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Abstract

The problem adressed in this paper is “the main epistemic problem con-
cerning science”, viz. “the explication of how we compare and evaluate the-
ories [...] in the light of the available evidence” (van Fraassen 1983: 27).

Sections 1-3 contain the general plausibility-informativeness theory of
theory assessment. In a nutshell, the message is (1) that there are two values
a theory should exhibit: truth and informativeness – measured respectively
by a truth indicator and a strength indicator; (2) that these two values are
conflicting in the sense that the former is a decreasing and the latter an in-
creasing function of the logical strength of the theory to be assessed; and
(3) that in assessing a given theory by the available data one should weigh
between these two conflicting aspects in such a way that any surplus in in-
formativeness succeeds, if the shortfall in plausibility is small enough.

Particular accounts of this general theory arise by inserting particular
strength indicators and truth indicators. In section 4 the theory is spelt out for
the Bayesian paradigm of subjective probabilities. It is then compared to in-
cremental Bayesian confirmation theory. Section 4 closes by asking whether
it is likely to be lovely. Section 5 discusses a few problems of confirmation
theory in the light of the present approach. In particular, it is briefly indicated
how the present account gives rise to a new analysis of Hempel’s conditions
of adequacy for any relation of confirmation (Hempel 1945), differing from
the one Carnap gave in §87 of his (1962).

Section 6 adresses the question of justification any theory of theory as-
sessment has to face: why should one stick to theories given high assessment
values rather than to any other theories? The answer given by the Bayesian
version of the account presented in section 4 is that one should accept theo-
ries given high assessment values, because, in the medium run, theory assess-
ment almost surely takes one to the most informative among all true theories
when presented separating data. The concluding section 8 continues the com-
parison between the present account and incremental Bayesian confirmation
theory.
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1 The Problem

The problem adressed in this paper is this:

the main epistemic problem concerning science [...] is the explica-
tion of how we compare and evaluate theories [...] in the light of the
available evidence[.] (van Fraassen 1983: 27)

In other words the question is: what is a good theory, and when is one theory better
than another, given these data and those background assumptions. Let us call this
the problem of a theory of theory assessment. Its quantitative version can be put as
follows.

• We are given a hypothesis or theory H , a set of data – the evidence – E, and
some background information B.

• The question is: how “good” is H given E and B? That is, what is the
“value” of H in view of E and B?

• An answer to this question consists in the definition of a (set A of) func-
tion(s) a such that (for each a ∈ A:) a (H,E,B) measures the value of H
in view of E and B, i.e. how good H is given E and B.

Given this formulation of our problem, a theory of theory assessment need not ac-
count for the way in which scientists arrive at their theories nor how they (are to)
gather evidence nor what they may assume as background information. Further-
more, one purpose of this evaluation is that we accept those theories (among the
ones we can or have to choose from) which score highest in the assessment rela-
tive to the available data (as discussed in more detail below, the term ‘accept’ is
not used in the sense of believe or hold to be true). This indicates that a proper
treatment of the whole problem not only explicates how we evaluate theories in
the light of the available evidence (sections 2-5). A proper treatment also justifies
this evaluation by answering the question why we should accept those theories that
score highest (sections 6-7).

In order for the above characterisation to be precise one has to make clear what
is meant by theory, evidence, and background information. In what follows it is
assumed that for every hypothesis H , every piece of evidence E, and every body
of background information B there exist finite axiomatizations (in a first-order
language including identity and function symbols) AH , AE , and AB , respectively,
which formulate H , E, and B, respectively. As theory assessment turns out to be
closed under equivalence transformations, H , E, and B can and will be identified
with one of their formulations AH , AE , and AB , respectively.
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2 Conflicting Concepts of Confirmation

Although some take theory assessment to be the main epistemic problem concern-
ing science, there is no established branch adressing exactly this problem. What
comes closest is what is usually called confirmation theory. So let us briefly look
at confirmation theory, and see what insights we can get from there concerning our
problem.

Confirmation has been a hot topic in the philosophy of science for more than
60 years now, starting with such classics as Carl Gustav Hempel’s “Studies in the
Logic of Confirmation” (1945)1 and Rudolf Carnap’s work on inductive logic and
probability (Carnap 1962; 1952). The first decades have been dominated by the
following two approaches.

• The qualitative theory of Hypothetico-Deductivism HD (sometimes associ-
ated with Karl R. Popper) says that hypothesis H is confirmed by evidence
E relative to background information B iff the conjunction of H and B log-
ically implies E in some suitable way – the latter depending on the version
of HD under consideration.

• The quantitative theory of probabilistic Inductive Logic IL (associated with
Rudolf Carnap) says that H is confirmed by E relative to B to degree r
iff the probability of H given E and B is greater than or equal to r. The
corresponding qualitative notion of confirmation is that E “absolutely” IL-
confirms H relative to B iff the probabiliy of H given E and B is greater
than some fixed value r ∈ [.5, 1).2

So there are at least two concepts of confirmation. There is a concept of confirma-
tion that aims at informative theories, and there is a concept of confirmation that
aims at plausible or true theories. These two concepts of confirmation are conflict-
ing in the sense that the former is an increasing and the latter a decreasing function
of the logical strength of the theory to be assessed.

Let us turn this into a definition.

Definition 1 A relation |∼ ⊆ L × L on a language (set of propositional or first-
order sentences closed under negation and conjunction) L is an informativeness

1Cf. also Hempel (1943) and Hempel & Oppenheim (1945).
2This is not the way Carnap defines qualitative IL-confirmation in chapter VII of his (1962).

There he requires that the probability ofH givenE andB be greater than that ofH givenB in order
for E to qualitatively IL-confirm H relative to B. Nevertheless, the above is the natural qualitative
counterpart for the quantitative degree of absolute confirmation, i.e. Pr (H | E ∧B). The reason
is that later on the difference between Pr (H | E ∧B) and Pr (H | B) – in whatever way it is
measured (Fitelson 1999) – is taken as the degree of incremental confirmation, and Carnap’s proposal
is the natural qualitative counterpart of this notion of incremental confirmation. See section 5.
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relation iff for all E,H,H ′ ∈ L:

E |∼ H, H ′ ` H ⇒ E |∼ H ′.

|∼ ⊆ L × L is a plausibility relation on L iff for all E,H,H ′ ∈ L:

E |∼ H, H ` H ′ ⇒ E |∼ H ′,

where ` ⊆ ℘ (L) × L is the classical deducibility relation (and singletons of for-
mulae are identified with the formula they contain).

The idea is that a sentence or proposition is the more informative, the more possi-
bilities it excludes. Hence, the logically stronger a sentence, the more informative
it is. On the other hand, a sentence is the more plausible, the fewer possibilities
it excludes, i.e. the more possibilities it includes. Hence, the logically weaker a
sentence, the more plausible it is. The qualitative counterparts of these two com-
parative principles are the two defining clauses above. If H is informative relative
to E, then so is any logically stronger sentence. Similarly, if H is plausible given
E, then so is any logically weaker sentence.

According to HD, E confirms H relative to B iff the conjunction of H and
B logically implies E (in some suitable way). Hence, if E HD-confirms H rel-
ative to B, and if H ′ logically implies H , then E HD-confirms H ′ relative to B
(provided the suitable way does not render logical implication non-monotonic).
So HD-confirmation is an informativeness relation. According to qualitative IL, E
confirmsH relative toB iff Pr (H | E ∧B) > r, for some r ∈ [.5, 1). Hence, ifE
absolutely IL-confirms H relative to B, and if H logically implies H ′, then E ab-
solutely IL-confirms H ′ relative to B. So absolute IL-confirmation is a plausibility
relation.

The epistemic values behind these two concepts are informativeness on the one
hand and truth or plausibility on the other. We aim at theories that are true in the
world we are in. And we aim at theories that inform us about the world we are in.
Usually we do not know which world we are in, though. All we have are some data
(and background assumptions). So we base our evaluation of the theory we are
concerned with on the plausibility that the theory is true in the actual world given
that the actual world makes the data true; and on how much the theory informs
about the actual world given that the actual world makes the data true.

Turning back to the question we started from – What is a good theory? – we
can now say that, according to HD, a good theory is informative, whereas IL says
good theories are probable or true. Putting together these two claims gives us the
plausibility-informativeness theory of theory assessment:

a good theory is true and informative.
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3 Assessing Theories

Given evidence E and background information B, a hypothesis H should be both
as informative and as plausible as possible. A strength indicator s measures how
informative H is relative to E and B. A truth indicator t measures how plausible
it is that H is true in view of E and B. Of course, not any function will do.

Definition 2 A possibly partial function f : L×L×L → < is an evidence based
truth indicator on L iff for all 〈H,E,B〉, 〈H ′, E,B〉 ∈ Domf :

B,E ` H → H ′ ⇒ f (H,E,B) ≤ f
(
H ′, E,B

)
.

f is an evidence neglecting truth indicator on L iff for all 〈H,E,B〉, 〈H ′, E,B〉 ∈
Domf :

B ` H → H ′ ⇒ f (H,E,B) ≤ f
(
H ′, E,B

)
.

Observation 1 Let f be an evidence based truth indicator on L. Then we have for
all 〈H,E,B〉, 〈¬H,E,B〉, 〈H ′, E,B〉 ∈ Domf :

B,E ` H ⇒ f (¬H,E,B) ≤ f
(
H ′, E,B

)
≤ f (H,E,B) .

Let f be an evidence neglecting truth indicator onL. Then we have for all 〈H,E,B〉,
〈¬H,E,B〉, 〈H ′, E,B〉 ∈ Domf :

B ` H ⇒ f (¬H,E,B) ≤ f
(
H ′, E,B

)
≤ f (H,E,B) .

The range of f is taken to be (a subset of) <. One could strive for maximal gen-
erality by taking the range of f to be any ordered set in which differences can
be expressed. The defining clause takes care of the fact that the set of possibili-
ties (possible worlds, models) falsifying a hypothesis H is a subset of the set of
possibilities falsifying any hypothesis that logically implies H . Here the set of
possibilities is restricted to those not already ruled out by (the data and) the back-
ground information. It follows that logically equivalent theories always have the
same plausibility (f -value), provided the relevant tuples 〈H,E,B〉 are in the do-
main of f .

