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Abstract

The question I am addressing in this paper is the following: how is it
possible to empirically test, or confirm, counterfactuals? After motivating
this question in section 1, I will look at two approaches to counterfactuals,
and at how counterfactuals can be empirically tested, or confirmed, if at
all, on these accounts in section 2. I will then digress into the philosophy
of probability in section 3. The reason for this digression is that I want
to use the way observable absolute and relative frequencies, two empirical
notions, are used to empirically test, or confirm, hypotheses about objective
chances, a metaphysical notion, as a role-model. Specifically, I want to
use this probabilistic account of the testing of chance hypotheses as a role-
model for the account of the testing of counterfactuals, another metaphysical
notion, that I will present in sections 4 to 8. I will conclude by comparing my
proposal to one non-probabilistic and one probabilistic alternative in section
9.
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1 Introduction
I claim that the following two subjunctive, or counterfactual, conditionals are true:
If I had not had coffee this morning, I would have been tired at noon; and if I had
had coffee this morning, I would not have been tired at noon. These conditionals
are true despite the fact that I had coffee this morning, and despite the fact that
I have not been tired at noon. These facts make the first conditional a genuine
contrary-to-fact, or counter-factual, conditional. However, in what follows I will
refer to all conditional claims in the subjunctive mood as counterfactuals, even if
their antecedent and consequent are true, as is the case for the second conditional.

The question I am addressing in this paper is the following: how is it possible
to empirically test, or confirm, such counterfactuals? To me this question is of
interest in itself. To fellow philosophers this question might be of interest, because
they may sometimes rely on counterfactuals in their philosophical theorizing.

Philosophical problems that have been approached in terms of counterfactuals
abound. Counterfactual accounts of causation provide an example from meta-
physics (Collins & Hall & Paul 2004). Counterfactual accounts of knowledge
provide an example from epistemology (Nozick 1981). Counterfactual accounts
of dispositions provide an example from the philosophy of science (Mumford
1998). Even if one holds that all these counterfactual approaches are misguided,
one might still be interested in finding out under what conditions one ought to
believe a given counterfactual to be true, or to be false. Indeed, unless one is an
expressivist about counterfactuals and holds that counterfactuals do not express
propositions, and do not have truth conditions (Edgington 2008, Spohn 2013),
an answer to this question is a precondition for the possibility of criticizing such
counterfactual accounts.

The plan for this paper is as follows. I will begin by looking at two approaches
to counterfactuals, and by considering how counterfactuals can be empirically
tested, or confirmed, if at all, on these two accounts in section 2. In section 3 (and
section 4) I will then digress into the philosophy of probability. The reason for
this digression is that I want to use the way observable absolute frequencies and
observable relative frequencies, two empirical notions, are used to empirically
test, or confirm, hypotheses about objective chances, a metaphysical notion, as
a role-model. More specifically, I want to use this probabilistic account of the
testing of chance hypotheses as a role-model for the account of the testing of
counterfactuals, another metaphysical notion, that I will present in sections 4 to
8. I will conclude by comparing my proposal to one non-probabilistic and one
probabilistic alternative in section 9.
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2 Counterfactuals and Testing
According to one version of the similarity approch to counterfactuals (Stalnaker
1968, Lewis 1973), a counterfactual conditional α � γ is true at a possible
world w ∈ W in a model M = (W, ($w)w∈W , ~·�) if and only if all of the most
$w-similar ~α�-worlds are ~γ�-worlds. Besides the system of spheres ($w)w∈W
and the evaluation function ~·� these models contain a set of possible worlds W.
I do not know what possible worlds are. However, whatever possible worlds are,
I know that they are exclusive in the sense that at most one element of W is actual
or designated. For present purposes this is all we need to know about them.

One way to think of, or construct, the set of possible worlds W is as the Carte-
sian product ×X∈XR (X) of the ranges, or sets of possible values, R (X) of a set X
of singular variables X. This way of thinking of, or constructing, possible worlds
is popular in the literature on causal modeling. In the philosophical literature the
set of possible worlds is often constructed from the underlying formal language.
This is effectively the same thing, except that the singular variables are binary
propositional variables. In some treatments of modal logic the set of possible
worlds is assumed to be given as a primitive.

The similarity approach to counterfactuals gives us a precise semantics for
counterfactuals. However, at least on the versions of Stalnaker (1968) and Lewis
(1973; 1979), the similarity approach does not tell us how to empirically test, or
confirm, counterfactuals. According to Stalnaker (1968: 177ff) “[i]t is because
counterfactuals are generally about possible worlds which are very much like the
actual one, and defined in terms of it, that evidence is so often relevant to their
truth”. This is simply too thin an account of the testing of counterfactuals to be
evaluated. Lewis (1979: 465) admits that (something like) the above definition
“does little to predict the truth values of particular counterfactuals in particular
contexts” and adds his “system of weights or priorities” (Lewis 1979: 472). How-
ever, he then reverses the order of analysis: “we must use what we know about
counterfactuals to find out about the appropriate similarity relation—not the other
way around” (Lewis 1979: 467). This reverse engineering does little to make
counterfactuals empirically testable. Indeed, if it were part of the analysis itself,
rather than descriptive of the methodology of analysis on the meta-level, it would
render counterfactuals untestable and, in this sense, without empirical content.

A more recent approach to counterfactuals explicitly rejects their untestability,
ties them to interventions, and focuses on counterfactuals of the form: F = f �
G = g, where F and G are generic variables. This is the interventionist approach
to causal counterfactuals (Woodward 2003).
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According to Woodward (2003: 72-73) “one way ... of testing ... counterfac-
tual claims ... will be to carry out the interventions described in their antecedents
and then check to see whether certain correlations hold.” As Woodward explains,
he thinks a sample provides confirmation for a counterfactual of the form ‘if the
value of F were set to f , then the value of G would change to g’ if there is perfect
correlation in the sense that all individuals in the sample, all individuals whose
value for F has been set to f , take on the value g for G. If only some, but not all
individuals in the sample take on the value g for G, and their relative frequency is
different from the unconditional probability, or the unconditional chance, that an
arbitrary or “randomly chosen” individual has the value g for G, then the sample
provides confirmation for a counterfactual of the form ‘if the value of F were set
to f , then the probability or chance that the value of G is g would change to p’,
where p is close to the observed relative frequency in the sample.

The interventionist approach to causal counterfactuals tells us, more or less1,
how to empirically test, or confirm, counterfactuals. However, it does not give us
a precise semantics for counterfactuals.2

A problem arises. It is unclear how, if not impossible, to combine the nice
feature of the similarity approach, viz. its precise semantics, with the nice feature
of the interventionist approach, viz. its account of testing. The reason is that a
precise semantics is possible on the similarity approach, only because the latter
relies on singular variables. The particular account of testing sketched above is
possible on the interventionist approach, only because the latter relies on generic
variables. And singular variables and generic variables, while mathematically
indistinguishable – both are measurable functions – are only superficially similar
entities.

Singular variables are functions from a set of possible worlds W into a range
R. They generalize the more familiar notion of a binary propositional variable.
Singular variables are mainly used in philosophy, especially if the concern is the
analysis or explication of token or actual causation between events (Baumgartner
& Glynn 2013) – or, more cautiously, the relata of actual causation (Paul 2000).

1On the account of testing envisaged by Woodward (2003) and sketched above one cannot
distinguish between confirmation for a counterfactual of the form ‘if the value of F were set to f ,
then the value of G would change to g’ and confirmation for a counterfactual of the form ‘if the
value of F were set to f , then the probability or chance that the value of G is g would change to 1’.

2Briggs (2012), Galles & Pearl (1998), Halpern (2013), Zhang (2013), and Zhang & Lam
& De Clercq (2013) give us a precise semantics for counterfactuals. However, they all seem to
understand the variables in a singular sense. Therefore Woodward’s (2003) account of testing is
not available to them.
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For instance, the singular variable X : W → N may assign the value m to a
possible world, if m mg of the pain killer ibuprofen are administered to Simone de
Beauvoir in the morning of January 1, 1950, in this possible world. It is because
X is defined on an exclusive set of possible worlds W that a precise semantics is
possible.

In contrast to this, generic variables are functions from a population or domain
of individuals from which one can draw samples, D, into a range R. They are
mainly used in the natural and social sciences and other areas where statistics is
applied, especially if the concern is the investigation of causal relevance relations
between properties.

For instance, the population may be the set of people of a certain age and in
a certain geographical region. The generic variable F : D → N may assign the
value m to an individual from this population, if m mg of the pain killer ibuprofen
are administered to this individual. It is because F is defined on a non-exclusive
domain D from which one can draw samples that the account of testing sketched
above is possible.

The task that arises from this problem is two-fold. First, we have to come
up with an account that gives us a precise semantics for counterfactuals, as the
similarity approach does. Second, we have to state conditions under which these
precisely defined counterfactuals, and not some generic type-level substitute, can
be empirically tested, or confirmed. In order to cope with this task let us first
digress into the philosophy of probability and look for a role-model.

3 Probabilistic Metaphysics and Epistemology
In probabilistic epistemology there is the notion of a subject S’s credence in a
hypothesis H given various data E, CrS (H | E). In probabilistic metaphysics there
is the notion of the objective chance at a certain world w and at a certain time t that
a proposition A is true, or that an event a takes place, chw,t (A). In addition there
is the empirical notion of the observable absolute frequency, and the empirical
notion of the observable relative frequency, of a certain outcome x, or an event
X = x, in the first n repetitions of some experiment, or type of event, X in the
actual world w, rel f r (x,Xn (w)). Here X = x is the proposition {w : X (w) = x}.

These three probabilistic notions – subjective credences, objective chances,
and observable relative frequencies – are linked by three principles (Spohn 2010).
The Principal Principle (Lewis 1980) relates subjective credences and objective
chances. The Strong Law of Large Numbers (Earman 1992 and many others)
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relates objective chances and limiting relative frequencies (for independent and
identically distributed random variables). The Straight Rule (Reichenbach 1939)
relates relative frequencies and subjective credences. A limiting version of the
Straight Rule, the Axiom of Convergence or Reichenbach Axiom (Carnap 1980:
§20), relates limiting relative frequencies and limiting subjective credences. The
latter principles will play no role in this paper. However, the Principal Principle
and the Strong Law of Large Numbers will play a role. Together they imply that
observable relative frequencies raise and lower subjective credences in hypotheses
about objective chances. This will be the probabilistic role-model for the account
of the testing of counterfactuals that I will present in sections 4 to 8.

