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1. Introduction

In his (1998) James Joyce provides an epistemic vindication of the thesis that an
agent’s degrees of belief should obey the probability calculus in the sense that her
degree of belief function be non-negative, normalized, and finitely additive. Rather
than the supposedly pragmatic vindication provided by a Dutch Book Argument,
he aims at a genuine non-pragmatic vindication of probabilism. Joyce’s argument
is based on the assumption that an agent’s degree of belief function is epistemically
defective if there exists another degree of belief function which is more accurate
in each possible world. Accuracy of an agent’s degree of belief in a proposition A
at some possible world ω is identified with the distance between the agent’s degree
of belief in A and the truth value of A in ω (1 for true, 0 for false).

Apart from some more technical objections pertaining to the way distance is
measured (Maher 2002), there are the following alleged problems with Joyce’s ar-
gument. For one, Joyce’s conditions on measures of inaccuracy do not determine
a single measure, but a whole set of such measures. This in itself would rather
strengthen than weaken Joyce’s argument, were it not for the fact that these mea-
sures differ in their recommendations as to which alternative degree of belief func-
tion an incoherent degree of belief function should be replaced by. All measures
of inaccuracy agree that an incoherent agent whose degree of belief function vio-
lates the probability axioms should adopt another coherent degree of belief function
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which is more accurate in each possible world. However, these measures may differ
in their recommendation as to which particular coherent degree of belief function
the agent should adopt. In fact, for each possible world, following the recommen-
dation of one measure will leave the agent off less accurate according to some other
measure. Bronfman’s objection questions the normative force of Joyce’s argument
on the basis of this fact. Why should I move from my incoherent degree of belief
function to a coherent one, if my advisors, though agreeing that I should move, all
disagree as to where I should move; and the recommendation of one advisor leads
me to a degree of belief function that is worse than my original one according to
some other advisor. In Joyce’s terms (slightly adapted), suppose for each American
city there is a more beautiful Australian city. I live in Pasadena, and according to
any reasonable index of beauty there is some Australian city which is more beau-
tiful than Pasadena according to this index. The big city close to the sea index
says I should move to Melbourne or Sydney (but not to Canberra); the clean air
index recommends moving to Canberra (but not to Melbourne or Sydney); and so
on. Why should I move to Australia when all these standards disagree on where in
Australia I should go, even if they all agree I should go somewhere in Australia?
See Bronfman (manuscript).

Then there is the intuition that it is better to be accurate in the actual world, pos-
sibly at the cost of being incoherent and inaccurate on average, than to be coherent
and accurate on average, but inaccurate in the actual world. Hájek’s objection says
that a rational agent will prefer to have a low rather than high degree of belief in
the proposition that it is safe to jump from the Eiffel Tower, even if this comes at
the cost of having an incoherent degree of belief function. See Hájek (to appear).

Moreover, it turns out that Joyce’s theorem depends on representing ‘true’ by 1
and ‘false’ by 0, and is false if ‘true’ is represented by 0 and ‘false’ by 1. Howson’s
objection is that Joyce’s theorem has no epistemic significance insofar as it is not a
result about truth, but only a result about distributions ω of 1s and 0s over propo-
sitions A,B in some field which satisfy ω (A) ∈ {0, 1}, ω

(
A
)

= 1 − ω (A), and
ω (A ∩B) = ω (A) · ω (B). See Howson (manuscript).

I am not convinced by these objections. Bronfman’s objection is nothing but a
plea to further narrow down the class of inaccuracy measures. Suppose with Andy
Egan (slightly adapted) that all moral theories agree that rich countries should help
poor countries, but they all disagree as to how to help. One moral theory says rich
countries should ship food to poor countries rather than importing food from them
(in order for them to have enough food). Another moral theory says rich countries
should import food from poor countries rather than shipping food to them (in order
to strengthen their economy). That does not mean rich countries need not help poor
countries after all.

Hájek’s objection neglects that the counterintuitive character of the above ex-
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ample depends on our low degree of belief that jumping from the Eiffel Tower is
safe. It is true that the actual world has a privileged status. But we do not know
which world is actual. All we have are our degrees of belief. If you are confi-
dent that jumping from the Eiffel Tower is not safe, your expected inaccuracy will
take this bias into account. The expected inaccuracy (in the sense of an inaccuracy
measure I) of a degree of belief function B is given by

∑
ω∈W I (B,ω) ·Bel (ω).

Bel is your actual degree of belief function on the finite set of possibilities W ,
and I (B,ω) is the inaccuracy of B in the world ω. Joyce considers the inaccuracy
I (B,ω) in each world ω ∈ W , and so assumes all worlds to be on a par as far as
inaccuracy is concerned. Trivially, Joyce’s theorem remains a theorem if ‘expected
inaccuracy’ is substituted for ‘inaccuracy in each possible world’, provided the ac-
tual belief function Bel assigns a positive degree of belief to at least one world.
So, although Joyce’s original argument may be subject to Hájek’s objection, the
substitute in terms of expected inaccuracy is not.

Howson’s objection finally locates the assumption of representing ‘true’ by 1
and ‘false’ by 0 in Joyce’s conditions on measures of inaccuracy. But it is the
probability axioms themselves that adopt this assumption, as is seen in the nor-
malization axiom requiring the probability for the whole set of possibilities (the
tautology) to be 1. Joyce’s theorem is true for the bundle consisting of the proba-
bility axioms and the labeling convention to represent ‘true’ by 1 and ‘false’ by 0;
and it is also true for a dual of the probability axioms (Pr (A) ≤ 1, Pr (W ) = 0,
and Pr (A ∩B) = Pr (A) + Pr (B) if A ∪ B = W ) and the dual convention of
representing ‘true’ by 0 and ‘false’ by 1.1

But why all this ado about accuracy when there already exists a vindication of
probabilism? The desire for an epistemic vindication seems to have arisen out of
the shortcomings of the pragmatic nature of the Dutch Book Argument, and the
apparently not completely successful efforts to depragmatize the latter (Armendt
1993, Christensen 1996, Howson & Franklin 1994). On my preferred reading,
these depragmatization efforts are based on a distinction between degrees of belief
on the one hand and fair betting ratios on the other, and the idea that degrees of
belief for propositions are (measured by) evaluations of fair betting ratios for these
propositions. Violating the probability axioms then does not only result in the
pragmatic defect of being vulnerable to a sure loss; first and foremost, it is the
epistemic defect of being inconsistent in one’s evaluations of fair betting ratios.

1According to Colin Howson (personal correspondence), the probability axioms make no as-
sumption concerning the numerical representation of truth values, because they do not mention truth
or falsity. They only mention logical truth and logical falsity, and the numbers 1 and 0 assigned these
are interpretable in ways that have nothing to do with truth or falsity (e.g. as infinite odds).

On a slightly different note, I do not know of a way to fix things if ‘true’ is represented by +∞
and ‘false’ by −∞.
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Yet inconsistent evaluations of fair betting ratios for various propositions, while
being inconsistencies, are not inconsistent beliefs in those propositions. Indeed,
unless degrees of belief give rise to qualitative yes-or-no beliefs, it is a category
mistake to say that incoherent degrees of belief for propositions amount to incon-
sistent beliefs in those propositions. Inconsistency is only well defined for propo-
sitions or sentences2; and coherent degrees of belief do not give rise to consistent
and deductively closed beliefs, at least if belief is degree of belief to some degree.
The impossibility result in question is, of course, the well known lottery paradox
(Kyburg 1961, Hempel 1962).

Given this background the epistemic vindication of a normative theory of epis-
temic states, such as subjective probability theory, seems to be something along
the following lines. An agent’s epistemic states should obey such and such ax-
ioms, because the set of her beliefs based on these epistemic states is consistent
and deductively closed just in case her epistemic states satisfy the axioms in ques-
tions. The requirements of consistency and deductive closure can already be found
in Hintikka (1962), and have become the defining properties of a belief set. Obvi-
ously, for such a justification to work, epistemic states and the axioms governing
them must give rise to a notion of belief. But not only subjective probabilities do
not do this. The same holds true for Dempster-Shafer belief functions (Dempster
1968, Shafer 1976) as well as plausibility measures (Halpern 2003).3

2. Ranking Functions

Hence, the first question is whether there is a representation of epistemic states that
gives rise to a notion of qualitative yes-or-no belief. Fortunately there is: ranking
theory (Spohn 1988; 1990; to appear; manuscript). A function % from a field of
propositions A over a set of possibilities W into the set of natural numbers N
enriched by∞, % : A → N ∪ {∞}, is a (finitely minimitive) ranking function on
A iff for all A,B ∈ A,

1. % (∅) =∞, % (W ) = 0,
2. % (A ∪B) = min {% (A) , % (B)}.

