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Abstract

A primary goal of quantum computer science is to find an explanation for the fact that

quantum computers are more powerful than classical computers. In this paper I argue that

to answer this question is to compare algorithmic processes of various kinds, and in so

doing to describe the possibility spaces associated with these processes. By doing this we

explain how it is possible for one process to outperform its rival. Further, in this and

similar examples little is gained in subsequently asking a how-actually question. Once

one has explained how-possibly there is little left to do.
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1 Introduction

There is a distinction that is sometimes made in the scholarship on scientific explanation

between explaining why and explaining how-possibly. In the ontic context, where the

explanations one gives aim at describing salient features of actual physical systems, the

former is sometimes also called how-actually explanation.1 That how-actually explanation

actually explains is uncontroversial; however it is less clear just what if any explanatory merit

there is in explaining how some event possibly came about. Partly for this reason, the

literature on how-possibly explanation is comparatively sparse, and the few who have

commented on the topic are of varying opinion with regard to its virtues. While some view

how-possibly explanation as genuinely explanatory, others have argued that how-possibly

‘explanation’ is better thought of as a mere heuristic device and not as constituting genuine

explanation at all. Still others have thought of how-possibly explanation as a kind of

incomplete how-actually explanation—a stepping stone on the way to the how-actually

explanation that one ultimately seeks.

Below I will consider a question which I will argue sheds light on this issue. It is drawn

from the science of quantum computation. Quantum computation is a fruitful merger of the

fields of physics and computer science, and one of the goals of this science is to determine the

source of the power of quantum computers; i.e., to search for the explanation of the fact that

quantum computers can in general (and sometimes dramatically) outperform classical

computers. What I will argue is the following: to answer this question is to compare

algorithmic processes of various kinds, and in so doing to describe the possibility spaces

1For more on the distinction between ontic, epistemic, and modal forms of explanation,

see Salmon (1984).



associated with these processes. By doing this we explain how it is possible for one process to

outperform its rival. Further, and importantly, in examples like these little if anything is

gained in subsequently asking a how-actually question. Once one has answered the

how-possibly question there is little left to do.

I will close by suggesting that the search for the explanation of the power of quantum

computation is just one example of a species of how-possibly question that is likely to be

found in many other sciences as well.

2 How-possibly Explanation

The first mention of how-possibly explanation is likely that of Dray (1957). Dray’s primary

goal in that book is to assess the adequacy of the ‘covering law model’ of explanation for

characterising historical explanation. The model is so-called because it involves the

subsumption of a particular set of initial conditions under a law or a set of laws (Hempel and

Oppenheim, 1948). Dray’s verdict is that the covering law model fails to capture many

interesting senses of historical explanation. One of the ways in which it is inadequate,

according to Dray, is that the covering law model insists that any explanation of a given fact

must show why, necessarily, that fact had to occur, since the statement of the fact to be

explained must be deductively entailed by the statements of the relevant laws and initial

conditions.2 Dray insists, however, that not all historical explanations are why-necessarily

explanations.

An announcer broadcasting a baseball game from Victoria B.C., said: “It’s a long
2This is the case for Hempel and Oppenheim’s Deductive-Nomological (D-N) model of

explanation. Statistical explanations require only inductive support (Hempel, 1965). For our

purposes we need only detain ourselves with the former.



fly ball to centre field, and it’s going to hit high up on the fence. The centre

fielder’s back, he’s under it, he’s caught it, and the batter is out.” Listeners who

knew the fence was twenty feet high couldn’t figure out how the fielder caught the

ball. Spectators could have given the unlikely explanation. At the rear of centre

field was a high platform for the scorekeeper. The centre fielder ran up the ladder

and caught the ball twenty feet above the ground (from Maclean’s Magazine, as

cited in Dray 1957, 158).

What is explained here, for Dray, is not exactly why the ball landed in the centre fielder’s

glove. Rather, what is dispelled is the initial puzzlement on the part of the listener upon

hearing about the catch. This puzzlement is removed once she is told of the scorekeeper’s

ladder, for the ladder explains how the catch was possible: it opens up a range of possibilities

that would not have been present without it. Of course one can still ask: “why, exactly, did the

ball land in his glove?” However to do so, for Dray, is to ask a logically different question.

The how-possibly question is answered once we have been told about the ladder.

Hempel and Oppenheim’s covering law model, with its exclusive emphasis on

why-necessarily questions, was, for many years, the ‘received view’ on scientific explanation.

