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Abstract

The problem adressed in this paper is “the main epistemic problem con-
cerning science”, viz. “the explication of how we compare and evaluate the-
ories [...] in the light of the available evidence” (van Fraassen 1983, 27).

We first present the general plausibility-informativeness theory of theory
evaluation. In a nutshell, the message is (1) that there are two epistemic
values a theory should exhibit: truth and informativeness — measured respec-
tively by a truth indicator and a strength indicator; (2) that these two values
are conflicting in the sense that the former is a decreasing and the latter an
increasing function of the logical strength of the theory to be evaluated; and
(3) that in evaluating a given theory by the available data one should weigh
between these two conflicting aspects in such a way that any surplus in in-
formativeness succeeds, if the difference in plausibility is small enough.

Particular accounts of this general theory arise by inserting particular
strength and truth indicators. The theory is spelt out for the Bayesian paradigm;
it is then compared with incremental Bayesian confirmation theory. The first
part closes by discussing a few epistemic problems in the philosophy of sci-
ence in the light of the present approach. In particular, it is briefly indicated
how the present account gives rise to a new analysis of Hempel’s conditions
of adequacy for any relation of confirmation (Hempel 1945), differing from
the one Carnap gave in §87 of his (1962).

The second part discusses the question of justification any theory of the-
ory evaluation has to face: Why should one stick to theories with high val-
ues rather than to any other theories? The answer given by the Bayesian
version of the account presented in the first part is that one should accept
theories given high values, because, in the medium run, theory evaluation
almost surely takes one to the most informative among all true theories when
presented separating data. The comparison between the present account and
incremental Bayesian confirmation theory is continued.



1 The Problem

The problem adressed in this paper is this:

the main epistemic problem concerning science ... is the explication of
how we compare and evaluate theories ... in the light of the available
evidence ... (van Fraassen 1983, 27)

In other and more mundane words, the question is: What is a good theory, and
when is one theory better than another theory, given these data and those back-
ground assumptions. Let us call this the problem of a theory of theory evaluation.
Its quantitative version can be put as follows:

e One is given a hypothesis or theory H, a set of data — the evidence — E, and
some background information B.

e The question is: How good is H in light of E' and B? lL.e., what is the value
of hypothesis H in view of evidence E and background information B?

e An answer to this quantitative question consists in the definition of a (set A
of) function(s) a such that (for each a in A:) a (H, E, B) measures the value
of H in view of F and B, i.e. how good H is in light of E and B.

Given this formulation of our problem, a theory of theory evaluation need not ac-
count for the way in which scientists arrive at their theories nor how they (are to)
gather evidence nor what they may assume as background information. Further-
more, the purpose of this evaluation is that we accept those theories (among the
ones we can or have to choose from) which score highest in the evaluation relative
to the available data (as discussed in more detail below, the term ‘accept’ is not
used in the sense of believe or hold to be true). This makes clear that a proper
treatment of the whole problem not only explicates how we should evaluate the-
ories in the light of the available evidence (sections 2-6); a proper treatment also
Jjustifies this normative theory of theory evaluation by answering the question why
we should accept those theories that score highest (sections 7-8).

2 Theory, Evidence, and Background Information

In order for the above characterisation to be precise one has to make clear what
is meant by theory, evidence, and background information. In what follows it is
assumed that for every hypothesis or theory H, every piece of evidence F, and
every body of background information B there exist finite axiomatizations (in a



first-order language including identity and function symbols) Ay, Ag, and Ap,
respectively, which formulate H, E, and B, respectively.

In general, not all finite sets of statements are formulations of a piece of ev-
idence or a scientific theory. Scientific theories, for instance, do not speak about
particular objects of their domain of investigation, but express general regularities
or patterns. Data, on the other hand, only speak about finitely many objects of the
relevant domain — we are damned qua humans to be able to observe only finitely
many objects.

However, for the general theory outlined below (and its Bayesian version) it
suffices that these be finitely axiomatizable. As theory evaluation turns out to be
closed under equivalence transformations, H, F, and B can and will be identified
with one of their formulations Ay, Ag, and Apg, respectively.

3 Conflicting Concepts of Confirmation

Though some take theory evaluation to be the epistemic problem in philosophy
of science, there is no established branch adressing exactly this problem. What
comes closest is what is usually called confirmation theory. So let us briefly look
at confirmation theory, and see what insights we can get from there concerning our
problem.

Confirmation has been a hot topic in the philosophy of science for more than
60 years now, starting with such classics as Carl Gustav Hempel’s “Studies in the
Logic of Confirmation” (1945) and Rudolf Carnap’s work on Inductive Logic and
Probability (Carnap 1962). Roughly speaking, the last century has seen two main
approaches to confirmation:

e On the one hand, there is the qualitative theory of Hypothetico-Deductivism
HD (associated with Karl R. Popper), according to which a hypothesis I/
is confirmed by evidence E relative to background information B iff the
conjunction of H and B logically implies F in some suitable way — the
latter depending on the version of HD under consideration.

e On the other hand, there is the quantitative theory of probabilistic Inductive
Logic IL (associated with Rudolf Carnap), according to which H is con-
firmed by E relative to B to degree r iff the probability of H given E and B
is greater than or equal to r. The corresponding qualitative notion of confir-
mation is that &/ “absolutely” IL-confirms H relative to B iff the probabiliy
of H given E and B is greater than some fixed value 7 in [.5,1).!

!"This is not the way Carnap defined qualitative IL-confirmation in chapter VII of his (1962).



However, despite great efforts there is still no generally accepted definition of (de-
gree of) confirmation. One reason for this is that there are at least two conflicting
concepts of confirmation: A concept of confirmation aiming at informative theo-
ries; and a concept of confirmation aiming at plausible or true theories. These two
concepts of confirmation are conflicting in the sense that the former is an increas-
ing and the latter a decreasing function of the logical strength of the theory to be
evaluated.

Definition 1 A relation |~ C LXLXL on a language (set of propositional or first-
order sentences closed under negation and conjunction) L is an informativeness
relation on L iff for all sentences H, H',E, B in L:

B,E|~H, HVFH = BE|~H.
|~ C L x L x L is a plausibility relation on L iff for all H,H', E, B in L:
B,E|~H, H+H = BE|~H,

where = C o (L) x L is the classical deducibility relation (and singletons of for-
mulae are identified with the formula they contain).

The idea is that a sentence or proposition is more informative, the more possibilities
it excludes. Hence, the logically stronger a sentence, the more informative it is. On
the other hand, a sentence is more plausible, the fewer possibilities it excludes, i.e.
the more possibilities it includes. Hence, the logically weaker a sentence, the more
plausible it is. The qualitative counterparts of these two comparative principles are
the two defining clauses above: If H informs about E given B, then so does any
logically stronger sentence H'. Similarly, if H is plausible given E and B, then so
is any logically weaker sentence H'.