The observation states that we cannot demand more – as far as only our aim
of arriving at true theories is concerned – than that (the evidence and) the back-
ground assumptions our assessment is based on guarantee (in the sense of logical
implication) that the theory to be assessed is true. Similarly, a theory cannot do
worse – as far as only our aim at arriving true theories is concerned – than that (the
conjunction of the data and) the background information guarantees that our theory
is false. In the following I will only consider evidence based truth indicators. So
whenever I speak of a truth indicator I mean an evidence based truth indicator.
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Definition 3 A possibly partial function f : L×L×L → < is an evidence based
strength indicator on L iff for all 〈H,E,B〉, 〈H ′, E,B〉 ∈ Domf :

B,¬E ` H → H ′ ⇒ f
(
H ′, E,B

)
≤ f (H,E,B) .

f is an evidence neglecting strength indicator onL iff for all 〈H,E,B〉, 〈H ′, E,B〉 ∈
Domf :

B ` H → H ′ ⇒ f
(
H ′, E,B

)
≤ f (H,E,B) .

f is a strength indicator onL iff there is an evidence based strength indicator f1, an
evidence neglecting strength indicator f2, and a function g : Rf1 ×Rf2 → < such
that Domf = Domf1 ∩ Domf2 , f (H,E,B) = g (f1 (H,E,B) , f2 (H,E,B))
for all 〈H,E,B〉 ∈ Domf , and g is non-decreasing in both and increasing in
at least one of its arguments f1 and f2, where Rf1 ⊆ < is the range of f1 and
Rf2 ⊆ < is the range of f2.

Observation 2 Let f be an evidence based strength indicator on L. Then we have
for all 〈H,E,B〉, 〈¬H,E,B〉, 〈H ′, E,B〉 ∈ Domf :

B,¬E ` H ⇒ f (H,E,B) ≤ f
(
H ′, E,B

)
≤ f (¬H,E,B) .

Let f be an evidence neglecting strength indicator on L. Then we have for all
〈H,E,B〉, 〈¬H,E,B〉, 〈H ′, E,B〉 ∈ Domf :

B ` H ⇒ f (H,E,B) ≤ f
(
H ′, E,B

)
≤ f (¬H,E,B) .

Every evidence based strength indicator is a strength indicator, and every strength
indicator is an evidence neglecting strength indicator.

The requirement takes into account that the set of possibilities falsified by a hy-
pothesis H is a subset of the set of possibilities ruled out by any theory logically
implying H . The set of possibilities is again restricted to those (ruled out by the
data but) allowed for by the background assumptions. It follows that logically
equivalent theories are always equally informative (about the data) (have the same
f -value), provided the relevant tuples 〈H,E,B〉 are in the domain of f .

The first part of the observation says that a theory cannot do better in terms of
informing about the data than logically implying them. Although this is not ques-
tionable, one might take this as a reason to reject the notion of informing about the
data (it is inappropriate, so the objection, to ascribe maximal informativeness to any
theory logically implying the evidence). Two theories, one might say, both logi-
cally implying all of the data can still differ in their informativeness. For instance,
consider a complete theory consistent with the data and a theory-like collection of
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all the data gathered so far3. This is perfectly reasonable. Hence the distinction
between evidence based and evidence neglecting strength indicators. The notion
of a strength indicator is introduced in order to avoid that one has to take sides,
though one can do so (g need not be increasing in both arguments). The discus-
sion of how to measure informativeness will be taken up again when the present
paradigm-independent theory is spelt out in terms of subjective probabilities.

In all four cases, the defining clauses express that strength indicators and truth
indicators increase and decrease, respectively, with the logical strength of the the-
ory to be assessed. These quantitative requirements correspond to the defining
clauses of the qualitative relations of informativeness and plausibility, respectively.

Obviously, an assessment function a should not be both a strength and a truth
indicator. The reason is that any strength indicating truth indicator is a constant
function. Let us call this observation the singularity of simultaneously indicating
strength and truth. Instead, an assessment function a should weigh between these
two conflicting aspects: a should be sensitive to both truth and informativeness.

Definition 4 Let s be a strength indicator, let t be a truth indicator, and let β ∈ <.
A possibly partial function f : L × L × L → < is sensitive to informativeness
and plausibility in the sense of s and t and with demarcation β – or for short:
an s, t-function (with demarcation β) – iff there is a function g : Rs × Rt ×
X → < such that g is a function of, among others, s and t, i.e. f (H,E,B) =
g (s (H,E,B) , t (H,E,B) , x) for all 〈H,E,B〉 ∈ Doms ∩Domt, such that

1. Continuity
Any surplus in informativeness succeeds, if the shortfall in plausibility is
small enough.

∀ε > 0 ∃δε > 0 ∀s1, s2 ∈ Rs ∀t1, t2 ∈ Rt ∀x ∈ X :
s1 > s2 + ε & t1 > t2 − δε ⇒ g (s1, t1, x) > g (s2, t2, x) .

2. Demarcation
∀x ∈ X : g (smax, tmin, x) = g (smin, tmax, x) = β.

If s (⊥, E,B) and s (>, E,B) are defined, they are the maximal and minimal
values of s, smax and smin, respectively. If t (>, E,B) and t (⊥, E,B) are de-
fined, they are the maximal and minimal values of t, tmax and tmin, respectively.
As before, ‘Rs’ and ‘Rt’ denote the range of s and the range of t, respectively.
f (H,E,B) is a function of, among others, s (H,E,B) and t (H,E,B). I will
sometimes write ‘f (H,E,B)’ and at other times ‘g (s1, t1)’, dropping the addi-
tional argument place, and at still other times ‘f (s1, t1)’, treating f as g (s, t).

3One might want to restrict the term ‘theory’ to lawlike statements. I do not. Nor do I want to
suggest that the collection of all data is lawlike.
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Continuity implies

3. Weak Continuity

∀s1, s2 ∈ Rs : s1 > s2 ∃δs1,s2 > 0 ∀t1, t2 ∈ Rt :
t1 > t2 − δs1,s2 ⇒ g (s1, t1) > g (s2, t2) .

The difference is that, in its stronger formulation, Continuity requires δ just to
depend on the lower bound ε of the difference between s1 and s2, and not on the
numbers s1 and s2 themselves. Thus, in the case of Weak Continuity, if s1,i =
1
i+1 + a, a > 0, and s2,i = 1

i+1 , for i ∈ N , there may be no common upper bound
δ = δs1,i,s2,i by which t1,i must not be smaller than t2,i in order for g (s1,i, t1,i) >
g (s2,i, t2,i) to hold – the respective upper bounds may be, say, δi = 1

n·i for t1,i
and t2,i. (In case of infinitely many s1,is and s2,is, one cannot always take δ =
inf
{
δs1,i,s2,i : i ∈ N

}
, because the latter expression may be 0, as is the case in the

example.) Continuity demands that δ depend only on the lower bound ε by which
s1 exceeds s2. Thus, for s1i , s2,i there must exist a common δ depending just on
the lower bound, say, ε = a

2 – there are, of course, uncountably many such εs for
which there exist (not necessarily distinct) δεs.

The difference between Continuity and Weak Continuity is related to the differ-
ence between evidence based and evidence neglecting strength indicators. When
one is concerned with two hypotheses H1 and H2 and considers the incoming data
one at a time, the plausibility of the His in general changes with each new piece of
evidence (assuming an evidence based truth indicator). In case of evidence based
strength indicators, the informativeness of H1 and H2 also changes with each new
piece of evidence, whereas it remains the same for evidence neglecting strength
indicators. The idea behind Continuity is that the more informative of the two hy-
potheses, say H1, eventually comes out as the better theory, if H1’s shortfall in
plausibility converges to zero (or if H1 becomes more plausible than H2). If the
informativeness of the Hi itself changes with each new piece of evidence, though
the informativeness of H1 is always greater than that of H2, one cannot refer to the
difference between the informativeness values of H1 and H2. One can, however,
refer to the minimal difference between the two informativeness values – unless
this difference goes itself to 0, in which case H1 should not necessarily come out
as the better theory anyway. In case one prefers to work with evidence neglecting
strength indicators, one can stick to Weak Continuity.

As just said, the idea behind Continuity is that the more informative of two
hypotheses eventually comes out as the better one, if its shortfall in plausibility
vanishes. In particular, this should hold if the plausibility of the two hypotheses
converges to certainty (more precisely, if their plausibility becomes either arbitrar-
ily close to certainly true or arbitrary close to certainly false).
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4. Continuity in Certainty
Any surplus in informativeness succeeds, if plausibility becomes certainty.

∀ε > 0 ∀ti, t′i ∈ Rt : ti, t′i →i

{
tmax

tmin
∃n∀m ≥ n ∀sm, s′m ∈ Rs :

sm > s′m + ε ⇒ g (sm, tm) > g (s′m, t
′
m) .

5. Weak Continuity in Certainty

∀s0, s′0 ∈ Rs : s0 > s′0 ∀ti, t′i ∈ Rt : ti, t′i →i

{
tmax

tmin
∃n∀m ≥ n :

g (s0, tm) > g (s′0, t
′
m) .

Weak Continuity implies that g increases in s, i.e.

6. Informativeness: s0 > s1 ⇒ g (s0, t0) > g (s1, t0) .

If we additionally assume that g is a function of s and t only, we get

Lovelinesss: g (s0, t0) ≥ g (s1, t0) ⇔ s0 ≥ s1.

Although Continuity implies

7. s0 > s1 & t0 ≥ t1 ⇒ g (s0, t0) > g (s1, t1),

it does not imply that g increases in t, i.e.

0. Plausibility: t0 > t1 ⇒ g (s0, t0) > g (s0, t1).

(s0, s1 are any values in Rs, and t0, t1 are any values in Rt.)
This asymmetry is due to the fact that truth is a qualitative yes-or-no affair. A

sentence either is or is not true in some world. By contrast, informativeness (about
some data) is a matter of degree. In case of truth, degrees enter the scence only
because we do not know in general, given only the data, whether or not a theory
is true in any world the data could be taken from. In case of informativeness,
however, degrees are present even if we have a complete and correct assessment
of the informational value of the theory under consideration (or, more cautiously,
there is at least a partial order that is induced by the consequence or subset relation).

Weak Continuity in Certainty implies

8. Maximality: g (s0, t0) = gmax ⇒ s0 = smax

9. Minimality: g (s0, t0) = gmin ⇒ s0 = smin.

If we additionally assume Plausibility, we get
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10. Maximality II: g (s0, t0) = gmax ⇒ s0 = smax & t0 = tmax

11. Minimality II: g (s0, t0) = gmin ⇒ s0 = smin & t0 = tmin.

If we finally add that g is a function of s and t only, we get the converse of 10 and
of 11.

The conjunction of Continuity and Demarcation does not imply

Symmetry: g (s1, t1) = g (t1, s1).

Assessment functions may consider one aspect, say plausibility, more important
than the other. The only thing that is ruled out is to totally neglect one of the two
aspects, as do, for instance,

r =
t

1− s
and l =

t · s
(1− t) · (1− s)

when t = 0, where Rs = Rt = [0, 1]. Furthermore, even if Plausibility is assumed
and g is a function of s and t only, the conjunction of Continuity and Demarcation
does not imply that for a given value s0 ∈ Rs there is a value t0 ∈ Rt such that
g (s0, t0) = β.