The Principal Principle says that a subject S’s a priori credence in some
proposition A given that the objective chance of A at time t equals x – as well
as, perhaps, information Et that is admissible at t, but no further information that
is inadmissible at t – should equal x:

CrS (A | cht (A) = x ∩ Et) = x.

Lewis (1980) argues that the complete history of world w up to time t, Hw,t, is
admissible at t. He argues further that the world w’s theory of indeterministic
alethic modality, or chance, Tw is admissible at any time. This allows him to
derive the following reformulation of the Principal Principle:

chw,t (A) = CrS
(
A | Hw,t ∩ Tw

)
.

The reformulation says that the chance distribution of a world w at a time t comes
from a subject S’s a priori credence function by conditionalizing on the complete
history of world w up to time t and the world w’s theory of indeterministic alethic
modality, or chance, Tw. For an excellent discussion of the Principal Principle see
Briggs (2009).

The statement of the Strong Law of Large Numbers requires a little bit of
terminology. We start with a non-empty set of outcomes or possibilities Ω and
a field or an algebra A ⊆ ℘ (Ω) of events or propositions A ⊆ Ω over Ω. Here
A is a finitary/σ-/γ- algebra if and only if (1) ∅ ∈ A, (2) A ∈ A if A ∈ A, and
(3)

⋃
B ∈ A if each B ∈ A for each B ∈ B and all finite/countable/arbitrary

B ⊆ ℘ (W). (We will use γ-algebras in section 5.) (Ω,A) is a measurable space.
We define a probability measure Pr onA to obtain a probability space (Ω,A,Pr).

A function Pr : A → [0, 1] is a finitely additive/countably (or σ-) additive
probability measure on (Ω,A) just in case (P1) Pr (Ω) = 1 and (P2) Pr (

⋃
B∈B B) =∑

B∈B Pr (B) for all finite/countable collections B of mutually exclusive B ∈ A.
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Let (Υ,V) be another measurable space. A function X : Ω → Υ is A-V-
measurable just in case for all V ∈ V: X−1 (V) ∈ A. An A-V-measurable
function X is sometimes referred to as a random variable.

The algebra σ (X) ⊆ A generated by theA-V-measurable function X : Ω→
Υ is the smallest σ-algebra containing X−1 (V) for all V ∈ V. The algebra γ (X) ⊆
A generated by the A-V-measurable function X : Ω → Υ is the smallest γ-
algebra containing X−1 (V) for all V ∈ V. (We will use γ (X) in section 5.)

A family of A-V-measurable functions (Xi)i∈I is independent in the sense of
Pr just in case for any finite subfamily Xi1 , . . . ,Xin and all Ai1 ∈ σ

(
Xi1

)
, . . . ,Ain ∈

σ
(
Xin

)
:

Pr
(
Ai1 ∩ . . . ∩ Ain

)
=

∏
j=1,...,n

Pr
(
Ai j

)
.

A family of A-V-measurable functions (Xi)i∈I is identically distributed in the
sense of Pr just in case for all i, j ∈ I and all V ∈ V:

Pr
(
X−1

i (V)
)

= Pr
(
X−1

j (V)
)
.

Consider a sequence of random variables X1, . . . ,Xn, . . .. Think of the Xi as
repetitions of an experiment type, or as the single infinite experiment X∞ : Ω →
Υ∞ from the set of outcomes or possibilities Ω into the infinite repetition Υ∞ of
the set of values Υ. One may think of Ω as the set of possible values of this
infinite experiment X∞, i.e. Ω = Υ∞. The relative frequency of value v ∈ Υ in
possibility ω ∈ Ω in the finite initial segment X1 (ω) , . . . ,Xn (ω) compares v to
all its competitors v′ ∈ Υ. It is the proportion of the number of v-outcomes among
the sum of the number of all v′-outcomes:

|{i : Xi (ω) = v, 1 ≤ i ≤ n}| /
∑
v′∈Υ

|{i : Xi (ω) = v′, 1 ≤ i ≤ n}| .

The complicated sum in the denominator is always equal to n. The reason for
stating the definition of relative frequencies in this complicated way is that this
makes clear that, when forming the relative frequency of an outcome, we compare
the number of times the outcome has occurred to the sum of the number of times
some outcome or other has occurred. That is, when we evaluate the performance
of the outcome of interest, we compare the performance of this outcome to the
performance of all its competitors. This is one way of evaluating the performance
of the outcome of interest. It is not the only way, though. Later on, when it comes
to testing counterfactuals rather than chance hypotheses, I will propose a slightly
different way of evaluating the performance of the outcome of interest.
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Let a f r (v,Xn (ω)) = |{i : Xi (ω) = v, 1 ≤ i ≤ n}| be the absolute frequency of
value v in possibility ω in the finite initial segment X1 (ω) , . . . ,Xn (ω). Then the
relative frequency can be written as:

rel f r (v,Xn (ω)) = a f r (v,Xn (ω)) /
∑
v′∈Υ

a f r (v′,Xn (ω))

The relative frequency of the set of values V ∈ V in possibility ω in the finite
initial segment X1 (ω) , . . . ,Xn (ω) is defined as follows:

rel f r (V,Xn (ω)) =
∑
v∈V

rel f r (v,Xn (ω)) .

Now we are in a position to state the Strong Law of Large Numbers. For each
countably additive probability measure Pr there is an A ∈ A with Pr (A) = 1
such that for all ω ∈ A: the relative frequency of v in ω in X1 (ω) , . . . ,Xn (ω)
converges to the probability of v in ω in the sense that

lim
n→∞

∣∣∣rel f r (v,Xn (ω)) − Pr ({ω′ ∈ Ω : X (ω′) = v})
∣∣∣ = 0,

where X1, . . . ,Xn, . . . is a sequence of independent and identically distributedA-
V-measurable functions and X is an arbitrary one of them.

If, and only if, Υ is a set of numbers so that we can form the average or
mean of X in X1 (ω) , . . . ,Xn (ω),

∑
i=1,...,n Xi (ω) /n, and the Pr-expected value

of X,
∑

v∈Υ v · Pr ({ω′ ∈ Ω : X (ω′) = v}), where, for the sake of simplicity, Υ is
assumed to be countable, the Strong Law of Large Numbers says that the mean
converges to the expected value in all worlds except, perhaps, those in a set of
measure zero.

It is important to note that the A-V-measurable functions Xi : Ω → Υ are
what we have called singular variables above. They are defined on an exclusive
set of possibilities Ω. X1 may assign value 1 to a possible world if Simone de
Beauvoir feels relief of pain in the late morning of January 1, 1950, in this possible
world, and 0 otherwise. X2 may assign value 1 to a possible world if Jean-Paul
Sartre feels relief of pain in the late morning of January 1, 1950, in this possible
world, and 0 otherwise. X3 may assign value 1 to a possible world if Albert
Camus feels relief of pain in the late morning of January 1, 1950, in this possible
world, and 0 otherwise. And so on. If we have a sequence of such singular
variables X1, . . . ,Xn, . . ., we can use this sequence to construct a population D =
{Xi : i ∈N}. We may think of the function G : D → Υ as the generic variable
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that, roughly, assigns value 1 to an individual, Simone de Beauvoir or Jean-Paul
Sartre or Albert Camus or Gabriel Marcel, if this individual feels relief of pain in
the late morning of January 1, 1950, and value 0 otherwise.

That the sequence of singular variables X1, . . . ,Xn, . . . is independent means
that whether or not X1 takes on some value x1 does not affect the probability that
X2 takes on some value x2. Whether or not Simone de Beauvoir feels relief of
pain in the late morning of on January 1, 1950, does not affect the probability that
Jean-Paul Sartre feels relief of pain in the late morning of January 1, 1950. That
the sequence of singular variables X1, . . . ,Xn, . . . is identically distributed means
that the probability that X1 takes on the value x is identical to the probability that
X3 takes on this value x. The probability that Simone de Beauvoir feels relief of
pain in the late morning of January 1, 1950, is identical to the probability that
Albert Camus feels relief of pain in the late morning of January 1, 1950. These
are strong assumptions.

In contrast to the Principal Principle, which is a normative constraint on a
priori credence functions, the Strong Law of Large Numbers is a theorem of the
probability calculus. As a theorem it holds independently of how we interpret the
countably additive probability measure Pr. Therefore we can simply choose to
read it as relating (limiting) observable relative frequencies and objective chances.

For each objective chance space C = (Ω,A, ch) with the objective chance
measure ch being countably additive, each measurable space (Υ,V), and each
sequence ofA-V-measurable functions X1, . . . ,Xn, . . . which is independent and
identically distributed in the sense of ch there is an A ∈ A with ch (A) = 1 such
that for allω ∈ A: the observable relative frequency of v inω in X1 (ω) , . . . ,Xn (ω)
converges to the objective chance of v in ω in the sense that

lim
n→∞

∣∣∣rel f r (v,Xn (ω)) − ch ({ω′ ∈ Ω : X (ω′) = v})
∣∣∣ = 0.

Note that the sequence of random variables X1, . . . ,Xn, . . . is assumed to be inde-
pendent and identically distributed in the sense of the objective chance measure
ch. Presumably it is more difficult to establish that a sequence of experiments,
or a sequence of repetitions of an experiment type, is independent and identically
distributed in the sense of the objective chance measure of the actual world than to
establish that it is so in the sense of a subject S’s credence function. Conversely,
once these two assumptions are established for the objective chance measure of
the actual world, the Strong Law of Large Numbers says something about the
objective chances of the actual world rather than some subject S’s credences.

The point of importance for the present task is that the Principal Principle
implies that observable relative frequencies raise and lower subjective credences
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in hypotheses about objective chances. More specifically, suppose a subject S’s
a priori credence function CrS satisfies the Principal Principle. Then learning,
or conditionalizing on, information about the observable relative frequencies of
sequences of random variables X1, . . . ,Xn, . . . that are independent and identically
distributed in the sense of the objective chance measure ch affects the subject S’s
credences in hypotheses about the objective chance measure ch:

CrS
(
ch (X = x) = p | rel f r (x,Xn) = q

)
= CrS

(
rel f r (x,Xn) = q | ch (X = x) = p

)
·

·
CrS

(
ch (X = x) = p

)
CrS

(
rel f r (x,Xn) = q

)
=

n! · pn·q
·
(
1 − p

)n·(1−q)(
n · q

)
! ·

(
n ·

(
1 − q

))
!
·

·
CrS

(
ch (X = x) = p

)
CrS

(
rel f r (x,Xn) = q

)
∝ f

(
p, q,n

)
· CrS

(
ch (X = x) = p

)
The first equation results from an application of Bayes’ Theorem. The second
equation results from an application of the Principal Principle. All this, and more,
is explained much better in Lewis (1980: 282-287).

