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Abstract

According to influential accounts of scientific method, e.g., criti-
cal rationalism, scientific knowledge grows by repeatedly testing our
best hypotheses. In comparison to rivaling accounts of scientific rea-
soning such as Bayesianism, these accounts are closer to crucial as-
pects of scientific practice. But despite the preeminence of hypoth-
esis tests in statistical inference, their philosophical foundations are
shaky. In particular, the interpretation of “insignificant results”—
outcomes where the tested hypothesis has survived the test—poses
a major epistemic challenge that is not sufficiently addressed by the
standard methodology for conducting such tests.

In this paper, I argue that a quantitative explication of degree of
corroboration can fill this important methodological and epistemolog-
ical gap. First, I argue that this concept is distinct from the Bayesian
notion of evidential support and that it plays an independent role
in scientific reasoning. Second, I demonstrate that degree of cor-
roboration cannot be suitably explicated in a probabilistic relevance
framework, as proposed by Popper (1954, 1934/2002). Third, I derive
two measures of corroboration that possess a large number of attrac-
tive properties, establish an insightful relation between corroboration
and evidential support and are not committed to a Bayesian or a fre-
quentist framework. In sum, the paper rethinks the foundations of
inductive inference by providing a novel logic of hypothesis testing.
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1 Introduction. Motivating the concept of corrobora-

tion

The idea of acquiring scientific knowledge by testing hypotheses and ap-

praising how well they have stood up to the test is as old as the scientific

revolution. For critical rationalists such as Karl R. Popper (1934/2002),

the critical attitude that we express by repeatedly testing our best scien-

tific theories even constitutes the basis of rational inquiry about the world.

However, only in the middle of the 20th century, the design and interpreta-

tion of statistical hypothesis tests has been formalized. In effect, they have

acquired a predominant role in scientific reasoning and are a crucial part

of publication standards. The most frequent form of scientific inference

is the null hypothesis significance test (NHST): it tests a precise hypothesis

h0—the “null” or default hypothesis—against an unspecific alternative h1.

In its most simple form, the null hypothesis posits a precise value for a

real-valued parameter θ (h0 : θ = θ0), while the alternative (h1 : θ 6= θ0)

is a disjunction of uncountably many precise hypotheses. Such tests are

useful for finding out whether there is a non-negligible difference between

two different experimental conditions, e.g., a medical drug and a placebo

treatment.

The outcomes of NHST are traditionally described either as the “accep-

tance” or the “rejection” of the null hypothesis. If the results are very un-

likely under the null, it is rejected in favor of the alternative (e.g., Neyman

and Pearson 1933; Fisher 1956; Gillies 1971). While a rejection is usually

taken as evidence against the null hypothesis and quantified by means of

a p-value or significance level, there is little methodological guidance on

what the acceptance of the null hypothesis could mean, in a positive sense.

Statistics textbooks (e.g., Chase and Brown 2000; Wasserman 2004) restrict

themselves to the claim that an acceptance of the null hypothesis does

not mean more than failure to reject the null, or failure to demonstrate a

statistically significant phenomenon. This is remarkable for at least two

reasons: statistically insignificant results can hide substantial effects (Zil-

iak and McCloskey 2008), and also the absence of significant results can be

a scientifically interesting conclusion. As an example, consider the mon-

itoring of a freshly admitted medical drug for harmful side effects. The

3



producer of the drug, clinicians and the general public all have an inter-

est in knowing to which degree the null hypothesis—that the drug has

no unexpected side effects—is backed by the evidence, but the standard

methodology for hypothesis testing does not specify how we should quan-

tify such a judgment, let alone how we should do it in an objective way.

A concept that could fill this lacuna in the NHST methodology is degree
of corroboration, famously developed by Karl R. Popper in his “Logic of

Scientific Discovery” (1934/2002: ch. 10):

By the degree of corroboration of a theory I mean a concise

report evaluating the state (at a certain time t) of the critical

discussion of a theory, with respect to the way it solves its

problems; its degree of testability; the severity of tests it has

undergone; and the way it has stood up to these tests. Cor-

roboration (or degree of corroboration) is thus an evaluating

report of past performance. Like preference, it is essentially com-

parative. (Popper 1979: 18, original emphasis. See also Popper

1934/2002: 248.)

Adequately explicated corroboration judgments would solve many

problems: they would appraise the performance of the null hypothesis

in an experiment, rather than just stating the failure to find significant re-

sults. They would indicate when the “acceptance” of the null hypothesis

provides a reason to trust it. They would explain why highly corroborated

hypotheses are preferred to weakly corroborated ones. More generally,

explicating degree of corroboration might revive a critical rationalist epis-

temology of science, by showing how hypothesis tests increase scientific

knowledge (e.g., Rowbottom 2011). In the light of these promises, it is

notable that neither philosophers nor statisticians have found an adequate

explication of degree of corroboration, and that efforts to do so have faded

since the 1960s (Popper 1954; Good 1960, 1968).

The paper is structured as follows. Section 2 conceptually demarcates

degree of corroboration from Bayesian explications of evidential support.

Section 3 discusses, and ultimately rejects, Popper’s own explication of

corroboration. Section 4 advances a formal argument to the effect that a

probabilistic relevance framework is not suited for explicating corrobora-
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tion. Section 5 introduces the new framework for measuring corrobora-

tion and derives two measures of corroboration from a parsimonious set

of plausible axioms. Finally, Section 6 explains the attractive properties

of this measure and relates it to the concept of evidential support while

Section 7 summarizes and concludes. While my own definition of de-

gree of corroboration in Sections 5-6 is definitely inspired by Popper, the

approach of the paper is systematic, not exegetical, and the proposed ex-

plication will in some ways deviate from Popper’s own take on scientific

reasoning.

2 Evidential support versus corroboration

The point of measuring corroboration is to quantify the extent to which

a hypothesis has stood up to an attempt to refute it. Thus, degree of

corroboration gives an evaluating—and supposedly objective—report of

past performance. For the case of a hypothesis that makes deterministic

predictions, corroborating evidence is intuitively defined as evidence that

conforms to the predictions of the tested hypothesis. The more specific it

is, the more it corroborates the hypothesis.

This rationale essentially corresponds to the hypothetico-deductive

model of theory confirmation (Gemes 1998): logical consequences of a the-

ory confirm it. While this model may be adequate as a qualitative theory

of corroboration, it is not applicable to NHSTs which deal with statistical

predictions of a hypothesis. Here, a different, quantitative model has to

be developed (see also Popper 1934/2002: 265–266).

However, it is not evident that we need corroboration judgments for

explicating this aspect of NHSTs. There is already a concept that describes

how the epistemic status of a hypothesis is raised by observations: eviden-
tial support. Standardly, evidential support is explicated in Bayesian terms,

that is, in terms of degrees of belief: evidence e supports hypothesis h if

and only if p(h|e) > p(h), that is, if e increases the agent’s subjective de-

gree of belief in h (e.g., Fitelson 2001). Why do we need another, closely

related concept?

This skepticism is expressed in the Monism Thesis: the concept of cor-

roboration can be reduced to the (Bayesian) concept of evidential support.
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This thesis sounds especially attractive in the light of the shaky epistemic

foundations of NHST and their frequent misuse (e.g., Cohen 1994; Fidler

2013): perhaps we should abandon the entire business of (frequentist) hy-

pothesis testing, perform a Bayesian analysis based on the interpretation

of probability as subjective degree of belief and replace a judgment of cor-

roboration by a judgment of evidential support. For Bayesians such as

Howson and Urbach (2006), this could be the preferred option.

I shall now present four objections to the Monism thesis. This does not

rule out that a proper explication of corroboration can also be interpreted

as a measure of evidential support, or vice versa: rather, the point is to

show that the two concepts are not redundant and need different explica-

tion strategies.

Objection 1: Inference to the true hypothesis is the target notion

of evidential support, but not necessarily of corroboration.