But although similar conceptions continue to be defended, there is no longer a near consensus,

and indeed many have taken a pluralistic attitude (or at any rate remained agnostic), on the

question of whether an all-encompassing model of scientific explanation exists.3 Despite this,

how-possibly explanation has received comparatively little attention (as compared with, say,

causal explanation). But it has received some. There are those, for instance, who reject

outright the very idea of how-possibly explanation—Reiner (1993, 68) goes so far as to call

3See, for instance, Woodward (2003), who productively focuses his energies on

explicating one particular type of explanation.



its promotion and proliferation a “sociological risk”—however the majority of the debate

surrounding how-possibly explanation centres around the sense and extent to which it (in

Dray’s or perhaps some other formulation4) is explanatory.

Thus even Hempel grants to Dray that there is some sense in which a how-possibly account

explains. Nevertheless, he argues, upon hearing it the questioner will invariably desire to be

told why the event necessarily occurred if he is to be fully satisfied (Hempel, 1965, 429). For

Hempel, the role of how-possibly explanation is primarily pragmatic: it motivates the

questioner to ask a further why-necessarily question. For Resnik (1991, 143), on the other

hand, how-possibly explanation and how-actually explanation are of the same kind, and differ

only in the degree to which they are empirically supported. That is, a how-possibly

explanation is a how-actually explanation that enjoys no more than speculative supporting

evidence, yet nevertheless displays other explanatory virtues like fruitfulness. Salmon’s

(1989, 137) conception is similar.

Forber (2010), in contrast, views how-possibly and how-actually explanation as different in

kind. What Resnik refers to as how-possibly explanation is, for Forber, no more than an

4Dray’s account is sometimes thought to rely overmuch on psychology: for Dray, recall,

one explains how-possibly to dispel a questioner’s puzzlement at having witnessed or been

told of some event. One can do away with this psychological element, however, by

explicating surprise in epistemic terms; i.e., as a prima facie tension between the fact to be

explained and the questioner’s body of knowledge absent some additional piece of

information. This latter is what is provided by a how-possibly explanation. Other approaches

to modifying Dray’s view so that it is more conformant to ontic conceptions of explanation

have also been considered (see Persson, 2012).



incomplete how-actually explanation.5 Explaining how-possibly, for Forber, is not this but a

kind of formal inquiry: given a set of relevant background assumptions, one deduces (e.g., via

computer simulation) a particular set of outcomes reachable from them. For instance, let the

assumptions consist of known biological laws relevant to a particular population, plus a

specification of a set of variable parameters, and let the different outcomes represent various

genotypes associated with that population. Then, when one runs such a simulation, the

different paths by which it arrives at a particular outcome carve up the possibility space for

that outcome—they represent a set of how-possibly explanations corresponding to it.6

Explaining how-actually, in contrast, is a form of empirical inquiry: its aim is to determine

which of these possible explanations is the actual one.

A further mode of how-possibly explanation, described by Persson, “aims to establish the

existence of a mechanism by which X could be, and was, generated without filling in all the

details” (Persson, 2012, 275). Key to Persson’s conception is the empirical determination of

some actually existing mechanism responsible for X. It is thus distinct from Resnik’s

conception of how-possibly explanation as inadequately supported how-actually explanation.

It is also distinct from Forber’s conception of how-possibly explanation, which recall is not a

form of empirical inquiry at all. Nevertheless it is how-possibly and not how-actually

explanation because, although one describes an actual mechanism responsible for X,

5One could be forgiven for thinking this merely a dispute over labels. In Forber’s defence,

his view is more in the spirit of Dray’s original account, who recall, viewed how-possibly and

how-actually questions as logically different.
6Forber distinguishes between global and local how-possibly explanations. The former

utilise highly idealised background assumptions. The latter are directed at real populations

and utilise richer, empirically grounded, assumptions.



information is missing from our description of the mechanism which would allow us to

determine the precise (typically causal) pathway by which X was brought about. Thus one has

not given an account of how the event actually occurred.

In the modes of explaining how-possibly identified so far, the questioner is required, or at

any rate it is perfectly sensible for her, to continue on to ask the how-actually question. Thus

for Hempel she (at least in interesting cases; see Hempel 1965, 429) will not be fully satisfied

until she answers the how-actually question. On Resnik’s conception, how-possibly questions

are just how-actually explanations that have not been adequately confirmed, and it goes

without saying that we should try and confirm them. For Persson it is not confirming but

“filling in” of the mechanism which remains to be done. On Forber’s conception, explaining

how-possibly is in no way inferior to explaining how-actually, yet both play an essential role

in our inquiries into phenomena. For Dray, pace Hempel, sometimes one is thoroughly

satisfied with a how-possibly explanation. Nevertheless it is perfectly sensible to go on and

ask exactly how the centre fielder caught the ball once he was at the top of the ladder.