A ranking function % on a σ-field / complete field A is countably / completely
minimitive iff for all countable / uncountable B ⊆ A,

2I have to add a qualification due to Colin Howson (personal correspondence). Smullyan (1968)
defines consistency for distributions of truth values. Consistency of sentences is then a derivative
notion.

3If possibility theory (Zadeh 1978, Dubois & Prade 1988) is interpreted in terms of uncertainty
rather than imprecision, one can define a notion of belief (positive degree of necessity) that is consis-
tent and deductively closed in the finite, though not in the countable sense.
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% (
⋃
B) = min {% (B) : B ∈ B}.

ForA ∈ A, the conditional ranking function % (· | A) : A\{∅} → N ∪{∞} based
on the ranking function % (·) : A → N ∪ {∞} is defined as

% (· | A) =

{
% (· ∩A)− % (A) , if % (A) <∞,
0, if % (A) =∞.

Further stipulating % (∅ | A) = ∞ ensures that every conditional ranking function
is a ranking function. A ranking function % is regular iff % (A) < % (∅) for all
non-empty A ∈ A. As an aside, A ⊆ ℘ (W) is a (finitary) field over W iff for all
A,B ∈ A: ∅ ∈ A, A ∈ A, and A ∪ B ∈ A. A field A is a σ- / complete field iff
for all countable / uncountable B ⊆ A:

⋃
B ∈ A.

A function % from a language L, i.e. a set of well formed formulas containing
> and being closed under negation and disjunction, into N ∪ {∞} is a ranking on
L iff for all α, β ∈ L,

0. |= α↔ β ⇒ % (α) = % (β),

1. % (¬>) =∞, % (>) = 0,

2. % (α ∨ β) = min {% (α) , % (β)} .

For α ∈ L, the conditional ranking % (· | α) : L\{β ∈ L :|= β → ⊥} → N∪{∞}
based on the ranking % (·) : L → N ∪ {∞} is defined as

% (· | α) =

{
% (· ∧ α)− % (α) , if % (α) <∞,
0, if % (α) =∞.

Again, stipulating % (β | α) = ∞ if |= β → ⊥ guarantuees that % (· | α) is a
ranking on L for every α ∈ L. % is regular iff % (α) < % (¬>) for all consistent
α ∈ L.

Spohn’s original formulation is in terms of what I have elsewhere called point-
wise ranking functions. A function κ : W → N ∪ {∞} is a pointwise ranking
function on W iff κ (ω) = 0 for at least one ω ∈ W . Every pointwise ranking
function κ on W induces a completely minimitive ranking function % on any field
A over W by defining for all A ∈ A,

% (∅) =∞, % (A) = min {κ (ω) : ω ∈ A} .

The converse is not true. For the relation between ranking functions on a field
of propositions and pointwise ranking functions on a set of possibilities one level
below see Huber (2006).

A probability measure Pr : A → {0} ∪ (0, 1] can be epistemically interpreted
as an agent’s degree of belief function and has the following properties. For all
A,B,Ai, Bi ∈ A, i ∈ N , with {Ai} a partition of W ,
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• Pr (W ) = 1 and Pr (∅) = 0

• Pr (A ∪B) = Pr (A) + Pr (B), if A ∩B = ∅
• A ⊆ B ⇒ Pr (A) ≤ Pr (B)

• Pr (A) + Pr
(
A
)

= 1,
∑

i Pr (Ai) = Pr (
⋃
{Ai}) = 1

• Pr (B | A) = Pr (B ∩A)÷ Pr (A) if Pr (A) > 0

• Pr (B) =
∑

i Pr (B | Ai) · Pr (Ai)

• Pr (
⋂
{Bi}) =

∏
i Pr

(
Bi |

⋂
j<i {Bj}

)
,
⋂
j<1 {Bj} = W

The last clauses are unrestrictedly defined if we stipulate Pr (B | A) = 1 for
Pr (A) = 0. Countable additivity is assumed for the countably infinite versions.

Let us replace 1 by 0, 0 by∞, > by<, + and
∑

by min, · and
∏

by + and
∑

,
and ÷ by −, as well as neglect the exclusiveness condition for summations. Then
we get the corresponding properties of a ranking function % : A → N ∪ {∞},
which can be epistemically interpreted as an agent’s degree of disbelief function.
For all A,B,Ai, Bi ∈ A, i ∈ N , with {Ai} a partition of W ,

• % (W ) = 0 and % (∅) =∞
• % (A ∪B) = min {% (A) , % (B)}, whether or not A ∩B = ∅
• A ⊆ B ⇒ % (A) ≥ % (B)

• % (A) = 0 or %
(
A
)

= 0, min {% (Ai) : i ∈ N} = % (
⋃
{Ai}) = 0

• % (B | A) = % (B ∩A)− % (A), if % (A) <∞
• % (B) = min {% (Ai) + % (B | Ai) : i ∈ N}

• % (
⋂
{Bi}) =

∑
i %
(
Bi |

⋂
j<i {Bj}

)
,
⋂
j<1 {Bj} = W

Countable minimitivity is assumed for the countably infinite versions. It is useful
to keep this translational device in mind, even though it is no more than a device.

A ranking function % over A is interpreted as an agent’s degree of disbelief
function for the propositions in A. % (A) is the agent’s degree of disbelief for A,
and tells us how reluctant she is to give up her qualitative disbelief in A. %

(
A
)

is
the agent’s degree of disbelief for A, and tells us how reluctant she is to give up her
qualitative disbelief in A. This will become important below.

The belief function β (·) : A → {−∞}∪Z ∪{∞} associated with the ranking
function % (·) : A → N ∪ {∞} is defined as β (·) = % (·) − % (·). The corre-
sponding function in probability theory is Be (·) = Pr (·) ÷ Pr (·). Be is, for
instance, used in Bayesian confirmation theory, where Milne (1996) argues that
r = log [Pr (H | E)÷ Pr (H)] is the one true measure of confirmation, whereas
Fitelson (1999) says it is l = log [Be (H | E)÷Be (H)].
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A ranking function % on a field A induces a set of propositions Bel% ⊆ A, %’s
belief set:

Bel% =
{
A ∈ A : %

(
A
)
> % (A)

}
=
{
A ∈ A : %

(
A
)
> 0
}
.

The belief set Bel% is the set of all propositions or sentences whose complements
or negations the agent disbelieves to some positive degree. Alternatively we can
say that an agent’s belief set is the set of all propositions she believes to some
positive degree, sinceBel% = {A ∈ A : β (A) > 0}, where β is the belief function
associated with %. Note that one and the same belief set may be induced by many
different ranking functions.

3. The Consistency Argument

The second question is whether something along the following lines is true. A de-
gree of disbelief function satisfies the ranking axioms iff the corresponding belief
set is consistent and deductively closed. The theorem in the next section states
something along these lines. Let us first get clear about the structure of the ar-
gument for the thesis that an agent’s degrees of disbelief should obey the ranking
calculus.

A (depragmatized) Dutch Book Argument is supposed to vindicate probabil-
ism, the thesis that an agent’s degrees of belief should obey the probability calculus.
It has the following ingredients.

0. (Fair) betting ratios.

1. A link between degrees of belief and (fair) betting ratios. Sometimes degrees of
belief are defined as (fair) betting ratios, and this link is identity. Sometimes de-
grees of belief are measured by (fair) betting ratios, and this link is weaker than
identity. In the latter case we are facing the connection problem, the question
of how degrees of belief and (fair) betting ratios are related to each other.

2. The (depragmatized) Dutch Book Principle. It says that it is pragmatically
(epistemically) defective to accept a series of bets which guarantees a sure loss,
i.e. a Dutch Book (to consider a Dutch Book to be fair).

3. The (depragmatized) Dutch Book Theorem. It says that an agent’s (fair) betting
ratios obey the probability calculus iff the agent never accepts a Dutch Book
(never considers a Dutch Book to be fair).