Scientific hypotheses and models are idealizations of the external

world that are judged by their ability to capture relevant causal relations

and to predict future events, rather than literally true descriptions of the

external world (see the survey of Frigg and Hartmann 2006). In other

words, the epistemic function of corroboration consists in determining

whether the data are consistent with the tested hypothesis, or whether

the results agree “well enough” with the null hypothesis h0 that we may

use it as a proxy for a more general statistical model. In other words, the

“acceptance” of h0 does not imply that it should be regarded as true or

empirically adequate, but that it is a useful and tractable idealization of a

more general statistical model (Bernardo 2012; Gelman and Shalizi 2013).

That is, corroboration is a guide to practical preference over competing

hypothesis, but not as a guide to truth (Popper 1934/2002: 281–282). Evi-

dential support, on the other hand, is traditionally defined as the degree to

which our confidence in the truth of a hypothesis is raised. Convergence

theorems show how inference to the best-supported hypothesis guides us

to the true hypothesis (e.g., Gaifman and Snir 1982; see Brössel 2014 for a

similar result regarding the systematic power of a theory). Unlike corrob-

oration, which is defined as an evaluating report on past data, evidential

support is supposed to justify inductive inference.
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Objection 2: (Change in) Degree of belief is a central concept

for evidential support, but not for corroboration.

Evidential support is based on comparing past and present degrees of

belief. This can be traced easily in the qualitative definition of evidential

support (e supports h if and only if p(h|e) > p(h)), but also in popular

support measures such d(h, e) = p(h|e)− p(h) and r(h, e) = p(h|e)/p(h).
More generally, Crupi, Chater and Tentori (2013) have argued that all mea-

sures of evidential support c(h, e) should possess the “final probability

incrementality” property

c(h, e) >/=/< c(h, e′) if and only if p(h|e) >/=/< p(h|e′). (1)

This condition demands that e supports h more than e′ if and only if e
raises the probability of h to a higher level than e′ does. This condition

makes sense for a concept of evidential support that is specified as a gen-

eralization of strict deductive entailment, or as the degree to which e raises

the agent’s degree of belief in h (Eells and Fitelson 2002; Crupi, Tentori and

González 2007). However, it is much less obvious for degree of corrobora-

tion: a corroboration judgment seems, at least in principle, to make sense

even if we do not have subjective degrees of belief in the tested hypothesis

or refuse to elicit them. It is about past performance, not about epistemic

or psychological attitude. In a nutshell, rather than a (subjective) measure

of belief change, corroboration ought to be an (objective) measure of past

performance.

Objection 3: On a Bayesian account, hypotheses with prior

probability p(h) = 0 cannot be confirmed evidentially. Yet,

they are perfectly acceptable candidates for being corroborated.

As a consequence of Bayes’ Theorem, any hypothesis with prior proba-

bility p(h) = 0 also has posterior probability p(h|e) = p(h) p(e|h)/p(e) =
0. By the qualitative definition of evidential support, no such hypothe-

sis can be evidentially supported since p(h|e) = p(h). But certainly, they

can be corroborated: after all, scientists often deal with an uncountable

set of candidate hypotheses where all singleton hypotheses receive zero

weight (e.g., different values of a physical parameter). Testing whether
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such hypotheses are good and useful idealizations of reality, or quantify-

ing the empirical corroboration of any such hypothesis certainly makes

sense. This objection is especially troubling since Bayesian models of

NHSTs often assign zero weight to the null hypothesis, e.g., by assign-

ing a continuous prior over the parameter space. Whatever the measure of

evidence that the Bayesian uses for appraising the null in such tests (e.g.,

a density-based measure such as the Bayes factor), it cannot be a Bayesian

measure of evidential support in the proper sense.

Objection 4: Corroboration is a way more asymmetric notion

than evidential support.

The logic of NHSTs is asymmetric: in general, a rejection of the tested

hypothesis h gives rise to much stronger conclusions than an acceptance

would do. A reason for this is that unlike the null, the alternative ¬h
is usually not a precise hypothesis, like in our introductory example of

testing θ = θ0 against θ 6= θ0.

It is not obvious how this asymmetry can be expressed by measures

of evidential support. Consider two of the most reputable ones, the log-

likelihood-measure l (Kemeny and Oppenheim 1952; Fitelson 2001; Bovens

and Hartmann 2003), and the Crupi-Tentori-measure z (Crupi, Tentori and

Gonzalez 2007; Crupi and Tentori 2013):

l(h, e) = log
p(e|h)

p(e|¬h)
z(h, e) =


p(h|e)−p(h)

1−p(h) if p(h|e) ≥ p(h)
p(h|e)−p(h)

p(h) if p(h|e) < p(h)

According to both measures, ¬h is supported by e to the same degree that

h is undermined by e:

−l(h, e) = l(¬h, e) −z(h, e) = z(¬h, e)

Such symmetry properties are sensible adequacy conditions for measures

of evidential support (Eells and Fitelson 2002; Crupi, Tentori and González

2007), but they are at odds with the asymmetric roles of hypotheses in

NHST and unattractive for degree of corroboration. There, it is not even

clear what it could mean that ¬h is corroborated.

These objections undermine the Monism Thesis sufficiently to motivate

an explication of degree of corroboration on independent grounds. That
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is, we will set up adequacy conditions on a measure of corroboration that

differ from the standard adequacy conditions on evidential support (see

Crupi 2014; Crupi and Tentori 2014). This does not rule out that a support

measure may perform a double duty as an adequate measure of corrobo-

ration: it just means that both concepts are explicated independently. On

the basis of our proposed explication, we re-investigate the relationship

between corroboration and evidential support (Section 6). We begin by

discussing Popper’s classical proposal for a measure of corroboration.

3 Popper’s measure of degree of corroboration

Popper’s first writings on degree of corroboration, that is, chapter 10 of

the “Logic of Scientific Discovery”, do not engage in a quantitative expli-

cation. Apparently, this task is deferred to a scientist’s common sense.

However, this move makes the entire concept of corroboration vulnerable

to the charge of subjectivism: without a quantitative criterion, it is not clear

which corroboration judgments are sound and which aren’t (Good 1968:

136). Especially if we aim at gaining objective knowledge from hypothesis

tests, we need a precise explication of degree of corroboration.

Popper faces this challenge in a couple of BJPS articles (Popper 1954,

1957, 1958) that form, together with a short introduction, appendix ix) of

his “Logic of Scientific Discovery”. In these articles, Popper develops and

defends a measure of degree of corroboration. Popper argues that this

measure cannot be a probability in the sense of Carnap (1950), that is, it is

no measure of the plausibility of the tested hypothesis conditional on the

observed evidence. In Popper’s view, even an unlikely hypothesis can be

highly corroborated if it is sufficiently informative and well-supported by

the evidence.

To characterize appropriate corroboration measures Popper comes up

with a list of desiderata reproduced below. Their rationale is twofold:

first, corroboration increases with the mutual relevance of e and h, second,

informative hypotheses are preferred over uninformative ones.

Regarding the formal nature of the desiderata, we assume that e and h
are among the closed sentences L of a language L. A corroboration mea-

sure is described by a function L2 ×P → R, where P is the set of proba-
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bility measures on the σ-algebra generated by L. This function assigns a

real-valued degree of corroboration to any pair of sentences together with

a probability (degree of belief) function. For the sake of simplicity, we

will omit explicit reference to background knowledge and assume that it

is implicit in the probability function p(·).

I c(h, e) >/=/< 0 if and only if p(e|h) >/=/< p(e).

This is a classical positive probabilistic relevance condition: e corroborates h
just in case h makes e more expected. Vice versa, if h makes e less ex-

pected, the degree of corroboration is negative. This condition is also in

line with Popper’s remark (1979: 18) that corroboration is, like preference,

essentially contrastive.

II −1 = c(h,¬h) ≤ c(h, e) ≤ c(h, h) ≤ 1.

III c(h, h) = 1− p(h).

IV If e |= h then c(h, e) = 1− p(h).

V If e |= ¬h then c(h, e) = −1.