According to HD, E HD-confirms H relative to B iff the conjunction of H
and B logically implies E. Hence, if E HD-confirms H relative to B, and if H’
logically implies H, then E HD-confirms H' relative to B. So HD-confirmation is
an informativeness relation. According to IL, £ absolutely IL-confirms H relative
to B iff Pr(H | E, B) > r, for some value r in [.5,1). Hence, if E absolutely
IL-confirms H relative to B and H logically implies H’, then F absolutely IL-
confirms H' relative to B. So absolute IL-confirmation is a plausibility relation.

There he required that the probability of H given F and B be greater than that of H given B in order
for E to qualitatively IL-confirm H relative to B. Nevertheless, the above is the natural qualitative
counterpart for the quantitative notion of the degree of absolute confirmation, i.e. Pr (H | E A B).
The reason is that later on the difference between Pr (H | E A B) and Pr (H | B) —in whatever way
it is measured (Fitelson 1999) — was taken as the degree of incremental confirmation, and Carnap’s
proposal is the natural qualitative counterpart of this notion of incremental confirmation.



The epistemic values behind these two concepts are, of course, informativeness
on the one hand and truth or plausibility on the other. First, we want to know what
is going on “out there”, and hence we aim at true theories — more precisely, at
theories that are true in the world we are in. Second, we aim at informative theories
— more precisely, at theories that inform us about the world we are in. But usually
we do not know which world we are in. All we have are some data. So we base
our evaluation of the theory we are concerned with on the plausibility that theory
is true in the actual world given that the actual world makes the data true; and on
how much the theory informs us about the actual world given that the actual world
makes the data true.

Turning back to the question we started from — What is a good theory? — we can
say the following: According to HD, a good theory is informative, whereas IL says
good theories are true. Putting together the insights of last century’s confirmation
theory, the answer of the new millenium is this: A good theory is both informative
and true. Consequently, we should make these aims explicit in the evaluation of
theories.

4 Indicating Strength and Indicating Truth

Given evidence F and background information B, a hypothesis H should be both
as informative and as plausible as possible. A strength indicator s measures how
much H informs us about E' given B; a truth indicator t measures how plausible
it is that H is true in view of ¥ and B. Of course, not any function will do.

Definition 2 A possibly partial function f : L x L x L — R is a truth indicator
on the language L iff for all sentences H, H', E, B in L for which f (H, E, B) and
f (H', E, B) are defined:

B,E+-H—H' = f(HE,B)<f(H, EB).

Observation 1 Let f be a truth indicator on L. Then we have for all H, H', E, B
in L for which f (H,E,B), f (~H, E,B), and f (H', E, B) are defined:

BE-H = f(ﬁH,E,B)gf(H’,E,B) < f(H,E,B).

The range of f is taken to be the set of real numbers . The defining clause takes
care of the fact that the set of possibilities (possible worlds, models) falsifying a
hypothesis H is a subset of the set of possibilities falsifying any hypothesis that
logically implies H, where the set of possibilities is restricted to those not already
ruled out by the data and the background information. It follows that logically



equivalent hypotheses always have the same plausibility (f-value), provided the
relevant expressions are defined.

The observation states that we cannot demand more — as far as only our aim of
arriving at true theories is concerned — than that the evidence and the background
information our evaluation is based on guarantee (in the sense of logical implica-
tion) that the theory to be evaluated is true. Similarly, a theory cannot do worse — as
far as only our aim at arriving true theories is concerned — than that the conjunction
of the data and the background information guarantees that the theory is false.

Definition 3 A possibly partial function f : L x L x L — R is an evidence
based strength indicator on the language L iff for all sentences H,H', E, B in L
forwhich f (H,E,B) and f (H', E, B) are defined:

B,~E+H—H = f(H,E,B)</f(HE,B).

f is an evidence neglecting strength indicator on the language L iff for all sentences
H,H' E,Bin L forwhich f{ (H,E, B) and f (H', E, B) are defined:

BFH—H = f(H,EB)<f(HE,DB).

f is a strength indicator on the language L iff there is an evidence based strength
indicator f1, an evidence neglecting strength indicator fs, and a possibly partial
function g : ® x ® — R such that (i) f (H, E, B) is defined and f (H, E, B) =
g(fi(H,E,B), fa(H,E,B)) forall H,E,B in L for which f, (H,E,B) and
fo (H, E, B) are defined, and (ii) g is non-decreasing in both and increasing in at
least one of its arguments f1 and fs.

Observation 2 Let f be an evidence based strength indicator on L. Then we have
forall H H' E, B in L for which f (H,E,B), f (-=H,E,B), and f (H', E, B)
are defined:
B,~E+rH = [f(HEB)<f(H ,EB)<f(-HE,DB).
Let f be an evidence neglecting strength indicator on L. Then we have for all
H,H',E,Bin L for which f (H,E,B), f (—~H,E,B), and f (H', E, B) are de-
fined:
B+-H = [f(H,EB)<f(H ,E,B)<f(~H E,B).

Every evidence based strength indicator is a strength indicator, and every strength
indicator is an evidence neglecting strength indicator.



The requirements take into account that the set of possibilities falsified by a theory
H is a subset of the set of possibilities ruled out by any theory logically implying
H, where the set of possibilities is restricted to those (ruled out by the data but)
allowed for by the background assumptions. It follows that logically equivalent
theories are always equally informative (about the data) (have the same f-value),
provided the relevant expressions are defined.

The first part of the observation says that a theory cannot do better in terms
of informing about the data than logically implying them. Although this is not
questionable, one might take this as a reason to reject the notion of informing
about the data (because it is inappropriate to ascribe maximal informativeness to
any theory logically implying the evidence). Two sentences, one might say, both
logically implying all of the data can still differ in their informativeness: consider,
for instance, a complete theory consistent with the data and a collection of all the
data gathered so far. This argument is perfectly reasonable. Hence the distinction
between evidence based and evidence neglecting strength indicators. The notion
of a strength indicator is introduced in order to avoid that one has to take sides,
though one can do so (g need not be increasing in both arguments).

In all three cases, the defining clauses express that strength indicators and truth
indicators increase and decrease, respectively, with the logical strength of the hy-
pothesis to be evaluated. These quantitative requirements correspond to the defin-
ing clauses of the qualitative relations of informativeness and plausibility, respec-
tively.

Obviously, an evaluation function a should not be both a strength and a truth
indicator, for any strength indicating truth indicator is a constant function. Let
us call this observation the singularity of simultaneously indicating strength and
truth. Instead, an evaluation function a should weigh between these two conflicting
aspects: a has to be sensitive to both informativeness and truth.

Definition 4 Let s be a strength indicator on L, and let t be a truth indicator on
L. A possibly partial function f : L x L x L — % is sensitive to informativeness
and plausibility in the sense of s and t — or for short: an s, t-function — iff there is
a possibly partial function g : R x ® x X — R such that (i) f (H, E, B) is defined
and f (H,E,B) =g (s(H,E,B),t(H,E,B),z)forall H,E, B in L for which
s(H,E,B)andt(H, E, B) are defined, and (ii)

1. Continuity: Any surplus in informativeness succeeds, if the difference in
plausibility is small enough.

Ve>0 6. >0 Vs1,80 € Ry Vi, to € Ry Ve e X :
s1>89+e & t1>ta—0. = g(sl,tl,x)>g(52,t2,x).