4. A conclusion: it is pragmatically (epistemically) defective to have degrees of
belief that violate the probability axioms.
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A (depragmatized) Dutch Book Argument is an argument with premises 1-3 and
conclusion 4. Particular arguments differ from each other by the exact form the
above ingredients take. Obviously, if we strengthen the link between degrees of
belief and (fair) betting ratios we have less of a problem in getting from 2 and 3 to
4, but have more problems in making 1 plausible.

There are many objections to the vindication of probabilism by a Dutch Book
Argument (Hájek 2005; to appear). For instance, Dutch-Book-ability is a mere pos-
sibility, often far from the agent being actually Dutch-Book-ed. The corresponding
feature is shared by the Consistency Argument. However, the purpose of this is
not to rigorously discuss Dutch Book Arguments. The aim is to name the com-
ponents of the argument, and the role they play therein, in order to motivate the
corresponding argument for the ranking thesis that an agent’s degrees of disbelief
should obey the ranking axioms. I do, however, want to draw the reader’s atten-
tion to one point: the distinction between pragmatic and epistemic defectiveness,
or practical and theoretical rationality, most famously discussed by Kant (1902),
but also present in other areas of formal epistemology (Rott 2001).

What are the corresponding ingredients in the Consistency Argument? Clearly,
ranks play the role of probabilities, and the Consistency Theorem of the next sec-
tion will be the substitute for the Dutch Book Theorem. The conclusion will be that
it is epistemically defective to have degrees of disbelief that violate the ranking ax-
ioms. The two ingredients differing in important ways are the substitutes for (fair)
betting ratios and the Dutch Book Principle. These are, respectively, degrees of en-
trenchment and a principle of theoretical rationality saying that it is epistemically
defective to have beliefs that are not both consistent and deductively closed.

The idea that ranks can be measured by the agent’s contraction behavior is
developed in Spohn (1999), although in Spohn (to appear) Matthias Hild is said
to have presented it first and independently. Spohn (manuscript) presents three
methods for the measurement of ranks. I will only use what he calls the method of
enhancements. To give the reader an idea of how this measurement works, suppose
I disbelieve that Sacramento is the capital of California, S ∈ BelFranz . Then my
rank for S, %Franz (S), can be measured as follows. We put me on a busy street, say
Sunset Boulevard on a Saturday night, and count the number of people who pass
by and tell me that Sacramento is the capital of California. My rank for S equals
n precisely if I stop disbelieving S after exactly n people have passed by and told
me S. So %Franz (S) is measured by the number of “independent and minimally
positively reliable information sources” saying S that it takes for me to give up my
disbelief in S. If I do not disbelieve S to begin with, my rank for S is 0.

The relation between degrees of disbelief and degrees of entrenchment is a
delicate one, much like the relation between degrees of belief and (fair) betting
ratios. One option is to take the former as primitive (Eriksson & Hájek to appear),
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and to say that the latter measure them under suitable conditions. Another option is
to “go hypothetical”: my degrees of disbelief are the degrees of entrenchment that I
would have if there were an infinite stock of independent and minimally positively
reliable information sources at my disposal. I think the second option is attractive,
and more attractive than its probabilistic counterpart. It is most attractive if we base
it on a ranktheoretic theory of counterfactuals. The prospects for such an account
are good: a ranking of worlds replaces the selection function of Stalnaker (1968)
or the similarity ordering of Lewis (1973), and is objectively interpreted as the
ranktheoretic analogue of chance in probability theory.

Here is the plan for the rest of the paper. The next section states the Consistency
Theorem which says that an agent’s degrees of entrenchment satisfy the ranking
axioms iff the agent’s belief set is and will always be consistent and deductively
closed. Section 5 reformulates this in terms of conditional consistency. Section 6
presents various probabilistic and ranktheoretic update rules, and section 7 contains
the consistency theorems for these. I will conclude in section 8.

4. The Consistency Theorem

An agent’s degree of entrenchment for a proposition A is defined as the number of
independent and minimally positively (mp), and hence equally, reliable information
sources saying A that it takes for the agent to give up her disbelief that A. If the
agent does not disbelieve A to begin with, it does not take any information source
saying A to make her stop disbelieving A. So her degree of entrenchment for A
is 0. If no finite number of information sources is able to make an agent stop
disbelieving A, her degree of entrenchment for A is∞. To receive the information
A is, among others, to also receive the information B, for any proposition B ⊇ A.
To independently and mp-reliably receive n times the information A is, among
others, to independently and mp-reliably receive n times the information B ⊇ A.
It is not to independently and mp-reliably receive m times the information B, for
some m 6= n. The reason is that the number n characterizes the reliability of the
information source saying A. That source is the same for any logical consequence
of A. If you tell me that the temperature today at noon will be 93◦ Fahrenheit,
you also tell me that the temperature today at noon will be between 90◦ and 96◦

Fahrenheit. But it is still you who tells me so. Therefore the reliability with which I
get the second information is exactly the same as the reliability with which I get the
first information. The difference between the two is a difference in content. This
will become important in the proof of the Consistency Theorem (3.2 below).

When we measure ranks we count information sources. For the measurement
to work, these have to be independent and mp-reliable. Of course, one person’s
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saying A will sometimes make somebody stop disbelieving A, while the sermons
of twenty others won’t. And my father’s telling me A after my mother has already
explained to me why A won’t make much of difference for me either. What’s new?
Neither are my (fair) betting ratios always independent of the truth values of the
propositions I am betting on, nor are they never affected by the stakes at issue.
The operational surrogate is not the theoretical entity itself. Often it does not even
provide a good measurement.

The agent’s belief set at a given time is the set of propositions whose comple-
ments she disbelieves according to her entrenchment function. Combined with an
update rule, this entrenchment function specifies what the agent will believe if she
receives new information. Each new item of information gives thus rise to a new
entrenchment function and, accordingly, a new belief set.

DEFINITION 4.1. Let L be a language, let A be a field over a set of possibilities
W , let Γ ⊆ L be a set of sentences, and let B ⊆ A be a set of propositions.

Γ is consistent iff each finite Γfin ⊆ Γ has a model. Γ is deductively closed iff
for each finite Γfin ⊆ Γ and all α ∈ L: if Γfin |= α, then α ∈ Γ.
B is consistent in the finite / countable / complete sense iff for each finite /

countable / uncountable B′ ⊆ B,
⋂
B′ 6= ∅. B is deductively closed in the finite /

countable / complete sense iff for each finite / countable / uncountable B′ ⊆ B and
all A ∈ A: if

⋂
B′ ⊆ A, then A ∈ B.

THEOREM 4.2 (Consistency Theorem). Let L be a language, and let A be a field
of propositions over the set of possibilities W .

An agent’s entrenchment function % on L is a ranking on L iff every possible
current or future belief setBel ⊆ L based on % is consistent and deductively closed.

An agent’s entrenchment function % on A is a finitely / countably / completely
minimitive ranking function on A iff every possible current or future belief set
Bel ⊆ A based on % is consistent and deductively closed in the finite / countable /
complete sense.

Degrees of entrenchment are assumed to be numbers from N ∪ {∞}.

PROOF. ⇒: Let A be a field of propositions over the set of possibilities W . Sup-
pose an agent’s entrenchment function % on A is a finitely / countably / completely
minimitive ranking function. By definition, Bel% =

{
A ∈ A : %

(
A
)
> 0
}

. Finite
/ countable / complete minimitivity yields for each finite / countable / uncountable
B ⊆ Bel%,

%
(⋃
Bneg

)
= min

{
%
(
A
)

: A ∈ Bel%
}
> 0, Bneg =

{
A ∈ A : A ∈ B

}
.

Hence %
(⋃
Bneg

)
= % (

⋂
B) = 0, and so

⋂
B 6= ∅. Thus Bel% is consistent in

the finite / countable / complete sense.
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Furthermore, let B ⊆ Bel% be finite / countable / uncountable, and suppose⋂
B ⊆ A for some A ∈ A. We have to show that A ∈ Bel%, i.e. %

(
A
)
> 0. By fi-

nite / countable / complete minimitivity, min
{
%
(
B
)

: B ∈ B
}

= % (
⋃
Bneg) > 0.