These conditions determine under which conditions the measure of cor-

roboration takes its extremal values. Minimal degree of corroboration is

obtained if the evidence refutes the hypothesis (V). Conversely, the most

corroborating piece of evidence e is the one that verifies h. In this case, de-

gree of corroboration is equal to the improbability of h (II, III, IV), which is

supposed to express the informativity, testability and empirical content of

h (Popper 1934/2002: 268–269; see also Popper 1963: 385–387; Rowbottom

2013: 742–744). This is motivated as follows:

Science does not aim, primarily, at high probabilities. It aims

at a high informative content, well backed by experience. But

a hypothesis may be very probable simply because it tells us

nothing, or little. (Popper 1934/2002: 416)

Assigning a corroboration bonus to highly informative and testable hy-

potheses fits, of course, into a critical rationalist picture about aims and

method of science. The probability p(h) is interpreted in Carnap’s (1950)

logical sense—a point that need not worry us now, but to which we return

later.
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VI c(h, e) ≥ 0 increases with the power of h to explain e.

VII If p(h) = p(h′), then c(h, e) > c(h′, e′) if and only if p(h|e) > p(h′|e′).

These conditions reiterate the positive relevance rationale from condition

I, and make it more precise. Regarding condition VI, Popper (2002: 416)

defines explanatory power according to the formula E(e, h) = (p(e|h) −
p(e))/(p(e|h) + p(e)), another measure of the positive relevance between

e and h. Condition VII states that corroboration essentially co-varies with

posterior probability whenever the prior probabilities are equal.

VIII If h |= e, then

a) c(h, e) ≥ 0;

b) c(h, e) is an increasing function of 1− p(e);

c) c(h, e) is an increasing function of p(h).

IX If ¬h is consistent and ¬h |= e, then

a) c(h, e) ≤ 0;

b) c(h, e) is an increasing function of p(e);

c) c(h, e) is an increasing function of p(h).

Condition VIII demands that corroboration gained from a successful de-

ductive prediction co-vary with the informativity of the evidence and the

prior probability of the hypothesis. The latter requirement stands in a

certain tension with conditions III and IV, which emphasize the inverse

relationship between prior probability and degree of corroboration. Con-

dition IX mirrors condition VIII for the negative case.

These desiderata pull into different directions. Some of them are mo-

tivated by considerations of positive relevance and evidential support (I,

II, VI, VII, VIIIb), others assign a bonus to the informativity, content or

improbability of h (III, IV). In particular, degree of corroboration is maxi-

mal if and only if (!) a hypothesis with probability zero is entailed by the

evidence. That is, Popper’s desiderata reconcile two essential criteria for

theory acceptance (Hempel 1960; Huber 2008; Brössel 2013): the support

in favor of h, and the logical strength, informativity and empirical content

of h.

11



Popper then develops a corroboration measure that satisfies all these

desiderata, namely:

cP(h, e) =
p(e|h)− p(e)

p(e|h)− p(eh) + p(e)
(2)

Before I explain my own take on Popper’s proposal, I would like to exam-

ine several objections made in the literature.

Rowbottom (2013) objects to Popper that if he were consistent with his

claim made elsewhere that universal generalizations always have prob-

ability zero, he should restrict his measure to that case, because these

hypotheses are also the most important ones in science. Then, cP can be

written as

c′P(h, e) =
p(e|h)− p(e|¬h)
p(e|h) + p(e|¬h)

(3)

which is ordinally equivalent to the log-likelihood measure l of evidential

support. Rowbottom continues as follows:

Compare two scenarios in which e is found to be true, the first

in which p(e|h) = 1 and p(e) = 0.1, and the second in which

p(e′|h) = 0.1 and p(e′) = 0.01. According to (3), h is equally

corroborated, i.e. has a corroboration value of 9/11, in each

scenario. This is patently absurd, however, since in the former

scenario e is entailed by h [...] (and discovery of ¬e would have

falsified the conjunct), whereas in the latter scenario h makes

no notable contribution to predicting e [...] (and discovery of ¬e
would hardly have been a blow for h [...]). (Rowbottom 2013:

740)

Rowbottom then concludes that c′P(h, e) is not suitable as a measure of

corroboration. Corroboration should be sensitive to the fact that if p(e|h)
were very high, an observation of ¬e would virtually falsify h. When e is

observed, h has survived a severe refutation attempt and should count as

better corroborated than if e′ had been observed. c′P(h, e) fails to rescue

this intuition.

A natural reply is that the severity of a test is a methodological virtue,

but irrelevant for the evidential interpretation of the results (Sprenger 2009).
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Hence, it should not affect degree of corroboration. Moreover, in contin-

uous or large discrete sample spaces, every piece of evidence e typically

has a very low probability of being observed; often it is zero. What makes

e corroborating evidence for h is not so much the high value of p(e|h), but

the fact that the probability of e (respectively the value of the density func-

tion) is much higher than for competing hypotheses. This is, after all, the

rationale behind statistical hypotheses tests that typically deal with con-

tinuous sample spaces. Hacking (1965), Spielman (1974) and Royall (1997)

have, among others, advanced forceful arguments that any statistical hy-

pothesis test must make reference to explicit or implicit alternatives (see

also Sprenger 2014). Popper could refer to these arguments in order to

deflect Rowbottom’s criticism.

A second criticism, observed by Díez (2011: 196), is based on the ob-

servation that by VII, e corroborates h more than e′ if and only if it raises

the probability of h to a higher value than e′ does (c(h, e) > c(h, e′) iff

p(h|e) > p(h|e′)). According to Díez, the co-variation of posterior proba-

bility and corroboration clashes with Popper’s dismissal of posterior prob-

ability as a criterion for theory choice: “this rule is equivalent to the fol-

lowing rule: choose always the hypothesis which has the highest degree

of ad hoc character” (Popper 1963: 385). However, condition VII only states

which of two pieces of evidence confirms a peculiar theory to a higher de-

gree. In other words, it is restricted to theories with the same informative

content. Therefore, the “ad hoc” criticism does not apply in this case.

Third, Díez objects that neither h |= e, nor e |= h, nor h ≡ e is a suffi-

cient condition for maximal corroboration. Some of these conditions (e.g.,

h ≡ e) are indeed compelling sufficient conditions for maximal eviden-
tial support (see Crupi 2014). However, the relevance of e for h is not the

only factor that affects degree of corroboration: also the informativity of h
determines its corroborability (see condition IV). From Popper’s point of

view, it does make sense that c(h, h) > c(h′, h′) if and only if h has more

empirical content than h′.
In my view, a fourth criticism poses bigger problems for Popper By

VIIIc, degree of corroboration co-varies with the prior probability of h
whenever h entails e. That is, if h and h′ successfully predict e (h |= e and

h′ |= e), then the corroboration ranking tracks the prior probability of h
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and h′. This runs contrary to Popper’s intentions about the significance

of empirical content/testability as a contributing factor to degree of cor-

roboration. Since deductive entailment between theory and evidence is a

classical case of prediction in science and a showcase for critical rationalist

reasoning, this result is especially worrisome.

Fifth and last, there is an inconsistency in Popper’s suggestions for

interpreting the probabilities in cP. Since he is opposed to any subjec-

tive interpretation, he proposes a frequentist interpretation for the likeli-

hood p(e|h) and the marginal likelihood p(e), and a logical interpretation

for the probability of the hypothesis p(h), which is required to calculate

p(eh) = p(e|h)p(h). These moves are quite ad hoc, and Popper does not

specify a bridge principle for combining these different types of proba-

bilities. Moreover, determining the relative frequency of e or the logical

probability of h is a hard problem for which Popper provides little guid-

ance. Of course, we could just interpret all probabilities in a subjective

way, but this move would not suit Popper’s general philosophical frame-

work (Popper 1934/2002, ch. 8). It would also require an additional and

far from obvious argument that a subjective interpretation does not com-

promise the alleged objectivity of a measure of corroboration.

Summing up, Popper’s measure cP suffers from severe formal and con-

ceptual shortcomings. The crucial question is now: which conclusions do

we draw from Popper’s failure to adequately explicate degree of corrob-

oration? Should we just come up with a different probabilistic relevance

measure? Or change the framework altogether?