2. Demarcation: Vxr € X : g (Smax; tmins €) = g (Smin, tmax, ) = 0.



If s(L,E,B)and s (T, E, B) are defined, they are the maximal and minimal val-
ues of 8, Smax and smin, respectively. If ¢ (T, E, B) and t (L, F, B) are defined,
they are the maximal and minimal values of ¢, ¢, and ¢,,;,, respectively. ‘R’
and ‘R;’ denote the range of s and the range of ¢, respectively. f (H, FE,B) is
a function of, among others, s (H, F, B) and t (H, E, B). I will sometimes write
‘f(H, E,B)’, and other times ‘g (s1,t1)’, dropping the additional argument place,
and other times ‘f (s1,t1)’, treating f as g (s, t).
Continuity implies

3. Weak Continuity

Vsi,82 € Rg: 81> 8y g6 >0 Vi, to € Ry Ve X:
t1 >t — 05150 = g(s1,t1,2) > g(s2,t2,2).

The difference is that, in its stronger formulation, Continuity requires d just to de-
pend on the lower bound ¢ of the difference between s; and sz, and not on the
numbers s; and so themselves. The difference between Continuity and Weak Con-
tinuity is related to the difference between evidence based and evidence neglecting
strength indicators. When one is concerned with two hypotheses H; and Hy and
considers the incoming evidence once at a time, the plausibility of H; and Ho»
in general changes with each new piece of evidence. In case of evidence based
strength indicators, the informativeness of 1 and Hs also changes with each new
piece of evidence, whereas it remains the same for evidence neglecting strength
indicators. The idea behind Continuity now is that the more informative of two
hypotheses eventually comes out as the better theory, if the plausibility of both hy-
potheses converges to certainty in the same truth value. If the informativeness of
H, and H, itself changes with each new piece of evidence, though the informative-
ness of H; is always greater than that of Hs, one cannot refer to the informativeness
values of H; and Hs, respectively. One can, however, refer to a minimal differ-
ence between the two informativeness values — unless this difference converges to
0 itself, in which case H; need not come out as the better theory anyway.

As mentioned, the idea behind Continuity is that the more informative of two
hypotheses eventually comes out as the better one, when the plausibility of the two
hypotheses converges to certainty in the same truth value. That is,

4. Continuity in Certainty: Any surplus in informativeness succeeds, if plausi-
bility becomes certainty in the same truth value.

t
Ve > OV, th € Ry : by, th — { M InVm > nVsm, sl, € RsVr € X ¢

tmin

Sm>Spte = g(Smitm,x) > g (Shyth, ).



Continuity generalizes this idea from ¢, and ¢, to any value of ¢.
Weak Continuity implies that g increases in s, i.e.

5. Informativeness: sp>s1 = g (so,to,x) > g (s1,to,x).
If we additionally assume that g is a function of s and ¢ only, we get
Lovelinesss: g (so,t0,z) > g(s1,t0,x) <  Sp > $1.
Continuity does not imply that g increases in , i.e.
0. Plausibility: tg>t;1 = g (so,to,z) > g(so,t1, ).

S0, s1 are any values in the domain of s; tg,¢; are any values in the domain of ¢;
and z is any value in X.

This asymmetry is due to the fact that truth is a qualitative yes-or-no affair:
a sentence either is or is not true in some world, whereas informativeness (about
some data) is a matter of degree. In case of truth, degrees enter the scence only
because we do not know in general, given only the data, whether or not a theory
is true in any world the data could be taken from. In case of informativeness,
however, degrees are present even if we have a complete and correct assessment
of the informational value of the theory under consideration (or more cautiously,
there is at least a partial order that is induced by the consequence relation).

Weak Continuity in Certainty (which you get from reformulating 4 along the
lines of 3) implies

6. Maximality: ¢ (S0,t0,%) = gmax = S0 = Smax
7. Minimality: ¢ (S0,t0,%) = gmin = S0 = Smin-
If we additionally assume Plausibility, we get
8. Maximality Il: ¢ (80,20, %) = gmax = 50 = Smax & t0 = tmax
9. Minimality II: ¢ (50,%0,%) = gmin = S0 = Smin & 0 = tmin.
If we add that g is a function of s and ¢ only, we get the converse of 8 and of 9.
The conjunction of Continuity, Demarcation, and Plausibility does not imply
Symmetry: g (s1,t1,x) = g (t1,81,).

Evaluation functions may consider one aspect, say plausibility, more important
than the other. The only thing that is ruled out is to totally neglect one of the two
aspects, as do, for instance,

t-s
d l=—— %
1—s 1-1) (1—s)

T =

when ¢t = 0 and Ry = R; = [0, 1]. These functions have the following properties
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S0 > Smin = g (307 tmin) = Gmin,
Smax > S0 > Smin = ¢ (307tmin) = Gmin & g (307tmax) = Gmax,

respectively. The first says that in the special case of plausibility being minimal,
informativeness does not count anymore. But clearly, a theory which is refuted by
the data — in which case its plausibility is minimal — can still be better than another
theory which is also refuted by the data. After all, (almost) every interesting theory
from, say, physics, has turned out to be false — and we nevertheless think there has
been progress! The second property additionally says that in the special case of
plausibility being maximal, informativeness does not count anymore either. So not
only is any falsified theory as bad as any other falsified theory; we also have that
every verified theory is as good as any other verified theory. In contrast,

d=t+s—1, R,=R,=[0,1],

is sensitive to informativeness and plausibility, and thus does not exhibit the dis-
continuity of r and [. If f is a positive function not depending on H,

dy=[t+s—1]-f(E,B)

also satisfies Plausibility, Continuity, and Demarcation, though it is not a function
of s and ¢ only. Finally, note that any s, t-function is invariant with respect to (or
closed under) equivalence transformations of H, if it is a function of s and ¢ only.

5 Evaluating Theories

5.1 The General Theory

What has been seen so far is the general plausibility-informativeness theory of the-
ory evaluation. In a nutshell, its message is (1) that there are two epistemic values
a theory should exhibit: truth and informativeness — measured by a truth indicator
t and a strength indicator s, respectively; (2) that these two values are conflicting
in the sense that the former is a decreasing, and the latter an increasing function of
the logical strength of the hypothesis to be evaluated; and (3) that in evaluating a
given hypothesis one should weigh between these two conflicting aspects in such a
way that any surplus in informativeness succeeds, if the difference in plausibility is
small enough. Particular accounts arise by inserting particular strength indicators
and truth indicators.

11



5.2 Evaluating Theories, Bayes Style

The theory can be spelt out in terms of Spohn’s (1988; 1990) ranking theory (Hu-
ber 2007), and in a syntactical paradigm that goes back to Hempel (1943; 1945)
(Huber 2004). Here, however, I will focus on the Bayesian version, where I take
Bayesianism to be the threefold thesis that (i) scientific reasoning is probabilistic;
(ii) probabilities are adequately interpreted as an agent’s actual subjective degrees
of belief; and (iii) they can be measured by the agent’s betting behaviour.