This means the following. The subject S’s posterior credence in the hypothesis
that the objective chance of outcome x in experiment X equals p conditional on
the information that the observable relative frequency of outcome x in the first n
repetitions of the experiment X equals q, CrS

(
ch (X = x) = p | rel f r (x,Xn) = q

)
,

is proportional to (∝) the product of the subject S’s prior credence in this chance
hypothesis, CrS

(
ch (X = x) = p

)
, and a parameter f

(
p, q,n

)
that can be computed

from the hypothesized objective chance p of the outcome x, the observable relative
frequency q, and the number n of repetitions of the experiment X.

For any n, the empirically computable parameter f
(
p, q,n

)
is the higher, the

closer the observable relative frequency q is to the hypothesized objective chance
p. The curve representing this relationship is the steeper, the greater n. The Strong
Law of Large Numbers then implies that the objective chance is maximal (= 1) that
the subject S’s posterior, or conditional, credence

CrS
(
ch (X = x) = p | rel f r (x,Xn) = q

)
eventually is the highest for this chance hypothesis ch (X = x) = p that is true
in the actual world. At least, this is so provided that CrS

(
ch (X = x) = p

)
and

CrS
(
rel f r (x,Xn) = q

)
, for any n, are not minimal (= 0) to begin with. Again, all

this, and more, is explained much better in Lewis (1980: 282-287).3
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Ignoring complications that will be spelled out in detail later on when we
turn to the testing of counterfactuals, this equation allows us to learn about the
objective chance that a coin lands heads on a particular toss, and whether the
administration of 300 mg of ibuprofen increases the chance that pain is relieved
shortly afterwards.

More specifically, we can use the observable relative frequency of heads in a
sequence of independent and identically distributed tosses of a coin to learn about
the objective chance that the coin will land heads on the next toss. We make some
assumptions about the objective chances, viz. that the coin’s landing heads on the
first toss does not affect the chance that it lands heads on the second toss, as well as
that the chance that the coin lands heads on the first toss is identical to the chance
that it lands heads on the second toss. Or rather, we design our experiments in
such a way that these two assumptions are met. Given these two assumptions we
can then use the empirically accessible information about the observable relative
frequency of heads to infer, with objective chance one and in the limit, what the
objective chance is that the coin lands heads on the next toss.

In a similar way we can use the observable relative frequency of relief of pain
in a sequence of independent and identically distributed experiments where sub-
jects are administered 300 mg of ibuprofen to learn whether the administration of
300 mg of ibuprofen increases the chance that pain is relieved shortly afterwards.
Again, we make some assumptions about the objective chances. First, we assume
that Simone de Beauvoir’s feeling relief of pain does not affect the chance that
Jean-Paul Sartre feels relief of pain (given that both are administered 300 mg of
ibuprofen slightly earlier). Second, we assume that the chance that Simone de
Beauvoir feels relief of pain (given that she is administered 300 mg of ibuprofen
slightly earlier) is identical to the chance that Jean-Paul Sartre feels relief of pain
(given that he is administered 300 mg of ibuprofen slightly earlier). Or rather,
we design our experiments in such a way that these assumptions are met. Given
these assumptions we can then use the empirically accessible information about
the observable relative frequency of relief of pain to infer, with objective chance
one (conditional on the subjects being administered 300 mg of ibuprofen) and in
the limit, whether the administration of 300 mg of ibuprofen to Albert Camus
increases the chance that he feels relief of pain shortly afterwards.

3The Straight Rule, and hence the Axiom of Converge or Reichenbach Axiom, does not enable
us to learn hypotheses about objective chances. As is well known, though, it can be reformulated as
a rule for inferring limiting relative frequencies. Then one can show that it eventually conjectures
values that are arbitrarily close to the limiting relative frequencies in the actual world, provided
the latter exist.
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This probabilistic model of the testing of chance hypotheses is the role-model
for the account of the testing of counterfactuals that I will present in sections 4 to
8. It allows us to characterize our task more precisely.

First we have to find (i) appropriate doxastic states Cr∗S (H | E) of conditional
form – otherwise, without conditional form, we cannot learn, or conditionalize.
Next we have to find (ii) appropriate conditions of counterfactual independence
and counterfactual identical distribution (rather than independence and identical
distribution in the sense of the objective chance measure ch) for sequences of
experiments X1, . . . ,Xn, . . .. And then we have to find (iii) appropriate observable
properties rel f r∗ of these counterfactually independent and identically distributed
sequences of experiments X1, . . . ,Xn, . . ..

Second we have to find a principle analogous to the Principal Principle that
entails that, for some appropriate functions f ∗ and g:

Cr∗S
(
X = x� Y = y | rel f r∗ = q∗

)
∝
∗ g

(
f ∗

(
p∗, q∗,n

)
,Cr∗S

(
X = x� Y = y

))
Here p∗ is the hypothesized counterfactual distance to the closest X = x-worlds.
The latter is the counterfactual analogon of the hypothesized objective chance p
of the outcome x. It is implicit in the counterfactual X = x� Y = y. The idea is
that, roughly, the subject S’s posterior doxastic attitude towards a counterfactual
should come from, or be appropriately related to (∝∗), her prior doxastic attitude
towards this counterfactual as well as empirically accessible information.

In a final step we have to prove a theorem analogous to the Strong Law
of Large Numbers that entails that learning, or conditionalizing on, information
about the appropriate observable properties rel f r∗ of counterfactually independent
and identically distributed sequences of experiments X1, . . . ,Xn, . . . successfully
affects the subject S’s doxastic attitude towards counterfactuals X = y� Y = y.
Here successfully affecting the subject S’s attitude towards counterfactuals means
that the subject eventually comes to believe every true counterfactual, and that she
eventually becomes to disbelieve every false counterfactual, to the extent that this
is possible (we will see that, without further assumptions, the ranking calculus
and the Royal Rule merely imply that eventually all disbelieved counterfactuals
are false).

This ends our digression into the philosophy of probability. Let us return to
more familiar territory.
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4 Traditional Metaphysics and Epistemology
In traditional epistemology there is the notion of a subject S’s conditional belief
BelS (H | E) in hypothesis H given various data E. In traditional metaphysics there
is the notion of the counterfactual dependence of certain propositions C, or events
c, on certain propositions A, or events a, ±A � ±C. In addition there is the
empirical notion of what one observes to happen, and what one observes to fail to
happen.

One option for coping with our task, parsimonious both epistemologically and
ontologically, is to probabilify these three traditional notions of conditional belief,
counterfactual dependence, and observables. One way of probabilifying works
by replacement: replace a subject S’s conditional belief BelS (H | E) in hypothesis
H given various data E by the subject S’s credence CrS (H | E) in this hypothesis
H given those data E along the lines of Jeffrey (1970). Replace counterfactual
dependence of certain propositions C on certain propositions A, ±A � ±C, by
the objective chances of these propositions ±C given those propositions ±A at the
actual world at a certain past time t, chw,t (±C | ±A), along the lines of Edgington
(2008). And replace what one observes to happen, and to fail to happen, by a
report of these observables in the form of relative frequencies.

A different way of probabilifying works by reduction: reduce a subject S’s
conditional belief BelS (H | E) in hypothesis H given various data E to the subject
S’s credence CrS (H | E) in this hypothesis H given those data E along the lines
of Leitgeb (2013). Reduce counterfactual dependence of certain propositions C
on certain propositions A, ±A � ±C, to the sets of possible worlds w where
the objective chances of these propositions ±C given those propositions ±A are 1,
chw (±C | ±A) = 1, along the lines of Leitgeb (2012a; b) – or else, do something
analogous along the multidimensional lines of Bradley (2012). And reduce what
one observes to happen, and to fail to happen, to a report of these observables in
the form of relative frequencies.

I do not believe in replacement, and I am skeptical of reduction because of
the negative results of Lin & Kelly (2012). More specifically, Leitgeb (2013)
proposes that an agent believes a proposition B if and only if there is a proposition
C implying B such that the agent’s subjective probabilities for C conditional on
any A consistent with C are above a certain threshold that is not smaller than 1/2.
This notion of belief satisfies the AGM axioms of belief revision (Alchourrón &
Gärdenfors & Makinson (1985). However, as Lin & Kelly (2012) show, there is
no “sensible” belief revision method that tracks conditionalization and satisfies
these AGM axioms. This means that what an agent ends up believing according
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to Leitgeb (2013), and any other sensible proposals satisfying the AGM axioms,
if she first conditionalizes her subjective probabilities on evidence E and then
extracts her beliefs will, in general, not coincide with what she ends up believing
if she first extracts her beliefs from her subjective probabilities and then revises
those beliefs by evidence E.

Perhaps my skepticism is misguided. Even if this were the case, the result of
reducing conditional belief and counterfactual dependence to probabilistic notions
would still be a different one than the result of taking the notions of conditional
belief and counterfactual dependence at face-value and formalizing them in terms
of ranking functions, as I will do in the next section. I will turn to a comparison of
the two results in section 9, once we have established the second one in sections
5 to 8.

5 Rank-Theoretic Metaphysics and Epistemology
A function R : A → N ∪ {∞} from an algebra of propositions A ⊆ ℘ (W)
over a set of possible worlds W into the natural numbers N extended by ∞ is a
ranking function just in case the tautological proposition W is assigned rank 0,
R (W) = 0, the contradictory proposition ∅ is assigned rank ∞, R (∅) = ∞, and
the rank of a disjunction A ∪ B is the minimum of the ranks of the disjuncts A,B,
R (A ∪ B) = min {R (A) ,R (B)}. Conditional ranks are defined as differences of
unconditional ranks: R (A | B) = R (A ∩ B) − R (B), provided R (B) < ∞.