4 Corroboration and positive relevance

This section shows two impossibility results for corroboration measures

that (i) are built on the notion of positive probabilistic relevance between

e and h, that is, e corroborates h whenever p(e|h) > p(e); (ii) preserve

Popper’s intuition that corroboration should in general not co-vary with

prior probability; (iii) satisfy some weak and plausible constraints.

The first condition is mainly formal in nature (cf. Schupbach and

Sprenger 2011; Crupi 2014):

Formality There exists a function f : [0, 1]3 → R such that for all e, h ∈ L
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and p(·) ∈ P,

c(h, e) = f (p(e|h), p(e), p(h)).

This condition states that degree of corroboration depends on the joint

probability distribution of e and h, since the three arguments of f are

sufficient to determine the entire distribution, degenerate cases left aside.

In order to keep the playing field level, we have focused on the same

quantities that figure in Popper’s measure of corroboration.

Now we state the first substantial condition:

Weak Law of Likelihood (WLL) For mutually exclusive hypotheses

h1, h2 ∈ L, e ∈ L and p(·) ∈ P, if

p(e|h1) ≥ p(e|h2) p(¬e|¬h1) ≥ p(¬e|¬h2) (4)

with one inequality being strict, then c(h1, e) > c(h2, e).

The WLL has been defended as capturing a “core message of Bayes’ The-

orem” (Joyce 2008) and as a non-negotiable adequacy condition on mea-

sures of evidential support (e.g., Brössel 2013). If h1 predicts e better than

h2, and ¬h1 predicts ¬e better than ¬h2 does, then h1 performs better than

h2. Since this reasoning only applies to the predictive performance of the

competing hypotheses, it is even more compelling for corroboration than

for evidential support. The version given here is in one sense weaker and

in one sense stronger than Joyce’s original formulation: it is stronger be-

cause only one inequality has to be strict (see also Brössel 2013: 395–396);

it is weaker because the WLL has been restricted to mutually exclusive

hypotheses, where our intuitions are more reliable.

Another condition deals with irrelevant evidence:

Screened-Off Evidence Let e1, e2, h ∈ L and p ∈ P. If e2 is probabilisti-

cally independent of e1, h, and e1 ∧ h, then c(h, e1) = c(h, e1 ∧ e2).

This condition prominently figures in several explications of evidential

support and explanatory power (e.g., Kemeny and Oppenheim 1952;

Schupbach and Sprenger 2011). But it is also very sensible with respect

to degree of corroboration. Extra evidence which is irrelevant in any re-

spect (e2 ⊥⊥ e1, h, e1 ∧ h) should not change the evaluation of an experiment
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where h has been tested and evidence e1 has been observed. Imagine, for

example, that a scientist tests the hypothesis that a high pitch facilitates

voice recognition. As the scientists’s university is interested in improv-

ing the planning of lab experiments, she also collects data on the times

when participants drop in, which slots are busy, which ones are quiet, etc.

Plausibly, these data satisfy the independence conditions of Screened-Off

Evidence, and equally plausibly, they do not influence its degree of cor-

roboration.

The next adequacy condition is motivated by the problem of irrelevant

conjunctions, a well-known challenge for Bayesian measures of evidential

support (e.g., Fitelson 2002; Hawthorne and Fitelson 2004). Assume that a

hypothesis h, such as General Theory of Relativity (GTR), logically implies

a phenomenon e, such as the perihelion shift of Mercury. This observation

corroborates GTR: logical implication is a special case of probabilistic rel-

evance.

However, once we add an utterly irrelevant proposition h′ = “the

chicken came before the egg” to the hypothesis, it seems that e corrob-

orates h∧ h′—the conjunction of GTR and the chicken-egg hypothesis—not

more than h (if at all). After all, h′ was not tested by the observations we

made. It has no record of past performance to which it could appeal. This

motivates the following constraint:

Irrelevant Conjunctions Assume the following conditions on h, h′, e ∈ L

and p ∈ P are satisfied:

(1) h and h′ are consistent and p(h ∧ h′) < p(h);

(2) p(e) ∈ (0, 1);

(3) h |= e;

(4) p(e|h′) = p(e).

Then it is always the case that c(h ∧ h′, e) ≤ c(h, e).

This requirement states that for any non-trivial hypothesis h′ that is con-

sistent with h and irrelevant for e ((1), (4)), h ∧ h′ is no corroborated more

than h whenever h non-trivially entails e ((2), (3)). Indeed, it would be

strange if corroboration could be increased “for free” by attaching irrele-

vant propositions. Plausibly, this requirement could be strengthened to a

16



strict inequality, but for our purposes, the weaker formulation is sufficient,

and in this version, it is also weaker than Popper’s VIIIc.

Finally, we want to account for the intuition that highly corroborated

hypotheses are informative propositions backed by the evidence (see Pop-

per’s conditions II-IV). Unlike evidential support, corroboration contains

an element of severe testing: the hypothesis should run a risk of being

falsified, and high informativity and empirical content contribute to this

goal. This motivates the following desiderata, one of them being slightly

weaker than the other:

Strong Informativity The informativity/empirical content of a proposi-

tion can increase degree of corroboration, ceteris paribus. That is,

there are h, h′, e, e′ ∈ L and p ∈ P with p(e|h) > p(e), p(e′|h′) > p(e′)
such that

(1) p(e|h) = p(e′|h′), p(e) = p(e′);

(2) 1/2 ≥ p(h) > p(h′);

(3) c(h, e) > c(h′, e′).

Weak Informativity Degree of corroboration c(h, e) does not generally co-

vary with the prior probability of h. That is, there are h, h′, e, e′ ∈ L

and p ∈ P with p(e|h) > p(e), p(e′|h′) > p(e′) such that

(1) p(e|h) = p(e′|h′), p(e) = p(e′);

(2) 1/2 ≥ p(h) > p(h′);

(3) c(h, e) ≥ c(h′, e′).

The intuition behind Weak Informativity can also be expressed as fol-

lows: corroboration does not, in the first place, assess the prior plausibil-

ity of a hypothesis; therefore c(h, e) should not in general co-vary with the

prior plausibility of h. To this, Strong Informativity adds that low prior

probability/high empirical content can even be corroboration-conducive.

Note that the requirement 1/2 ≥ p(h), p(h′) is purely technical and philo-

sophically innocuous.

At this point, it is possible to demonstrate that the listed conditions

are incompatible with each other. First, a consequence of Weak Law of

Likelihood is that corroboration is an increasing function of the prior
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probability of a hypothesis, which clashes directly with Strong/Weak

Informativity:

Theorem 1 No measure of corroboration c(h, e) constructed according to

Formality can satisfy Weak Law of Likelihood and Weak/Strong

Informativity at the same time.

Second, and perhaps more surprisingly, Strong Informativity clashes

with Irrelevant Conjunctions and Screened-Off Evidence:

Theorem 2 No measure of corroboration c(h, e) constructed accord-

ing to Formality can satisfy Screened-Off Evidence, Irrelevant

Conjunctions and Strong Informativity at the same time.

Thus, the intuition behind Strong/Weak Informativity cannot be sat-

isfied if other plausible adequacy constraints on degree of corroboration

are accepted. All proofs are given in the appendix. Notably, the result

of Theorem 2 can be extended to Weak Informativity if we make the as-

sumption that irrelevant conjunctions dilute the degree of corroboration,

rather than not increasing it. Of course, all this does not show that ex-

plicating degree of corroboration is a futile project. Rather, it reveals a

fundamental and probably insoluble tension between the two main con-

tributing factors of corroboration that Popper identifies (see the quote on

p. 10): probabilistic relevance and empirical content.

The two theorems suggest two interpretations: (i) either we cannot ad-

equately explicate corroboration in a probabilistic relevance framework, or

(ii) the entire concept of corroboration is overloaded with intuitions point-

ing into different directions. However, the problem does not seem to lie

with the adequacy conditions. Screened-Off Evidence is highly plausible

for both corroboration and evidential support. Law of Likelihood and

Irrelevant Conjunctions are complementary; yet both of them lead to

impossibility results. Finally, if we give up Strong/Weak Informativity,

we lose a crucial characteristic of corroboration in hypothesis testing,

namely that it applies in particular to precise and informative hypothe-

ses.