The functions r and l have the following properties:

s0 > smin ⇒ g (s0, tmin) = gmin,

smax > s0 > smin ⇒ g (s0, tmin) = gmin & g (s0, tmax) = gmax,

respectively. The first says that in the special case of plausibility being minimal,
informativeness does not count anymore. But clearly, a theory which is refuted by
the data – in which case evidence based plausibility is minimal – can still be better
than another theory which is also refuted by the data. After all, (almost) every in-
teresting theory from, say, physics, has turned out to be false – and we nevertheless
think there has been progress! The second property additionally says that in the
special case of plausibility being maximal, informativeness does not count any-
more either. So not only is any falsified theory as bad as any other falsified theory;
we also have that every verified theory is as good as any other verified theory. In
contrast,

d = t+ s+ c, Rt = Rs = [0, 1] ,

is sensitive to informativeness and plausibility with demarcation c + 1, and thus
does not exhibit the discontinuity of r and l. If c = −1, then

df = [t+ s− 1] · f (E,B) ,

with f a positive function not depending on H , also satisfies Plausibility, Continu-
ity, and Demarcation, though it is not a function of s and t only. Finally, note that
any s, t-function is invariant with respect to (or closed under) equivalence transfor-
mations of H , if it is a function of s and t only.
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4 Assessing Theories, Bayes Style

4.1 The Bayesian Plausibility-Informativeness Theory

What has been seen so far is the general plausibility-informativeness theory of
theory assessment. In a nutshell, its message is (1) that there are two values a
theory should exhibit: truth and informativeness – measured respectively by a truth
indicator t and a strength indicator s; (2) that these two values are conflicting in
the sense that the former is a decreasing and the latter an increasing function of
the logical strength of the theory to be assessed; and (3) that in assessing a given
theory one should weigh between these two conflicting aspects in such a way that
any surplus in informativeness succeeds, if the shortfall in plausibility is small
enough. Particular accounts arise by inserting particular strength indicators and
truth indicators.

The theory can be spelt out in terms of Spohn’s (1988; 1990) ranking theory
(Huber 2007a), and in a syntactical paradigm that goes back to Hempel (1943;
1945) (Huber 2004). Here, however, I will focus on the Bayesian version, where
I take Bayesianism to be the threefold thesis that (i) scientific reasoning is proba-
bilistic; (ii) probabilities are adequately interpreted as an agent’s actual degrees of
belief; and (iii) they can be measured by her betting behavior.

Spelling out the general theory in terms of subjective probabilities simply means
that we specify a (set of) probabilistic strength indicator(s) and a (set of) probabilis-
tic truth indicator(s). Everything else is accounted for by the general theory. The
nice thing about the Bayesian paradigm is that once one is given hypothesis H , ev-
idence E, and background information B, one is automatically given the relevant
numbers Pr (H | E ∧B) , . . ., and the whole problem reduces to the definition of
a suitable function of Pr.4

In this paradigm it is natural to take

tPr (H,E,B) = Pr (H | E ∧B) = p

as truth indicator, and

sPr (H,E,B) = Pr (¬H | ¬E ∧B) = i, s′Pr (H,B) = Pr (¬H | B) = i′

as evidence based and evidence neglecting strength indicators, respectively. Here
Pr is a regular probability measure on the underlying language or field of propo-

4This is not the case in the Hempel paradigm. There the numbers have to be squeezed out of
the logical structure of H , E, and B and nothing else. As a consequence, these values are uniquely
determined byH , E, andB and the logical consequence relation. In particular, they are independent
of the underlying language (Huber 2004).
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sitions.5 The choice of p hardly needs any discussion. For the choice of i consider
the following figure with hypothesis H , evidence E, and background information

B (conceived of as propositions).

B
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Suppose we want to strengthen H by deleting possibilities verifying it, that is,
by shrinking the area representing H . In this case i recommends to delete possi-
bilities outside E. The reason is that, given E, those are exactly the possibilities
known not to be the actual one, whereas the possibilities inside E are still alive
options. Thus, when H shrinks to H ′ as depicted below, the probabilistic evidence

based strength indicator i increases.
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For the probabilistic evidence neglecting strength indicator i′ it does not matter
which possibilities one deletes in strengthening H (provided all possibilities have

5Regularity is often paraphrased as open-mindedness (Earman 1992), because it demands that no
consistent statement be assigned probability 0. Given a subjective interpretation of probability, this
sounds like a restriction on what one is allowed to believe (to some degree). Regularity can also
be formulated as saying that any statement H1 which logically implies but is not logically implied
by some other statement H2 must be assigned a strictly lower degree of belief than H2. (In case
of probabilities conditional on B, logical implication is also conditional on B.) Seen this way,
regularity requires degrees of belief which are sufficiently fine-grained. For this reason I prefer to
think of regularity not as a restriction on what (which propositions) to believe (to some degree), but
as a restriction on how to believe (propositions), namely, sufficiently fine-grained so that differences
so big as to be expressable purely in terms of the logical consequence relation are not swept under
the carpet.
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equal weight on Pr). i′ neglects whether they are inside or outside E. The strength
indicator i∗α with parameter α ∈ [0, 1] is given by

i∗α = α · Pr (¬H | ¬E,B) + (1− α) · Pr (¬H | B) = α · i+ (1− α) · i′.

For i∗α, it depends on α how much it matters whether the deleted possibilities lie
inside or outside of E.

Other candidates for measuring informativeness that are (suggested by mea-
sures) discussed in the literature6 are

i′′ = Pr (¬H | E ∧B) ,

cont = Pr (E) · Pr (¬H | E ∧B) ,

inf = − log2 Pr (H | E ∧B) .

These measures, all of which assign minimal informativeness to any theory en-
tailed by the data and the background assumptions, do pretty bad on this count.
They require the deletion of possibilities inside E. They measure how much the
information in H goes beyond the information provided by E. This is not the ap-
propriate notion of informativeness for present purposes, though (see section 4.3
for more on this).

The background information B plays a role different from that of the data E
for i∗α, but not for i′′, cont, or inf. If there is a difference between data on the one
hand and background assumptions on the other, then this difference should show
up somewhere. According to one view (Hendricks 2006), background assumptions
determine the set of possibilities. Seen this way they are nothing but restrictions
on the set of possible worlds over which inquiry has to succeed. Evidence based
strength indicators reflect this difference. They measure how much a theory in-
forms about the data, but not how much a theory informs about the background
assumptions. However, if one holds there should be no difference between E and
B as far as measuring informativeness is concerned, then one can nevertheless
adopt the above measures by substituting E′ = E ∧ B and B′ = > for E and B,
respectively.

4.2 Incremental Confirmation

Let us see how this approach compares to Bayesian confirmation theory. The fol-
lowing notion is central in this literature (Fitelson 2001).

6Cf. Carnap & Bar-Hillel (1952), Bar-Hillel & Carnap (1953), and Hintikka & Pietarinen (1966).
Cf. also Bar-Hillel (1952) and (1955). In Levi (1967), i′′ is proposed as, roughly, a measure for the
relief from agnosticism afforded by accepting H as strongest relative to total evidence E ∧B.
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Definition 5 A possibly partial function f = fPr : L × L × L → < is a β-
relevance measure based on Pr just in case it holds for all H,E,B ∈ L with
Pr (E ∧B) > 0:

f (H,E,B)
>
=
<
β ⇔ Pr (H | E ∧B)

>
=
<

Pr (H | B) .

As

Pr (H | E ∧B) > Pr (H | B) ⇔ Pr (¬H | ¬E ∧B) > Pr (¬H | B) (1)

for 0 < Pr (E | B) < 1 and Pr (B) > 0, every i, p-function sc = p+ i+ c, c ∈ <,
is a c+ 1-relevance measure in the Bayesian sense (where p and i depend on Pr).
Similarly, every i′, p-function s′c = p+ i′+ c is a c+1-relevance measure. Hence,
every i∗, p-function

s∗c = p+ i∗ + c, c ∈ <,

is a c+1-relevance measure, where i∗ is a strength indicator based on i and i′. For
c = −1 and i∗ = i′, one gets the distance measure d,

dPr (H,E,B) = Pr (H | E ∧B)− Pr (H | B)

(Earman 1992). For c = −1 and i∗ = i, one gets the Joyce-Christensen measure s,

sPr (H,E,B) = Pr (H | E ∧B)− Pr (H | ¬E ∧B)

(Joyce 1999, Christensen 1999). As noted earlier at the end of section 3, for posi-
tive f not depending on H , the functions

df = [i+ p− 1] · f (E,B)

are i, p-functions with demarcation 0. For f = Pr (¬E | B) we get (again) the
distance measure d, and for f = Pr (¬E | B) ·Pr (B) ·(E ∧B) we get the Carnap
measure c,

cPr (H,E,B) = Pr (H ∧ E ∧B) · Pr (B)− Pr (H ∧B) · Pr (E ∧B)

(Carnap 1962). Hence the Carnap measure c, the difference measure d, and Joyce-
Christensen measure s are three different ways of weighing between the two func-
tions i and p (or between i′ and p, for s = d/Pr (¬E | B) and c = d · Pr (B) ·
Pr (E ∧B)). Alternatively, the difference between d and s can be seen not as one
between the way of weighing, but as one between what is weighed – namely two

15



different pairs of functions, viz. i and p for the difference measure d, and i′ and p
for the Joyce-Christensen measure s. This is clearly seen by rewriting d and s as

dPr = Pr (H | E ∧B) + Pr (¬H | B)− 1,

sPr = Pr (H | E ∧B) + Pr (¬H | ¬E ∧B)− 1.

In this sense part of the discussion about the right measure of incremental confir-
mation turns out to be a discussion about the right measure of informativeness of a
hypothesis relative to a body of evidence. This view is endorsed by the observation
that d and s actually employ the same decision-theoretic considerations7:

dPr = Pr (H | E ∧B)− Pr (H | B)

= Pr (H | E ∧B)− Pr (H | B) · Pr (H | E ∧B)−
−Pr (H | B) + Pr (H | B) · Pr (H | E ∧B)

= Pr (¬H | B) · Pr (H | E ∧B)− Pr (H | B) · Pr (¬H | E ∧B)

= i′ (H,B) · Pr (H | E ∧B)− i′ (¬H,B) · Pr (¬H | E ∧B) ,

sPr = Pr (H | E ∧B)− Pr (H | ¬E ∧B)

= Pr (H | E ∧B)− Pr (H | ¬E ∧B) · Pr (H | E ∧B)−
−Pr (H | ¬E ∧B) + Pr (H | ¬E ∧B) · Pr (H | E ∧B)

= Pr (¬H | ¬E ∧B) · Pr (H | E ∧B)− Pr (H | ¬E ∧B) · Pr (¬H | E ∧B)

= i (H,E,B) · Pr (H | E ∧B)− i (¬H,E,B) · Pr (¬H | E ∧B) .