Spohn (1988) introduces ranking functions to represent conditional belief. He
interprets the numbers or ranks doxastically as grades of disbelief. A proposition
A is disbelieved just in case its rank is positive, R (A) > 0. A proposition A is
believed just in case its negation A is disbelieved, R

(
A
)
> 0. The first constraint

says one should not disbelieve the tautological proposition. The second constraint
says that one should disbelieve the contradictory proposition to the highest degree
possible. Given the definition of conditional ranks the second constraint says one
should disbelieve the contradictory proposition conditional on every proposition
with a finite rank. Part of what the third constraint says is that one should disbe-
lieve a disjunction just in case one disbelieves all its disjuncts. This requirement
is then extended to conditional beliefs. Given the definition of conditional ranks
the third constraint says that one should conditionally disbelieve a disjunction just
in case one conditionally disbelieves all its disjuncts. The surprising thing is that
we need numbers, ranks, to deal with the qualitative notion of conditional belief.
The thing to get used to is that high numbers represent disbeliefs.
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Perhaps it is helpful to compare probability theory and ranking theory with
different sports games. In some sports games such as ice hockey the total score
of a team is the sum of the individual scores: sum over the goals scored in the
first and second and third period. In other sports games such as (high) jumping
the total score of an athlete is the best individual score: the (high) jump that
counts is the furthest (or highest) jump. Evaluating sports games in the first way
is akin to probabilistic reasoning: the probability of a proposition is the sum of
the probabilities of the possible worlds that comprise the proposition. Evaluating
sports games according to the second way is akin to rank-theoretic reasoning: the
rank of a proposition is the minimum of the ranks – the lowest or best rank – of the
possible worlds that comprise the proposition. Just as both ice hockey and (high)
jumping are olympic disciplines, both probability theory and ranking theory are
formal tools that can be fruitfully applied to tackle philosophical problems.

Let us do just that. In rank-theoretic epistemology there is the notion of a
subject S’s grade of disbelief RS (H | E) in hypothesis H given various data E.
In rank-theoretic metaphysics there is the notion of the counterfactual distance
rw,c (A) of a proposition A, or an event a, from certain worlds w in certain contexts
c.4 In addition there is the empirical notion of the observable absolute failure,
a f (x,Xn (w)), and there is the empirical notion of the observable relative failure,
r f (x,Xn (w)), of certain outcomes x, or events X = x, in the first n repetitions of
some experiment, or type of event, X in the actual world w.

I propose to complement the probabilistic metaphysics and epistemology from
section 3 with rank-theoretic accounts of the traditional and familiar notions of
conditional belief, counterfactual dependence, and observables. To this end I will
first briefly explain why rank-theoretic grades of disbelief RS (H | E) provide an
adequate account of conditional belief. Then I will sketch why rank-theoretic
counterfactual distances rw,c (A) provide an adequate account of counterfactual
dependence. In a third step I will introduce the new rank-theoretic notions of
observable absolute failure and the observable relative failure that will allow us to
empirically test, or confirm, counterfactuals.

The first argument for the thesis that ranking functions provide an adequate
account of conditional belief is due to Hild & Spohn (2008). It is deontological
in spirit. Ranking functions induce belief sets that are consistent and deductively
closed as already required by Hintikka (1961). In addition ranking functions guide
the revision of the induced belief sets in accordance with the AGM constraints on

4I will mostly ignore contexts, as the context sensitivity of counterfactuals does not play a role
for the purposes of this paper.
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belief revision (Alchourrón & Gärdenfors & Makinson 1985). However, these
AGM constraints do not say anything about iterated belief revisions. Therefore
several authors – Boutilier (1996), Darwiche & Pearl (1997), and many others
(see Huber 2013a; b) – have proposed various constraints in addition to the AGM
constraints to guide iterated belief revisions. These additional constraints are also
satisfied by ranking functions (Spohn 2012: §5.6). However, the latter go beyond
these constraints. Hild & Spohn (2008) argue that one has to go all the way
to ranking functions in order to adequately deal with iterated belief revisions by
proving a representation theorem to the effect that, roughly, all and only ranking
functions represent iterated belief revisions of a “reasonable” sort. Very roughly,
all and only ranking functions obey the duties of iterated belief revision.

The second argument (discussed in Brössel & Eder & Huber 2013) provides a
means-ends justification in the instrumental spirit of epistemic consequentialism
(Percival 2002, Stalnaker 2002). Besides the above mentioned synchronic rules
for organizing one’s rank-theoretic grades of disbelief at a given moment in time
ranking theory also includes diachronic rules for updating one’s rank-theoretic
grades of disbelief across time if new information of various formats is received.
One rule is defined for the case where the new information comes in form of a
proposition the subject becomes certain of between the earlier and the later time.
It requires the subject’s new ranking function to equal her old ranking function
conditional on the information received. Another rule is defined for the case where
the new information comes in form of a partition of the space of possibilities
plus numbers characterizing the new grades of disbelief in the elements of the
partition (for this case one uses Jeffrey conditionalization in probability theory).
Yet another rule is defined for the case where the new information comes in form
of the degrees by which the grades of disbelief in the elements of such a partition
have changed between the earlier and the later time (for this case one uses Field
conditionalization in probability theory).

Elsewhere (Huber 2007) I show that a subject’s belief set is, and will always
be, consistent and deductively closed, possibly conditional on some element of
the given partition, just in case the subject satisfies the synchronic and diachronic
rules of ranking theory. That is, obeying the normative constraints of the ranking
calculus is a provably necessary and sufficient means to attaining the end of being
“diachronically consistent and closed.” The latter is a provably necessary, but
insufficient, means to attaining the end of always having only true beliefs, and as
many as possible thereof. Therefore, to the extent that one aims at having only
true beliefs, and as many as possible thereof, one should obey the synchronic and
diachronic rules of the ranking calculus.
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Rank-theoretic counterfactual distances are introduced in Huber (2014) as new
foundations for counterfactuals. One way to think of this approach is as a variant
of the Stalnaker-Lewis approach in terms of similarity. The variation concerns the
talk of similarity to a possible world w. The latter is represented by the values of
a selection function for w (Stalnaker 1968) or by a sphere of similarity around w
(Lewis 1973). I replace this talk by the talk of the counterfactual distance from w,
which is represented by the objective ranking function of w.

Formally, I substitute a family of objective ranking functions, one for each
possible world, for a selection function or for a system of spheres of similarity.
Materially, I treat counterfactual distance as an undefined primitive. However, as I
will explained shortly, under certain assumptions hypotheses about counterfactual
distances can be empirically tested, just as hypotheses about objective chances
can be empirically tested under certain assumptions.

These objective ranking functions which represent counterfactual distances
provide an adequate account of counterfactual dependence. They do so in at least
the following minimal sense of adequacy. Define α� γ to be true at a world
w ∈ W in a modelM = (W, (rw)w∈W , ~·�) just in case all of the rw-closest ~α�-
worlds are ~γ�-worlds. Then the basic conditional logic V is sound and complete,
or adequate, with respect to this semantics.

We need a little bit more terminology before we turn to the new notions of
observable absolute and relative failures. A function R : A → N ∪ {∞} is a
finitely/countably/completely minimitive ranking function on a measurable space
(Ω,A) just in case (R1) R (∅) = ∞ and R (Ω) = 0 and (R2) R (

⋃
B∈B B) =

min {R (B) : B ∈ B} for all finite/countable/arbitrary collections B of B ∈ A. We
define a ranking function R onA to obtain a ranking space (Ω,A,R).

Let (Υ,V) be another measurable space and recall that a function X : Ω→ Υ
isA-V-measurable just in case for all V ∈ V: X−1 (V) ∈ A. A family ofA-V-
measurable functions (Xi)i∈I is independent in the sense of R just in case for any
finite subfamily Xi1 , . . . ,Xin and all Ai1 ∈ γ

(
Xi1

)
, . . . ,Ain ∈ γ

(
Xin

)
:

R
(
Ai1 ∩ . . . ∩ Ain

)
=

∑
j=1,...,n

R
(
Ai j

)
.

A family ofA-V-measurable functions (Xi)i∈I is consistent in the sense of R just
in case for all i, j ∈ I and all V ∈ V:

R
(
X−1

i (V)
)
> 0⇔ R

(
X−1

j (V)
)
> 0

Consider a sequence of random variables X1, . . . ,Xn, . . .. The relative failure of
value v in possibility ω in the finite initial segment X1 (ω) , . . . ,Xn (ω) compares
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v to its best competitor v′. It is the difference between the number of v-failures
and the minimum of the number of all v′-failures:

n − |{i : Xi (ω) = v, 1 ≤ i ≤ n}| −min
v′∈Υ
{n − |{i : Xi (ω) = v′, 1 ≤ i ≤ n}|}

Let a f (v,Xn (ω)) = n − a f r (v,Xn (ω)) be the absolute failure of value v in
possibility ω in the finite initial segment X1 (ω) , . . . ,Xn (ω). Then the relative
failure can be written as:

r f (v,Xn (ω)) = a f (v,Xn (ω)) −min
v′∈Υ

{
a f (v′,Xn (ω))

}
The relative failure of the set of values V ∈ V in possibility ω in the finite initial
segment X1 (ω) , . . . ,Xn (ω) is defined as follows:

r f (V,Xn (ω)) = min
v∈V

{
r f (v,Xn (ω))

}
Relative failures r f (v,Xn (ω)) are completely minimitive ranking functions on
any algebra over Υ. This is in some contrast to probability theory, where relative
frequencies are merely finitely additive probability measures on some suitable
algebra over Υ (van Fraassen 1977).

Relative failures generalize what, in statistics, are known as the modes of a
sample, viz. the values v ∈ Υ that have occurred most frequently in the first n
repetitions of the experiment X (there may be more than one mode in a sample;
in this case statisticians speak of multi-modal variables). The modes of a sample
Xn (ω) are exactly those values v ∈ Υ that receive relative failure 0. Relative
failures generalize this notion by also telling us what the second most frequent
outcomes are, and by how less frequent they are. And what the third most frequent
outcomes are, and by how less frequent they are. And so on. The thesis that I
submit is that modes confirm counterfactuals in much the same way that means
and relative frequencies confirm hypotheses about expected values and objective
chances.