This diagnosis points us to re-thinking the entire conceptual frame-

work, as expressed in Formality. Perhaps it is neither necessary nor suffi-

cient to base a corroboration judgment on the joint probability distribution
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of h and e? If we explicate corroboration in terms of probabilistic relevance,

judgments of corroboration compare the merits of h with the merits of ¬h,

defined as the aggregate of alternatives to h. However, a comparison to

such an aggregate does not make much sense in many contexts of statisti-

cal hypothesis testing where we deal with a multitude of distinct alterna-

tives hi, i ∈ N. To calculate p(e|¬h) = ∑i p(e|hi), we would have to know

the prior probabilities p(hi), an assignment that many scientists refuse to

make in practice. This framework also fails at describing how hypotheses

with probability zero can be corroborated, one of the central distinctions

between evidential support and degree of corroboration.

The formal results of this section can then be regarded as formal vindi-

cations of the arguments advanced against the Monism Thesis in Section

2. They show that we cannot jointly satisfy a set of reasonable desiderata

about degree of corroboration in a probabilistic relevance framework. All

this suggests that we should develop explications of degree of corrobora-

tion in a different conceptual framework.

5 A new framework for measuring corroboration

One of the main objections to probabilistic relevance explications of cor-

roboration consists in the way the alternative hypothesis is treated. In

NHST, it is common that the null is a precise hypothesis h0 : θ = θ0 which

is tested against a composite hypothesis h1 : θ 6= θ0. Such composite

hypotheses are rather an umbrella for distinct alternatives than a proba-

bilistic aggregate of alternatives, but in evaluations in terms of evidential

support, they are treated as a single hypothesis, namely the negation of

h0. In practice, however, we want to simulteanously test the null against a set
of distinct alternatives, not to test it against a single, aggregate hypothesis.

That is, degree of corroboration should be sensitive to the fine-structure of

the alternatives.

A simple example may illustrate this thesis. Suppose one wants to infer

the mean value θ of a Normal distribution, where the null hypothesis h0 :

X ∼ N(0, 1) is tested against the alternatives h1 : X ∼ N(2, 1) and h2 : X ∼
N(−2, 1). Then, some observations (e.g., x ≈ 2) will be well explained by

h1 and be poorly explained by h2, while other observations (e.g., x ≈ −2)
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Figure 1: Testing the null hypothesis h0 : X ∼ N(0, 1) (full line) against the

aggregate of h1 : X ∼ N(2, 1) and h2 : X ∼ N(−2, 1) (dashed line). The

dotted lines represent h1 and h2 themselves.
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will be well explained by h2 and be poorly explained by h1. This tension

gets lost when we only consider the aggregate of h1 and h2, which is a

bimodal distribution with peaks at -2 and 2: both observations (x ≈ −2

and x ≈ 2) are well explained by the aggregate alternative hypothesis

and favor it over the null. Thus, this testing problem is conceptually and

mathematically quite different from the original one against two distinct

hypotheses. See Figure 1 for a graphical illustration.

The rest of the section develops two measures of degree of corrobo-

ration that are sensitive to the partition of alternative hypotheses H =

{h0, h1, h2, ...}. They summarize judgments of evidential favoring into a

single number that expresses the performance of the null hypothesis h0

in a test with evidence e. The explications focus on the evidential aspect

of corroboration and leave out some methodological virtues, such as the

severity of the test or issues pertaining to experimental design. This is in

line with Popper’s own remarks that such virtues cannot be fully formal-

ized (Popper 1956/83: 154). From now on it will be assumed that the data

have been collected in genuine tests of h0.

A first measure of corroboration is derived from three adequacy criteria

CA1-CA3 motivated below.

The first requirement is based on a thought from Section 2: degree

of corroboration indicates whether h0 is a suitable proxy for a more gen-

eral model. In other words, if a hypothesis h0 is highly corroborated, the

loss in accuracy that we suffer by replacing the general model H by h0 is

reasonably small. For example, assume the null states that manipulating

some independent variables has no effect on the data. In practice, there

will always be some small effect, but we want to know whether it is neg-
ligibly small. This would be the practical significance of an “inference to

the null hypothesis”. This question is highly relevant to scientific practice,

and it is the one that we may reasonably regard as the motivation behind

the entire null hypothesis testing business. Therefore we demand

CA1 Corroboration should quantify the average score gain of replacing the

general model H with the null hypothesis h0. That is, for a suitable

scoring rule S(h0, e), the degree of corroboration that e provides for
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h0 relative to H can be defined as

cH(h0, e) = ∑
hi∈H

ωi · (S(h0, e)− S(hi, e)) (5)

where ωi denotes the relative weight that each element ofH receives.

That is, degree of corroboration sums up the score differences between

h0 and the alternatives hi, weighted by ωi. Note that the ωi need not be

interpreted as degrees of belief that a particular hypothesis is true or em-

pirically adequate. Scientists do not always entertain such degrees of belief

in the hypotheses they investigate. They rather regard them as useful ide-

alizations (see also the discussion in Section 2). For example, in the assess-

ment of global climate models, most physical scientists are convinced that

none of the considered models is true or empirically adequate, and they

use a broad set scientific values for weighting these models (e.g., Frame et

al. 2007). Hence, the ωi are supposed to reflect the relative standing of the

alternatives in the scientific community, including cognitive values such

as fruitfulness, scope, etc. In other words, the above definition is neutral

with respect to the Bayesian/frequentist divide in statistical inference. To

repeat, the main move of CA1 is to replace a vague explicandum—degree

of corroboration—by a precise and fruitful explicatum, namely average

gain in predictive power by accepting the null hypothesis.

The next step is to find a suitable scoring rule S(h0, e). For this, we

impose two more adequacy criteria:

CA2 There exists a real-valued, continuous function f : [0, 1] → R such

that S(h0, e) := f (p(e|h0)). In other words, the score of h0 on evi-

dence e only depends on the probability of e under h0.

CA3 The scoring rule S(h0, e) is additive with regard to evidence that is

independent under h0. In other words, if e ⊥⊥ e′|h0, then

S(h0, e ∧ e′) = S(h0, e) + S(h0, e′)

CA2 expresses the natural idea that score depends on and increases with

predictive performance. If a likely event occurs, then the score is high; if an

unlikely event occurs, the score is low. CA3 demands that scores on inde-

pendent pieces of evidence add up. Similar requirements and derivations
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can, for different contexts, also be found in Good (1952), Bernardo (1999)

and Williamson (2010). I leave it to future research to find explications of

degree of corroboration based on different scoring rules.

It can be demonstrated easily that CA2-CA3 leads to a logarithmic scor-

ing rule S(h0, e) = log p(e|h0), and that they uniquely determine, together

with CA1, the following measure of degree of corroboration:

Theorem 3 The only measure of corroboration that satisfies CA1-CA3 has

the form

CH(h0, e) = ∑
hi∈H

ωi log
p(e|h0)

p(e|hi)
. (6)

where the logarithm has an arbitrary positive basis.

Note that even if the weights ωi sum up to infinity (e.g., in the case

of improper Bayesian priors), the degree of corroboration can be finite.

When many alternatives are hard to distinguish empirically from h0, the

log-likelihood ratio will be close to zero, and this may suffice for assigning

a finite value to CH. Standardly, however, we will assume that ∑i ωi = 1.

Our explication satisfies all four conceptual requirements that we have

advanced for degree of corroboration in Section 2: First, there is no implicit

presumption that one of the hypotheses is true, or that high degree of cor-

roboration is truth-conducive. Second, CH is independent of (an increase

in) subjective degree of belief. Third, hypotheses with zero probability

can be corroborated straightforwardly. Fourth, by means of splitting the

alternative into several individual hypotheses, CH preserves the essential

asymmetry of corroboration judgments.