So d and s are exactly alike in the way they combine or weigh between infor-
mativeness and plausibility. They both form the expected informativeness of the
hypothesis (about the data and relative to the background assumptions). Their dif-
ference lies in the way they measure informativeness.

4.3 Expected Informativeness

What results do we get from the decision-theoretic way of setting confirmation
equal to the expected informativeness for the measures i′′, cont, and inf men-
tioned in section 4.1? Let ‘i′′ (H)’ be short for ‘i′′ (H,E,B)’, and similarly for
‘cont (H)’ and ‘inf (H)’.

E
(
i′′ (H)

)
= i′′ (H) · Pr (H | E ∧B)− i′′ (¬H) · Pr (¬H | E ∧B)

= Pr (¬H | E ∧B) · Pr (H | E ∧B)−
7Cf. Hintikka & Pietarinen (1966), Levi (1961; 1963), but also Hempel (1960).
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−Pr (H | E ∧B) · Pr (¬H | E ∧B)

= 0

E (cont (H)) = cont (H) · Pr (H | E ∧B)− cont (¬H) · Pr (¬H | E ∧B)

= Pr (E) · Pr (¬H | E ∧B) · Pr (H | E ∧B)−
−Pr (E) · Pr (H | E ∧B) · Pr (¬H | E ∧B)

= 0

E (inf (H)) = inf (H) · Pr (H | E ∧B)− inf (¬H) · Pr (¬H | E ∧B)

= − log2 Pr (¬H | E ∧B) · Pr (H | E ∧B) +

+ log2 Pr (H | E ∧B) · Pr (¬H | E ∧B)

>
=
<

0

⇔ Pr (H | E ∧B)
>
=
<

Pr (¬H | E ∧B)

Hence only inf gives a non-trivial answer, viz. to maximize probability. Maximiz-
ing probability is also what the “Acceptance rule based on relative-content mea-
sure of utility” from Hempel (1960) requires (I have dropped the body of back-
ground information B, because Hempel does not have it, and I took his content
measure m (·) to be 1−Pr (·), which is in accordance with his remarks on p. 76 of
Hempel 1965 and with Hempel 1962 and Hempel & Oppenheim 1948). Hempel’s
“Relative-content measure of purely scientific utility” is this:

rc (H,E) = iH (H,E) · Pr (H | E)− iH (H,E) · Pr (¬H | E)

=
Pr (¬H ∧ E)

Pr (¬E)
· Pr (H | E)− Pr (¬H ∧ E)

Pr (¬E)
· Pr (¬H | E)

=
Pr (¬H ∧ E)

Pr (¬E)
(2 · Pr (H | E)− 1) .

However, as noted by Hintikka & Pietarinen (1966: fn. 12), it seems more adequate
to consider

E (iH (H,E)) = iH (H,E) · Pr (H | E ∧B)− iH (¬H,E) · Pr (¬H | E ∧B)

=
Pr (¬H ∧ E)

Pr (¬E)
· Pr (H | E)− Pr (H ∧ E)

Pr (¬E)
· Pr (¬H | E)

= 0.

Given this result, it is clear why Hintikka & Pietarinen (1966) choose i′ = Pr (¬H)
as measure of information, and thus arrive at the distance measure d as shown
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above.
Forming assessment values by taking the expected informativeness is thus al-

lowed, but not required by the Bayesian version of the plausibility-informativeness
theory. Here is the expected informativeness for the measures i∗α, α ∈ [0, 1]:

E (i∗α (H,E,B)) = α · sPr + (1− α) · dPr.

4.4 Is It Likely To Be Lovely?

Lipton (2004) suggests the view that a theory which is lovely in his sense (which
provides a lot of good explanations) is also likely to be true. Loveliness, as un-
derstood here, is an indicator of the informativenss of a theory, and thus need not
have anything to do with explanation. Still, one might ask whether “it is likely to
be lovely”.

The first way to make this question more precise is to ask whether, given no
data at all, a lovely theory is also a likely one. This is, of course, not the case,
as is clear from the fact that loveliness and likeliness are conflicting in the sense
that the former is an increasing, and the latter a decreasing function of the logical
strength of the theory to be assessed. However, the equivalence in (1) gives rise to
another way of putting this question. Given that a piece of evidence E raises the
loveliness of H relative to B, does that piece of evidence also raise the likeliness
of H relative to B?8

Let E0, . . . , En−1, En be the evidence seen up to stage n + 1 of the inquiry.
Then the answer is affirmative if, at stage n + 1, one considers the total available
evidence E = E0 ∧ . . .∧En−1 ∧En and asks whether the likeliness of H given E
and background information B is greater than the likeliness of H at stage 0 before
the first datum came in, i.e. whether

Pr (H | E ∧B) > Pr (H | B) .

As we have seen, this holds just in case the loveliness of H relative to E and B,
Pr (¬H | ¬E ∧B), is greater than H’s loveliness at stage 0, when it may be set
equal to Pr (¬H | B).9 So on the global scale, lovely theories are likely to be true.
However, the answer is negative on the local scale where one considers just the

8According to i′, the informativeness of a theory is independent of the data, and so it does not
make sense to ask whether a piece of evidence E raises the loveliness – in the sense of i′ – of some
hypothesis H relative to a body of background information B. Therefore only i is considered in the
following.

9It may justifiedly be argued that the loveliness of H at stage 0 before the first datum came in is
not Pr (¬H | B), but rather is not defined. This follows if the “empty datum”, i.e. the one before
the first datum came in, is represented by>. Stipulating that s0 is defined and equal to Pr (¬H | B)
should only enable me to make sense of the question whether it is likely to be lovely.
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single datum En. At stage n, the loveliness and the likeliness of H relative to B
and the data seen so far are given by

sn = Pr (¬H | ¬ (E0 ∧ . . . ∧ En−1) ∧B) , tn = Pr (H | E0 ∧ . . . ∧ En−1 ∧B) .

Now suppose the next datum En at stage n + 1 raises the loveliness of H relative
to B and the data seen so far, sn+1 > sn, i.e.

Pr (¬H | ¬ (E0 ∧ . . . ∧ En−1 ∧ En) ∧B) > Pr (¬H | ¬ (E0 ∧ . . . ∧ En−1) ∧B) .

Does it follow that tn+1 > tn, i.e.

Pr (H | E0 ∧ . . . ∧ En−1 ∧ En ∧B) > Pr (H | E0 ∧ . . . ∧ En−1 ∧B)?

It does not. What holds true is that

tn+1 > tn

⇔
Pr (¬H | E0 ∧ . . . ∧ En−1 ∧ ¬En ∧B) > Pr (¬H | E0 ∧ . . . ∧ En−1 ∧B) ,

given that the relevant probabilities are non-negative. But tn+1 may be smaller
than tn, even if sn+1 > sn.10 Thus, although on the global scale a lovely theory is
also a likely one, this does not hold true on the local scale, where single pieces of
evidence are considered.

10The same holds true on both the local and the global scale, if one takes the measure i′′ =
Pr (¬H | E ∧B) instead of Pr (¬H | ¬E ∧B). The reason is that

Pr (¬H | E0 ∧ . . . ∧ En−1 ∧ En ∧B) < Pr (¬H | E0 ∧ . . . ∧ En−1 ∧B) and
Pr (¬H | E ∧B) < Pr (¬H | B) ,

if
Pr (H | E0 ∧ . . . ∧ En−1 ∧ En ∧B) > Pr (¬H | E0 ∧ . . . ∧ En−1 ∧B) and

Pr (H | E ∧B) > Pr (H | B) ,

respectively. Though i′′ is a decreasing function of the logical strength of H , it is not an evidence
based strength indicator in the sense defined, because Pr (¬H | E ∧B) need not equal 1 if H,B `
E. Moreover, according to the i′′, p-function s′′c = i′′ + p + c, every theory H has the same value
c+ 1 independently of the given evidence E and background information B.

As I learned in September 2003, Levi (personal correspondence) now favors i′ = Pr (¬H | B)
as a measure of the informativeness of H given B. According to this measure, informativeness is a
virtue of a theory H relative to background information B which is independent of the data E. This
is not true for i = Pr (¬H | ¬E ∧B). Interestingly i′ violates a condition of adequacy Levi himself
holds (Levi 1986): any two theories which are logically equivalent given evidenceE and background
knowledge B should be assigned the same value. This condition does not hold of i, p-functions and
has the consequence that any two refuted theories are assigned the same value. Given the history of
science, this is inappropriate for a theory of theory assessment.
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5 The Logic of Theory Assessment

In Huber (2007b: sct. 6) I briefly indicate how the plausibility-informativeness
theory sheds new light on some problems in the philosophy of science. Here I will
restrict myself to a discussion of Hempel’s conditions of adequacy and the question
of a logic of confirmation or theory assessment. This topic is treated in more detail
in Huber (2007a; submitted).

5.1 Hempel’s Conditions of Adequacy

In his “Studies in the Logic of Confirmation” (1945) Carl G. Hempel presents the
following conditions of adequacy for any relation of confirmation |∼ ⊆ L × L on
some language L (the names of 3.1 and 3.2 are not used by Hempel):

1. Entailment Condition: E ` H ⇒ E |∼ H

2. Consequence Condition: {H : E |∼ H} ` H ′ ⇒ E |∼ H ′

2.1 Special Consequence Cond.: E |∼ H, H ` H ′ ⇒ E |∼ H ′

2.2 Equivalence Condition: E |∼ H, H a` H ′ ⇒ E |∼ H ′

3. Consistency Condition: {E} ∪ {H : E |∼ H} 6` ⊥

3.1 Special C. C.: E 6` ⊥, E |∼ H, H ` ¬H ′ ⇒ E 6|∼ H ′

3.2 Consistent Selectivity: E 6` ⊥, E |∼ H ⇒ E 6` ¬H

4. Converse Consequence Condition: E |∼ H, H ′ ` H ⇒ E |∼ H ′

Hempel then shows that 1, 2, and 4 entail that every sentence (observation report)E
confirms every sentence (hypothesis or theory) H , i.e. for all E,H ∈ L: E |∼ H .
This is clear, since 1 and 4 already entail this result. By 1, E |∼ E ∨H , whence
E |∼ H by 4. Since Hempel’s negative result, there has hardly been any progress
in constructing a logic of confirmation.11 One reason seems to be that up to now
the predominant view on Hempel’s conditions is the analysis Carnap gives in § 87
of his Logical Foundations of Probability (1962).