6 The Obvious Observation
Let me now present the principles that relate the three rank-theoretic notions of
subjective grades of disbelief, objective counterfactual distances, and observable
absolute and relative failures.
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The rank-theoretic analogon of the Principal Principle is the Royal Rule. This
rule, which is introduced in (Huber 2014), is a normative constraint on a priori
grades of disbelief relating subjective grades of disbelief, or conditional beliefs,
and objective counterfactual distances, or counterfactuals. The rank-theoretic
analogon of the Strong Law of Large Numbers is the Obvious Observation. This
observation, which will be stated below, is a theorem of the ranking calculus. As
a theorem it holds independently of how we interpret the ranking function that
figures in it. I will choose to read it as relating objective counterfactual distances
and limiting absolute and relative failures (for independent and consistent random
variables). We could also formulate the rank-theoretic analoga of the Straight Rule
and of the Axiom of Convergence or Reichenbach Axiom. They relate (limiting)
relative failures and (limiting) subjective grades of disbelief. However, since they
play no role in this paper, I will not formulate them.

The Royal Rule and the Obvious Observation jointly imply that observable
absolute failures raise and lower subjective grades of disbelief in hypotheses about
objective counterfactual distances. In other words, these two principles jointly
imply that modes affect conditional beliefs in counterfactuals. In this sense the
Royal Rule and the Obvious Observation tell us what we should believe about
what would have been the case.

The Royal Rule says that a subject S’s a priori grade of disbelief in some
proposition A given that the counterfactual distance to the closest A-worlds equals
n – as well as, perhaps, information E that is admissible, but no further information
that is inadmissible– should equal n:

RS (A | r (A) = n ∩ E) = n.

Under the assumption that the world w’s theory of deterministic alethic modality
or counterfactuality Dw is admissible it follows:

rw (A) = RS (A | Dw) .

This reformulation says that the counterfactual distance distribution of a world w
comes from a subject S’s a priori grading of disbelief by conditionalizing on the
world w’s theory of deterministic alethic modality or counterfactuality.5

5Strictly speaking this notion of admissibility is relative to a context c, just as the notion of
admissibility in the Principal Principle is relative to a point of time t. And strictly speaking one
needs to assume that the presuppositions of a given context are admissible in this context, and
that the world’s theory of deterministic alethic modality, or counterfactuality, is admissible in
all contexts. However, the context sensitivity of counterfactuals does not play a role for present
purposes, and so the presuppositions of all contexts can be assumed to be tautological. It is perhaps
worth noting that history up to some time is a context. For details see Huber (2014: sct. 4).
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The Obvious Observation derives its name from the fact that it is very easy to
prove.6 Much like the Strong Law of Large Numbers it considers a sequence ofA-
V-measurable functions X1, . . . ,Xn, . . ., except that now the sequence is assumed
to be independent and consistent in the sense of a ranking function rather than
independent and identically distributed in the sense of a probability measure.

Theorem 1 (Obvious Observation) Let R be a completely minimitive ranking
function, let X1, . . . ,Xn, . . . be a sequence of A-V-measurable functions that is
independent and consistent in the sense of R, and let X is an arbitrary one of them.

There is an A ∈ A with R
(
A
)

= ∞ such that for allω ∈ A: the relative failure
of v in ω in X1 (ω) , . . . ,Xn (ω) will eventually be positive if the rank of v in ω is.
That is, if R (X = x) > 0, then there is an m such that for all n ≥ m: Xn (ω) , x,
i.e. a f

(
x,Xn+1 (ω)

)
= a f (x,Xn (ω)) + 1, and so r f (x,Xn (ω)) > 0. For the last

claim the range Υ of X has to be finite.

Proof: Suppose X1 . . . ,Xn, . . . is a sequence of independent and consistentA-
V-measurable functions with R (X = x) > 0, where X is an arbitrary one of them.
Let Dn

m be the proposition that x has occurred at least m times in X1, . . . ,Xn.
Recall that X = x is the proposition {ω ∈ Ω : X (ω) = x}. Dn

m is a disjunction
of disjuncts of the form X1 = x1 ∩ . . . ∩ Xn = xn with xi = x for at least m
of the n values x1, . . . , xn. Let E be an arbitrary one of those disjuncts whose
disjunction is Dn

m. Since X1, . . . ,Xn, . . . is consistent and R (X = x) > 0 we have
R (Xi = x) =: ri > 0 for all i = 1, . . . ,n. Let r = min {ri : i = 1, . . . ,n} ≥ 1. Since
X1, . . . ,Xn, . . . is independent we have R (E) =

∑
i=1,...,n R (Xi = xi) ≥ m · r ≥ m.

Hence R
(
Dn

m
)

= min
{
R (E) : E is one of the disjuncts of Dn

m
}
≥ m.

Let ω ∈ Ω and suppose R ({ω}) < ∞. x occurs only finitely many times in
X1 (ω) , . . . ,Xn (ω) , . . .. For otherwise for all m there is an n such that ω ∈ Dn

m,
and so R ({ω}) ≥ R

(
Dn

m
)
≥ m, which contradicts the assumption that R ({ω}) < ∞.

Since this is true for every ω ∈ Ω with R ({ω}) < ∞ it follows that there is an
A ∈ A with R

(
A
)

= ∞ such that this is true for all ω ∈ A.
This establishes the main claim that there is an m such that for all n ≥ m:

Xn (ω) , x, i.e. a f
(
x,Xn+1 (ω)

)
= a f (x,Xn (ω)) + 1.

If, in addition, the range Υ of X is finite, then at least one value v ∈ Υ that
is different from x occurs infinitely many times in X1 (ω) , . . . ,Xn (ω) , . . .. In this
case there is an m such that for all n ≥ m: r f (x,Xn (ω)) > 0. �

6Spohn (2012: ch. 12) proves many much more impressive results that are related to the
Obvious Observation. However, the mathematics is not exactly the same, and the interpretation is
entirely different. I presently cannot relate his results to mine in an illuminating way.

21



Even if Υ is not a set of numbers, it is possible to form the modes of X in
X1 (ω) , . . . ,Xn (ω),

{
v′ ∈ Υ : r f (v′,Xn (ω)) = 0

}
, as well as the set of values of X

that are typical or normal according to R, or not disbelieved by R,

{v′ ∈ Υ : R ({ω′ ∈ Ω : X (ω′) = v′}) = 0} .

Then the Obvious Observation says that the modes eventually track the typical or
or normal or non-disbelieved values in all worlds except, perhaps, those in a set
of rank infinity.7

The Obvious Observation is a theorem of the ranking calculus. Therefore it
holds independently of how we interpret the ranking function that figures in it. As
already mentioned, I choose to read it as relating (limiting) observable absolute
and relative failures and objective counterfactual distances and so arrive at the
following result.

For each counterfactual distance space C = (Ω,A, r) whose counterfactual
distance distribution r is completely minimitive, each measurable space (Υ,V)
with possibly uncountable Υ, and each sequence of independent and consistent
A-V-measurable functions X1, . . . ,Xn, . . . there is an A ∈ A with r

(
A
)

= ∞
such that for all ω ∈ A: if x has positive objective rank, then x occurs only finitely
many times in X1 (ω) , . . . ,Xn (Xn) , . . .; that is, if r (X = x) > 0, then there is an
m such that for all n ≥ m: Xn (ω) , x, i.e. a f

(
x,Xn+1 (ω)

)
= a f (x,Xn (ω)) + 1.

7 Conditional Independence and Consistency
The sequence of random variables X1, . . . ,Xn, . . . is assumed to be independent
and consistent in the sense of the counterfactual distance distribution r. Presum-
ably it will be more difficult to establish that a particular sequence of experiments,
or a sequence of repetitions of an experiment type, is independent and consistent
in the sense of the counterfactual distance distribution of the actual world than to
establish that it is so in the sense of a subject S’s grading of disbelief. Conversely,
once these assumptions are established for the objective ranking function of the
actual world, the Obvious Observation says something about the counterfactuals
that are true in the actual world rather than some subject S’s conditional beliefs.

7For the relationship between rank-theoretic typicality or rank-theoretic normality, causation,
and counterfactuals see Halpern (2008), Halpern & Hitchcock (2010; 2013), and Huber (2013c).
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As in the probabilistic case it is important to note that the A-V-measurable
functions Xi : Ω→ Υ are singular variables. They are defined on an exclusive set
of possibilities Ω. X1 may assign the value tired to a possible world if I am tired
at noon on Monday in this possible world, and ¬tired otherwise. X2 may assign
the value tired to a possible world if I am tired at noon on Tuesday in this possible
world, and ¬tired otherwise. X3 may assign the value tired to a possible world if I
am tired at noon on Wednesday in this possible world, and ¬tired otherwise. And
so on. As before, if we have a sequence of such singular variables X1, . . . ,Xn, . . .,
we can use this sequence to construct a population D = {Xi : i ∈N}. We can
think of the function G : D→ Υ as the generic variable that, roughly, assigns the
value tired or ¬tired to an individual at a specified time, me at noon on Monday
or me at noon on Tuesday or me at noon on Wednesday, depending on whether or
not this individual is tired at noon of the relevant day.

The assumption that the sequence of singular variables X1, . . . ,Xn, . . . is inde-
pendent means that whether or not X1 takes on some value x1 does not affect the
objective rank that X2 takes on some value x2. Whether or not I am tired at noon on
Monday does not affect the objective rank of whether or not I am tired at noon on
Tuesday. The assumption that the sequence of singular variables X1, . . . ,Xn, . . . is
consistent means that the objective rank that X1 takes on the value x is positive just
in case the objective rank is positive that X3 takes on this value x. The objective
rank that I am tired at noon on Monday is positive just in case the objective rank
is positive that I am tired at noon on Wednesday.

In an intuitive sense rank-theoretic independence and consistency are weaker
than probabilistic independence and identical distribution. This sense is intuitive,
because we have not assumed a formal connection between counterfactuals and
chances. To get a better understanding of the sense in which the rank-theoretic
conditions are weaker it will be helpful to consider the notions of conditional
independence and conditional consistency. If we then restrict the discussion to
binary variables that take on only two values, effectively: propositional variables,
we can reformulate these two assumptions about objective ranking functions as
assumptions about counterfactuals. Let us start with the general notions.