Notably, the independence property CA3 of the scoring rule S(h0, e) is

preserved by CH. If two pieces of evidence e and e′ are independent under

the competing hypotheses, their degree of corroboration adds up:

CH(h0, e ∧ e′) = ∑
hi∈H

ωi log
p(e ∧ e′|h0)

p(e ∧ e′|hi)

= ∑
hi∈H

ωi log
p(e|h0) · p(e′|h0)

p(e|h1) · p(e′|hi)

= ∑
hi∈H

ωi

(
log

p(e|h0)

p(e|hi)
+ log

p(e′|h0)

p(e′|h1)

)
= CH(h0, e) + CH(h0, e′)
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For example, the corroboration gained in two sequential, independent ex-

periments is the sum of the individual degrees of corroboration. This

property makes CH very useful for the meta-analysis of several experi-

ments.

Of course, CH is not the only sensible measure of corroboration that

one can develop from the qualitative constraints discussed at the begin-

ning of this section. There is also an obvious objection to this measure,

namely that it is far too easy to obtain maximal, that is, infinite cor-

roboation. Whenever one of the alternatives hi is incompatible with e,

CH(h0, e) = ∞. But clearly, a hypothesis that performs poorly with respect

to most relevant alternatives should not count as maximally corroborated

just because another hypothesis happens to assign probability zero to the

observed evidence.

In response, three arguments can be advanced. First, the chosen ex-

plication of corroboration also has a definite advantage: it is easy to add

up degree of corroboration from different experiments. Testing a hypoth-

esis in many experiments naturally emerges as better than testing it in

just one experiment. Second, for the purpose of statistical testing, the

above worry is quite theoretical since the relevant probability densities are

usually strictly positive in the relevant probability space. Third, we can

modify CH in a way that resolves this problem while preserving its most

important qualitative properties.

This last suggestion will now be elaborated in detail. First, we replace

CA1 by a slightly modified condition:

CA1’ Corroboration should quantify the average score gain of replacing the

general model H with the null hypothesis h0. That is, for a suitable

scoring rule S(h0, e), the degree of corroboration that e provides for

h0 relative to H can be defined as

cH(h0, e) = ∑
hi∈H

ωi · fS(h0, hi, e) (7)

where ωi denotes the relative weight that each element of H re-

ceives (∑i ωi = 1), and fS(h0, hi, e) is a monotonous transformation

of S(h0, e)− S(hi, e).

That is, the score difference S(h0, e)− S(hi, e) may now be replaced by a
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monotonous transformation of this quantity. This keeps the basic qualita-

tive structure intact, but allows for a more intuitive scaling of degrees of

corroboration. CA2’=CA2 and CA3’=CA3 remain unchanged.

CA4’ fS(h0, h1, e) is the simplest function of the form

fS(h0, h1, e) =
∑m

j=1 ∑m
k=1 cjk p(e|h0)j p(e|h1)

k

∑n
j=1 ∑n

k=1 djk p(e|h0)j p(e|h1)k (8)

with the properties

• fS(h0, h1, e) = 0 if p(e|h0) = p(e|h1).

• fS(h0, h1, e) = 1 if p(e|h0) = 1 and p(e|h1) = 0.

• fS(h0, h1, e) = −1 if p(e|h0) = 0 and p(e|h1) = 1.

This requirement is in parts motivated by CA2 which demands that

S(h0, e) be a function of p(e|h0) only. Hence, fS(h0, h1, e) only depends

on p(e|h0) and p(e|h1). The form of the function specified in (8) is very

flexible since any function in the interval [0, 1]2 can be approximated ar-

bitrarily well by a rational function. It is therefore no substantial philo-

sophical constraint on the measure of corroboration that we choose. The

three conditions at the end of CA4 fix the neutral value of fS at zero and

the maximal/minimal values at 1 and -1, in order to obtain a balanced

aggregate score.

Theorem 4 CA1’–CA4’ jointly determine the unique function

fS(h0, h1, e) =
p(e|h0)− p(e|h1)

p(e|h0) + p(e|h1)

and the corroboration measure

C′H(h0, e) = ∑
hi∈H

ωi ·
p(e|h0)− p(e|hi)

p(e|h0) + p(e|hi)
(9)

C′H does not have the property that a logical implication e |= ¬hi leads to

an infinite corroboration value since the scores are bounded by ±1. Since

the structure of fS equals the well-studied Kemeny-Oppenheim measure

of evidential support (Kemeny and Oppenheim 1952), we can also deliver
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an intuitive interpretation for observed degrees of corroboration:

C′H(h0, e) ∈



[0; 1/4] weak corroboration

[1/4; 1/2] moderate corroboration

[1/2; 3/4] substantial corroboration

[3/4; 1] strong corroboration

Negative corroboration could then be read as evidence that under-

mines the null hypothesis: there is no predictive gain in adopting h0 as

a simplification or a proxy for the more general parametric model. Hence,

unless there is strong theoretical reason to stick to h0, we should replace it

by a different hypothesis.

I leave it to the reader to choose between CH and C′H. What counts for

the purpose of this paper is that both are sound explications of degree of

corroboration that share a lot of desirable properties. This claim will be

elaborated in the following section.

6 From corroboration back to evidential support

This section investigates the properties of our corroboration measures CH
and C′H and relates them to measures of evidential support. Crucially, it

will be shown that they satisfy the desiderata on measures of corrobora-

tion that we imposed in Section 4, at least in a modified version that is

applicable to the novel framework.

First, a general observation. Most (normalized) measures of evidential

support satisfy the constraint c(h0, e) = 0 if and only if p(e|h0) = p(e|¬h0).

This corresponds to the idea that probabilistically independent evidence

neither raises or lowers the probability of a hypothesis. However, it is not
the case that CH(h0, e) = 0 if and only if p(e|h0) = p(e|¬h0), and analo-

gously for C′H. Should this violation of a standard neutrality constraint

give us reason to worry?

I do not think so. One of the rationales behind the construction of

CH and C′H was to eliminate the idea that the alternative to h0 should

be constructed as an aggregate hypothesis ¬h0: this view is at odds with

asymmetric nature of hypothesis tests and the questions they ask. Instead,

26



corroboration should describe how well a hypothesis fares with respect to

a set of alternatives. The neutrality point is then not defined as the point

where e leaves the probabilities of h0 and ¬h0 unchanged, but as the point
where evidence for and against h0 cancels out. This redefinition of evidential

neutrality is one of the main conceptual innovations with respect to the

evidential support paradigm.

All this implies that Weak Law of Likelihood cannot be formulated

consistently for measures of corroboration, since it depends on p(e|¬h0).

However, CH and C′H satisfy the stronger

Law of Likelihood (LL) For mutually exclusive hypotheses H =

{h0, h1, . . .}, H ⊂ L, e ∈ L and p(·) ∈ P and a measure of cor-

roboration cH(h, e):

cH(hi, e) >/=/< cH(hj, e) p(e|hi) >/=/< p(e|hj)

That both measures satisfy LL can be seen by the following result:

Theorem 5 For the difference in degree of corroboration between two hy-

potheses h0, h1 ∈ L, the following equalities hold:

∆CH(h0, h1, e) := CH(h0, e)− CH(h1, e) = log
p(e|h0)

p(e|h1)

∆C′H(h0, h1, e) := C′H(h0, e)− C′H(h1, e)

= (p(e|h0)− p(e|h1)) ∑
hi∈H

2ωi
p(e|hi)

(p(e|h0) + p(e|hi)) (p(e|h1) + p(e|hi))

These equations show that the ordinal relations between CH(h0, e) and

CH(h1, e) only depend on whether p(e|h0) is greater than p(e|h1). Analo-

gously for C′H. Thus, Law of Likelihood is satisfied, in agreement with

the idea that degree of corroboration is an indicator of past performance.