So %
(
A
)
> 0, because A ⊆

⋃
Bneg and % is monotonic w.r.t. set inclusion. Hence

Bel% is deductively closed in the finite / countable / complete sense. Similarly for
a ranking % on a language L. Note, though, that compactness, which has been built
into the definitions of consistency and deductive closure, is needed. Otherwise we
face the problem that

∧
Γ and

∨
Γ are not defined for infinite Γ ⊆ L.

As this holds true for any ranking function, the belief set Bel%+ of any possible
future entrenchment function %+ is also consistent and deductively closed in the
finite / countable / complete sense, provided updating leads from one finitely /
countably / completely minimitive ranking function to another finitely / countably
/ completely minimitive ranking function. Gärdenfors & Rott (1995: 37) call this
the principle of categorical matching4, and (subject to cosmetic adjustments in the
case of Shenoy revision) it is true for all ranktheoretic update rules considered in
section 6.
⇐: Let A be a field of propositions over the set of possibilities W , and let % be an
agent’s entrenchment function on A.
(1) Suppose % (W ) > 0. Then ∅ ∈

{
A ∈ A : %

(
A
)
> 0
}

= Bel%, and so
⋂
B = ∅

for at least one finite B ⊆ Bel%. Thus, Bel% is finitely, countably, and completely
inconsistent. Similarly for a ranking % on a language L.
(2) Suppose next % (∅) < ∞. Assume the agent receives evidence equivalent to
being told ∅ by n or more independent and mp-reliable information sources. By
the definition of degrees of entrenchment, the resulting entrenchment function %n
after independently and mp-reliably receiving n or more times the information ∅
is such that %n (∅) = 0. Therefore W 6∈

{
A ∈ A : %n

(
A
)
> 0
}

= Bel%n . As⋂
B ⊆ W for each B ⊆ Bel%n , Bel%n is not deductively closed in the finite,

countable, or complete sense. Similarly for a ranking % on a language L.
(3) Now suppose A is a finitary / σ- / complete field over W , and % on A violates
finite / countable / complete minimitivity.
(3.1) Suppose first there is a finite / countable / uncountable B ⊆ A such that
% (
⋃
B) < min {% (A) : A ∈ B}. If % (

⋃
B) = 0, we have

∀A ∈ B : A ∈ Bel%,
⋂
Bneg =

⋃
B 6∈ Bel%, Bneg =

{
A ∈ A : A ∈ B

}
,

which means that Bel% is not deductively closed in the finite / countable / complete

4Spohn (1988: sct. 3) argues that AGM belief revision theory is incapable of iterated revisions
precisely because it violates this principle. In order to revise a belief set one needs an entrenchment
ordering or a selection function. The result of a first AGM revision does not give rise to a new
entrenchment ordering or a new selection function, but merely to a new belief set. So there is no
second AGM revision.
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sense. If % (
⋃
B) = n > 0, we have the following situation:

|————-|——————————|————————————
0 % (

⋃
B) = n min {% (A) : A ∈ B} = n′ > n

Assume the agent receives evidence equivalent to being told
⋃
B by at least n,

but fewer than n′ independent and mp-reliable information sources. The resulting
entrenchment function %n∗ after independently and mp-reliably receiving n∗ ∈
[n, n′) times the information

⋃
B is such that %n∗ (

⋃
B) = 0. Now even if for

all A ∈ Bel%, %n∗ (A) = % (A)− n∗ > 0, we have the following situation:
|———————————–|——————————————

%n∗ (
⋃
B) ≤ 0 min {%n∗ (A) : A ∈ B} > 0

Hence
∀A ∈ B : A ∈ Bel%n∗ ,

⋂
Bneg =

⋃
B 6∈ Bel%n∗ ,

which means that Bel%n∗ is not deductively closed in the finite / countable / com-
plete sense. Similarly for a ranking % on a language L.
(3.2) Now suppose there is a finite / countable / uncountable B ⊆ A such that
% (
⋃
B) > min {% (A) : A ∈ B}. If min {% (A) : A ∈ B} = % (A∗) = 0, we have

A∗ 6∈ Bel%,
⋂
Bneg =

⋃
B ∈ Bel%,

which means that Bel% is not deductively closed in the finite / countable / complete
sense. If min {% (A) : A ∈ B} = % (A∗) = n > 0, for some A∗ ∈ B, we have the
following situation:

|—————-|——————————————-|—————————-
0 % (A∗) = min {% (A) : A ∈ B} = n % (

⋃
B) = n′ > n

Assume the agent receives evidence equivalent to being told A∗ by at least n, but
fewer than n′ independent and mp-reliable information sources. The resulting en-
trenchment function %n∗ after independently and mp-reliably receiving n∗ ∈ [n, n′)
times the information A∗ is such that %n∗ (A∗) = 0. Now %n∗ (

⋃
B) ≥ % (

⋃
B)−

n∗ > 0, and so we have the following situation:
|———————|—————————-

%n∗ (A∗) ≤ 0 %n∗ (
⋃
B) > 0

Hence
A∗ 6∈ Bel%n ,

⋂
Bneg =

⋃
B ∈ Bel%n ,

which means thatBel%n is not deductively closed in the finite / countable / complete
sense. Similarly for a ranking % on a language L.

As it is obvious how to extend the following to rankings % on languages L,
these are not considered anymore.
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5. The Consistency Theorem Reformulated

Observe with Spohn (to appear)

OBSERVATION 5.1 (Spohn’s Observation). LetA be a field over the set of possibil-
ities W , and let % be a finitely / countably / completely minimitive ranking function
on A with % (· | ·) as its conditional ranking function. Then we have for all finite /
countable / uncountable B ⊆ A with

⋃
B 6= ∅,

min
{
%
(
A |
⋃
B
)

: A ∈ B
}

= 0,

and for all A,B ∈ A with B 6= ∅,

% (A |W ) = % (A) , % (∅ | A) =∞, % (B | A) = % (B ∩A)− % (A) .

Conversely, let % (· | ·) : A ×A → N ∪ {∞} and % be functions with these prop-
erties. Then % is a finitely / countably / completely minimitive ranking function on
A with % (· | ·) as its conditional ranking function, i.e. for all finite / countable /
uncountable B ⊆ A,

% (W ) = 0, % (∅) =∞, %
(⋃
B
)

= min {% (A) : A ∈ B}

and for all A,B ∈ A with B 6= ∅,

% (B | A) = % (B ∩A)− % (A) , % (∅ | A) =∞.

PROOF. ⇐: The first equation is called conditional consistency. We get it from
minimitivity and the definition of conditional ranking functions. The assumption
that

⋃
B 6= ∅ enters in the last step.

%
(⋃
B
)

= min {% (A) : A ∈ B} ⇔ min {% (A) : A ∈ B} − %
(⋃
B
)

= 0

⇔ min
{
% (A)− %

(⋃
B
)

: A ∈ B
}

= 0

⇔ min
{
%
(
A |
⋃
B
)

: A ∈ B
}

= 0

By the definition of a ranking function, % (W ) = 0 and % (∅) = ∞. By the defini-
tion of a conditional ranking function we have for non-emptyB ∈ A, % (B |W ) =
% (B ∩W ) − % (W ) and % (∅ |W ) = ∞. Combining these equations yields
% (A |W ) = % (A) for all A ∈ A. The last two equations to be established are
the defining clauses of conditional ranking functions.
⇒: For non-empty

⋃
B we have already seen the equivalence of conditional consis-

tency and the minimitivity axiom. % (∅) =∞ follows from % (A |W ) = % (A) and
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% (∅ | A) = ∞. It entails the minimitivity axiom for empty
⋃
B. As % (A |W ) =

% (A), the range of % is a subset of the range of % (· | ·). Together % (A |W ) =
% (A) and % (B | A) = % (B ∩A) − % (A) entail % (W ) = % (W ) − % (W ). The
last equation is equal to 0, because we have assumed that∞+−∞ = 0. The final
two clauses to be established hold by assumption.

As every ranking function, a conditional ranking function % (· | E) induces a
belief set Bel%(·|E). Bel%(·|E) is called a conditional belief set of %, viz. %’s belief
set conditional on E. So %’s belief set is its belief set conditional on W , Bel% =
Bel%(·|W ). {W} is %’s belief set conditional on any E ∈ A with % (E) = ∞,
including the empty set ∅. Thus, rather than believing everything conditional on a
proposition that she thinks is impossible, an epistemic agent refrains from believing
anything except the tautology in such a case. If one holds that even this is believing
too much given a (supposedly) contradictory condition, one can resort to one of
the following two options. Either one sticks to % (A | ∅) = 0 for all A including ∅
(% (A | B) = 0 for all A including ∅, and B with % (B) =∞) and takes the empty
set as the resulting belief set; or one restricts % (· | E) to non-emptyE (or toE with
a finite rank). Note, though, that the empty set is not deductively closed; and that
the function assigning 0 to all propositions including the empty set is not a ranking
function.