The kind of how-possibly explanation I describe in the next section bears certain

resemblances to both Persson’s and Forber’s conceptions. As in Persson’s conception it

involves the description of some mechanism actually responsible for producing an outcome.

Unlike in Persson’s conception, in this case there are no relevant details of the mechanism left

to fill in. On the other hand, the way the mechanism explains, as in Forber’s conception, is

that it carves out a particular possibility space for an outcome. But unlike all of the

conceptions reviewed above, once one has answered the how-possibly question in this case, it

is doubtful that a how-actually explanation can give us anything more of substance.7

7Which of these conceptions is right? With Persson I would maintain these are all

legitimate senses of explaining how-possibly. Which one is ‘correct’ will be relative to the



3 Explaining Quantum Speedup

A basic distinction, in Computational Complexity Theory, is between those computational

problems amenable to an efficient solution in terms of time and/or space resources, and those

that are not. Easy (or ‘tractable’, ‘feasible’, ‘efficiently solvable’, etc.) problems have

solutions which involve resources bounded by a polynomial in the input size, n (n is typically

the number of bits used to represent the input). Hard problems are those which are not easy;

i.e., they require resources that are ‘exponential’ in n, i.e., that grow faster than any

polynomial in n (Nielsen and Chuang, 2000, p. 139).8 For example, a problem which requires

≈ nc time steps to solve in the worst case (for some constant c) is polynomial in n and thus

tractable according to this definition. A problem that requires ≈ cn steps, on the other hand, is

exponential in n therefore intractable according to this definition.

‘Quantum speedup’ refers to the fact that some computational problems can be solved

exponentially faster with a quantum computer than with any known classical computer.9 For

example, the fastest known classical algorithm for factoring the product of two unknown

primes is exponential in n. Shor’s quantum algorithm, astoundingly, solves the problem in

polynomial time (Nielsen and Chuang, 2000, 216). But while the fact of quantum speedup is

almost beyond doubt,10 its source is still a matter of debate within the scientific community.

specific question asked.
8The term ‘exponential’ is being used rather loosely here. Functions such as nlog n are

called ‘exponential’ since they grow faster than any polynomial function, but they do not grow

as fast as a true exponential such as 2n.
9Research into quantum computing is still largely in the theoretical stage. However there

is good reason to be optimistic that practical implementations will be realised eventually (see

Aaronson, 2013, Ch. 15).
10There is currently no proof that the class of problems efficiently solvable by quantum



void SelectionSort(int intsToSort[], int lengthOfList) {
// Declare list indices:
int i, j, indexOfLowestNum;
// For each position in the list,
for (i = 0; i < lengthOfList − 1; i++) {

// provisionally assert that it points to the lowest number,
indexOfLowestNum = i;
// and then for each of the other list positions,
for (j = lengthOfList − 1; j > i; j−−) {

// if the number pointed to by it is less than the number
// pointed to by indexOfLowestNum,
if (intsToSort[j] < intsToSort[indexOfLowestNum]) {

// then make this the new provisional minimum index.
indexOfLowestNum = j;

}
}
// At the end of the ith iteration, put the number that is in the
// indexOfLowestNum position into the ith position (and vice versa).
Swap(&intsToSort[i], &intsToSort[indexOfLowestNum]);

}
}

Figure 1: A set of instructions (in C) implementing the ‘SelectionSort’ solution to the problem

of sorting a list of given integers.

According to Fortnow (2003), for instance, the explanation of quantum speedup lies in the

ability of quantum systems to exhibit ‘interference’. For Ekert and Jozsa (1998), on the other

hand, it is their ability to exhibit ‘entanglement’.

We will consider these explanations in a little more detail later. For now let us ask: what

kind of question is one asking when one asks to have quantum speedup explained? It is

clearly an ontic question, for it aims to identify particular characteristics of physical systems.

It is also a how question, if anything is, for it asks, specifically, for the distinctive mechanism

by which quantum computers operate. It remains to consider whether it is a how-possibly or a

how-actually question.

Consider figure 1. Depicted there is an instance of the ‘SelectionSort’ algorithm for sorting

computer is larger than the class efficiently solvable by classical computer, however other

results make the truth of this statement very likely (see Aaronson, 2013, Ch. 10).



a given list of integers. If given, say, the numbers (25, 12, 13, 19, 8), then after a certain time a

computer running this code will produce: (8, 12, 13, 19, 25). Now if we examine the

algorithm, we notice that in the worst case (indeed, in any case) there will be n − 1

comparisons in the first iteration, n− 2 comparisons in the second, n− 3 in the third, and so on

(where n is the number of list items). This gives a total of n(n − 1)/2 comparisons; thus our

total worst-case running time is proportional to n2. SelectionSort is not the only algorithm for

sorting integers. Both faster and slower algorithms exist. For instance, the ‘MergeSort’

algorithm has a worst-case running time ∝ n log(n) (Mehlhorn and Sanders, 2008).