We also observe that adding irrelevant conjunctions h′ to h0, that is, hy-

potheses with the property p(e|h0) = p(e|h0 ∧ h′), will not affect the de-

gree of corroboration. A fortiori, both measures satisfy the Irrelevant

Conjunctions property. Actually, c(h0, e) = c(h0 ∧ h′, e) if h0 entails e may

be the only option to sail between Skylla (Popper’s VIIIc: corroboration

co-varies with prior probability) and Charybdis (irrelevant conjunctions

increase degree of corroboration).
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To evaluate the measures with regard to Screened-Off Evidence, we

have to modify the definition of that property. I suggest to rewrite

Screened-Off Evidence as follows: if e′ ⊥⊥ e, e′ ⊥⊥ hi, and e′ ⊥⊥ (e ∧ hi) for

all hi ∈ H, then CH(h0, e ∧ e′) = CH(h0, e). This is a natural generaliza-

tion from two competing hypotheses (h0 and ¬h0) to a larger set H whose

members hi may denote different values of a parameter of interest. It is

then easy to observe that both CH and C′H satisfy Screened-Off Evidence

since they only depend on the likelihoods of the hypothesis on the evi-

dence.

We also gain a nuanced and interesting picture of the sensitivity of

corroboration to the prior standing of the corroborated hypothesis. For

our measure of corroboration, we can isolate the prior weight of h0, ω0,

from the relations of the other weights to each other:

C′H(h0, e) = (1−ω0) · ∑
hi∈H\{h0}

ωi

1−ω0
fS(h0, h1, e) (10)

since the summand containing h0 vanishes anyway. (We obtain the same

calculations for CH by letting fS(h0, h1, e) = log(p(e|h0)/p(e|h1)).) Since

ω0 = 1−∑i 6=0 ωi, the factors ωi/(1−ω0) only depend on the ratios of the

ωi to each other. Hence, equation (10) can be read as “degree of corrob-

oration of h0 = improbability of h0× average predictive gain by adopting

h0”. Together with the rescaling ω′i := ωi/(1− ω0), this simple operation

allows us to partially derive C′H with respect to ω0:

∂C′H(h0, e)
dω0

= − ∑
hi∈H\{h0}

ω′i fS(h0, h1, e),

since f (S(h0, e)− S(h1, e)) is by construction independent of the ωi. It then

transpires that CH and C′H decrease in ω0, that is, they increase with the

improbability of h0. This is because the term on the right side of (6) has the

same sign as CH and C′H.

Popper proposed that informativity, testability and empirical con-

tent, as measured by the improbability of a hypothesis, are always

corroboration-conducive factors. For our measures, this depends on

whether or not cH(h0, e) > 0. For a positively corroborated hypothe-

sis, a low weight is indeed beneficial because the average gain in pre-

dictive score vis-à-vis the alternatives is bigger than for a hypothesis that
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already had a high weight beforehand. This shows that CH and C′H sat-

isfy (Strong/Weak) Informativity, the desiderata that were distinctive

for corroboration as opposed to evidential support. For a negative degree

of corroboration, the same reasoning amplifies the “degree of refutation”

of h0. Thus, we can recover and refine the Popperian picture at the same

time.

Finally, some remarks on the relationship between corroboration and

evidential support. One of the most popular explications of weight of

evidence, the degree to which e favors h0 over h1, is the aforementioned

(log-)likelihood ratio log(p(e|h0)/p(e|h1)) which is supported by a wide

range of theoretical and empirical arguments (Good 1983/2009; Royall

1997; Lele 2004; Sober 2008). Theorem 5 has shown that for CH, the

weight of evidence in favor of h0 is its excess degree of corroboration over

h1. That is, ∆CH(h0, h1, e) = log(p(e|h0)/p(e|h1)). A similar relation holds

for C′H. This suggests that (contrastive) evidential support can also be de-

rived from corroboration judgments and performance differences. Sym-

metries in evidential support such as c(h0, e) = −c(¬h0, e) then naturally

emerge as a consequence of symmetries in corroboration differences, such

as ∆CH(h0, h1, e) = −∆CH(h1, h0, e).
Actually, l(h, e) is not the only measure of evidential support for which

such a relation can be established. For the log-ratio measure r(h, e) =

p(e|h)/p(e) defended by Milne (1996), we obtain

CH(h0, e) = ∑
hi∈H

ωi log
(

p(e|h0)

p(e)
· p(e)

p(e|hi)

)
= log

p(e|h0)

p(e)
− ∑

hi∈H
ωi log

p(e|hi)

p(e)

= r(h0, e)− ∑
hi∈H

ωi r(hi, e)

which we can interpret as the difference between the support for h0 and

the average support for all hypotheses in H—an observation that I owe

to Wayne Myrvold. Dependent on the preferred explication of evidential

support, we can either express corroboration in terms of support differ-

ences or derive contrastive evidential support from differences in degree

of corroboration. All this suggests that corroboration and evidential sup-

port are tightly related concepts in inductive inference. How both concepts
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interact precisely is an exciting issue for further research.

7 Summary and discussion

The concept of degree of corroboration defines how the failure to reject a

hypothesis affects its epistemic status. In other words, explicating corrobo-

ration helps to positively appraise a hypothesis that has survived a severe

test. The failure to adequately formalize this concept has been a long-

standing lacuna in statistics, science and philosophy: standard statistical

procedures such as null hypothesis significance tests (NHSTs) are silent

on non-significant results, and the critical rationalist research program in

philosophy of science lacks a quantitative dimension—especially if com-

pared to the rich Bayesian theory of evidential support. This contribution

shows what a formalization of corroboration could look like, and how it

fruitfully complements the Bayesian perspective on inductive inference.

In the first place, this contribution motivates why corroboration judg-

ments cannot be replaced by judgments of evidential support, and why

corroboration and support play complementary roles. Based on this char-

acterization in Sections 1 and 2, I investigate Popper’s attempt to explicate

this concept in terms of probabilistic relevance. After debunking Popper’s

own explication, I show that positive probabilistic relevance is a problem-

atic framework for explicating degree of corroboration. This argument

culminates in two impossibility results which show that no measure of

corroboration can jointly satisfy several plausible adequacy criteria.

Motivated by these findings, I develop a constructive account of de-

gree of corroboration, which is neutral with respect to the methodological

divide between various schools of inductive inference (e.g., Bayesians and

frequentists). The model is based on the idea that corroboration is, unlike

evidential support, assessed with respect to a partition of alternatives to the

tested hypothesis h0, rather than by comparing h0 to its negation ¬h0. In

my explication, degree of corroboration compares the average predictive

score difference between h0 and the alternatives to h0, with respect to ev-

idence e. The idea is that a high degree of corroboration entitles us to

replace a general model H with a precise hypothesis h0 without incurring

too many losses. This fits actually well with Popper’s idea that corrobora-
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tion serves for determining pragmatic preferences over different scientific

hypotheses, but does not ground any confidence in their truth.

The chosen explication is shown to have several desirable properties:

for instance, it allows for the corroboration of hypotheses with zero prob-

ability (a standard problem for the Bayesian), it shows how the informa-

tivity of a hypothesis contributes to its corroborability, how irrelevant ev-

idence leaves degree of corroboration unchanged, etc. Moreover, corrob-

oration differences between two hypotheses turn out to be closely related

to contrastive evidential support.

All in all, this paper does not only explicate a concept that has unjusti-

fiably fallen into oblivion: it also improves the assessment of the results of

statistical hypothesis tests, and it shows how evidential support and de-

gree of corroboration can be complementary notions in the assessment of

scientific theories. Future work will explore other axiomatic characteriza-

tions for measures of corroboration, expand on their application to statis-

tical tesing and explore the quantitative (dis)agreements between corrobo-

ration and Bayesian measures of evidence (e.g., the Bayes factor). For now,

I conclude that our formalizations of corroboration lay the foundations

for a new logic of statistical hypothesis testing (and NHST in particular),

beyond the Bayesian/frequentist divide.
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A Proofs of the theorems

Proof of Theorem 1: By Weak Informativity, there are x, y, z > z′ with

z + z′ < 1:

f (x, y, z) ≤ f (x, y, z′).