THEOREM 5.2 (Conditional Consistency Theorem). Let A be a field of proposi-
tions over the set of possibilities W . An agent’s entrenchment function % on A is a
finitely / countably / completely minimitive ranking function iff all of %’s conditional
belief sets are consistent and deductively closed in the finite / countable / complete
sense.

Conditional degrees of entrenchment are assumed to be numbers from N ∪
{∞}, and to be (defined as) differences of unconditional degrees of entrenchment.
Unconditional degrees of entrenchment are assumed to be (defined as) degrees of
entrenchment conditional on W ; and the conditional degree of entrenchment for
the empty set is assumed to be (defined as) ∞, for any condition including the
empty set itself. That is, % (· | ·) is assumed to be an N ∪ {∞}-valued function on
A×A such that for A,B ∈ A with B 6= ∅,

% (A |W ) = % (A) , % (∅ | A) =∞, % (B | A) = % (B ∩A)− % (A) .

PROOF. ⇒: LetA be a field of propositions over the set of possibilitiesW , and let
E ∈ A. Suppose an agent’s entrenchment function % onA is a finitely / countably /
completely minimitive ranking function. If % (E) <∞, then % (· | E) is a finitely /
countably / completely minimitive ranking function. So Bel%(·|E) is consistent and
deductively closed in the finite / countable / complete sense. If % (E) = ∞, then
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% (B | E) = 0 for ∅ 6= B ∈ A, and % (∅ | E) = ∞. Hence Bel%(·|E) = {W},
which is consistent and deductively closed in the finite, countable, and complete
sense.
⇐: Let A be a field of propositions over the set of possibilities W , let % be an
agent’s entrenchment function onA, and let B ⊆ A be finite / countable / uncount-
able. Suppose min {% (A |

⋃
B) : A ∈ B} > 0. Then

∀A ∈ B : A ∈ Bel%(·|⋃B), ⋂
Bneg =

⋃
B 6∈ Bel%(·|⋃B),

where Bneg =
{
A ∈ A : A ∈ B

}
. This means that Bel%(·|⋃B) is not deductively

closed in the finite / countable / complete sense.

The reformulation of ranking functions turns the conditional consistency the-
orem into a triviality. However, a lot is hidden in the assumptions, which are not
covered by the consistency vindication.

First, it is not clear how to vindicate % (A |W ) = % (A) for all A ∈ A by a
consistency argument, because it concerns the relation of two different functions.
There is relief insofar as this assumption can be replaced by the condition that
% (W ) = 0. As we have seen in the proof of the first theorem, the latter condition
can be vindicated by a consistency argument. But a formulation of ranking func-
tions purely in terms of restrictions on the conditional functions, and a definitional
link between conditional and unconditional ranking functions as above would be
preferable.

Second, as in the definition of conditional ranking functions, we have to assume
% (∅ | A) =∞.

The third assumption gives most content to the link between conditional and
unconditional ranking functions: % (B | A) = % (B ∩A) − % (A). Together with
conditional consistency it entails the monotonicity of unconditional ranking func-
tions w.r.t. set inclusion,

A ⊆ B ⇒ % (A) ≥ % (B) .

This in turn is equivalent to half of the minimitivity condition, viz.

%
(⋃
B
)
≤ min {% (A) : A ∈ B} .

As in the consistency theorem I have assumed that conditional, and hence uncon-
ditional, degrees of entrenchment take values from N ∪ {∞}. Together with the
definitional link between conditional and unconditional entrenchment functions,
this also entails the monotonicity w.r.t. set inclusion of ranking functions.

There is a final worry about the vindication of the ranking thesis in terms of
conditional consistency. It does not carry over to update rules.
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6. Conditionalization and Revision

If evidence comes in form of a proposition only, probabilism is extended by

UPDATE RULE 6.1 (Strict Conditionalization). If Pr (·) : A → < is your subjective
probability measure at time t and you learn E ∈ A, and no logically stronger
proposition, between t and t′, then your subjective probability measure at time t′

should be PrE (·) : A → <,

PrE (·) = Pr (· | E) = Pr (· ∩ E)÷ Pr (E) if Pr (E) > 0.

Note that strict conditionalization does not satisfy the principle of categorical
matching. If Pr (E) = 0, then Pr (· | E) is not defined. Even for regular Pr, and
even if E is assumed to be non-empty, strict conditionalization does not strictly
satisfy the principle of categorical matching. Pr (· | E) is not regular when Pr is,
but only regular conditional on E, i.e. such that Pr (A | E) > 0 for all A ∈ A with
A ∩ E 6= ∅ rather than for all A ∈ A with A 6= ∅.

The corresponding update rule in ranking theory is

UPDATE RULE 6.2 (Plain Conditionalization). If % (·) : A → N ∪ {∞} is your
ranking function at time t and you learn E ∈ A, and no logically stronger proposi-
tion, between t and t′, then your ranking function at time t′ should be %E (·) : A →
N ∪ {∞}, %E (·) = % (· | E), where for all B ∈ A with B 6= ∅,

%E (B) = % (B ∩ E)− % (E) and % (∅ | E) =∞,

and∞− n =∞ and∞+−∞ = 0.

Plain conditionalization satisfies the principle of categorical matching and leads
from one ranking function to another ranking function. As with strict conditional-
ization, regular ranking functions are only turned into conditionally regular ranking
functions.

Jeffrey’s insight is that evidence usually does not come in form of a proposition
only. Strictly speaking, we (almost) never learn a proposition. Rather, evidence is
such that it changes our degrees of belief for the propositions of a partition of the
set of possibilities. In this case probabilism is extended by

UPDATE RULE 6.3 (Jeffrey Conditionalization). If Pr (·) : A → < is your subjec-
tive probability measure at time t and between t and t′ your subjective probabilities
on the partition {Ei ∈ A : i ∈ I} change to pi ∈ [0, 1] with

∑
ipi = 1 (pi = 0 for

Pr (Ei) = 0 and pi = 1 for Pr (Ei) = 1), and your positive subjective probabili-
ties change on no finer partition, then your subjective probability measure at time
t′ should be PrEi→pi (·) : A → <,

PrEi→pi (·) =
∑

i Pr (· | Ei) · pi.
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See Jeffrey (1983).
As dictated by the translational device from section 2, the ranking analogue is

UPDATE RULE 6.4 (Spohn Conditionalization). If % (·) : A → N ∪ {∞} is
your ranking function at time t and between t and t′ your ranks on the partition
{Ei ∈ A : i ∈ I} change to ni ∈ N ∪ {∞} with mini {ni} = 0 (ni = ∞ for
Ei = ∅ and ni = 0 forEi = W ), and your finite ranks change on no finer partition,
then your ranking function at time t′ should be %Ei→ni (·) : A → N ∪ {∞},

%Ei→ni (·) = min i {% (· | Ei) + ni} .

As the reader will have noticed, Spohn conditionalization is more general than
Jeffrey conditionalization in two respects. First, the parameters ni are required to
be 0 and∞ only for W and ∅, respectively, whereas the parameters pi are required
to be 1 and 0 for all Ei (not only W and ∅) with Pr (Ei) = 1 and Pr (Ei) = 0,
respectively. Second, in the probabilistic case the indices i range de facto over the
natural numbers N , because there can only be countable many positive parameters
pi (otherwise

∑
i pi > 1). In the ranktheoretic case the condition mini {ni} = 0

does not impose such a restriction.
It is important to note that the parameters pi and ni characterize the agent’s

posterior degree of belief and disbelief in theEi, respectively, and not the evidential
impact of what happens between t and t′ on the agent’s epistemic state. Jeffrey
and Spohn conditionalization focus on the result of the update process, and so
PrEi→pi (Ei) = pi and %Ei→ni (Ei) = ni. In this sense they do not characterize
the evidence as such, but rather the result at time t′ of the interaction between the
prior degree of (dis)belief function at time t and the evidence received between t
and t′.