Spelling out the general theory in terms of subjective probabilities simply means
that we specify a (set of) probabilistic strength indicator(s) and a (set of) probabilis-
tic truth indicator(s). Everything else is accounted for by the general theory. The
nice thing about the Bayesian paradigm is that once one is given hypothesis H, ev-
idence F, and background information B, one is automatically given the relevant
numbers Pr (H | E A B), ..., and the whole problem reduces to the definition of
a suitable function of Pr.

In this paradigm it is natural to take

tpe (H,E,B)=Pr(H|EAB)=p
as truth indicator, and
spr(H,E,B) =Pr(-H | -ENB) =1, S/Pr (H,B)=Pr(—H | B) =14

as evidence based and evidence neglecting strength indicators, respectively, where
Pr is a regular probability.? The choice of p hardly needs any discussion, and for
the choice of ¢ consider the following figure with hypothesis H, evidence E, and

’Regularity is often paraphrased as open-mindedness (Earman 1992), because it demands that no
consistent statement is assigned probability 0. Given a subjective interpretation of probability, this
sounds like a restriction on what one is allowed to believe (to some degree). Regularity can also
be formulated as saying that any statement H; which logically implies but is not logically implied
by some other statement H> must be assigned a strictly lower degree of belief than Ha. (In case
of probabilities conditional on B, logical implication is also conditional on B.) Seen this way,
regularity requires degrees of belief which are sufficiently fine-grained. For this reason I prefer to
think of regularity not as a restriction on what (which propositions) to believe (to some degree), but
as a restriction on how to believe (propositions), namely, sufficiently fine-grained so that differences
so big as to be expressable purely in terms of the logical consequence relation are not swept under
the carpet.

12



background information B (conceived of as propositions).

Suppose you are asked to strengthen H by deleting possibilities verifying it,
that is, by shrinking the area representing /.> Would you not delete possibilities
outside E¥? After all, given E, those are exactly the possibilities known not to be
the actual one, whereas the possibilities inside F are still alive options. Indeed, the
probabilistic evidence based strength indicator 7 increases when H shrinks to H’

B

as depicted above.

For the probabilistic evidence neglecting strength indicator ¢’ it does not matter
which possibilities one deletes in strengthening H (provided all possibilities have
equal weight on Pr). ¢’ neglects whether they are inside or outside E. The strength
indicator 7}, with parameter « in [0, 1] is given by

it =a-Pr(~H|-EAB)+(1—a)-Pr(=H |B)=a-i+(l—a)- 7.

For i}, it depends on o how much it matters whether the deleted possibilities lie
inside or outside of E.

Other candidates for measuring informativeness that are (suggested by mea-
sures) discussed in the literature (Carnap & Bar-Hillel 1952, Bar-Hillel & Carnap
1953, Hintikka & Pietarinen 1966) are

i = Pr(~H|EAB)

31 owe this graphical illustration to Luc Bovens.

13



cont = Pr(E)-Pr(-H|EAB)
inf = —logyPr(H |EAB).

(In Levi 1967, 7" is proposed as, roughly, a measure for the relief from agnosticism
afforded by accepting H as strongest relative to total evidence £ A B.) These
measures, all of which assign minimal informativeness to any theory entailed by
the data and the background information, do even worse on this count by requiring
the deletion of the possibilities inside . They measure how much the information
in H goes beyond the information provided by E, which is not the appropriate
notion of informativeness for the present context.

Note that the background information B plays a role different from that of the
data F for 7 and 4/, but not for ", cont, or inf. Clearly, if there is a difference
between data on the one hand and background information on the other, then this
difference should show up somewhere. Background assumptions determine the
set of possibilities in the inquiry, and thus are nothing but restrictions on the set of
possible worlds over which inquiry has to succeed (Hendricks 2006). Furthermore,
evidence based strength indicators measure how much a theory informs about the
data, but not how much they inform about the background assumptions. However,
if one holds there should be no difference between E and B as far as measuring
informativeness is concerned, then one can nevertheless adopt the above measures
by substituting E' = E A Band B’ = T for F and B, respectively.

5.3 Incremental Confirmation

Let us see how the plausibility-informativeness approach compares to Bayesian
confirmation theory. The following notion is central in this literature (Fitelson
2001): A possibly partial function f = fp, : L x L x L — R is a relevance
measure based on Pr iff it holds for all H, E, B in £ with Pr (E A B) > 0:

> >

f(HE,B) =0 < Pr(H|EAB) = Pr(H|B).

Al

<
As
Pr(H|EANB)>Pr(H|B) < Pr(-H|-EAB)>Pr(—-H|B)

for0 < Pr(F | B) < 1and Pr(B) > 0, every i, p-functiona = p+i—lisa
relevance measure in the Bayesian sense (where p and ¢ depend on Pr). Similarly,
every ¢, p-function @’ = p + ¢/ — 1 is a relevance measure. Hence, every i*, p-
function

at=p+i*—1
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is arelevance measure, where i* is a strength indicator based on ¢ and ’. For i* = ¢/
one gets the distance measure d,

dp, (H,E,B)=Pr(H|EAB)—Pr(H | B)
(Earman 1992), and for ¢* = i one gets the Joyce-Christensen measure s,
spr (HE,B)=Pr(H| EANB)—Pr(H |—-EAB)

(Joyce 1999, Christensen 1999). As noted earlier at the end of section 4, for posi-
tive f not depending on H, the functions

df=[i+p—1] f(E,B)

are i, p-functions. For f = Pr(—FE | B) we get (again) the distance measure d,
and for f = Pr(—=E | B) - Pr(B) - (E A B) we get the Carnap measure c,

cpy (H,E,B) =Pr(HAEAB)-Pr(B)—Pr(HAB)-Pr(EAB)

(Carnap 1962). Hence the Carnap measure c, the difference measure d, and Joyce-
Christensen measure s are three different ways of weighing between the two func-
tions 7 and p (or between i’ and p, for s = d/Pr(—~F | B) and ¢ = d - Pr(B) -
Pr (E A B)). Alternatively, the difference between d and s can be seen not as one
between the way of weighing, but as one between what is weighed — namely two
different pairs of functions, viz. ¢ and p for the difference measure d, and i’ and p
for the Joyce-Christensen measure s. This is clearly seen by rewriting d and s as

dpy = Pr(H|EANB)+Pr(—H|B)-1,
spp = Pr(H|EAB)+Pr(-H|-EAB)—1.

