is  a 
coherent concept.

Bedau defines  weak emergence as: “The system’s global behavior derives  just from the operation of micro-
level processes, but the micro-level interactions  are interwoven in such a complicated network that the global 
behavior has  no simple explanation” (Bedau 2008, 160). More specifically, he argues  that weak emergence is 
not derivable except through simulation; micro-level state changes  are a function of the situation of 
interactions  that obtains  for micro-level states. A clear example would be a beehive in which individual bees 
are making ‘decisions’ based upon the needs  of the hive and the situation within the hive. A bee can 
determine the conditions  and needs  of a hive and then change its behavior accordingly. Within a beehive, 
individual bees  are making decisions, but they are exchanging information with each other, assessing the 
situation within the hive, and evaluating the outside world in complex ways  that make the hive much more 
than an aggregate of bees  in the same sense that a herd is  just an aggregate of wildebeest. Although this  is  a 
continuum, and there is  some assessment/evaluation going on within a herd (what is  my neighbor looking at 
and why is  it so nervous?), the assessment and behavior are not as  complex as the hive, nor is  information 
used to create such emergent properties. 

Bedau argues  that emergent systems may be recognized only through simulation. Questions  about 
representing the back-and-forth between emergent systems  and their simulation have not received much 
attention outside of the field of generating emergent behavior in simplistic cellular automata models. 
Philosophical discourse on emergence, however, is  in its  infancy, especially in modeling ecological systems. 
There is  still wide disagreement on how to define emergent behavior, and discussions  of how to model it are 
equally problematic. However, given the complexity of natural systems, it is  likely that we will need multiple 
perspectives  on ABMs  to even approach these problems (Mitchell 2002; Mitchell and Dietrich 2006). 
Wimsatt (2007) views  false models as  components  of theories, and Levins  pointed out that true theories 
become manifest in the intersection of ‘independent lies’ (Levins  1966). This  idea needs  careful attention in 
the use of ABMs  because of the different ways these models  work as  pragmatic, explanatory, and predictive 
devices  for complex ecological systems (Odenbaugh 2005a). Their use requires at least some new 
interpretive frameworks. For example, Railsback and Grimm (2012) encourage us to focus on patterns  that 
arise from agent-based simulation. Focusing on these patterns  brings  into view new ways of analyzing ABMs 
compared to the statistical analyses  used in more traditional modeling methods. It also may require the 
development of new methods  based on pattern recognition techniques, which suggests  further philosophical 
considerations as well.   

4. Agent-based Models as Fictions   

Additional philosophical problems arise when trying to understand exactly what these types  of models 
are. Godfrey-Smith (2009) views  models  as  narratives; models  are constructed as  structures  with characters 
and events  that unfold in time. They are fictions  capturing truths about the world in forms  that both 
represent in the traditional sense, but also contain truths  that are true within the model. In other words, 
there are truths  in narratives  that can be taken as  true within the given system. (For example, the truth that 
Alice and the rabbit, in the book Alice in Wonderland, are both mammals even though this  is  not stated.) When 
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the model is  just considered as  a description of a world, and bracketed from its  real-world target, there are 
truths  about the fictive world described by the model. From this  view, ABMs  introduce protagonists into a 
narrative, with interesting implications. 

Consider again the ABMs  for ant behavior. Both models have their origin in narratives  and arise as  an 
act of narrative discourse. When I have built these kinds  of complex ecological models, I have worked with 
biologists  and others  who might use them. We discussed verbally what should go into the model, and what 
should be left out. We reflected on the scientific literature and then articulated stories  about how we thought 
the ecologies  behaved. We drew on many others, both from the literature and in conversation, whose deep 
acquaintance with the ecology of these systems, and the processes that structure the interactions  in the 
natural world, inform our current views. It was not until after we had worked out a detailed narrative 
structure that attempts  at formalism were made and our English-based discussions  and descriptions  were 
translated directly into code. The narrative aspects  structured how we thought things  unfolded, what 
trajectories  were ecologically relevant, and how to incorporate probabilities and their distributions; 
possibilities  based on how things  proceed locally and historically were first hashed out in discussion. Then 
the narrative was coded in a computer programming language directly from these ‘stories.’ (The researchers 
who built the ant model proceeded similarly.) Even though the complexity of the final model was beyond our 
ability to cognitively handle, narrative was  still an embedded part of what was  accomplished. The computer 
was  then able to combine these fictions  into a coherent story, from which we could read off the results, but in 
ways we could not have anticipated. 

This may hold for all models, but it is  especially true for ABMs  in which the translation from scientific 
narration (including field studies, data, laboratory experiments, theory, intuition, induction, deduction, and 
abduction) into code occurs in a single step with minimal stops  at formalism, such as differential equations 
and other analytic models. The agential properties  and how the agent’s  interact is  where the representations 
are made explicit, rather than at higher levels of  the system. 

The approach used in ABMs carries  certain strengths  that are needed to represent highly complex 
ecological systems, which are interacting at multiple scales  with multiple kinds  of players within the same 
system. Since ongoing interaction among the players  structures higher-level patterns, which then feed back 
into lower-level structure, capacities either can be realized or remain dormant according to historical and 
local conditions in the model. As  a result, capacities  of these systems become more manipulable, and the 
model can yield insights that emerge from these local interactions themselves.