A family of A-V-measurable functions (Xi)i∈I is independent conditional on
a family of A-V∗-measurable functions (Yi)i∈I

8 in the sense of R if and only if
for any possible assignment of values ~y ∈ Υ∗I to all variables in (Yi)i∈I, any finite

8In general the functions Yi need not have the same index set I as the first family (Xi)i∈I. Nor
do they have to have a common range Υ∗ and associated algebraV∗. However, this is the special
case we are interested in.
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subfamily Xi1 , . . . ,Xin , and all Ai1 ∈ γ
(
Xi1

)
, . . . ,Ain ∈ γ

(
Xin

)
:

R
(
Ai1 ∩ . . . ∩ Ain |

~Y = ~y
)

=
∑

j=1,...,n

R
(
Ai j |

~Y = ~y
)

A family of A-V-measurable functions (Xi)i∈I is consistent conditional on a
family ofA-V∗-measurable functions (Yi)i∈Iin the sense of R if and only if for all
i, j ∈ I, all V ∈ V, all y ∈ Υ∗, any possible assignment of values ~y,i ∈ Υ∗I\{i} to all
variables in (Yi)i∈I except Yi, and any possible assignment of values ~y, j ∈ Υ∗I\{ j}

to all variables in (Yi)i∈I except Y j:

R
(
X−1

i (V) | Yi = y ∩ ~Y,i = ~y,i

)
> 0⇔ R

(
X−1

j (V) | Y j = y ∩ ~Y, j = ~y, j

)
> 0

Note that the two assignments ~y,i and ~y, j need not have any value in common,
and that i may be identical to j.

Conditional consistency implies, but is not implied by, the assumption that for
all i, j ∈ I, all V ∈ V, and all y ∈ Υ∗:

R
(
X−1

i (V) | Yi = y
)
> 0⇔ R

(
X−1

j (V) | Y j = y
)
> 0

Conditional consistency also implies that, if R
(
X−1

i (V) | Yi = y
)
> 0 (= 0), then

R
(
X−1

i (V) | Yi = y ∩ ~Y,i = ~y,i

)
> 0 (= 0), for any possible assignment of values

~y,i ∈ Υ∗I\{i} to all variables in (Yi)i∈I except Yi.
The two families of singular variables (Xi)i∈I and (Yi)i∈I are defined on the

same domain A. That is, both families consist of functions that assign values to
the possible worlds in Ω. They may differ in the values Υ and Υ∗ (respectively
the algebrasV andV∗) they assign to these possible worlds. The second family
may say whether or not I have coffee in the morning of various days. The first
family may say whether or not I am tired at noon of these days. It is important for
conditional consistency that each variable of the first family is uniquely associated
with a variable of the second family. This is why the two families of variables
have the same index set I. It is important for both conditional consistency and
conditional independence (see below) that the condition specifies the value of each
variable Yi as specifically as possible. It is not enough to say of each variable
that its value lies in some set of values V∗ ∈ V∗. The condition has to specify
which value yi each variable Yi takes on. It has to be an atom of the algebra that
is generated by the family (Yi)i∈I (we can ignore atomless algebras). It is only
then, when everything is specified as completely as possible given the expressive
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powers of the family (Yi)i∈I, that independence and consistency are supposed to
hold.

Now let us consider, in sloppy notation, the special case where both families of
random variables consist of two binary variables α, β taking on values ±α,±β and
γ, δ taking on values ±γ,±δ. γ, δ is independent conditional on α, β according to
the objective ranking function r if and only if

r
(
±γ ∩ ±δ | α, β

)
= r

(
±γ | α, β

)
+ r

(
±δ | α, β

)
.

This is to be read as follows: for each of the four possible values for the pair α, β
there are exactly four equations that are supposed to hold, one for each of the four
possible values for the pair γ, δ.

In still sloppy notation, γ, δ is consistent conditional on α, β according to the
objective ranking function r if and only if

1. r
(
+γ | +α,±β

)
> 0⇔ r

(
+δ | +β,±α

)
> 0;

2. r
(
−γ | +α,±β

)
> 0⇔ r

(
−δ | +β,±α

)
> 0;

3. r
(
+γ | −α,±β

)
> 0⇔ r

(
+δ | −β,±α

)
> 0; and

4. r
(
−γ | −α,±β

)
> 0⇔ r

(
−δ | −β,±α

)
> 0.

This is to be read as follows: for each of the four possible combinations of values
±α and ±β there are exactly four equivalences that are supposed to hold, one
for each of the four possible combinations of values for γ, δ (that have the same
range) and for α, β (that have the same range). Let us focus on the first of those
equivalences. It says that, for any arbitrary value of β and any arbitrary value of
α, the variable γ takes on its positive value given that α takes on its positive value
(and β takes on its specified arbitrary value) just in case δ takes on its positive
value given that β takes on its positive value (and α takes on its specified arbitrary
value). Similarly for the other three equivalences. This implies, but is not implied
by, the assumption

1. r
(
+γ | +α

)
> 0⇔ r

(
+δ | +β

)
> 0;

2. r
(
−γ | +α

)
> 0⇔ r

(
−δ | +β

)
> 0;

3. r
(
+γ | −α

)
> 0⇔ r

(
+δ | −β

)
> 0; and

4. r
(
−γ | −α

)
> 0⇔ r

(
−δ | −β

)
> 0.
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Now the first equivalence says: the variable γ takes on its positive value given that
α takes on its positive value just in case δ takes on its positive value given that γ
takes on its positive value. And similarly for the other three equivalences.

There are eight additional equations for each of the four possible values for
the pair α, β, and and there are four additional equivalences for each of the four
possible combinations of values ±α and ±β, that are supposed to hold, namely
those when the values of γ or δ are the tautological or the empty set. However,
these equations and equivalences hold trivially. Note that the second definition
differs from the first one in that we quantify over the range (Υ and Υ∗ respectively
V andV∗) of the variables rather than their domain (Ω respectivelyA), as we do
in the first definition.

Think of α, β as specifying the interventions that are involved in performing
the experiments γ, δ. Tossing a coin on a given occasion and then checking to see
if it lands heads or tails on this occasion. Administering a certain number of mg
of ibuprofen to someone in the morning and then checking to see if there is relief
of pain shortly afterwards. Making me drink coffee in the morning of some day
and then checking to see if I am tired at noon of this day. γ and δ are independent
conditional on α and β if, but not only if, the following holds: once it is specified
whether I have coffee in the morning of Monday and Tuesday, whether or not I am
tired at noon on Tuesday is counterfactually independent of whether or not I am
tired at noon on Monday. Whether or not I have coffee in the morning of Monday
and Tuesday “screens off” any possible counterfactual dependence of me being
tired at noon on Tuesday on me being tired at noon on Monday.

That is, once we specify whether I have coffee in the morning of Monday and
Tuesday the following four counterfactuals are all false:

1. if I had been tired on Monday, I would have been tired on Tuesday;

2. if I had been tired on Monday, I would not have been tired on Tuesday;

3. if I had not been tired on Monday, I would have been tired on Tuesday; and

4. if I had not been tired on Monday, I would not have been tired on Tuesday.

The corresponding independence assumption in the probabilistic case says that
once we specify whether the coin is tossed on the first and second occasion, there
is no probabilistic correlation between whether or not it lands heads on the first
toss and whether or not it lands heads on the second toss. And once we specify
how many mg of ibuprofen are administered to Simone de Beauvoir and Jean-Paul
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Sartre, whether or not she feels relief of pain is probabilistically independent of
whether or not he feels relief of pain.

The notion of counterfactual independence in the Stalnaker-Lewis approach
is defined for propositional variables or binary variables. For this case we can
prove that independence in the sense of a ranking function r is implied by, but
does not imply, counterfactual independence with r as the counterfactual distance
distribution: γ is counterfactually independent of α just in case the following four
counterfactuals are all false: +α� +γ, +α� −γ, −α� +γ, −α� −γ.

Let us focus on +α � +γ, as the other three cases are exactly parallel.
+α� +γ is false just in case the r-closest ~+α�-worlds are not a subset of the
~+γ�-worlds. This means r

(
~+α� ∩ ~+γ�

)
= r (~+α�). The same is true for the

other three cases, which implies that r
(
~+γ�

)
= r

(
~−γ�

)
= 0. So the following

four equations hold: r
(
~±α� ∩ ~±γ�

)
= r (~±α�) + r

(
~±γ�

)
. And this is just

the definition of the unconditional independence of the binary variables α and γ
according to r. The generalization to conditional independence is straightforward,
because any conditional ranking function is a ranking function, and because we
condition on one and the same proposition that completely specifies the values
of all variables in the second family of variables. Note, though, that conditional
counterfactual independence is only meaningful on the present account of counter-
factuals in terms of ranking functions. Conditional counterfactual independence is
not meaningful on an account along the lines of Stalnaker (1968) or Lewis (1973),
because there is no such thing as a conditional selection function or a conditional
sphere of similarity.

Suppose probabilistic independence implies counterfactual independence. In
this case the rank-theoretic independence assumption of the Obvious Observation
is strictly weaker than the probabilistic independence assumption of the Strong
Law of Large Numbers.9 Without this supposition probabilistic independence

9Leitgeb’s (2012a; b) probabilistic analysis of counterfactuals requires Pr (C | A) = 1 for
A � C to be true, where Pr is a Popper-Rényi measure (Popper 1955, Rényi 1955) that is
interpreted objectively as time-relative conditional single case chance. Independence in the sense
of a Popper-Rényi measure Pr is a relation between three propositions: A is independent of B con-
ditional on C just in case Pr (A ∩ B | C) = Pr (A | C)·Pr (B | C) (Rényi 1970: 103). Counterfactual
independence is a relation between two propositions. Therefore the definition of independence in
the sense of a Popper-Rényi measure has to be modified so that it becomes a relation between two
propositions A and B. It is tempting to say that A is independent of B just in case A is independent
of B conditional on the set of all possible worlds, the tautological proposition W. However, on
Leitgeb’s logic of counterfactuals, just as on ours, >� α is not logically equivalent to α. There-
fore this temptation should be resisted. There are other options for modifying independence in
the sense of a Popper-Rényi measure so that it becomes a relation between two propositions (see
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and rank-theoretic independence are exactly parallel in their unconditional ver-
sion and in their conditional version. It is not my aim to defend this supposition.
However, some philosophers might find the following consideration to make it
intuitively plausible. Intuitively, probabilities are modalities that are more fine-
grained than counterfactuals. Perhaps one can point to the difference between
continuity and discreteness to explain this intuition. If the fine-grained, or high-
resolution, modality of probability cannot detect any dependencies, then it would
be odd to assume that one can detect dependencies once one has zoomed out to
the coarse-grained, or low resolution, modality of counterfactuals. For this reason
I have claimed that, in an intuitive sense, probabilistic independence is stronger
than counterfactual independence, and hence stronger than independence in the
sense of an objective ranking function.