Suppose we are comparing the running times of various algorithms. I feed some random

permutation of a list of n integers to my algorithm (which implements SelectionSort) and you

feed one to yours (which implements MergeSort). After a time we both obtain the list in sorted

order. Yours finishes after k ≤ n log(n) steps. Mine finishes after n log(n) < l ≤ n2 steps. What

is the explanation for this difference in performance? Well, one way to explain it is just to

point to the differences in the code for the two algorithms. But what does this code represent?

Certainly it does not represent some one particular linear causal sequence of transitions, for

the if as well as the for loops encode conditional statements. Rather, it represents a space of

possibilities: a set of pathways by which the computer can arrive at a particular result. It turns

out that the pathways available to a computer implementing MergeSort allow a solution to be

reached in fewer time steps than the pathways available to one implementing SelectionSort.

Something similar can be said when comparing different classes of machine. Consider, for

instance, figure 2. ‘State transition diagrams’ such as these are essentially just another way of

representing algorithms, although the representation they afford is somewhat ‘closer to the

hardware’, so to speak. The machine depicted is an example of a deterministic finite

automaton (DFA). It is not the only kind of computing machine. There are also, for instance,
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Figure 2: A state diagram representation of a deterministic finite automaton (DFA). Binary

strings of variable length are input to the automaton. They are ‘accepted’ if the machine is

found to be in the state a after the last character has been read. This particular machine will

accept any string ending in ‘10’.

nondeterministic finite automata, deterministic and nondeterministic ‘pushdown’ automata,

and deterministic and nondeterministic Turing machines, to name a few. To define these

various classes of machine, we describe the possible states and state transitions which they are

capable of. For example, DFAs are characterised by a finite set of states, deterministic

transitions between states, and the lack of any form of external storage (see Martin, 1997).

Given our characterisations of different types of machine, we can inquire about the set of

problems computable by the machines of a particular class. It turns out, for example, that

DFAs are severely limited with respect to the class of problems they are capable of solving,

while Turing machines, in contrast, are capable of solving any effectively calculable function.

We can similarly ask about the resources required to solve particular classes of computational

problems by machines of a particular sort. We can ask, for instance, about the class of

problems solvable by a deterministic Turing machine in polynomial time, about those

solvable by a nondeterministic Turing machine in exponential time, and so on. Answering

these and other similar questions will involve appealing to the states and to the state



transitions which are possible for a particular class of machine. This state space, we will say,

allows us to construct such a machine to realise an algorithm that will solve the problem in a

given amount of time.

The question, “what is the source of quantum speedup?”, is a question of just this sort.

Quantum computers are just another type of computational machine, and just as for Turing

machines and DFAs, quantum computers have associated with them a particular space of

states and a particular way of transitioning between states. In order to answer the question

“what is the source of quantum speedup?”, therefore, we will appeal precisely to the quantum

mechanical state space and to the allowable transitions within it, and we will consider these in

comparison to the space of states and state transitions possible for a classical computer. And

when we do so we will be explaining how-possibly.

We see this, in fact, when we examine the approaches that those in the scientific community

have taken to answering this question. Consider Fortnow (2003), for example, who develops

an abstract mathematical framework for representing both the computational complexity

classes associated with classical and with quantum computing. In Fortnow’s framework, both

kinds of computation are represented by transition matrices which determine the allowable

transitions between possible configurations of a particular kind of machine. To represent the

quantum case, Fortnow allows matrix entries to be negative as well as positive, while for the

classical case they may only be positive. As a result, in the quantum case matrix entries will

sometimes cancel each other out when summed; not so in the classical case. Fortnow shows

that this suffices to capture the computational complexity classes associated with classical and

quantum computing. According to Fortnow, this means that the fundamental difference

between quantum and classical computation is that in quantum computation there can

sometimes be interference between computational paths: “The strength of quantum



computing lies in the ability to have bad computation paths eliminate each other thus causing

some good paths to occur with larger probability” (Fortnow, 2003, p. 606).11 Ekert and Jozsa