Choose a probability function p(·) such that p(h1) = z, p(h2) = z′, p(h1 ∧
h2) = 0, p(e|h1) = p(e|h2) = x, p(e) = y. This is always possible because

it was assumed that z + z′ < 1. Then it is straightforward to show that

p(e|¬h1) =
1

1− p(h1)
[p(e|h1)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

p(e|¬h2) =
1

1− p(h2)
[p(e|h1)p(h1) + p(e|¬h1¬h2)p(¬h1¬h2)]

From this we can infer

p(e|¬h1)− p(e|¬h2)

= p(e|h1)

[
p(h2)

1− p(h1)
− p(h1)

1− p(h2)

]
+ p(e|¬h1¬h2)(1− p(h1)− p(h2))

·
[

1
1− p(h1)

− 1
1− p(h2)

]

= p(e|h1)
p(h2)− p(h2)2 − p(h1) + p(h1)

2

(1− p(h1)) (1− p(h2))
+ (1− p(h1)− p(h2))

· p(e|¬h1¬h2) · (p(h1)− p(h2))

(1− p(h1)) (1− p(h2))

= p(e|h1)
(p(h1)− p(h2)) · (p(h1) + p(h2)− 1)

(1− p(h1)) (1− p(h2))
+ (1− p(h1)− p(h2))

· p(e|¬h1¬h2) · (p(h1)− p(h2))

(1− p(h1)) (1− p(h2))

=
1

(1− p(h1)) (1− p(h2))
(p(h1)− p(h2)) · (p(h1) + p(h2)− 1) · (p(e|h1)− p(e|¬h1¬h2))

< 0

because e was assumed to be positively relevant to h1 and h2, and because

the prior of h1 exceeds the prior of h2. Hence, the conditions for applying
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Weak Law of Likelihood are satisfied:

f (x, y, z) = c(h1, e) > c(h2, e) = f (x, y, z′)

in contradiction with the inequality f (x, y, z) ≤ f (x, y, z′) that we got from

Weak Informativity. �

Proof of Theorem 2: Let us assume that the conditions of

Screened-Off Evidence are satisfied:

p(e2h) = p(e2)p(h)

p(e1e2) = p(e2)p(e1)

p(e1e2|h) = p(e2)p(e1|h)

By setting a := p(e2), x := p(e1|h), y = p(e1) and z = p(h), we can then

derive the general equality

f (ax, ay, z) = c(h, e1e2) = c(h, e1) = f (x, y, z) (11)

where Screened-Off Evidence has been used in the middle equality.

Now we observe that by Strong Informativity, there are x > y and

z > z′ such that

f (x, y, z) < f (x, y, z′).

By an application of (11), we then obtain

f (1, y/x, z) < f (1, y/x, z′). (12)

Now choose a probability function p(·) such that for sentences h, e, h′ ∈ L

that satisfy the conditions of Irrelevant Conjunctions, p(h) = z, p(h ∧
h′) = z′, p(e) = y/x. This implies

f (1, y/x, z) ≥ f (1, y/x, z′),

since c(h, e) ≥ c(h ∧ h′, e), but it contradicts (12). Hence, the theorem is

proven. �
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Proof of Theorem 3: Let e ⊥⊥ e′|h0. From CA2 it follows that S(h0, e ∧
e′) = f (p(e|h0) · p(e′|h0)), and from CA3 it follows that S(h0, e ∧ e′) =

S(h0, e) + S(h0, e′) = f (p(e|h0)) + f (p(e′|h0)). This leads to the require-

ment

f (p(e|h0) · p(e′|h0)) = f (p(e|h0)) + f (p(e′|h0))

which is only satisfied by the logarithmic scoring rule S(h0, e) =

loga p(e|h0), for all a ≥ 0. To see that this uniqueness property holds, re-

member that the exponential functions are the only continuous functions

with the property g(x + y) = g(x) · g(y). They define an isomorphism be-

tween the additive group of real numbers and the multiplicative group of

postive reals. They are the only functions who do so, and the logarithms

are their inverse.

If there were another continuous function f with the property f (xy) =
f (x) + f (y), it could not be surjective because in that case, it would have

to be a logarithm. Hence, f is not surjective and therefore also bounded

(because of continuity). Then adding further summands shows that such

a construction cannot work: f (x0 · x1 · x2 · . . .) = f (x0) + f (x1) + f (x2) +

. . . This shows that f can be raised to an arbitrary value, contradicting

boundedness. Hence S(h0, e) = log p(e|h0).

The rest of the proof is straightforward. By CA1 and the above, we

obtain

CH(h0, e) = ∑
hi∈H

ωi · (S(h0, e)− S(hi, e))

= ∑
hi∈H

ωi · (log p(e|h0)− log p(e|hi))

= ∑
hi∈H

ωi · log
p(e|h0)

p(e|hi)

�

Proof of Theorem 4: As before, CA2’-CA3’ determine that S(h0, e) =

log p(e|h0). We will now prove the theorem by considering different forms

of fS in increasing complexity and demonstrate that the form stated in

Theorem 4 is indeed the simplest one.
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Assume first that m = 0 and n = 1. In that case, the neutrality condi-

tion fS(h0, h1, e) = 0 if p(e|h0) = p(e|h1) cannot be satisfied unless c00 = 0

because the numerator is a constant. Hence, we can neglect this possibility.

Now assume that m = 1 and n = 0. Here, the neutrality condition

fS(h0, h1, e) = 0 if p(e|h0) = p(e|h1) leads to the equation

c00 + (c10 + c01)p(e|h0) + c11 p(e|h0)
2 = 0 (13)

which is satisfied in general if and only if c00 = c11 = 0 and c10 = −c01.

Clearly, the resulting function f (h0, h1, e) = p(e|h0)− p(e|h1) is not ordi-

nally equivalent to S(h0, e)− S(h1, e) = log p(e|h0)− log p(e|h1), regardless

of the value of c10 and the base of the logarithm. Hence, we can neglect

this possibility, too.

Now assume that m = n = 1. Again, the neutrality condition leads to

the conclusion c00 = c11 = 0 and c10 = −c01. Now, let us set p(e|h0) = 1,

p(e|h1) = 0, and vice versa. Then, the maximality constraint implies d10 =

d01 = 1 and the simplest function that maintains ordinal equivalence with

S(h0, e)− S(h1e), as demanded by CA1’, is obtained by setting d00 = d11 =

0. �

Proof of Theorem 5: For CH, the calculation is straightforward:

∆CH(h0, h1, e) = CH(h0, e)− CH(h1, e)

= ∑
hi∈H

ωi log
p(e|h0)

p(e|hi)
− ∑

hi∈H
ωi log

p(e|h1)

p(e|hi)

= ∑
hi∈H

ωi log
(

p(e|h0)

p(e|hi)
· p(e|hi)

p(e|h1)

)

=

(
∑

hi∈H
ωi

)
log

p(e|h0)

p(e|h1)

= log
p(e|h0)

p(e|h1)
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For C′H, we have to work a bit harder:

C′H(h0, e)− C′H(h1, e)

= ∑
hi∈H

ωi
p(e|h0)− p(e|hi)

p(e|h0) + p(e|hi)
− ∑

hi∈H
ωi

p(e|h1)− p(e|hi)

p(e|h1) + p(e|hi)

= (ω0 + ω1)
p(e|h0)− p(e|h1)

p(e|h0) + p(e|h1)
+ ∑

hi∈H\{h0,h1}
ωi

· (p(e|h0)− p(e|hi)) (p(e|h1) + p(e|hi))− (p(e|h0) + p(e|hi)) (p(e|h1)− p(e|hi))

(p(e|h0) + p(e|hi)) (p(e|h1) + p(e|hi))

= (ω0 + ω1)
p(e|h0)− p(e|h1)

p(e|h0) + p(e|h1)
+ ∑

hi∈H\{h0,h1}
2ωi

p(e|h0)p(e|hi)− p(e|h1)p(e|hi)

(p(e|h0) + p(e|hi)) (p(e|h1) + p(e|hi))

= (p(e|h0)− p(e|h1))

[
ω0 + ω1

p(e|h0) + p(e|h1)
+ ∑

hi∈H\{h0,h1}

2ωi p(e|hi)

(p(e|h0) + p(e|hi)) (p(e|h1) + p(e|hi))

]

= (p(e|h0)− p(e|h1)) ∑
hi∈H

2ωi
p(e|hi)

(p(e|h0) + p(e|hi)) (p(e|h1) + p(e|hi))

�
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