Jeffrey’s suggestion is that evidence might even come in form of a new degree
of belief function over a subfield of the original field of propositions. In this case
probabilism is extended by

UPDATE RULE 6.5 (Jeffrey Revision). If Pr (·) : A → < is your subjective proba-
bility measure at time t and between t and t′ your subjective probability measure on
the field E ⊆ A changes to Pr′ (·) : E → < (Pr′ (E) = Pr (E) if Pr (E) ∈ {0, 1}),
and the positive part of your subjective probability measure changes on no field B
with E ⊂ B ⊆ A, then your subjective probability measure at time t′ should be
PrPr→Pr′ (·) : A → <,

Pr Pr→Pr′ (·) =
∑

i Pr (· | Ei) · Pr ′ (Ei) ,

where {Ei ∈ E : i ∈ N} is a set of exclusive propositions with Pr′ (Ei) > 0 for all
i ∈ N for which there is no superset {Bj ∈ E : j ∈ N} of exclusive propositions
such that Pr′ (Bj) > 0 for all j ∈ N .
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Jeffrey revision satisfies the principle of categorical matching, because it is
assumed that propositions with extreme probabilities keep their extreme probabili-
ties. If we start with a regular probability measure, Jeffrey conditionalization leads
to another regular probability measure, provided we update by a regular probability
measure. Strict coherence urges us to do so whenever we can (but we can’t always).

The ranking analogue is

UPDATE RULE 6.6 (Spohn Revision). If % (·) : A → N ∪ {∞} is your ranking
function at time t and between t and t′ your ranking function on the field E ⊆ A
changes to %′ (·) : E → N ∪ {∞}, and the finite part of your ranking function
changes on no field B with E ⊂ B ⊆ A, then your ranking function at time t′

should be %%→%′ (·) : A → N ∪ {∞},

%%→%′ (·) = min
{
% (· | Ei) + %′ (Ei) : i ∈ I

}
,

where {Ei ∈ E : i ∈ I} is a set of propositions with %′ (Ei) < ∞ for all i ∈ I for
which there is no proper superset {Bj ∈ E : j ∈ J} of propositions with %′ (Ej) <
∞ for all j ∈ J .

Spohn revision satisfies the principle of categorical matching (without assum-
ing that propositions with extreme ranks keep their extreme ranks). Furthermore,
Spohn revision turns regular ranking functions into regular ranking functions, pro-
vided you update by a regular ranking function. The good news is you always
can.

Field (1978) (see also Garber 1980) for the probabilistic side, and Shenoy
(1991) for the ranktheoretic side propose update rules characterizing the evidence
as such, independently of the prior degree of belief function.

UPDATE RULE 6.7 (Field Conditionalization). If Pr (·) : A → < is your subjective
probability measure at time t and between t and t′ your subjective probabilities
on the partition {Ei ∈ A : i ∈ N} change with strength αi ∈ (−∞,∞), where∑

iαi = 0, and your positive subjective probabilities change on no finer partition,
then your subjective probability measure at time t′ should be PrEi↑αi

(·) : A → <,

PrEi↑αi
(·) =

∑
ie
αi · Pr (· ∩ Ei)∑
ieαi · Pr (Ei)

=
∑

i Pr (· ∩ Ei) ·
eαi

s
, s =

∑
ie
αi · Pr (Ei)

=
∑

i Pr (· | Ei) · qi, qi =
eαi · Pr (Ei)

s
,
∑

iqi = 1

= PrEi→qi (·) .
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Field conditionalization leads from one probability measure to another proba-
bility measure. Furthermore, Field conditionalization leads from one regular prob-
ability measure to another regular probability measure. Both these things would be
different if the αi were allowed to equal∞. As Field (1978: 363) observes, the αi
cannot be the values of a probability measure. This is the reason why there is no
Field revision.

UPDATE RULE 6.8 (Shenoy Conditionalization). If % (·) : A → N ∪ {∞} is
your ranking function at time t and between t and t′ your ranks on the partition
{Ei ∈ A : i ∈ I} change with strength zi ∈ N , where min {zi : i ∈ I} = 0, and
your finite ranks change on no finer partition, then your ranking function at time t′

should be %Ei↑zi (·) : A → N ∪ {∞},

%Ei↑zi (·) = min {% (· ∩ Ei) + zi −m} , m = min {zi + % (Ei) : i ∈ N} .

Shenoy conditionalization leads from one ranking function to another ranking
function, and from one regular ranking function to another regular ranking func-
tion. These claims depend on the assumption that the zi are finite. As an aside,
note that plain conditionalization results as a limiting (zi → ∞) case of Shenoy
conditionalization, whereas it is a special (zi = ∞) case of Spohn conditionaliza-
tion. The same is true for strict conditionalization in relation to Field and Jeffrey
conditionalization, respectively (Field 1978: 365).

Shenoy conditionalization is result oriented in the sense that %Ei↑zi (Ei) −
% (Ei) = zi − m. Note that there is no loss of generality in restricting the pa-
rameters zi to N rather than the set of integers Z. A change in the rank of E ∈ A
with strength −z, z ∈ N , is nothing but a change in the rank of E ∈ A with
strength z. More importantly, as Shenoy (1991: 173) observes, in contrast to the
probabilistic case, where the αi cannot be described as the values of a probability
measure, the zi now can be described as the values of a ranking function. Hence
there also is

UPDATE RULE 6.9 (Shenoy Revision). If % (·) : A → N ∪ {∞} is your ranking
function at time t and between t and t′ your ranking function on the field E ⊆ A
changes by %′ (·) : E → N ∪ {∞}, and the finite part of your ranking function
changes on no field B with E ⊂ B ⊆ A, then your ranking function at time t′

should be %%↑%′ (·) : A → N ∪ {∞},

%%↑%′ (·) = min i

{
% (· ∩ Ei) + %′ (Ei)−m

}
, m = min i

{
%′ (Ei) + % (Ei)

}
,

where {Ei ∈ E : i ∈ I} is a set of exclusive propositions with %′ (Ei) < ∞ for
all i ∈ I for which there is no superset {Bj ∈ E : j ∈ J} of propositions with
%′ (Ej) <∞ for all j ∈ J .
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Shenoy revision satisfies the principle of categorical matching and leads from
one ranking function to another. However, in order to assure this we have to make
some cosmetic adjustments for the case of m = ∞, or ruling it out by fiat. Al-
ternatively, we could assume the new ranking function to be regular. In any case,
Shenoy revision with two regular ranking functions gives rise to another regular
ranking function.

Just as Jeffrey and Field conditionalization are interdefinable, so are Spohn and
Shenoy revision (and hence conditionalization):

%%→%′ (·) = %%↑%′′ (·) , %′′ (·) = %′ (·)− % (·) .

There is the Lewis-Teller Dutch Book Argument for strict conditionalization (Teller
1973), and there is Skyrms’ Dutch Book Argument for Jeffrey conditionalization
(Skyrms 1987). What about a Consistency Argument for plain and Spohn condi-
tionalization as well as Spohn and Shenoy revision?

7. Consistency Theorems for Conditionalization and Revision

An agent’s conditional degree of entrenchment for a proposition A conditional on
a proposition E is defined as the number of independent and mp-reliable informa-
tion sources providing the conditional information A given E that it takes for the
agent to give up her conditional disbelief that A given E. If the agent does not
conditionally disbelieve A given E to begin with, it does not take any conditional
information source providing the conditional information A given E to make her
stop conditionally disbelieving A given E. In this case her conditional degree of
entrenchment for A given E is 0. If no finite number of conditional information
sources is able to make the agent stop conditionally disbelieving A given E, her
conditional degree of entrenchment for A given E is∞. To receive the conditional
information A given E is, among others, to receive the conditional information B
given E, for any proposition B ⊇ A. To independently and mp-reliably receive
n times the conditional information A given E is, among others, to independently
and mp-reliably receive n times the conditional information B given E. It is not
to independently and mp-reliably receive m times the conditional information B
given E, for some m 6= n. If you tell me that the temperature today at noon will
be 93◦ Fahrenheit provided it does not rain, you also tell me that the temperature
today at noon will be between 90◦ and 96◦ Fahrenheit provided it does not rain.
The reliability with which I get the second conditional information is exactly the
same as the reliability with which I get the first conditional information (it is still
you who tells me so). The difference between the two is a difference in conditional
informational content.
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THEOREM 7.1 (Consistency Theorem for Plain Conditionalization). Let A be a
field of propositions over the set of possibilities W . Suppose evidence comes in
form of a proposition only, and an agent with a finitely / countably / completely
minimitive ranking function % on A learns E ∈ A in the sense that her new en-
trenchment function %′ on A is such that %′ (E) = 0 and %′

(
E
)

=∞, and there is
no logically stronger proposition with this property. Then the following are equiv-
alent:

1. The agent updates % according to plain conditionalization.

2. Every possible current or future belief set (unconditional or conditional on
E) based on %′ is consistent and deductively closed in the finite / countable /
complete sense.