(1998), on the other hand, argue that the fact that quantum systems can sometimes be in

entangled states yields a state space for combined quantum systems that is exponentially

larger than the state space associated with combined classical systems.12 And while it is

possible to, in a roundabout way, simulate this larger state space with a classical computer, the

resource cost of doing so scales exponentially (ibid., 1771).13

11In the ‘many worlds’ interpretation (Hewitt-Horsman, 2009), of course, all of these paths

would be actual and not merely possible. Perhaps. But I do not think it prudent to hinge one’s

views on scientific explanation on a particular interpretation of quantum mechanics (further,

see Cuffaro 2012 for some strong reasons to be skeptical of the many worlds view in the

context of quantum computing). This is moot in any case. When a quantum computer finds

itself in a state like |ψ〉 = |000〉i| f (000)〉o + |001〉i| f (001)〉o + · · · + |111〉i| f (111)〉o we do not, in

order to make sense of Fortnow’s analysis, need to take the terms in this superposition to

represent either actual or possible computational paths. Rather, what is important is only that

the possible states of a quantum computer, unlike those of a classical computer, include

superpositions like |ψ〉 which have interfering terms.
12A system of two or more particles is said to be entangled when one cannot describe one

of the particles in the system without referring to all of the others.
13There is disagreement here between Fortnow and Ekert and Jozsa. Does this undermine

my view? I would say not. We have here two potential how-possibly explanations of quantum

speedup. Further empirical research, presumably, will help to decide which of these

how-possibly explanations is correct. One might investigate, for instance, whether cases exist

in which a quantum algorithm is efficiently classically simulable despite the fact that it utilises

entangled states.



But is this really explaining how-possibly? Isn’t it the case, one might object, that an

algorithm like SelectionSort just is a description of how a system actually goes about solving

a problem, and likewise that a description of the state space and state transitions associated

with a particular class of system just is a description of the actual resources used by those

systems? These mechanisms are actually being employed, are they not? Of course this is true.

In the same way, Dray’s centre fielder actually used the ladder to make the catch that he did.

But that is not a how-actually explanation, and neither are these. For Dray the role played by a

description of the ladder in the explanation of the fielder’s catch is to dispel the questioner’s

puzzlement regarding how the catch was possible, without explaining exactly how it happened

(or why it was necessary). But why does the ladder dispel her puzzlement? It does so because

pointing out that a ladder was present opens up a whole new range of possibilities for the

questioner that simply weren’t there before. Likewise in the cases we are considering: the

algorithms, or the state spaces, as the case may be, explain by explicitly specifying the set of

possibilities open to them.

But is the how-possibly explanation fully satisfactory? Shouldn’t we feel the urge to

continue our investigation until we have found the actual path taken by the computer through

its state space? Let us consider what this would mean in the case of the performance

comparison between SelectionSort and MergeSort. In this case we would presumably

(assuming the precise input value was known) produce a how-actually explanation by giving a

detailed description of the state of the computer after each time step, and in this way we

would see exactly how it was that mine took l steps and yours took k. And yet, without

referencing the possibility spaces carved out by each algorithm—the alternatives encoded in

the conditional statements—it is hard to see how such an answer can be very informative with

respect to the actual question that was asked. At best it is to answer a very different question



than the one originally asked. But in the context of a discussion of the performance

characteristics of different types of computer it is not clear what an answer to such a question

will add to our understanding of these processes. Such an answer, in that context, seems to do

little more than restate the original question. The information about the performance

characteristics of my and your computer is most crucially contained in the description of their

possibility spaces. Such questions are therefore most appropriately answered by appealing to

those possibility spaces; i.e., they are most appropriately answered with how-possibly

explanations.

4 Conclusion

The kind of how-possibly explanation I have described in this paper bears certain

resemblances to both Forber’s and to Persson’s conceptions of explaining how-possibly. As in

Persson’s conception, an explanation of the comparative performance characteristics of

quantum and classical computers involves, I have argued, a description of the actual

mechanisms associated with these machines. The description of a mechanism serves to carve

out a particular possibility space for a machine, and as on Forber’s view, this possibility space

plays a crucial role in a how-possibly explanation of the computationally relevant

characteristics of particular observed outcomes. I have further argued that, unlike other

interesting examples previously given in the literature on this form of explanation, once one

has answered this how-possibly question it is doubtful that continuing on to ask a

how-actually question can yield anything more of substance.

The kind of how-possibly question I have described here is characteristic, not only of the

inquiry into the source of quantum speedup, but of the science of computability and

computational complexity generally—and not just this. Algorithmic processes abound in



nature: in biological systems, in cognitive systems, and also in physical systems, to name but

a few. Questions regarding their comparative performance characteristics likewise abound.

And I would argue, if I had the space, that all of these questions are most appropriately

answered by explaining how-possibly.
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