To require that γ, δ are consistent conditional on α, β presupposes that γ is
paired with α and that δ is paired with β. Whether or not the coin lands heads or
tails on the nth occasion is paired with whether or not the coin is tossed on the nth
occasion. Whether or not Simone de Beauvoir feels relief of pain is paired with
how many mg of ibuprofen are administered to her slightly earlier in the morning.
Whether or not I am tired at noon of some day is paired with whether or not I have
coffee in the morning of this day. In the definition of the general notion this is
reflected in the assumption that the two families (Xi)i∈I and (Yi)i∈I have the same
index set I.

Conditional consistency requires that the same counterfactual relationships
obtain between each member of the first family and its associated member from
the second family once the values of all other variables in the second family are
set to some values in the first case and some values – not necessarily the same –
in the other case. That is, conditional consistency requires that, for any arbitrary
value for β (say co f f ee) and any arbitrary value for α (say ¬co f f ee), the follow-
ing counterfactuals for associated pairs α, γ and β, δ have the same truth value:
±α

(
∧ + β

)
� ±γ⇔ ±β (∧ − α)� ±δ

(i-a) if I had had coffee in the morning of Monday (and Tuesday), then I would
have been tired at noon of Monday JUST IN CASE (i-b) if I had had coffee in the
morning of Tuesday (but not Monday), then I would have been tired at noon on

Fitelson & Hájek ms). However, without stipulating which modification one chooses there are no
formal relations between counterfactual independence, which relates two propositions, and inde-
pendence in the sense of a Popper-Rényi measure Pr, which relates three propositions. Another
complication may arise from a negative answer to the question whether the set of propositions for
which time-relative conditional single case chances are defined is as rich as the set of propositions
which can figure in the consequent of a counterfactual.
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Tuesday.
(ii-a) if I had not had coffee in the morning of Monday (but on Tuesday), then

I would have been tired at noon of Monday JUST IN CASE (i-b) if I had not had
coffee in the morning of Tuesday (nor on Monday), then I would have been tired
at noon on Tuesday.

(iii-a) if I had had coffee in the morning of Monday (and Tuesday), then I
would not have been tired at noon of Monday JUST IN CASE (i-b) if I had had
coffee in the morning of Tuesday (but not on Monday), then I would not have
been tired at noon on Tuesday.

(iv-a) if I had not had coffee in the morning of Monday (but on Tuesday), then
I would not have been tired at noon of Monday JUST IN CASE (iv-b) if I had not
had coffee in the morning of Tuesday (nor on Monday), then I would not have
been tired at noon on Tuesday.

These four equivalences are supposed to hold for all four possible combina-
tions of an arbitrary value for β and an arbitrary value for α. Suppose they do, i.e
the four counterfactuals ±α

(
∧β

)
� ±γ have the same truth values as the four

counterfactuals ±β (∧α) � ±δ conditional on all four possible combinations of
an arbitrary value for β and an arbitrary value for α. Then it follows that the first
four counterfactuals have the same truth values as second four counterfactuals:
±α� ±γ⇔ ±β� ±δ

The corresponding identical distribution assumption in the probabilistic case
says that the probability that the coin lands heads on the first occasion given that it
is tossed on the first occasion (and on the second and third, say) is identical to the
probability that the coin lands heads on the second occasion given that it is tossed
on the second occasion (but not on the first or third, say). And the probability
that Simone feels relief of pain given that she has been administered 300 mg of
ibuprofen slightly earlier in the morning (and Jean-Paul and Albert have not been
administered any, say) is identical to the probability that Jean-Paul feels relief of
pain given that he has been administered 300 mg of ibuprofen slightly earlier in
the morning (and so have been Simone and Albert, say).

The argument from above can be repeated to prove that conditional consis-
tency in the sense of a ranking function r is implied by, and (now also) implies,
that the various counterfactuals between a given member of the first family and
its associated member of the second family have the same truth values once the
values of all other variables in the second family are set to some values in the first
case and to some, possibly different, values in the other case. If this conditional
version of the identity of truth values for counterfactuals holds for all possible
combinations of the conditional part, then its familiar unconditional version holds
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as well. As before note that conditional consistency is only meaningful on the
present account of counterfactuals, not on Stalnaker’s (1968) or Lewis’ (1973).

Suppose identical conditional probabilities imply consistent conditional ranks,
i.e. identical conditional truth values for counterfactuals. Then the rank-theoretic
consistency assumption of the Obvious Observation is strictly weaker than the
identical distribution assumption of the Strong Law of Large Numbers. Note that
this supposition is forced upon anyone who defends a probabilistic analysis of
counterfactuals, such as Leitgeb (2012a; b).10 Proponents of such an account are,
of course, not forced to rely on the Strong Law of Large Numbers in their account
of the testing of counterfactuals. (It will be enough to require that the probability
for X−1

i (V) given Yi = y and some assignment to the rest equals 1 just in case the
probability for X−1

j (V) given Y j = y and some (possibly distinct) assignment to
the rest equals 1.)

8 What I Should Believe About What Would Have
Been the Case

Let us put to work the Royal Rule and the Obvious Observation that relate the
three rank-theoretic notions of subjective grades of disbelief, objective counter-
factual distances, and observable absolute and relative failures.

The Royal Rule implies that observable absolute failures raise and lower sub-
jective grades of disbelief in hypotheses about objective counterfactual distances.
More specifically, suppose that a subject S’s grading of disbelief RS satisfies the
Royal Rule. Then learning, or conditionalizing on, information about the ob-
servable – not relative, but: – absolute failures of sequences of random variables
X1, . . . ,Xn, . . . that are independent and consistent in the sense of the objective
counterfactual distance distribution r affects the subject S’s grade of disbelief in
hypotheses about the objective counterfactual distance distribution r:

RS
(
r (X = x) = k | a f (x,Xn) = j

)
= RS

(
a f (x,Xn) = j | r (X = x) = k

)
+

+RS (r (X = x) = k) − RS
(
a f (x,Xn) = j

)
=

(
n − j

)
· k + RS (r (X = x) = k) −

−RS
(
a f (x,Xn) = j

)
∝
∗ f ∗

(
k, j,n

)
+ RS (r (X = x) = k)

10The comparison to Bradley (2012) is complicated by the fact that the latter works with a
multidimensional possible worlds semantics.
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The first equation results from applications of the axioms of the ranking calculus.
The second equation results from an application of the Royal Rule.

Let us get a better understanding of this equation before exploiting it for our
purposes. For k > 0 the hypothesis r (X = x) = k says that it is strange for x
to occur, with k specifying just how strange (the greater k, the more bizarre it
is that x occurs). For this case occurrences of x count against the hypothesis
r (X = x) = k in the sense that they contribute to an increase in the grade of
disbelief in r (X = x) = k. They do so the more occurrences of x there are (the
greater n − j, which is just the absolute frequency of x in the first n repetitions
of X) as well as the more bizarre it is for x to occur (the greater k). For k = 0
the hypothesis r (X = x) = k says that it is not strange for x to occur. For this
case occurrences of x do not count against the hypothesis that r (X = x) = k in
the sense that they do not contribute to an increase in the grade of disbelief in
r (X = x) = k. This is because

(
n − j

)
· k = 0 for any n and j, if k = 0.

Suppose we have a sequence of independent and consistentA-V-measurable
functions X1, . . . ,Xn, . . ., where X is an arbitrary one of them. Furthermore sup-
pose that, for some V ∈ V, r (X = x) = 0 for all x ∈ V and r (X = x′) > 0 for
all x′ ∈ Υ \ V. The Obvious Observation entails that, in all worlds with a finite
objective rank, all these values x′ ∈ Υ \ V occur at most finitely many times. Let
us assume Υ to be finite. Then, in all worlds with a finite objective rank, at least
one of the values x ∈ V, say x+, occurs infinitely many times. Therefore the grade
of disbelief for all hypotheses r (X = x+) = k with k > 0 will grow without bound.
In contrast to this the grade of disbelief in r (X = x+) = 0 will never be greater
than its prior grade of disbelief R (r (X = x+) = 0). Therefore, in all worlds w
with a finite objective rank, there is an m such that for all n ≥ m: the hypothe-
sis r (X = x+) = 0 will not be disbelieved by R

(
· | a f (x+,Xn) = a f (x+,Xn (w))

)
.

In contrast to this all hypotheses r (X = x+) = k with k > 0 will be disbelieved
by R

(
· | a f (x+,Xn) = a f (x+,Xn (w))

)
. This in turn means that in all worlds with

a finite objective rank, the hypothesis r (X = x+) = 0, and hence the hypothesis
r (X ∈ V) = 0, will be correctly believed after finitely many steps and forever
after.

Now suppose we have two families ofA-V-measurable functions (Xi)i∈I and
(Yi)i∈I such that the former is independent and consistent conditional on the latter.
Furthermore suppose the following counterfactual is true: Yi = y � Xi = x
or, more generally, Yi = y � Xi ∈ V for some V ∈ V, where it is important
that Xi and Yi have the same index i. Yi = y � Xi ∈ V is true just in case
r
(
Xi < V | Yi = y

)
> 0, which in turn means that r

(
Xi = x′ | Yi = y

)
> 0 for all
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x′ ∈ Υ \ V. Conditional consistency implies r
(
Xi = x′ | Yi = yi ∩

~Y,i = ~y,i

)
> 0

for all x′ ∈ Υ \ V and for all possible assignment of values ~y,i ∈ Υ∗I\{i} to all
variables in (Yi)i∈I except Yi.

Instead of counting the occurrences of x, and failures thereof, in X1, . . . ,Xn we
now count only those occurrences of x, and failures thereof, in any given Xi where
the corresponding variable Yi with the same index i is set to the relevant value y.
For instance, suppose we want to test whether I would have been tired at noon on
Friday, if I had had coffee in the morning of Friday. We intervene and make me
have coffee in the morning of Monday and Wednesday. We also intervene and
make me not have coffee in the morning of Tuesday and Thursday. Then, when
considering the data for the counterfactual that I would have been tired at noon on
Friday, if I had not had coffee in the morning of Friday, we only consider whether
or not I have been tired on Tuesday and Thursday where I did not have coffee
in the morning. If we want to test the counterfactual that I would not have been
tired at noon on Friday, if I had had coffee in the morning of Friday, then we only
consider whether or not I have been tired on Monday and Wednesday where I did
have coffee in the morning.