3. The agent’s degrees of entrenchment conditional on E remain unaffected, and
%′ is a finitely / countably / completely minimitive ranking function.

Conditional degrees of entrenchment are assumed to be numbers from N ∪ {∞}.

THEOREM 7.2 (Consistency Theorem for Spohn Conditionalization). Let A be a
field of propositions over the set of possibilities W . Suppose evidence comes in
form of new degrees of entrenchment for the propositions of a partition of W , and
an agent with a finitely / countably / completely minimitive ranking function % onA
changes her degrees of entrenchment on {Ei ∈ A : i ∈ I} to ni ∈ N ∪ {∞} with
mini {ni} = 0 (ni =∞ for Ei = ∅ and ni = 0 for Ei = W ) in the sense that her
new entrenchment function %′ on A is such that %′ (Ei) = ni, and her finite ranks
change on no finer partition. Then the following are equivalent:

1. The agent updates % according to Spohn conditionalization.

2. Every possible current or future belief set (unconditional or conditional on
some Ei) based on %′ is consistent and deductively closed in the finite / count-
able / complete sense.

3. The agent’s degrees of entrenchment conditional on eachEi remain unaffected,
and %′ is a finitely / countably / completely minimitive ranking function.

Conditional degrees of entrenchment are assumed to be numbers from N ∪ {∞}.

THEOREM 7.3 (Consistency Theorem for Spohn Revision). Let A be a field of
propositions over the set of possibilities W . Suppose evidence comes in form of
a new entrenchment function on a subfield E of A, and an agent with a finitely /
countably / completely minimitive ranking function % on A adopts %∗ : E → N ∪
{∞} as her new entrenchment function on E in the sense that her new entrenchment
function %′ on A coincides with %∗ on E , and the finite part of % does not change
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on a field B with E ⊂ B ⊆ A. Let {Ei ∈ E : i ∈ I} be a set of propositions with
%∗ (Ei) < ∞ for all i ∈ I for which there is no proper superset {Ej ∈ E : j ∈ J}
of propositions with %∗ (Ej) <∞ for all j ∈ J . Then the following are equivalent:

1. The agent updates % according to Spohn revision.

2. Every possible current or future belief set (unconditional or conditional on
some Ei) based on %′ is consistent and deductively closed in the finite / count-
able / complete sense.

3. The agent’s degrees of entrenchment conditional on eachEi remain unaffected,
and %′ is a finitely / countably / completely minimitive ranking function.

Conditional degrees of entrenchment are assumed to be numbers from N ∪ {∞}.

PROOF. 1 ⇒ 2: If the agent updates % according to Spohn revision, her entrench-
ment function after adopting %∗ on E is %%→%∗ . %%→%∗ is a finitely / countably /
completely minimitive ranking function if % is. So each current belief set (uncon-
ditional or conditional on some Ei) based on %%→%∗ is consistent and deductively
closed in the finite / countable / complete sense. Moreover, the same is true for
every possible future belief set (unconditional or conditional on some Ei). For, by
assumption, evidence comes in form of a new entrenchment function on a subfield
of the original field, and Spohn revision leads from one finitely / countably / com-
pletely minimitive ranking function to another.
2⇒ 3: Suppose the agent adopts %′ as her entrenchment function onA after adopt-
ing %∗ on E . If %′ is no ranking function, we proceed as in the proof of theorem
4.2.

By assumption, there is no proper superfield of E on which the positive part of
% changes between t and t′. So for any A ∈ A and all Ei: if A 6∈ Bel%(·|Ei) and
A ∈ Bel%′(·|Ei), then Ei ⊆ A; and if A ∈ Bel%(·|Ei) and A 6∈ Bel%′(·|Ei), then
Ei ⊆ A.

Now suppose the agent changes her degrees of entrenchment conditional on
some Ei. Then % (A | Ei) 6= %′ (A | Ei) for some A ∈ A.
(1) Suppose first % (A | Ei) < %′ (A | Ei).
(1.1) If % (A | Ei) = 0, i.e. A 6∈ Bel%(·|Ei), then %′ (A | Ei) > 0, i.e. A ∈
Bel%′(·|Ei). But then Ei ⊆ A, and so Bel%(·|Ei) is not deductively closed in the
finite, countable, or complete sense – contradicting the assumption that % is a rank-
ing function.
(1.2) If % (A | Ei) = n > 0, we have the following situation:

|——————|————————–|—————
0 % (A | Ei) = n %′ (A | Ei) = n′ > n

Assume the agent receives evidence equivalent to being given the conditional in-
formation A given Ei by at least n, but fewer than n′ independent and mp-reliable
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information sources. The resulting conditional entrenchment functions %n∗ (· | Ei)
and %′n∗ (· | Ei) after independently and mp-reliably receiving n∗ ∈ [n, n′) times
the conditional information A given Ei are such that %n∗ (A | Ei) = % (A | Ei) −
n∗ = 0 and %′n∗ (A | Ei) = %′ (A | Ei) − n∗ > 0. Now we have the following
situation:

|————————|————————–
%n∗ (A | Ei) ≤ 0 %′n∗ (A | Ei) > 0
Hence A 6∈ Bel%n∗ (·|Ei) and A ∈ Bel%′

n∗ (·|Ei), and so Ei ⊆ A. Therefore
Bel%n∗ (·|Ei) is not deductively closed in the finite, countable, or complete sense
– contradicting the assumption that % is a ranking function.
(2) Now suppose % (A | Ei) > %′ (A | Ei).
(2.1) If %′ (A | Ei) = 0, i.e. A 6∈ Bel%′(·|Ei), then % (A | Ei) > 0, i.e. A ∈
Bel%(·|Ei). But then Ei ⊆ A, and so Bel%(·|Ei) is inconsistent in the finite, count-
able, and complete sense if it is deductively closed in the finite, countable, or com-
plete sense – contradicting the assumption that % is a ranking function.
(2.2) If %′ (A | Ei) = n > 0, we have the following situation:

|——————|———————–|—————–
0 %′ (A | Ei) = n % (A | Ei) = n′ > n

Assume the agent receives evidence equivalent to being given the conditional in-
formation A given Ei by at least n, but fewer than n′ independent and mp-reliable
information sources. The resulting conditional entrenchment functions %n∗ (· | Ei)
and %′n∗ (· | Ei) after independently and mp-reliably receiving n∗ ∈ [n, n′) times
the conditional information A given Ei are such that %n∗ (A | Ei) = % (A | Ei) −
n∗ > 0 and %′n∗ (A | Ei) = %′ (A | Ei) − n∗ = 0. Now we have the following
situation:

|————————|——————–
%′n∗ (A | Ei) ≤ 0 %n∗ (A | Ei) > 0
Hence A 6∈ Bel%′

n∗ (·|Ei) and A ∈ Bel%n∗ (·|Ei), and therefore Ei ⊆ A. But then
Bel%n∗ (·|Ei) is inconsistent in the finite, countable, and complete sense if it is de-
ductively closed in the finite, countable, or complete sense – contradicting the as-
sumption that % is a ranking function.
3 ⇒ 1: Suppose the agent adopts the finitely / countably / completely minim-
itive %′ as her ranking function on A after adopting %∗ on E . By assumption
we have for all Ei: % (· | Ei) = %′ (· | Ei). As % (· | Ei) = %%→%∗ (· | Ei) and
%%→%∗ (Ei) = %′ (Ei), this entails %%→%∗ (A) = %′ (A) for all A ∈ A.