In this sense, part of the discussion about the right measure of incremental confir-
mation turns out to be a discussion about the right measure of informativeness of
a hypothesis relative to a body of evidence. This view is endorsed by the obser-
vation that d and s actually employ the same decision-theoretic considerations (cf.
Hempel 1960, Hintikka & Pietarinen 1966, Levi 1961; 1963):

dp = Pr(H|EAB)—Pr(H|B)
Pr(H|EAB)—Pr(H|B)-Pr(H|EAB)—
—Pr(H|B)+Pr(H|B) Pr(H|EAB)

= Pr(~H|B)-Pr(H|EAB)—Pr(H|B) -Pr(~H|EAB)
= i'(H,B)-Pr(H|EAB)—4#(~H,B)-Pr(-H | EAB)
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spp = Pr(H|EAB)—Pr(H|-~EADB)
Pr(H|EAB)—Pr(H|-EAB)-Pr(H|EAB)—
—Pr(H|-EAB)+Pr(H|~EAB)-Pr(H|EAB)
= Pr(~H|-EAB) -Pr(H|EAB)—Pr(H|-EAB)-Pr(~H|EAB)
= i(H,E,B)-Pr(H|EAB)—i(~H,E,B) -Pr(-~H | EAB).

So d and s are exactly alike in the way they combine or weigh between informa-
tiveness and plausibility — which is to form the expected informativeness of the
hypothesis (about the data and relative to the background assumptions); their dif-
ference lies in the way they measure informativeness.

Given that the plausibility-informativeness theory has a nice justification in
terms of conflicting epistemic virtues, given that it can be motivated historically*,
and given that — due its generality — it is free from being committed to the credo
of any paradigm, Bayesian confirmation theory should welcome the connection
between ¢*, p-functions and relevance measures afforded by s and d (and ¢). This
should be so the more, since in the light of the present approach part of the dis-
cussion about the right measure of incremental confirmation is one about the right
measure of informativeness. Finally, as will be seen in sections 7-8, the present
theory provides the only reasonable (and not yet occupied) answer to the question
why one should stick to well confirmed theories rather than to any other theories.?

6 Selected Success Stories

This section briefly indicates how the plausibility-informativeness theory is suc-
cessfully applied to some epistemological problems in the philosophy of science.
Being notoriously short, the discussion often does not do justice to these problems.
The following — Hempel’s conditions of adequacy and the question of a logic of
confirmation or theory assessment — is treated in more detail in Huber (2007).

*As to historical motivation, the ideas behind the strength indicator LO and the truth indicator
LI in the Hempel paradigm (Huber 2004) go back to Hempel’s prediction and satisfaction criteria
(which is why that paradigm is called Hempel paradigm). It is interesting to see that these two
criteria are both present in Hempel’s seminal paper on confirmation (Hempel 1945), who thus seems
to have felt the need for two concepts of confirmation, one aiming at true and another aiming at
informative theories (see also Hempel 1960). This is particularly revealing as his triviality result that
every observation report confirms every theory is basically due to the fact that informativeness is an
increasing and plausibility a decreasing function of the logical strength of the theory to be assessed
— and thus amounts to the singularity observation of section 4.

SFor more on the relation between incremental confirmation and the plausibility-informativeness
theory see Huber (2005b).
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6.1 Hempel’s Logic of Confirmation
6.1.1 Hempel’s Conditions of Adequacy

In his “Studies in the Logic of Confirmation” (1945) Carl G. Hempel presented the
following conditions of adequacy for any relation of confirmation |~ C £ x £® on
some language £ (the name of 3.1 is not used by Hempel):

1. Entailment Conditon: E+H = FE|~H
2. Consequence Condition: {H:FE|~H}+rH = FE|~H

2.1 Special Consequence Cond.: FE|~H, HFH = FE|~H
3. Consistency Condition: {E}U{H:E|~H} /L

3.1 SpecialC.C.. EY 1, E|~H, Hv--H = FE|~H
4. Converse Consequence Condition: FE|~H, H'+H = FE|~H’

Hempel then showed that 1, 2, and 4 entail that every sentence (observation report)
E confirms every sentence (hypothesis) H, i.e. for all F, H in £L: E |~ H. This
is clear, since 1 and 4 already entail this result: By 1, £ |~ E V H, whence
E |~ H by 4. Since Hempel’s negative result, there has hardly been any progress
in constructing a logic of confirmation.” One reason seems to be that up to now
the predominant view on Hempel’s conditions is the analysis Carnap gave in his
Logical Foundations of Probability (1962), § 87.

6.1.2 Carnap’s Analyis of Hempel’s Conditions
In analyzing the consequence condition, Carnap argues that

. Hempel has in mind as explicandum the following relation: ‘the
degree of confirmation of H by F is greater than r’, where 7 is a fixed
value, perhaps 0 or 1/2. (Carnap 1962, 475; notation adapted)

In discussing the consistency condition, Carnap mentions that

SFollowing Hempel, the background information B is neglected in section 6.1.

"The exceptions I know of are Flach (2000), Milne (2000), and Zwirn & Zwirn (1996). Roughly,
Zwirn & Zwirn (1996) argue that there is no unified logic of confirmation (taking into account all
of the partly conflicting aspects of confirmation); Flach (2000) argues that there are two logics of
“induction”, as he calls it, viz. confirmatory and explicatory induction (corresponding to Hempel’s
conditions 1-3 and 4, respectively); and Milne (2000) argues that there is a logic of confirmation
(namely the logic of positive probabilistic relevance), but that it does not deserve to be called a logic.
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Hempel himself shows that a set of physical measurements may con-
firm several quantitative hypotheses which are incompatible with each
other (p. 106). This seems to me a clear refutation of [3.1]. [...] What
may be the reasons that have led Hempel to the consistency conditions
[3.1] and [3]? He regards it as a great advantage of any explicatum
satisfying [3] “that is sets a limit, so to speak, to the strength of the
hypotheses which can be confirmed by given evidence” [...] This ar-
gument does not seem to have any plausibility for our explicandum,
(Carnap 1962, 476-7; emphasis in the original)

which is the concept of positive probabilistic relevance,

[b]ut it is plausible for the second explicandum mentioned earlier: the
degree of confirmation exceeding a fixed value r. Therefore we may
perhaps assume that Hempel’s acceptance of the consistency condition
is due again to an inadvertant shift to the second explicandum. (Carnap
1962, 477-8.)

Carnap’s analysis can be summarized as follows: In presenting his first three con-
ditions Hempel was mixing up two distinct concepts of confirmation, two dis-
tinct explicanda in Carnap’s terminology, viz. the concept of incremental con-
firmation (positive probabilistic relevance) according to which E confirms H iff
Pr(H | E) > Pr(H); and the concept of absolute confirmation according to
which F confirms H iff Pr (H | E) > r, for some r [.5,1). The special versions
of Hempel’s second and third conditions hold true for the second explicandum, but
they do not hold true for the first explicandum. On the other hand, Hempel’s first
condition holds true for the first explicandum, but it does so only in a qualified
form (cf. Carnap 1962, 473) — namely only if E does not have probability 0, and
H does not already have probability 1.

This, however, means that Hempel first had in mind the explicandum of posi-
tive probabilistic relevance for the Entailment Condition; then he had in mind the
explicandum of absolute confirmation for the Special Consequence and the Special
Consistency Conditions; and then, when Hempel presented the Converse Conse-
quence Condition, he got completely confused, so to speak, and had in mind still
another explicandum or concept of confirmation (neither absolute nor incremental
confirmation satisfy 4.). Apart from not being very charitable, Carnap’s reading of
Hempel also leaves open the question what the third explicandum might have been.