We do the exact same thing in the probabilistic case where we only consider
whether the coin has landed heads or tails on those occasions where the coin has
been tossed. And we only consider whether Simone and Jean-Paul feel relief of
pain on those mornings where they have been administered 300 mg of ibuprofen
slightly earlier.

Returning to our argument, we have to assume that the sequence of singular
variables Y1, . . . ,Yn, . . . contains an infinite subsequence Y j1 , . . . ,Y jn , . . . whose
values are all set to y. Suppose Y1 . . . ,Yn, . . . itself contains only occurrences of
y. I do not have coffee in the morning of any day and we want to test if I had
would have been tired at noon on Friday, if I had not had coffee in the morning
of Friday. The coin is tossed on every occasion and we want to test the objective
chance of its landing heads. All French existentialists are administered 300mg of
ibuprofen in the morning and we want to test if the chance is raised that pain is
relieved if 300 mg of ibuprofen are administered slightly earlier.

Given this assumption the Obvious Observation entails that, in all worlds with
a finite objective rank conditional on all variables Yi being set to y, all values
x′ ∈ Υ \ V occur at most finitely many times. Again let us assume Υ to be
finite. Then, in all worlds with a finite objective rank conditional on all variables
Yi being set to y, at least one value x ∈ V, say x+, occurs infinitely many times.
Therefore the grade of disbelief for all hypotheses r

(
Xi = x+

|Yi = y ∩ ~Y,i = ~y
)

=
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k with k > 0 will grow without bound. In contrast to this the grade of disbelief
in r

(
Xi = x+

| Yi = y ∩ ~Y,i = ~y
)

= 0 will never be greater than its prior grade of

disbelief R
(
r
(
Xi = x+

| Yi = y ∩ ~Y,i = ~y
)

= 0
)
.

Conditional consistency implies that this is also true if ~Y,i = ~y is replaced
by any other possible assignment of values ~y,i ∈ Υ∗I\{i} to all variables in (Yi)i∈I
except Yi. In addition conditional consistency implies that this is also true if we
ignore all variables in (Yi)i∈I except Yi and just consider r

(
Xi = x+

| Yi = y
)
.

Hence in all worlds w with a finite objective rank there is an m such that for all
n ≥ m: the hypothesis r

(
Xi = x+

| Yi = y
)

= 0 will not be disbelieved by the pos-
terior disbelief function R

(
· | a f

(
x+,Xn

| y
)

= a f
(
x+,Xn (

w | y
)))

. In contrast to
this all hypotheses r

(
Xi = x+

| Yi = y
)

= k with k > 0 will be disbelieved by
the posterior disbelief function R

(
· | a f

(
x+,Xn

| y
)

= a f
(
x+,Xn (

w | y
)))

. (The
condition y in a f

(
x+,Xn

| y
)

and a f
(
x+,Xn (

w | y
))

is to remind us to count only
those occurrences of x+, and failures thereof, in any given Xi where the corre-
sponding variable Yi is set to y.) This in turn means that in all worlds with a finite
objective rank, the hypothesis r

(
Xi = x+

| Yi = y
)

= 0, and hence the hypothesis
r
(
Xi ∈ V | Yi = y

)
= 0, will be correctly believed after finitely many steps and

forever after. And this means that in all worlds with a finite objective rank, the
true counterfactual Yi = y � Xi ∈ V will, correctly, not be disbelieved after
finitely many steps and forever after.

Since Υ is finite there are only finitely many counterfactuals of the form Yi =
y � Xi ∈ V for V ⊆ Υ. This implies that there is a point from which on
only false counterfactuals will be disbelieved. The converse is not true, though.
If the agent is too cautious, then there may be false counterfactuals that she may
never start to disbelieve. Additional principles need to be obeyed by the subject
to eventually disbelieve every false counterfactual.

The reader will already have noticed that the worlds with a finite objective
rank are exactly those worlds that are accessible in the sense of the modal logic
that is contained in any logic of counterfactuals via the following principle: �α↔
(¬α� α). This allows us to reformulate our main result two more times. In all
worlds that are accessible, any true counterfactual will, correctly, not be disbe-
lieved after finitely many steps and forever after. Put differently, it is necessary
that any true counterfactual will, correctly, not be disbelieved after finitely many
steps and forever after. This holds, provided the agent obeys the Royal Rule and
conditionalizes on the observable absolute failures of a sequence of experiments
that is independent and consistent conditional on the interventions involved in
carrying out the experiments.11
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9 Comparisons
In concluding this paper I want to briefly compare the account of the testing of
counterfactuals presented here to two alternatives.

The first alternative arises from the similarity approach to counterfactuals.
There are several versions of this approach, but they all agree that the logic of
counterfactuals does not merely validate the basic conditional logic V, as, among
others, Leitgeb (2012a; b) and Huber (2014) have it, but at least the logic VW that
arises from V by adding weak centering:

(
α� γ

)
⊃

(
α ⊃ γ

)
. For instance, both

Stalnaker’s logic VCS and Lewis’ “official logic” VC are strictly stronger than
VW. If the logic of counterfactuals includes weak centering in the present frame-
work, then the testing of counterfactuals is much easier: consistency implies that
a single experiment is enough to find out that a false counterfactual is false. If the
logic of counterfactuals includes strong centering,

(
α ∧ γ

)
⊃

(
α� γ

)
, which is

also validated by both VCS and VC, consistency implies that a single experiment
is enough to find out that a true counterfactual is true.

This is true if these principles are included in the logic of counterfactuals in
the present framework. However, what distinguishes the present framework from
the similarity approach are (i) the doxastic state representing conditional beliefs,
the subject S’s grading of disbelief R (H | E), and (ii) the normative principle that
relates this doxastic state of conditional form to counterfactuals, the Royal Rule.
Proponents of the similarity approach are, of course, free to come up with such
a principle, as well as a theorem such as the Obvious Observation, that jointly
allow them to state under which conditions counterfactuals can be empirically
tested or confirmed. However, to the best of my knowledge no such package of
principle plus theorem has ever been proposed. Moreover, I am skeptical that it is
even possible to formulate a principle analogous to the Royal Rule, as the latter
essentially relies on the conditional nature of rank-theoretic grades of (dis)belief,
and neither selection functions nor systems of spheres have this conditional nature.

The other alternative is what I have called probabilification by reduction in
section 4: reduce a subject S’s conditional belief BelS (H | E) in hypothesis H
given various data E to the subject S’s credence CrS (H | E) in this hypothesis
H given those data E along the lines of Leitgeb (2013); reduce counterfactual
dependence of certain propositions C on certain propositions A, ±A � ±C, to
the sets of possible worlds w where the objective chances of these propositions

11Modal logicians might be interested in the fact that this provides an example of a sentence α
such that: ` �α and 0 α.
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±C given those propositions ±A are 1, chw (±C | ±A) = 1, along the lines of
Leitgeb (2012a; b) – or along the multidimensional lines of Bradley (2012); and
reduce what one observes to happen, and to fail to happen, to a report of those
observables in the form of relative frequencies.

This probabilistic alternative can identify the relevant epistemic state of con-
ditional form as the subject S’s credence function CrS (H | E). Counterfactuals are
given a probabilistic analysis in terms of objective chances. Therefore the norma-
tive principle linking this doxastic state of conditional form to counterfactuals is
the familiar Principal Principle. The relevant theorem is the Strong Law of Large
Numbers, or some theorem with weaker assumptions as suggested in section 5.
Observable relative frequencies can then be used to empirically test or confirm
counterfactuals as explained in section 3, provided that the story told in section
3 can be carried over from classical probabilities to Popper-Rényi measures. (As
indicated in footnote 8, this is not straightforward, but necessary if one adopts
Leitgeb’s (2012a; b) probabilistic analysis of counterfactuals.)

As mentioned there is no difference between the logic of counterfactuals of
this probabilistic alternative and the logic of the present rank-theoretic approach:
the basic conditional logic V is sound and complete with respect to both of them.
So this probabilistic alternative also allows for the testing of counterfactuals, just
as the present approach does. It seems to be superior to the present approach
by being more parsimonious, both epistemologically and ontologically. This is
so, because the present approach is not intended as a replacement of probabilistic
metaphysics and epistemology, but as a complementing addendum.

There are, however, some subtle differences, and I would like to conclude by
briefly pointing these out. The first point is that rank-theoretic independence is
strictly weaker than probabilistic independence, given a probabilistic analysis of
counterfactuals that requires Pr (A ∩ C) = Pr (A) for A � C to be true. For,
under this assumption, probabilistic independence implies, but is not implied by,
counterfactual dependence. As explained in section 7, the latter implies rank-
theoretic independence. (I am ignoring propositions with extreme probabilities.
These are probabilistically independent of all propositions, including themselves.
However, presumably, they are counterfactually dependent on all propositions,
including themselves, on a probabilistic semantics for counterfactuals.)

The second point is that rank-theoretic consistency is strictly weaker than the
identical distribution assumption in the probabilistic case. (It will be possible to
weaken this assumption, but I do not think that one can weaken the probabilistic
independence assumption). The reason is that identically distributed probabili-
ties imply, but are not implied by, identical truth values of counterfactuals. The
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latter in turn imply rank-theoretic consistency as explained in section 7. The up-
shot is that it is easier to test counterfactuals on the present approach than on the
probabilistic alternative that probabilifies by reduction.

Finally suppose we have two sequences of variables (Xi)i∈I and (Yi)i∈I such
that the former is independent and consistent conditional on the latter, as well
as independent and identically distributed conditional on the latter. Furthermore,
suppose Yi = y � X ∈ V is true, Υ is finite, and all variables Yi are set to y.
On the present account it follows that, necessarily, any x′ ∈ Υ \ V occurs only
finitely many times. On the probabilistic alternative it follows that, with maximal
objective chance, the relative frequency of all x′ ∈ Υ \ V converges to 0. But that
is compatible with all x′ ∈ Υ \ V occurring infinitely many times, even when we
are in a world with a finite objective rank and positive objective chance. In this
sense counterfactuals are stronger on the present account than on the probabilistic
alternative, even though both are characterized by the basic conditional logic V.

This means that the present approach comfortably sits between the first alter-
native that arises from the similarity approach and the second alternative of prob-
abilification by reduction. The first alternative does not allow for any “counter-
instances”, as we may call occurrences of some x′ ∈ Υ \ V, at all. The proba-
bilistic alternative allows for infinitely many counter-instances. The present rank-
theoretic approach allows for counter-instances, but only for finitely many.
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