11The exceptions I know of are Flach (2000), Milne (2000), and Zwirn & Zwirn (1996). Roughly,
Zwirn & Zwirn (1996) argue that there is no unified logic of confirmation (taking into account all
of the partly conflicting aspects of confirmation). Flach (2000) argues that there are two logics
of “induction”, as he calls them, viz. confirmatory and explicatory induction (corresponding to
Hempel’s conditions 1-3 and 4, respectively). Finally, Milne (2000) argues that there is a logic of
confirmation (namely the logic of positive probabilistic relevance), but that it does not deserve to be
called a logic.
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5.2 Carnap’s Analyis of Hempel’s Conditions

In analyzing the Consequence Condition, Carnap argues that

[...] Hempel has in mind as explicandum the following relation: ‘the
degree of confirmation of H by E is greater than r’, where r is a fixed
value, perhaps 0 or 1/2. (Carnap 1962: 475; notation adapted)

In discussing the Consistency Condition, Carnap mentions that

Hempel himself shows that a set of physical measurements may con-
firm several quantitative hypotheses which are incompatible with each
other (p. 106). This seems to me a clear refutation of [3.1]. [...] What
may be the reasons that have led Hempel to the consistency conditions
[3.1] and [3]? He regards it as a great advantage of any explicatum
satisfying [3] “that is sets a limit, so to speak, to the strength of the
hypotheses which can be confirmed by given evidence” [...] This ar-
gument does not seem to have any plausibility for our explicandum,
(Carnap 1962: 476-7; emphasis in the original)

which is the concept of “initially confirming evidence”, as Carnap calls it in §86 of
his (1962), that he explicates by positive probabilistic relevance.

But it is plausible for the second explicandum mentioned earlier: the
degree of confirmation exceeding a fixed value r. Therefore we may
perhaps assume that Hempel’s acceptance of the consistency condition
is due again to an inadvertant shift to the second explicandum. (Carnap
1962: 477-8.)

Carnap’s analysis can be summarized as follows. In presenting his first three con-
ditions of adequacy Hempel was mixing up two distinct concepts of confirmation,
two distinct explicanda in Carnap’s terminology. The first concept is explicated by
incremental confirmation (positive probabilistic relevance) according to which E
incrementally confirms H iff Pr (H | E) > Pr (H). The second concept is ex-
plicated by absolute confirmation according to which E absolutely confirms H iff
Pr (H | E) > r, for some r ∈ [.5, 1). The special versions of Hempel’s second
and third conditions hold true for the second explicatum, 2.1 and 3.1, respectively,
but they do not hold true for the first explicatum. On the other hand, Hempel’s first
condition 1 holds true for the first explicatum, but it does so only in a qualified
form (cf. Carnap 1962: 473) – namely only if E does not have probability 0, and
H does not already have probability 1.

This, however, means that Hempel first had in mind one explicandum (expli-
cated by incremental confirmation) for the Entailment Condition. Then he had in
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mind another explicandum (explicated by absolute confirmation) for the Special
Consequence and the Special Consistency Conditions. And when Hempel finally
presented the Converse Consequence Condition, he got completely confused, so
to speak, and had in mind still another explicandum or concept of confirmation
(neither absolute nor incremental confirmation satisfy 4). Apart from not being
very charitable, Carnap’s reading of Hempel also leaves open the question what
this third explicandum might have been.

5.3 Hempel Vindicated

As to Hempel’s Entailment Condition, note that it is satisfied by absolute confirma-
tion without the second qualification. If E logically implies H , then Pr (H | E) =
1 > r, for any r ∈ [0, 1), provided E does not have probability 0 (this proviso can
be dropped by using Popper measures instead of classical probabilities). So the fol-
lowing more charitable reading of Hempel seems plausible. When presenting his
first three conditions, Hempel had in mind Carnap’s second explicandum that Car-
nap explicates by absolute confirmation, or more generally: a plausibility relation.
But then, when discussing the Converse Consequence Condition, Hempel also felt
the need for a second concept of confirmation aiming at informative theories.

Given that it was the Converse Consequence Condition which Hempel gave
up in his Studies, the present analysis makes perfect sense of his argumentation.
Though he felt the need for two concepts of confirmation, Hempel also realized
that these two concepts are conflicting (that is the content of his triviality result,
corresponding to the singularity observation of section 3). Consequently he aban-
doned the informativeness concept of confirmation in favor of the plausibility con-
cept aiming at true theories.

Let us check this by going through Hempel’s conditions. Absolute confirma-
tion satisfies the Entailment Condition, as shown above. As to the Special Conse-
quence and the Special Consistency Condition (where the present analysis agrees
with Carnap’s), it is clear that Pr (H ′ | E) > r whenever Pr (H | E) > r and
H ` H ′, and that Pr (H ′ | E) < r whenever Pr (H | E) > r and H ` ¬H ′ and
r ∈ [.5, 1). (Non-empty informativeness relations do not satisfy 3.1. Informative-
ness relations satisfying 2.1 or 1 are trivial in the sense that E confirms at least
one H iff E confirms all H .) The culprit, according to Hempel (cf. pp. 103-107,
esp. pp. 104-105 of his Studies), is the Converse Consequence Condition. The
latter condition coincides with the defining clause of informativeness relations by
expressing the requirement that informativeness increases with the logical strength
of the theory to be assessed. It is, for instance, satisfied by HD-confirmation.
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5.4 The Logic of Theory Assessment

As we have seen, HD says that a good theory is informative, whereas IL says good
theories are probable or true. According to the above analysis, the driving force
behind Hempel’s conditions is the idea that a good theory is both true and informa-
tive. Hempel can thus be seen as the champion of the plausibility-informativeness
theory. As I will show now we can have his cake and eat it too. There is a logic
that takes into account both of these two conflicting concepts.

According to the logic of theory assessment (Huber 2007a),H is an acceptable
theory for E iff H is at least as plausible as and more informative than its negation
relative to E, or H is more plausible than and at least as plausible as its negation
relative to E. In terms of probabilities12 this means

E |∼i∗,Pr H ⇔ Pr (H | E) ≥ Pr (¬H | E) & i∗ (H,E) > i∗ (¬H,E) ,

or

Pr (H | E) > Pr (¬H | E) & i∗ (H,E) ≥ i∗ (¬H,E) ,

where i∗ is any function of i = Pr (¬H | ¬E) and i′ = Pr (¬H) that is non-
decreasing in both arguments, and increasing in at least one. |∼i∗,Pr is the (i∗-)
assessment relation induced by Pr on L.

The term ‘accept’ is used as a qualitative counterpart to the quantitative assess-
ment value, and not in the sense of believe or hold to be true. Loosely speaking,
the logic of theory assessment has it that the attitude towards hypotheses is like the
attitude towards bottles of wine. One would like to buy a good bottle of wine for a
small price. On the one hand, one wants to spend as little money as possible (one’s
theory should be as plausible or riskless as possible). On the other hand, one wants
to drink reasonably good wine (one’s theory should be sufficiently informative).
Sometimes one need not care much about the quality of the wine (say, when one is
mixing it with juice anyway), and the main focus is on the price – like when one
is concerned with several alternative theories all sufficiently informative to answer
one’s questions, and one wants to choose the most plausible one. Usually, though,
quality does matter. Likewise, in normal situations the most plausible theories just
won’t do, because they are too uninformative to answer our questions.

The trade-off between price and quality characterizes a pool of candidate bot-
tles of wine from which to choose. Call them favorable deals. For instance, a good

12The logic of theory assessment in Huber (2007a) is spelt out in terms of ranking functions.
While there are many formal parallels between ranking functions and probability measures, there are
also important conceptual differences. One of them is that, conceptually, the rank-theoretic notion
of acceptability is weaker than its probabilistic counterpart. In the probabilistic case an acceptable
H cannot have a probability of less than .5, which is a requirement that is hardly ever satisfied in
examples from science. In the rank-theoretic case an acceptable H merely cannot be disbelieved.
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bottle of wine for free is a favorable deal. And if a bottle of wine is a favorable deal,
then so is any equally good or better bottle for the same price or less. The logic of
theory assessment similarly characterizes the pool of acceptable hypotheses. For
instance, a sufficiently informative theory that is certainly true is acceptable. And
if a theory is acceptable, then so is any equally or more informative theory that is
equally or more plausible.

Another, perhaps more natural way of defining a qualitative counterpart to the
quantitative assessment value is to say that H is acceptable relative to E iff the
overall assessment value of H relative to E is greater than that of its negation.
The reason why I prefer the stronger notion of acceptability is that the weaker
notion is heavily dependent on the way one weighs between informativeness and
plausibility. Note, though, that there may be hypotheses H1, H2, data E, and
assessment functions a such that H1 is an acceptable theory for E, but H2 is not,
even though, relative toE, a assigns a greater assessment value toH2 than toH1.13

Let us see how acceptability relates to Carnap’s concept of qualitative confir-
mation. Positive probabilistic relevance between E and H is necessary in order for
H to be an acceptable theory for E. Here is why. First,

i∗ (H,E)
>
≥ i∗ (¬H,E) ⇒

Pr (¬H | ¬E)
>
≥ Pr (H | ¬E)

or

Pr (¬H)
>
≥ Pr (H) .

Second,[
Pr (H | E) ≥ Pr (¬H | E) & Pr (¬H | ¬E) > Pr (H | ¬E) , or
Pr (H | E) > Pr (¬H | E) & Pr (¬H | ¬E) ≥ Pr (H | ¬E)

]
or[

Pr (H | E) ≥ Pr (¬H | E) & Pr (¬H) > Pr (H) , or
Pr (H | E) > Pr (¬H | E) & Pr (¬H) ≥ Pr (H)

]
entails

Pr (H | E) > Pr (H) .

However, the converse is not true, because positive probabilistic relevance is sym-
metric, whereas acceptability is not – which, as noted by Christensen (1999: 437f),
is as it should be.

13I am grateful to Alexander Moffett for pointing this out to me at FEW 2004 in Berkeley, CA.
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6 What Is the Point?

6.1 Revealing the True Assessment Structure

An important question a theory of theory assessment faces is this. What is the point
of having theories that are given high assessment values? That is, why are theories
with high assessment values better than other theories? In terms of confirmation
the question is: what is the point of having well confirmed theories? That is, why
should we stick to well confirmed theories rather to any other theories?14

The traditional answer to this question is that science aims at truth, and that one
should stick to well confirmed theories because, in the long run, confirmation takes
one to the truth. Yet, as we have seen, truth is only one side of the coin. Therefore,
a different answer is called for. It will be that, as epistemic agents, we (all of us,
not only scientists) aim at informative truth, and that we should stick to theories
with high assessment values because, in the medium run, theory assessment takes
us to the most informative among all true theories.