6.1.3 Hempel Vindicated

As to Hempel’s Entailment Condition, note that it is satisfied by the concept of
absolute confirmation without the second qualification: If E logically implies H,
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then Pr (H | E) =1 > r, forany r in [0, 1), provided E does not have probability
0. So the following more charitable reading of Hempel seems plausible: When
presenting his first three conditions, Hempel had in mind Carnap’s second expli-
candum, the concept of absolute confirmation, or more generally: a plausibility
relation. But then, when discussing the Converse Consequence Condition, Hempel
also felt the need for a second concept of confirmation aiming at informative theo-
ries.

Given that it was the Converse Consequence Condition which Hempel gave
up in his Studies, the present analysis makes perfect sense of his argumentation:
Though he felt the need for two concepts of confirmation, Hempel also realized
that these two concepts are conflicting — that is the content of his triviality result,
corresponding to the singularity observation of section 4 — and so he abandoned
informativeness in favour of plausibility.

Let us check this by going through Hempel’s conditions. Absolute confirma-
tion satisfies the Entailment Condition, as shown above. As to the Special Conse-
quence and the Special Consistency Condition (where the present analysis agrees
with Carnap’s), it is clear that Pr (H' | E) > r whenever Pr(H | E) > r and
H + H',and Pr(H' | E) < r whenever Pr(H | E) > r, H - =H’, and r in
[.5,1). (Non-empty informativeness relations do not satisfy 3.1. Informativeness
relations satisfying 2.1 or 1 are trivial in the sense that E confirms at least one
H iff E confirms all H.) The culprit, according to Hempel (pp. 103-7, esp. pp.
104-5 of his 1945), is the Converse Consequence Condition. The latter condition
coincides with the defining clause of informativeness relations by expressing the
requirement that informativeness increases with the logical strength of the theory
to be assessed. It is, for instance, satisfied by HD-confirmation.

6.1.4 The Logic of Theory Assessment

However, in a sense one can have Hempel’s cake and eat it, too: There is a logic
of confirmation — or rather: theory assessment — that takes into account both of
these two conflicting concepts. Roughly speaking, HD says that a good theory is
informative, whereas IL says that a good theory is plausible or true. The driving
force behind Hempel’s conditions, so the proposed analysis, is the insight that a
good theory is both true and informative. Hence, in evaluating a given theory by
the available data, one should account for both of these two conflicting aspects.
According to the logic of theory assessment as presented in Huber (2007), H
is an acceptable theory for E iff H is at least as plausible as and more informative
than its negation relative to E, or H is more plausible than and at least as plausible
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as its negation relative to F. In terms of probabilities, this means:

E|~H < Pr(H|E)>Pr(-H|FE) & i*(H,E)>i"(-~H,E) or
Pr(H|E)>Pr(-H|E) & i*(H E)>i(-H,E),

where i* is any function of ¢ = Pr(—H | -F) and ¢/ = Pr(—H) that is non-
decreasing in both arguments, and increasing in at least one. |~ is the i*-assessment
relation induced by Pr on L.

Before going on, let me note that the term ‘acceptable’ is meant to be the
qualitative counterpart of the quantitative assessment value. ‘accept’ is not used in
the sense of believe or hold to be true. Indeed, the account suggests that there is
not even a specific propositional attitude towards theories given high assessment
values. Rather, the proposed attitude towards scientific theories is like the attitude
one has towards bottles of wine. One has a certain amount of money and one would
like to buy a good bottle of wine. On the one hand, one wants to spend as little
money as possible (one’s theory should be as informative as possible). On the other
hand, one wants to drink reasonably good wine (one’s theory should be sufficiently
plausible). Sometimes one need not care much about money, and the main focus is
on the quality of wine — like when one is concerned with several alternative theories
all sufficiently informative to answer one’s questions, and one wants to choose the
most plausible one. At other times money does matter, for one cannot spend more
than one has. Likewise, in many situations very plausible theories just won’t do,
because they are too uninformative to be of any use.

This picture of the trade-off between price and quality does not tell one when a
bottle of wine is worth its price, and when one should buy which bottle of wine (ex-
cept when one gets a good bottle of wine for free). In the same way the plausibility-
informativeness theory does not tell one when one should adopt or stick to a sci-
entific theory (except when a theory is sufficiently informative to answer one’s
questions and known to be true). Instead, a theory which is acceptable given the
data is a possible candidate to stick with.

Another, perhaps more natural way of defining the qualitative counterpart to
the quantitative assessment value is to say that H is acceptable relative to F iff the
overall value of H relative to E is greater than that of its negation. The reason I
prefer the stronger notion of above is that the weaker notion is heavily dependent
on the way one weighs between plausibility and informativeness. On the other
hand, according to the stronger notion there may be hypotheses Hi, Ho, data F,
and evaluation functions a such that Hy is an acceptable theory for E, but Hy is
not, even though H» has a greater a-value relative to E than does H 1.8

8This was pointed out to me by Alexander Moffett.
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Let us turn back. How do assessment relations compare to Carnap’s favourite
concept of confirmation? Positive probabilistic relevance between E and H is
necessary in order for H to be an acceptable theory for E:

E|~H = Pr(H|E)>Pr(H)

However, the converse is not true, for positive probabilistic relevance is symmet-
ric, whereas assessment relations are not — which, as noted by Christensen (1999,
437f), is as it should be.

6.2 Problems in Confirmation Theory
6.2.1 The Problem of Old Evidence

As Christensen (1999) further notices, a second problem of subjective’ Bayesian
confirmation theory is the problem of old evidence: If E' is known in the sense of
being assigned a degree of belief of 1, then E incrementally confirms no H relative
to whatever B.

By Jeffrey conditionalisation, i = Pr (—H | -E A B)andp = Pr(H | EA B),
and thus all ¢, p-functions which are functions of ¢ and p only, are invariant with
respect to changes in Pr (E' | B). This means that no such function faces the more
general version of the problem of old evidence. This general version says that H is
more confirmed by F relative to B in the sense of Pro than in the sense of Pr; just
in case Pro (F' | B) < Pry (E | B), where Pry results from Pr; by Jeffrey con-
ditioning on E, and F is positively relevant for H given B in the sense of Pry.!°
In other words, the problem is that the less reliable the source of information, the
higher the degree of confirmation. (The traditional problem of old evidence, i.e.
the special case where Pr (E | B) = 1, does not arise, because Pr is regular, and
it is assumed that {—F, B} I/ L and {E, B} I/ L — otherwise 4, p-functions are
not defined.) The more general version is faced by the distance measure d, the
log-likelihood ratio [, and the ratio measure r (Huber 2005a).

6.2.2 Tacking by Conjunction

If evidence E confirms hypothesis H relative to background information B, then
E generally does not confirm (relative to B) the conjunction of H and an arbitrary

Though the importance of interpreting Pr is sometimes dismissed in Bayesian confirmation
theory, some problems — e.g. the problem of old evidence — arise only under particular interpretations
of probability. In this case it is the subjective interpretation that takes Pr to be an agent’s actual degree
of belief function.