THEOREM 7.4 (Consistency Theorem for Shenoy Conditionalization). Let A be a
field of propositions over the set of possibilities W . Suppose evidence comes in
form of new degrees of entrenchment for the propositions of a partition of W , and
an agent with a finitely / countably / completely minimitive ranking function % on
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A changes her degrees of entrenchment on {Ei ∈ A : i ∈ I} by zi ∈ N , where
min {zi : i ∈ I} = 0, in the sense that her new entrenchment function %′ on A is
such that %′ (Ei) = % (Ei) + zi − m, m = min {zi + % (Ei) : i ∈ N} , and her
finite ranks change on no finer partition. Then the following are equivalent:

1. The agent updates % according to Shenoy conditionalization.

2. Every possible current or future belief set (unconditional or conditional on
some Ei) based on %′ is consistent and deductively closed in the finite / count-
able / complete sense.

3. The agent’s degrees of entrenchment conditional on eachEi remain unaffected,
and %′ is a finitely / countably / completely minimitive ranking function.

Conditional degrees of entrenchment are assumed to be numbers from N ∪ {∞}.

THEOREM 7.5 (Consistency Theorem for Shenoy Revision). Let A be a field of
propositions over the set of possibilities W . Suppose evidence comes in form of an
additional entrenchment function on a subfield E ofA, and an agent with a finitely /
countably / completely minimitive ranking function % onA revises % by the finitely /
countably / completely minimitive ranking function %∗ : E → N ∪{∞} in the sense
that her new entrenchment function %′ onA coincides with %%↑%∗ on E , and the finite
part of % does not change on a field B with E ⊂ B ⊆ A. Let {Ei ∈ E : i ∈ I} be
a set of propositions with %∗ (Ei) < ∞ for all i ∈ I for which there is no proper
superset {Ej ∈ E : j ∈ J} of propositions with %∗ (Ej) < ∞ for all j ∈ J . Then
the following are equivalent:

1. The agent updates % according to Shenoy revision.

2. Every possible current or future belief set (unconditional or conditional on
some Ei) based on %′ is consistent and deductively closed in the finite / count-
able / complete sense.

3. The agent’s degrees of entrenchment conditional on eachEi remain unaffected,
and %′ is a finitely / countably / completely minimitive ranking function.

Conditional degrees of entrenchment are assumed to be numbers from N ∪ {∞}.

PROOF. 1⇒ 2: If the agent updates % according to Shenoy revision, her entrench-
ment function after revision by %∗ is %%↑%∗ . Subject to cosmetic adjustments, %%↑%∗
is a finitely / countably / completely minimitive ranking function if % is. So each
current belief set (unconditional or unconditional on some Ei) based on %%↑%∗ is
consistent and deductively closed in the finite / countable / complete sense. More-
over, the same is true for every possible future belief set (unconditional or condi-
tional on some Ei). For, by assumption, evidence comes in form of an additional
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entrenchment function on some subfield of the original field of propositions, and,
subject to cosmetic adjustments, Shenoy revision leads from one finitely / count-
ably / completely minimitive ranking function to another.
2⇒ 3: Suppose the agent adopts %′ as her entrenchment function after revision by
%∗ on E . If %′ is no ranking function, we proceed as in the proof of theorem 4.2.

By assumption, there is no proper superfield of E on which the positive part of
% changes between t and t′. So for any A ∈ A and all Ei: if A 6∈ Bel%(·|Ei) and
A ∈ Bel%′(·|Ei), then Ei ⊆ A; and if A ∈ Bel%(·|Ei) and A 6∈ Bel%′(·|Ei), then
Ei ⊆ A.

Now suppose the agent changes her degrees of entrenchment conditional on
some Ei. Then % (A | Ei) 6= %′ (A | Ei) for some A ∈ A.
(1) Suppose first % (A | Ei) < %′ (A | Ei).
(1.1) If % (A | Ei) = 0, i.e. A 6∈ Bel%(·|Ei), then %′ (A | Ei) > 0, i.e. A ∈
Bel%′(·|Ei). But then Ei ⊆ A, and so Bel%(·|Ei) is not deductively closed in the
finite, countable, or complete sense – contradicting the assumption that % is a rank-
ing function.
(1.2) If % (A | Ei) = n > 0, we have the following situation:

|——————|————————–|———————-
0 % (A | Ei) = n %′ (A | Ei) = n′ > n

Assume the agent receives evidence equivalent to being given the conditional in-
formation A given Ei by at least n, but fewer than n′ independent and mp-reliable
information sources. The resulting conditional entrenchment functions %n∗ (· | Ei)
and %′n∗ (· | Ei) after independently and mp-reliably receiving n∗ ∈ [n, n′) times
the conditional information A given Ei are such that %n∗ (A | Ei) = % (A | Ei) −
n∗ = 0 and %′n∗ (A | Ei) = %′ (A | Ei) − n∗ > 0. Now we have the following
situation:

|————————|————————–
%n∗ (A | Ei) ≤ 0 %′n∗ (A | Ei) > 0
Hence A 6∈ Bel%n∗ (·|Ei) and A ∈ Bel%′

n∗ (·|Ei), and so Ei ⊆ A. Therefore
Bel%n∗ (·|Ei) is not deductively closed in the finite, countable, or complete sense
– contradicting the assumption that % is a ranking function.
(2) Now suppose % (A | Ei) > %′ (A | Ei).
(2.1) If %′ (A | Ei) = 0, i.e. A 6∈ Bel%′(·|Ei), then % (A | Ei) > 0, i.e. A ∈
Bel%(·|Ei). But then Ei ⊆ A, and so Bel%(·|Ei) is inconsistent in the finite, count-
able, and complete sense if it is deductively closed in the finite, countable, or com-
plete sense – contradicting the assumption that % is a ranking function.
(2.2) If %′ (A | Ei) = n > 0, we have the following situation:

|——————|———————–|———————-
0 %′ (A | Ei) = n % (A | Ei) = n′ > n
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Assume the agent receives evidence equivalent to being given the conditional in-
formation A given Ei by at least n, but fewer than n′ independent and mp-reliable
information sources. The resulting conditional entrenchment functions %n∗ (· | Ei)
and %′n∗ (· | Ei) after independently and mp-reliably receiving n∗ ∈ [n, n′) times
the conditional information A given Ei are such that %n∗ (A | Ei) = % (A | Ei) −
n∗ > 0 and %′n∗ (A | Ei) = %′ (A | Ei) − n∗ = 0. Now we have the following
situation:

|————————|————————————–
%′n∗ (A | Ei) ≤ 0 %n∗ (A | Ei) > 0
Hence A 6∈ Bel%′

n∗ (·|Ei) and A ∈ Bel%n∗ (·|Ei), and therefore Ei ⊆ A. But then
Bel%n∗ (·|Ei) is inconsistent in the finite, countable, and complete sense if it is de-
ductively closed in the finite, countable, or complete sense – contradicting the as-
sumption that % is a ranking function.
3 ⇒ 1: Suppose the agent adopts the finitely / countably / completely minimi-
tive %′ as her ranking function on A after revision by %∗ on E . By assumption
we have for all Ei: % (· | Ei) = %′ (· | Ei). As % (· | Ei) = %%↑%∗ (· | Ei) and
%%↑%∗ (Ei) = % (Ei) + %∗ (Ei) − min {% (Ei) + %∗ (Ei) : i ∈ I} = %′ (Ei), this
entails %%↑%∗ (A) = %′ (A).

Note that the⇒ part of the proof of theorem 4.2 depends on these theorems!

8. Conclusion

According to the Consistency Argument, to violate the ranking axioms is to possi-
bly have beliefs that are not both consistent and deductively closed. Most likely it is
not epistemically defective to have such beliefs. What is more likely to be epistem-
ically defective is to knowingly or believingly have such beliefs. The ranking ax-
ioms assume the agent to be logically omniscient. Among others, this assumption
shows up by taking propositions rather than sentences to be the objects of belief.
If we add to this the assumption that the epistemic agent is positively introspec-
tive in the sense that she knows or believes her beliefs to be inconsistent whenever
they are5, the distinction between inconsistency and known or believed inconsis-
tency breaks down: to have beliefs that are inconsistent or not deductively closed
is to knowingly or believingly have such beliefs. Given a link between degrees
of disbelief and degrees of entrenchment, the normative force of the Consistency
Argument is then proportional to how odd one takes the possibility of knowingly
or believingly having beliefs that are not both consistent and deductively closed.

5I am grateful to Eric Swanson for pointing out to me that the distinction between inconsistency
and known or believed inconsistency breaks down only if we assume the agent to be positively intro-
spective.
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