What is an informative true theory? Given a possible world (possibility, model)
ω, contingent theory H1 is to be preferred in ω over contingent theory H2 if

• H1 is true in ω, but H2 is false in ω; or

• H1 and H2 have the same truth value in ω, but H1 logically implies H2,
whereas H2 does not logically imply H1.

In caseH is logically false, it is worse in ω than every contingent theory that is true
in ω (because they are all true in ω, whereas H is false in ω). However, H is better
than every contingent theory that is false in ω (because H is more informative than
any one of them). Similarly, if H is logically true, it is worse in ω than every
contingent theory that is true in ω (because they all are more informative than H),
but better than every contingent theory that is false in ω (because they all are false
in ω, whereas H is true in ω). Let us define accordingly.

Definition 6 A possibly partial function f : L×L×L → < reveals the true assess-
ment structure in world ω with demarcation β iff for any hypotheses H,H1, H2 ∈
L, every body of background information B ∈ L which is true in ω, and any data
stream e0, . . . , en, . . ., ei ∈ L, from ω (i.e. a sequence of sentences all of which
are true in ω):

1. If H1 is contingently true in ω and H2 is contingently false in ω, then there
is n such that for all m ≥ n: f (H1, Em, B) > β > f (H2, Em, B).

14I discuss this question for absolute and incremental confirmation in Huber (2005).
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2. IfH1 andH2 are contingently true in ω, butH1 is logically stronger thanH2,
then there is n such that for all m ≥ n: f (H1, Em, B) > f (H2, Em, B) >
β.

3. If H1 and H2 are contingently false in ω, but H1 is logically stronger than
H2, then there is n such that for all m ≥ n: β > f (H1, Em, B) >
f (H2, Em, B).

4. If H is logically determined, then it holds for all m: f (H,Em, B) = β.

Here Em = e0 ∧ . . . ∧ em−1.

So f must stabilize to the correct answer. That is, f must get it right after finitely
many steps, and continue to do so forever without necessarily halting (or giving
any other sign that it has arrived at the correct answer).15 The smallest n for which
the above holds is called the point of stabilisation.

The central question is whether assessment functions do in fact reveal the true
assessment structure and thus lead to informative true theories. As shown in more
detail below, the answer is affirmative: every function satisfying Continuity in Cer-
tainty and Demarcation in the sense of i and p reveals the true assessment struc-
ture in almost every world when presented data separating the set of all possible
worlds.16

6.2 Making the Point More Precise

This section develops the claim of the last section. The framework adopted here is
that of Gaifman and Snir (1982). L0 is a first order language for arithmetic. It con-
tains all numerals ‘1’, ‘2’, . . . as individual constants, and countably many individ-
ual variables ‘x1’, . . . taking values in the set of natural numbers N . Furthermore,

15Stabilisation to the correct answer is a stronger requirement than convergence to the correct
answer (see Kelly 1996). The latter is a bit odd to formulate for revealing the true assessment
structure. In general it says that for any ε > 0 (as small as you like) there exists a point n (depending
on ε) such that for all later points m > n, f ’s conjecture differs form “the truth” only by an amount
smaller than ε. The difference between stabilisation and convergence was the reason for appealing
to the medium run (stabilisation) as compared to the long run (convergence). Note, however, that the
Gaifman and Snir convergence theorem can be used to obtain an almost-sure stabilisation result by
assigning 1 to H , if the probability of H is above .5 (or any other positive threshold that is smaller
than 1), and 0 otherwise (cf. section 7).

16The result stated below holds only for almost every world and is restricted to data sequences
that separate ModL. This flaw is serious (Kelly 1996: ch. 13), but not inevitable. There are other
paradigms one might adopt such as ranking theory, where “pointwise reliability” is possible (Kelly
1999). However, the price of pointwise reliability is that the set of possible worlds be countable. It
is fair to say that measure one results are not problematic in this case.
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L0 contains the common symbols ‘+’, ‘·’, and ‘=’ for addition, multiplication,
and identity, respectively. In addition, there may be finitely many predicates and
function symbols denoting certain fixed relations over N . Finally, L0 contains the
quantifiers ‘∀’, ‘∃’, the unary sentential connective ‘¬’, and the binary sentential
connectives ‘∧’, ‘∨’, ‘→’, and ‘↔’. The languageL is obtained fromL0 by adding
finitely many predicates and function symbols.

A model ω for L consists of an interpretation ϕ of the empirical symbols which
assigns every k-ary predicate ‘P ’ a subset ϕ (‘P ’) ⊆ Nk, and every k-ary function
symbol ‘f ’ a function ϕ (‘f ’) from Nk to N . The interpretation of the symbols
in L0 is the standard one and is kept the same in all models. ModL is the set of
all models for L. ‘ω |= A’ says that formula A is true in model ω ∈ ModL.
A [x1, . . . , xk] is valid, |= A [x1, . . . , xk], iff ω |= A [n1/x1, . . . , nk/xk] for all
ω ∈ ModL and all numerals n1, . . . , nk ∈ L0. Here, ‘A [n1/x1, . . . , nk/xk]’
results from ‘A [x1, . . . , xk]’ by uniformously substituting ‘ni’ for ‘xi’ in ‘A’,
1 ≤ i ≤ k. ‘A [x1, . . . , xk]’ indicates that ‘x1’, . . ., ‘xk’ are the only individ-
ual variables occurring free in ‘A’.

Definition 7 A function Pr : L → <≥0 is a probability on L iff for all A,B ∈ L:

1. |= A↔ B ⇒ Pr (A) = Pr (B)

2. |= A ⇒ Pr (A) = 1

3. |= ¬ (A ∧B) ⇒ Pr (A ∨B) = Pr (A) + Pr (B)

4. Pr (∃xA [x]) = sup {Pr (A [n1/x] ∨ . . . ∨A [nk/x]) : n1, . . . , nk ∈ N, k ∈ N≥1}

Iff Pr (B) > 0, the conditional probability Pr (· | A) : L → <≥0 based on the
probability Pr (·) : L → <≥0 is defined as

Pr (A | B) =
Pr (A ∧B)

Pr (B)
.

A set of sentences S separates a set of models X ⊆ModL just in case for any two
distinct ω1, ω2 ∈ X there is a sentence A ∈ S such that ω1 |= A and ω2 6|= A. The
set of all atomic empirical sentences separates ModL. Gaifman and Snir (1982,
507) prove the following theorem.

Theorem 1 (Gaifman and Snir Convergence Theorem) Let the set of sentences
S = {Ai : i = 0, 1, . . .} separate ModL, and let [B] (ω) be 1 if ω |= B and 0
otherwise. Then for every B ∈ L:

Pr

B | ∧
0≤i<n

Aωi

→ [B] (ω) almost everywhere as n→∞.
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Based on the Gaifman and Snir convergence theorem we can now prove

Theorem 2 Let e0, . . . , en, . . . be a sequence of sentences of L which separates
ModL, and let eωi be ei, if ω |= ei, and ¬ei otherwise, where ω ∈ ModL. Let
Pr be a regular probability on L, and let a be a function of, among others, i and
p which satisfies Continuity in Certainty and Demarcation for i and p. Finally, let
Pr∗ be the unique probability measure on the smallest σ-fieldA containing the field
{Mod (A) : A ∈ L} such that for all H ∈ L: Pr (H) = Pr∗ (Mod (H)), where
Mod (A) = {ω ∈ModL : ω |= A}. Then there exists X ∈ A with Pr∗ (X) = 1
such that the following holds for every ω ∈ X , any two contingent H1, H2 ∈ L,
and every H ∈ L:

1. ω |= H1, ω 6|= H2 ⇒ ∃n∀m ≥ n : a (H1, E
ω
m) > β > a (H2, E

ω
m)

2. ω |= H1, H1 ` H2 6` H1 ⇒ ∃n∀m ≥ n : a (H1, E
ω
m) > a (H2, E

ω
m) > β

3. ω 6|= H2, H1 ` H2 6` H1 ⇒ ∃n∀m ≥ n : β > a (H1, E
ω
m) > a (H2, E

ω
m)

4. |= H or |= ¬H ⇒ ∀m : a (H,Eωm) = β.

PROOF:
1. Assume the conditions stated in theorem 2, and suppose ω |= H1 and ω 6|= H2, where
ω ∈ X ′ for some X ′ ∈ A with Pr∗ (X ′) = 1 such that for all B ∈ L and all ω′ ∈ X ′:

Pr
(
B | Eω′

n

)
→ [B] (ω′) as n→∞

(such X ′ exists by the Gaifman and Snir convergence theorem). So

Pr (H1 | Eω
n )→ 1 as n→∞, and Pr (H2 | Eω

n )→ 0 as n→∞.

First, observe that there exists n1 such that for all m ≥ n1:

Pr (¬H1 | ¬Eω
m) > Pr (¬H1) > 0 and Pr (¬H2 | ¬Eω

m) < Pr (¬H2) < 1.

The reason is that Pr is regular, the Hi are contingent (i = 1, 2), and, provided 0 <
Pr (Eω

m) < 1,

Pr (¬Hi | ¬Eω
m)

>
<

Pr (¬Hi) ⇔ Pr (Hi | Eω
m)

>
<

Pr (Hi) .

If Pr (Eω
m) = 0, then Pr∗ (Mod (Eω

m)) = 0 (Gaifman and Snir 1982: 504, Basic Fact
1.3). The union of all such sets Mod (Eω

m) of probability 0 is also of probability 0 (there
are just countably many such sets), i.e.

Pr ∗ (A) = 0, A :=
⋃
{Mod (Eω

m) ∈ A : Pr ∗ (Mod (Eω
m)) = 0} ∈ A.
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Similarly, if Pr (Eω
m) = 1, then Pr∗ (Mod (¬Eω

m)) = 0. The union of all such sets
Mod (¬Eω

m) of probability 0 is also of probability 0, i.e.

Pr ∗ (B) = 0, B :=
⋃
{Mod (¬Eω

m) ∈ A : Pr ∗ (Mod (Eω
m)) = 1} ∈ A.

As a consequence, X := X ′ \ (A ∪B) ∈ A and Pr ∗ (X) = 1. Assume therefore that
ω ∈ X . As Pr (H1 | Eω

n ) →n 1 and Pr (H2 | Eω
n ) →n 0, there is n1 such that for all

m ≥ n1:
Pr (H1 | Eω

m) > Pr (H1) and Pr (H2 | Eω
m) < Pr (H2) ,

and thus

Pr (¬H1 | ¬Eω
m) > Pr (¬H1) > 0 and Pr (¬H2 | ¬Eω

m) < Pr (¬H2) < 1.

Hence

Pr (¬H1) ≤ inf
m≥n1

{Pr (¬H1 | ¬Eω
m)} , Pr (¬H2) ≥ sup

m≥n1

{Pr (¬H2 | ¬Eω
m)} .