In case E is negatively relevant for H given B in the sense of Pry, this holds just in case
Pry (E | B) > Pri (E | B). Negative evidence provides more disconfirmation and positive evi-
dence provides more confirmation, the lower the degree of belief in it.
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hypothesis H' (Fitelson 2002, Hawthorne & Fitelson 2004). This is in accordance
with the present approach. Although adding H' does not decrease the informative-
ness of H relative to E' and B, it generally does lead to a decrease in the plausibility
of H relative to £ and B. In fact, the present account can specify when an added
conjunct should not be tacked on: Given E and B, H’ should not be tacked on H
relative to an evaluation function a precisely if the a-value of H A H' is smaller
than that of H.

6.2.3 Theory Hostility

It is sometimes claimed that confirmation is inappropriate for theory evaluation, be-
cause confirmation does not take into account the fact that theories should possess
several other virtues besides being true or having a high probability. This exclusive
focus on truth or probability is referred to as theory hostility. An adequate theory
of theory evaluation should yield that good theories are not only true or probable;
they should also be informative. Obviously this holds of any theory with a high
value in the combined sense of informativeness and plausibility.

7 What Is the Point?

The crucial question any theory of theory evaluation has to face is this: What is the
point of having theories that are given high assessment values? That is, why are
theories with high values better than any other theories? In terms of confirmation
the question is: What is the point of having theories that are well confirmed by the
available data relative to some background information? That is, why should we
stick to well confirmed theories rather than to any other theories?

The traditional answer to this question is that the goal is truth, and that one
should stick to well confirmed theories because, in the long run, confirmation takes
one to the truth.!! But as we have seen, truth is only one side of the coin — the
other is informativeness. Thus, the answer of the new millenium is that the goal is
informative truth, and that one should stick to theories with high values because,
in the medium run, theory evaluation takes one to the most informative among all
true theories.

Indeed, if being taken to the most informative among all true theories is not the
goal of confirmation, it seems there is no point to incremental confirmation at all.
The traditional approach to confirmation the early Carnap had, i.e. absolute con-
firmation setting confirmation equal to (logical) probability, has long been aban-

""This is the line of reasoning the early Carnap (could have) had. He held that confirmation is
equal to (logical) probability — absolute confirmation, in contrast to incremental confirmation.
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doned in favour of incremental confirmation setting confirmation equal to increase
in probability. Though I do not want to opt for a revival of absolute confirmation,
it is fair to say that absolute confirmation at least could be justified by arguing that,
in the long run, absolute confirmation takes one to the truth (which is the content
of the convergence theorem; Gaifman & Snir 1982). So if the goal were truth and
only truth, there would have been no need for abandoning absolute confirmation.
Hence there must be another goal for incremental confirmation. But then, if arriv-
ing at (the most) informative (among all) true theories is not the goal, what else
could it be? Yet, as will be seen in section 8, incremental confirmation does not
take one to informative true theories nor to the most informative among all true
theories.

What is an informative true theory? Given a possible world (possibility, model)
w, contingent theory H is to be preferred over contingent theory Hy in w if

1. Hj is true in w, but Hs is false in w; or

2. both H; and Hs have the same truth value in w, but H; logically implies Ho,
whereas Ha does not logically imply H;.

In case H; is logically false, it is worse in w than every contingent theory Ho that
is true in w (because they are all true in w, whereas H; is false in w), but better
than every contingent theory H that is false in w (because H; is more informative
than each of them). Similarly, if H; is logically true, it is worse in w than every
contingent theory 5 that is true in w (because they all are more informative than
Hy), but better than every contingent theory H that is false in w (because they all
are false in w, whereas H; is true in w).

Consequently, a possibly partial function f : £ x £ x £ — R is said to reveal
the true assessment (or confirmational) structure in world w iff for any hypotheses
H,H' in L, every background information B in £ which is true in w, and any
data stream e, . .., e, ... from w (i.e. a sequence of sentences ¢; in £ expressing
distinct propositions all of which are true in w):

1. If H is contingently true in w and H’ is contingently false in w, then there is
n such that for all m > n: f (H, E,,,B) > 0> f(H', E, B);

2. if H and H' are contingently true in w, but H is logically stronger than H’,
then there is n such that for all m > n: f (H, E,,, B) > f (H', E\,, B) > 0;

3. if H and H' are contingently false in w, but H is logically stronger than H’,
then there is n such that forallmm > n: 0 > f (H, Ey,, B) > f (H', E\, B);

4. if H is logically determined, then it holds for all m: f (H, E,,, B) = 0;
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where F,, = eg A ... A ep—1 is the conjunction of the first m data sentences. So
f must stabilize to the correct answer, i.e. get it right after finitely many steps, and
continue to do so forever without necessarily halting (or giving any other sign that
it has arrived at the correct answer).'?> The smallest n for which the above holds is
called the point of stabilisation.

The central question is whether evaluation functions do in fact further the goal
they are supposed to further; that is, whether they in fact reveal the true assessment
structure and thus lead to true and informative theories. The answer is affirmative
— which is the promised justification for the Bayesian version of the plausibility-
informativeness theory.!?

More precisely, let eq, . .., e, ... be a sequence of sentences of £ which sep-
arates the set of all models for £, Mod,. This means that for any two distinct
w1, ws in Mod, there is a sentence e; which is true in wy and false in wo. Let e
be e;, if e; is true in w, and —e; otherwise. Let Pr be a regular probability on L,
and let a be any function satisfying Continuity in Certainty and Demarcation for
i* and p, where ¢* is any strength indicator based on i = Pr(—H | -E A B) and
i" =Pr(—H | B) and p = Pr (H | E). Finally, let Pr* be the unique probability
measure on the smallest o-field .A containing the field {Mod (A) : A € L} such
that for all H in £: Pr (H) = Pr* (Mod (H)), where Mod (A) is the set of mod-
els of A. Then there exists X in A with Pr* (X') = 1 such that the following holds
for every w in X and any two H, H' in L:

1. If H is contingently true in w and H’ is contingently false in w, then there is
n such that forallm >n: f(H,E¥,T)>0> f(H,E2,T);

2. if H and H' are contingently true in w, but H is logically stronger than H’,
then there is n such that forallm > n: f (H,E%, T) > f(H',E%,T) > 0;

12Stabilisation to the correct answer is a stronger requirement than convergence to the correct
answer (Kelly 1996). The latter is a bit odd to formulate for revealing the true assessment structure,
but in general says that for any ¢ > 0 (as small as you like) there exists a point n (depending on
€) such that for all later points m > n, f’s conjecture differs form “the truth” only by an amount
smaller than . The difference between stabilisation and convergence was the reason for appealing
to the medium run (stabilisation) as compared to the long run (convergence). Note, however, that the
Gaifman and Snir convergence theorem can be used to obtain an almost-sure stabilisation result by
assigning 1 to H, if the probability of H is above .5, and O otherwise.