Moreover, using the bottom-up approach found in digital ABMs  allows  one to observe the development 
of emergent properties  much like those found in real systems, with part-whole relationships explicitly 
instantiated. There has  been only limited philosophical engagement with what it means to represent 
emergence, and what problems  or concerns  might arise in representing this  aspect of reality. Do emergent 
features of digital systems  arise in the same way as  emergent features  do in real-world systems? Would we 
expect the patterns that emerge in simulation to represent the patterns  found in real systems? Answers  to 
these questions  lead to further questions: How do we interpret representational aspects  of emergence? 
Should it be with patterns, with experiments  on the model, or with standard statistical approaches  to data 
reduction and exploration? Likely, all of  the above. 

It is  important to keep in mind one point that has not been explored adequately here: there are deep 
interpretive problems that are a consequence of these models  being massively complex. Making explicit 
what binds  these models  to their real-world counterpart is  a part of the problem; because of the complexity, 
we often lack the same epistemic purchase that we lack with real, complex ecology (see Humphreys  2009). In 
these types of models  it becomes  even more problematic because of the number of parts, the complexity of 
interactions  among the parts, and how these systems  are constructed. One of the most vexing issues  in 
ecological simulation is  how these complex representations  should be interpreted, understood, and 
scientifically defended. 

One of the most common sources  of frustration that scientists  express about the philosophy of science is 
its  detachment from the often brutal realities  of getting theory into contact with data and how a 
scientific representation is  applied to a real system involves  considerably more than is  included in the 
traditional semantical concerns of  reference, meaning, and truth (Humphreys 2009, 619).
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I have directly encountered these frustrations  as  an ecological modeler. Sugden (2011) rightly notes  that 
models  provide a discovery process  that goes  beyond their simple role as  representations  and generate 
structure for worlds  that offers  ‘explanations in search of observations.’ This means  models  provide a 
framework for theorizing prior to data collection.  But at some point our models  must confront the world. 
One way to bring these sorts  of models  into dialogue with the real-world is  through a hermeneutical approach 
(Peck 2008). There are five aspects  of philosophical hermeneutics  that may be useful in complex ecological 
simulation: (1) an openness to multiple perspectives  allowing for multiple levels  of scientific pluralism, (2) the 
hermeneutic circle, a back-and-forth of active communication among both modelers  and ecologists; (3) the 
recognition of human factors  and the nature of human practices in simulation modeling, including the role 
of judgments  and choices  in the modeling enterprise; (4) the importance of play in modeling; and, (5) the 
non-closed nature of hermeneutic engagement, which implies  continued dialogue and a recognition of the 
situatedness, incompleteness, and tentative nature of  simulation models.

Frigg (2010) captures  this sentiment succinctly when he describes  simulations  as  authorized games  of 
make-believe. There is  something right in suggesting that simulations  are about performing an authorized 
game. Nevertheless, this  has  to be combined with the idea that a model is  used in a back-and-forth 
movement between real-world data and the model itself. This  movement is  one in which the model informs 
the on-the-ground science of given ecologies  by providing such things  as  hypotheses to test, explanatory 
indications  to investigate, and predictions to confirm. However, the same things  must be brought back to the 
modeling efforts  to refine, test, and confirm the model. Only in this  back-and-forth movement can the 
complexity of  these types of  models be tamed.

5. Conclusions

In summary, at least three philosophical problems arise in ABMs:

(I) Emergence and complex systems. What does  it mean to represent an emergent system in the formal 
sense? What problems arise in the process  of creating the representation? Why should emergence in a model 
relate to real-world emergence? Emergent systems  likely will help us  explain unresolved questions  in 
evolutionary ecology, such as  the apparent increase of organismal complexity over time (Bedau 2009) and 
the role that niche construction may play in this  process  (Korb and Dorin 2011). There is  widespread 
agreement that simulation models may be the only way to sort out these kinds  of emergent properties, and 
there is a strong need to tease out how emergence can be studied with ABMs (and other models). 

(II) Mapping complexity relations between model and world. Representing complex systems  with ABMs 
raises new problems  about how these models  are brought into a relationship with the real-world vis-à-vis 
complexity. Addressing the novel problems  raised by ABMs may require hermeneutical approaches to tease 
out these representational relationships. Part of the reason for this  is  the way that models are translated 
directly from narrative structures into code without intervening stops in analytic/mathematical formalism. 

(III) Instantiation. In many ways, ABMs are a representation-type of the ecological or evolutionary system, 
and become an instantiation or exemplar of the class  of systems  targeted. Real objects, holding similar part-
whole relationships  to their counterparts  in the target system, interact together in ways  thought to be 
relevant to understanding such systems. Although not altogether divorced from representation, instantiation 
does different work than representation in that it is a dynamic exemplar of  the same sort of  system.
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Notes

1. The word ‘agent’ carries  baggage as something that is an agent in the sense of intentional behavior.  In the 
context of this paper,  I follow Railsback and Grimm and make no distinction between individual models and 
ABMs, and ‘agent-based’ is expanded to include its common use in modeling as a discrete object that carries 
attributes that inform its  interaction with other objects and its environment. For example, grains of sand used to 
model a sorties heap might be considered model agents of  ABMs in this sense although they do not make choices.

ACKNOWLEDGMENTS 

I would like to thank Stephen Downes, Anya Plutynski,  and Eric Winsberg for reading earlier drafts of this paper and 
providing helpful suggestions and insights.  I would also like to thank the participants in the MS4 Simulation 
Conference in Toronto, CA for the insights and discussions that helped improve this paper significantly.

Copyright © 2012 Author(s). 
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license, 
which permits anyone to download, copy, distribute, or display the full text without asking for permission, provided that the creator(s) 
are given full credit, no derivative works are created, and the work is not used for commercial purposes.

ISSN 1949-0739