By Continuity in Certainty, for ε = Pr(¬H1)
2 and the sequences ti = Pr (H1 | Eω

i ) and
t′i = 1 with ti, t′i →i tmax = 1 there exists n2 such that for all m ≥ n2 and all sm, s′m ∈
Rs = [0, 1]:

sm > s′m + ε ⇒ a (sm, tm) > a (s′m, t
′
m) .

For si = Pr (¬H1 | ¬Eω
i ) and s′i = 0 we thus get for everym ≥ max {n1, n2}: a (sm, tm) >

a (0, 1) = β. Similarly, for ε = 1−Pr(¬H2)
2 and the sequences ti = 0 and t′i = Pr (H2 | Eω

i )
with ti, t′i →i tmin = 0 there exists n3 such that for all m ≥ n3 and all sm, s′m ∈ Rs =
[0, 1]:

sm > s′m + ε ⇒ a (sm, tm) > a (s′m, t
′
m) .

For si = 1 and s′i = Pr (¬H2 | ¬Eω
i ) we thus get for every m ≥ max {n1, n3}: β =

a (1, 0) > a (sm, tm). Hence for every m ≥ max {n1, n2, n3}:

a (Pr (¬H1 | ¬Eω
m) ,Pr (H1 | Eω

m)) > β > a (Pr (¬H2 | ¬Eω
m) ,Pr (H2 | Eω

m)) .

2. Suppose now that ω |= H1, ω |= H2, and H1 ` H2 6` H1, where ω ∈ X for some
X ∈ A as before. So

Pr (H1 | Eω
n )→ 1 as n→∞, and Pr (H2 | Eω

n )→ 1 as n→∞,

and we can safely assume that 0 < Pr (Eω
m) < 1 for all m. As before, there exists n1 such

that for all m ≥ n1: Pr (¬H2 | ¬Eω
m) > Pr (¬H2) > 0. Observe that

Pr (¬H1 | ¬Eω
m)− Pr (¬H2 | ¬Eω

m) =
1− Pr (H1)− Pr (Eω

m) + Pr (H1 ∧ Eω
m)

Pr (¬Eω
m)

−

−1− Pr (H2)− Pr (Eω
m) + Pr (H2 ∧ Eω

m)

Pr (¬Eω
m)

=
Pr (H2)− Pr (H1)

Pr (¬Eω
m)

−
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− [Pr (H2 | Eω
m)− Pr (H1 | Eω

m)] · Pr (Eω
m)

Pr (¬Eω
m)

>
Pr (H2)− Pr (H1)

Pr (¬Eω
m)

−

−Pr (H2 | Eω
m)− Pr (H1 | Eω

m)

Pr (¬Eω
m)

.

By the above, for ε = Pr(H2)−Pr(H1)
2 > 0 there exists nε such that for all m ≥ nε:

Pr (H2 | Eω
m)− Pr (H1 | Eω

m) < ε. Consequently it holds for all m ≥ nε:

Pr (¬H1 | ¬Eω
m)− Pr (¬H2 | ¬Eω

m) >
2ε− ε

Pr (¬Eω
m)

> ε,

i.e. Pr (¬H1 | ¬Eω
m) > Pr (¬H2 | ¬Eω

m) + ε.
By Continuity in Certainty17, for ε > 0 and the sequences ti = Pr (H1 | Eω

i ) and
t′i = Pr (H2 | Eω

i ) with ti, t′i →i tmax = 1 there is n2 such that for all m ≥ n2 and all
sm, s

′
m ∈ Rs = [0, 1]:

sm > s′m + ε ⇒ a (sm, tm) > a (s′m, t
′
m) .

For si = Pr (¬H1 | ¬Eω
i ) and s′i = Pr (¬H2 | ¬Eω

i ) we thus get for allm ≥ max {n1, n2, nε}:
a (sm, tm) > a (s′m, t

′
m).

It follows from 1 that there is n3 such that for all m ≥ n3:

a (Pr (¬H2 | ¬Eω
m) ,Pr (H2 | Eω

m)) > β.

Hence for all m ≥ max {n1, n2, n3, nε}:

a (Pr (¬H1 | ¬Eω
m) ,Pr (H1 | Eω

m)) > a (Pr (¬H2 | ¬Eω
m) ,Pr (H2 | Eω

m)) > β.

3. Similarly.
4. This follows from Demarcation β. 2

Corollary 1 The same holds true if i = Pr (¬H | ¬E) is replaced by i′ = Pr (¬H),
even if Continuity in Certainty is weakended to Weak Continuity in Certainty.

Corollary 2 The same holds true if i is replaced by any function of i and i′ that is
non-decreasing in both arguments, and increasing in at least one.

17It is here where the assumption enters that the δ in Continuity and the n in Continuity in Certainty
depend only on ε, which is a lower bound of the difference between sm = Pr (¬H1 | ¬Eω

m) and
s′m = Pr (¬H2 | ¬Eω

m). Otherwise, i.e. when δ or n depend on sm and s′m, it is possible that
nsm,s′m = m+ 1. In this case there is no n such that for all m ≥ n:

a (Pr (¬H1 | ¬Eω
m) ,Pr (H1 | Eω

m)) > a (Pr (¬H2 | ¬Eω
m) ,Pr (H2 | Eω

m)) .

In case of sm = Pr (¬H1) and s′m = Pr (¬H2) it suffices to assume Weak Continuity in Certainty,
because the informativeness values sm and s′m do not change with m.
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The relativisation to the body of background informationB has been dropped. The
above entails that there exists X ∈ A with Pr∗ (X |Mod (B)) = 1, for every
B ∈ L with Pr (B) > 0, such that 1-4 hold for every ω ∈Mod (B) ∩X .

Continuity in its general form is not needed for these theorems to hold. In
fact, even Continuity in Certainty is not necessary. The necessary and sufficient
condition for revealing the true assessment structure in almost every world when
presented separating data is this (β is assumed to be 0).

Definition 8 A possibly partial function f : L × L × L → < is a Gaifman-
Snir assessment function iff for every Gaifman-Snir language L, every probability
Pr on L, and every {ei : i ∈ N} ⊆ L separating ModL there is X ∈ A with
Pr∗ (X) = 1 such that for all ω ∈ X and all m ∈ N :

I.
H1 ` H2 6` H1

Pr (H1 | Eωm)→m

{
1
0

⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > f (H2, E

ω
m) .

II. ` H1, H2 ` ⊥,Pr (Eωm) > 0 ⇒ f (H1, E
ω
m) = f (H2, E

ω
m) = 0.

Definition 9 Let L be a Gaifman-Snir language, let Pr be a probability on L, and
let {ei : i ∈ N} ⊆ L separateModL. A possibly partial function f : L×L×L →
< reveals the true assessment structure of Pr∗-almost every world ω ∈ ModL
when presented separating {ei} iff there is X ∈ A with Pr∗ (X) = 1 such that for
all ω ∈ X , all contingent H1, H2 ∈ L, and all H ∈ L:

1. ω |= H1, ω 6|= H2 ⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > 0 > f (H2, E

ω
m) .

2. ω |= H1, H1 ` H2 6` H1 ⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > f (H2, E

ω
m) > 0.

3. ω 6|= H2, H1 ` H2 6` H1 ⇒ ∃n∀m ≥ n : 0 > f (H1, E
ω
m) > f (H2, E

ω
m) .

4. H ` ⊥ or ` H ⇒ ∀m : f (H,Eωm) = 0.

f reveals the true assessment structure in almost every world when presented sepa-
rating data iff for any language L, any probability on L, and any {ei : i ∈ N} ⊆ L
separating ModL: f reveals the true assessment structure in Pr∗-almost every
world ω ∈ModL when presented separating {ei}.

Theorem 3 A possibly partial function f : L × L × L → < reveals the true
assessment structure in almost every world when presented separating data iff f is
a Gaifman-Snir assessment function.
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PROOF:
Suppose f is a Gaifman-Snir assessment function. LetL be a language and Pr a probability
on L. Suppose {ei : i ∈ N} ⊆ L separates ModL. We show that f reveals the true
assessment structure of Pr∗-almost every world ω ∈ ModL when presented separating
{ei}. By the Gaifman and Snir convergence theorem, there is X ′ ∈ A with Pr∗ (X ′) = 1
such that for all ω ∈ X ′ and all H ∈ L: Pr (H | Eω

m)→m [H] (ω). By assumption, there
is X ′′ ∈ A such that for all ω ∈ X ′′ and all m ∈ N :

I.
H1 ` H2 6` H1

Pr (H1 | Eω
m)→m

{
1
0

⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > f (H2, E

ω
m) .

II. ` H1, H2 ` ⊥,Pr (Eω
m) > 0 ⇒ f (H1, E

ω
m) = f (H2, E

ω
m) = 0.

Hence,X ′∩X ′′ is an element ofAwith Pr∗ (X ′ ∩X ′′) = 1 and such that I and II are satis-
fied for all ω ∈ X ′∩X ′′ and allm ∈ N . Furthermore,A := {ω ∈ X ′ : ∃m : Pr (Eω

m) = 0}
is of Pr∗-measure 0, i.e. there is B ∈ A with A ⊆ B and Pr∗ (B) = 0. Hence
X := (X ′ ∩X ′′) \ B is an element of A with Pr∗ (X) = 1 such that I and II are sat-
isfied for all ω ∈ X and all m ∈ N .

So suppose ω |= H1, for ω ∈ X and contingent H1 ∈ L. Then there is n such that for
all m: f (H1, E

ω
m) > f (>, Eω

m) = 0. Furthermore, if ω 6|= H2, for the same ω ∈ X and
some contingent H2 ∈ L, then there is n such that for all m: f (H2, E

ω
m) < f (⊥, Eω

m) =
0. If ω |= H1, for some ω ∈ X , and H1 ` H2 6` H1, for contingent H1, H2 ∈ L, then
Pr (H1 | Eω

m) →m 1, and hence Pr (H2 | Eω
m) →m 1. So there is n such that for all

m ≥ n: f (H1, E
ω
m) > f (H2, E

ω
m) > f (>, Eω

m) = 0. Similarly, if ω 6|= H2, for some
ω ∈ X , and H1 ` H2 6` H1, for contingent H1, H2 ∈ L, then Pr (H2 | Eω

m) →m 0, and
hence Pr (H1 | Eω

m) →m 0. So there is n such that for all m ≥ n: 0 = f (⊥, Eω
m) >

f (H1, E
ω
m) > f (H2, E

ω
m). Finally, for all ω ∈ X: f (H,Eω

m) = 0 for any logically
determined H and all m.