13 As always, there are problems. For instance, the result stated below holds only for almost every
world and is restricted to data sequences that separate M od .. However, this is not due to anything
being wrong with the plausibility-informativeness theory. Instead, this flaw is inherited from the
present paradigm. The flaw is serious (Kelly 1996, ch. 13), but not inevitable, because there are other
paradigms one might adopt such as ranking theory, where “pointwise reliability” is possible (Kelly
1999). However, the price of pointwise reliability is that the set of possible worlds be countable, and
it is fair to say that measure 1 results are not problematic in this case.
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3. if H and H' are contingently false in w, but H is logically stronger than H’,
then there is n such that forallm > n: 0 > f (H,E%, T) > f (H',E¥,T);

4. if H is logically determined, then it holds for all m: f (H, E¥ T) = 0;

where B, = e A ... AeZ _ is the conjunction of the first m sentences from the
data stream from w. In other words, every function satisfying Continuity in Cer-
tainty and Demarcation in the sense of * and p reveals the true assessment structure
in almost every world when presented data separating the set of all possible worlds.
The background information has been assumed to be empty. This is justified be-
cause the above entails that there exists X in .4 with Pr* (X | Mod (B)) = 1 for
every B in £ with Pr (B) > 0, such that 1-4 hold for every w in Mod (B) N X.

8 Relevance Measures and Their Exclusive Focus on Truth

All one needs to do to reveal the true assessment structure in almost every world
when presented separating data is to stick to any function satisfying Continuity in
Certainty and Demarcation for ¢* and p, where 7* is any function of 7 and i’ that is
non-decreasing in both and increasing in at least one of its arguments. What about
the central notion in Bayesian confirmation theory — that of a relevance measure?

The connection to the 4, p-function s = 7 + p — 1 and the function d; for
f=Pr(=FE | B) respectively f = Pr(—FE | B)-Pr(B)-Pr(E A B) has already
been pointed out. So for any regular probability Pr, sp, and dp, and cp, reveal the
true assessment structure in almost every world when presented separating data.
But there are many other relevance measures. Do they all further that goal?

If H; is contingently true in w, and H> is contingently false in w, then, after
finitely many steps, H; has to get a positive value in w and H» has to get a negative
value in w. Any relevance measure r reveals this part of almost any w’s assessment
structure. By the Gaifman and Snir convergence theorem,

Pr(H: | E;) —n1 and Pr(Hy|E))—,0,
whence there exists n such that for all m > n:
Pr (Hl ‘ E;’%) > Pr (Hl) and Pr (HQ ’ Eﬁm) < Pr (HQ),

provided Pr is regular. Thus, by the definition of a relevance measure, it holds for
allm > n:
r(Hi, B2, T)>0>r(Ho, E,T).

Moreover, if defined, the value of any logically determined hypothesis is always 0.
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So far, so good. But the definition of a relevance measure by itself does not
imply anything about the relative positions of two hypotheses, if they have the
same truth value in some world w. This exclusive focus on truth — in contrast to
the weighing between the conflicting goals of truth and informativeness of an s, ¢-
function — is what prevents relevance measures from revealing the true assessment
structure in general. As we have seen, relevance measures sometimes do weigh
between ¢* and p. Yet, they are not required to take into account both aspects. This
is illustrated by briefly looking at the most popular relevance measures (Fitelson
2001). It is assumed throughout that Pr is regular.

As already mentioned, the Joyce-Christensen measure s, the distance measure
d, and the Carnap measure c get it right in all four cases. The ratio measure r,

Pr(H|EAB
TPr (H7E7B) = IOg |:r(’/\):| )

Pr (H | B)

gets it right in case both H; and H are contingently true in w and H; is logically
stronger than Hs. In this case

rpy (H1, EY) —y log[1/Pr(Hy)] and rpy (Ho, EY) —, log[1/ Pr(Ha)],
whence there exists n such that for all m > n:
rpr (Hi, By, T) > rpy (Ho, Ey, T) > 0.

However, r does not get it right when both H; and H, are contingently false in w
and H, is logically stronger than H>. In this case,
Pr(H, | E) _ Pr(Hs | Ey) Pr(Hy) _ Pr(H, | E7)
Pr(H,) Pr (Hs) Pr(H,) = Pr(Hy | E%)

Fore = Pr(Hs) — Pr(H;) and ,,, = Pr(Hz | EY) — Pr (H; | EY), this can be
written as - .
Y ey T P (B2

Soevenif both Pr (H; | E¥)and Pr (Hs | E¥) converge to 0, the logically weaker
Hj, may always have a greater r-value than H1, as is the case when Pr (H; | E¥) =
1/2™ and Pr (Hs | E¥) = 1/m. The failure of r is even clearer when both H; and
H, are eventually falsified, in which case the only thing that matters is the minimal
plausibility value, and they both get same r-value log0 = —oo. So all falsified
theories are equally, viz. maximally bad. (For logically determined H, r takes on
the value log 1 = 0, if it is stipulated that 0/0 = 1.)
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The situation is even worse for the log-likelihood ratio [,

lpy (H, E, B) =log

Pr(E|HAB)] _ [Pr(H|EAB) Pr(-H|B)
Pr(E]ﬁH/\B)]_O [Pr(ﬂH|E/\B)'Pr(H\B)

When H; and H; are contingently true or contingently false in w, and H; is log-
ically stronger than Ho, it need not be the case that there is n such that for all
m > n:

Pr(H, | E¥)-Pr(=Hy) _ Pr(Hy| E¥) Pr(—Hs)

Pr(=H, | E2) Pr(Hy) ~ Pr(—Hy | E%) - Pr(Hy)’

For e = Pr(Hy) — Pr(H;) and ¢,,, = Pr(Hy | E¥) — Pr(H; | E%) the latter
holds iff

€ Em

Yy a @) — o) e (@ [ B (L= Pr (| B2 — o)

So even if both Pr (H; | E¥) and Pr (Hy | E¥) converge to 1 or to 0, the logi-
cally weaker Hy may always have a greater [-value than H, as is the case when
Pr(H, | EY)=1-1/mandPr(Hy | EY) = 1-1/2", orwhen Pr (H; | E¥) =
1/2™ and Pr (Hz | E¥ ) = 1/m. The failure of [ is even clearer when both H; and
H, are eventually verified or falsified, in which case the only thing that matters
is the maximal or minimal plausibility value, and they both get the maximal or
minimal [-value, respectively. So all verified theories are equally, viz. maximally
good; and all falsified theories are equally, viz. maximally bad. (If H is logically
determined, one would have to stipulate that0-1/1-0=1-0/0-1=1.)

It is interesting to see that the log-likelihood ratio [ seems to come out on top
when subjectively plausible desiderata are at issue (Fitelson 2001), but to do much
more poorly when it comes to the matter-of-fact question whether an evaluation
function (or measure of confirmation) furthers the goal it is supposed to further —
whether it gets it right in the sense that it reveals the true assessment (or confirma-
tional) structure and thus leads to true and informative theories. Due to their focus
on truth, relevance measures — like s, ¢-functions — separate true from false theories,
but due to the exclusiveness of this focus, they do not — in contrast to s, t-functions
— distinguish between informative and uninformative true or false theories.
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