Conversely, suppose f reveals the true assessment structure in almost every world
when presented separating data. We show that f is a Gaifman-Snir assessment function.
Suppose not. Then there exist L, Pr on L, and {ei : i ∈ N} ⊆ L separating ModL such
that for all X ∈ A with Pr∗ (X) = 1 there is ω ∈ X such that:

i. There are H1, H2 ∈ L with H1 ` H2 6` H1 and Pr (Hi | Eω
m)→m

{
1
0

such that

for all n there is m ≥ n: f (H1, E
ω
m) ≤ f (H2, E

ω
m); or

ii. there are logically determinedH ∈ L andm such that Pr (Eω
m) > 0 and f (H,Eω

m) 6=
0.

By the Gaifman and Snir convergence theorem, there is X ∈ A with Pr∗ (X) = 1 such
that for all ω ∈ X and all H ∈ L: Pr (H | Eω

m) →m [H] (ω). For any such X there is
ω ∈ X such that i or ii hold.

Case 1: If Pr (Hi | Eω
m)→m 1, thenH1 andH2 are true in ω. Hence,H1 is contingent

and Pr (Eω
m) > 0 for all m ∈ N . If H2 is contingent, then 2 fails; if H2 is logically

determined, then 4 fails for H2 or 1 fails for H1. If Pr (Hi | Eω
m) →m 0, then H1 and

H2 are false in ω. Hence, H2 is contingent and Pr (Eω
m) > 0 for all m ∈ N . If H1 is

contingent, then 3 fails; if H1 is logically determined, then 4 fails for H1 or 1 fails for H2.

32



Case 2: Obviously 4 fails. 2

One reason why I nevertheless stick to the more general Continuity conditions is
that it depends on the underlying convergence theorem which conditions are nec-
essary and sufficient for revealing the true assessment structure in so and so many
worlds when presented such and such data. More importantly, the idea behind the
use of these limit considerations is that they provide a theoretical justification for
obeying the proposed normative conditions in the here and now. When assessing
several alternative theories we cannot wait until we have arrived at the point of
stabilisation. We need to make our evaluations when the plausibility and infor-
mativeness values are somewhere in between their maximal and minimal values.
Continuity tells us what to do in such a situation; Continuity in Certainty does not.

However, I also need to justify this answer. And I do so by appealing to the
fact that when we satisfy Continuity in the special case when the plausibility val-
ues converge to certainty, we reveal the true assessment structure in almost every
world when presented separating data. Of course, as long as the relevant probabil-
ities are non-extreme, this is compatible with any funny behavior in the short run.
One response to this objection is to look at the necessary and sufficient conditions
for revealing the true assessment structure (in almost every world when presented
separating data) as soon as possible (Kelly 1996). Then we vindicate the normative
conditions of the plausibility-informativeness theory relative to the goal of even-
tually arriving at the most informative true theory as soon as possible. Another
response is to say that the very fact that we do not know when the point of stabili-
sation occurs is reason enough to always be prepared for it to take place. While I
think that only the first answer is conclusive, I cannot offer a proof to the effect that
Continuity and Demarcation are necessary and sufficient for eventually arriving at
the most informative true theory as soon as possible.

Finally I should mention that the present approach is also viable if truth and
informativeness are not the only epistemic values. Whatever these values be-
sides truth are, and however they are measured; if there is a function u such that
u (H,E,B) measures the overall value without truth of H in view of E and B;
and if for any two theoriesH1 andH2, any separating data sequence e0, . . . , en, . . .
from any world ω, and any body of background information B true in ω there is a
point j such that for all later points k > j: u (H1, Ek, B) > u (H2, Ek, B) + ε,
for some ε > 0; then the following holds for every f satisfying the two condi-
tions corresponding to Continuity in Certainty and Demarcation for u (instead of
s) and t. There is a point m such that for all later points n > m: f (H1, En, B) >
f (H2, En, B), where both of these values are greater than β, if both H1 and H2

are contingently true in ω, both of these values are smaller than β if both H1 and
H2 are contingently false in ω, and β lies between these two values if H1 is con-
tingently true, but H2 is contingently false in ω.
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7 Relevance Measures and Their Exclusive Focus on Truth

As shown in the preceding section, all one needs to do to reveal the true assessment
structure in almost every world when presented separating data is to stick to a
function satisfying Continuity in Certainty and Demarcation for i∗ and p, where
i∗ is any function of i and i′ that is non-decreasing in both and increasing in at
least one of its arguments. What about the central notion in Bayesian confirmation
theory – that of a β-relevance measure?

The connection to the i, p-function sc = i+ p+ c for c = −1, and the function
df for f = Pr (¬E | B) respectively f = Pr (¬E | B) · Pr (B) · Pr (E ∧B) has
already been pointed out. So for any strict probability Pr, sPr and cPr and dPr re-
veal the true assessment structure in almost every world when presented separating
data. However, there are many other relevance measures. Do they all further the
goal of eventually arriving at the most informative true theory?

If H1 is contingently true in ω, and H2 is contingently false in ω, then, after
finitely many steps, H1 has to get a greater value in ω than the demarcation param-
eter β which in turn has to be greater than the value of H2 in ω. Any β-relevance
measure r reveals this part of almost any ω’s assessment structure. By the Gaifman
and Snir convergence theorem,

Pr (H1 | Eωn )→n 1 and Pr (H2 | Eωn )→n 0,

whence there exists n such that for all m ≥ n:

Pr (H1 | Eωm) > Pr (H1) and Pr (H2 | Eωm) < Pr (H2) ,

provided Pr is strict. Thus, by the definition of a β-relevance measure, it holds for
all m ≥ n:

r (H1, E
ω
m) > β > r (H2, E

ω
m) .

Moreover, the value (in ω) of any logically determined hypothesis is always equal
to β.

So far, so good. But the definition of a β-relevance measure by itself does
not imply anything about the relative positions of two hypotheses, if they have the
same truth value in some world ω. This exclusive focus on truth – in contrast to
the weighing between the conflicting goals of informativeness and truth of an s, t-
function – is what prevents relevance measures from revealing the true assessment
structure in general. As we have seen, β-relevance measures sometimes do weigh
between i∗ and p. Yet, β-relevance measures are not required to weigh between
informativeness and truth. In concluding, let us briefly look at the most popular
relevance measures all of which are 0-relevance measures. It is assumed through-
out that Pr is strict.
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As already mentioned, the Joyce-Christensen measure s, the distance measure
d, and the Carnap measure c get it right in all four cases (in case of Carnap’s c, note
that the union of all sets Mod (±Eωn ) with Pr (±Eωn ) = 0 has probability 0 in the
sense of Pr∗, whence f = Pr (¬Eωn | B) ·Pr (B) ·Pr (Eωn ∧B) is 0 only for a set
of measure 0). The log-ratio measure r,

rPr (H,E,B) = log

[
Pr (H | E ∧B)

Pr (H | B)

]
,

gets it right in case bothH1 andH2 are contingently true in ω, andH1 ` H2 6` H1.
In this case

rPr (H1, E
ω
n )→n log [1/Pr (H1)] and rPr (H1, E

ω
n )→n log [1/Pr (H2)] ,

whence there exists n such that for all m ≥ n:

rPr (H1, E
ω
m) > rPr (H2, E

ω
m) > 0.

However, r does not get it right when both H1 and H2 are contingently false in ω,
and such that H1 ` H2 6` H1. In this case,

Pr (H1 | Eωm)
Pr (H1)

>
Pr (H2 | Eωm)

Pr (H2)
⇔ Pr (H2)

Pr (H1)
>

Pr (H2 | Eωm)
Pr (H1 | Eωm)

.

For ε = Pr (H2)− Pr (H1) and εm = Pr (H2 | Eωm)− Pr (H1 | Eωm), this can be
written as

1 +
ε

Pr (H1)
> 1 +

εm
Pr (H1 | Eωm)

.

So even if both Pr (H1 | Eωm) and Pr (H2 | Eωm) converge to 0, the logically weaker
H2 may always have a greater r-value thanH1, as is the case when Pr (H1 | Eωm) =
1/2m and Pr (H2 | Eωm) = 1/m. The failure of r is even clearer when bothH1 and
H2 are eventually falsified. In this case the only thing that matters is the minimal
plausibility value, and they both get the same r-value log 0 = −∞. So all falsified
theories are equally, viz. maximally bad. For logically determined H , r takes on
the value log 1 = 0, if it is stipulated that 0/0 = 1.

The situation is even worse for the log-likelihood ratio l,

lPr (H,E,B) = log

[
Pr (E | H ∧B)

Pr (E | ¬H ∧B)

]
= log

[
Pr (H | E ∧B) · Pr (¬H | B)

Pr (¬H | E ∧B) · Pr (H | B)

]
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(Fitelson 1999; 2001). WhenH1 andH2 are contingently true or contingently false
in ω and such that H1 ` H2 6` H1, it need not be the case that there is n such that
for all m ≥ n:

Pr (H1 | Eωm) · Pr (¬H1)

Pr (¬H1 | Eωm) · Pr (H1)
>

Pr (H2 | Eωm) · Pr (¬H2)

Pr (¬H2 | Eωm) · Pr (H2)
.

For ε = Pr (H2) − Pr (H1) and εm = Pr (H2 | Eωm) − Pr (H1 | Eωm) the latter
holds iff

1+
ε

Pr (H1) · (1− Pr (H1)− ε)
> 1+

εm
Pr (H1 | Eωm) · (1− Pr (H1 | Eωm)− ε)

.

So even if both Pr (H1 | Eωm) and Pr (H2 | Eωm) converge to 1 or to 0, the logically
weaker H2 may always have a greater l-value than the logically stronger H1. For
instance, this is the case when Pr (H1 | Eωm) = 1 − 1/m and Pr (H2 | Eωm) =
1− 1/2m, or when Pr (H1 | Eωm) = 1/2m and Pr (H2 | Eωm) = 1/m. The failure
of l is even clearer when both H1 and H2 are eventually verified or falsified. In
this case the only thing that matters is the maximal or minimal plausibility value,
and they both get the maximal or minimal l-value, respectively. So all verified
theories are equally, viz. maximally good; and all falsified theories are equally,
viz. maximally bad. If H is logically determined, l to gets it right, if it is stipulated
that 0 · 1/1 · 0 = 1 · 0/0 · 1 = 1.

It is interesting to see that the log-likelihood ratio l seems to come out on top
when subjectively plausible desiderata are at issue (Fitelson 2001), but to do much
more poorly when it comes to the matter-of-fact question whether an assessment
function (or measure of confirmation) furthers the goal of eventually arriving at
informative true theories. Due to their focus on truth, relevance measures – like
s, t-functions – separate true from false theories. However, due to the exclusive-
ness of this focus, they do not – in contrast to s, t-functions – distinguish between
informative and uninformative true or false theories.
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