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Abstract 

Whereas most branches of neuroscience are thought to provide mechanistic explanations, 
systems neuroscience is not. Two reasons are traditionally cited in support of this conclusion. 
First, systems neuroscientists rarely, if ever, rely on the dual strategies of decomposition and 
localization. Second, they typically emphasize organizational properties over the properties of 
individual components. In this paper, I argue that neither reason is conclusive: researchers 
might rely on alternative strategies for mechanism discovery, and focusing on organization is 
often appropriate and consistent with the norms of mechanistic explanation. Thus, many 
explanations in systems neuroscience can also be viewed as mechanistic explanations. 
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1. Introduction 

There is a widespread consensus in philosophy of science that neuroscientists provide 

mechanistic explanations. That is, they seek the discovery and description of the mechanisms 

responsible for the behavioral and neurological phenomena being explained. This consensus is 

supported by a growing philosophical literature on past and present examples from various 

branches of neuroscience, including molecular (Craver 2007; Machamer, Darden, and Craver 

2000), cognitive (Bechtel 2008; Kaplan and Craver 2011), and computational neuroscience 

(Kaplan 2011). In contrast, one area that has received relatively little philosophical attention is 

systems neuroscience: the study of networks at various levels of brain organization. Do systems 

neuroscientists, like their colleagues in other branches of the discipline, seek the discovery and 

description of mechanisms? Answering this question is important for gaining an improved 

understanding of this exciting and increasingly influential area of research, but also for 

determining whether the various branches of neuroscience are unified by a common set of 

epistemic practices and explanatory norms. 

Three research traditions can be distinguished within contemporary systems 

neuroscience. The first seeks the identification and description of networks at various levels of 

brain organization. The second seeks to reproduce the brain’s behavioral dynamics and 

information-processing capacities through artificial neural network simulations. The third 

tradition specializes in the development of concise mathematical descriptions of the holistic 

behavior of biological as well as artificial brain networks. Several philosophical commentators 

have recently denied that systems neuroscientists in either one of these research traditions 
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provide mechanistic explanations. To a large extent, this denial is motivated by the observation 

that systems neuroscientists rarely invoke the heuristic strategies of decomposition and 

localization that are traditionally associated with mechanistic explanation (Bechtel and 

Richardson 1993; Silberstein and Chemero 2012; Varela, Thompson, and Rosch 2001). 

Moreover, the fact that systems neuroscientists often emphasize brain networks’ global 

organization rather than their detailed composition is often considered to be evidence that 

these researchers have abandoned the mechanistic approach (Silberstein and Chemero 2012). 

If these commentators are correct, systems neuroscientists are quite unlike their colleagues in 

other branches of the discipline: they do not provide mechanistic explanations.  

In what follows, I briefly introduce the three main research traditions within systems 

neuroscience (Section 2), and present the main reasons for thinking that researchers working 

within these traditions have abandoned mechanistic explanation (Section 3). Subsequently, I 

argue that these reasons are inconclusive (Section 4). For one, systems neuroscientists who 

eschew the strategies of decomposition and localization may appeal to alternative strategies 

for discovering mechanisms. For another, focusing on mechanistic organization rather than 

composition should not be viewed as a departure from mechanistic explanation. Indeed, such a 

focus is appropriate when a mechanism’s organization is the principal determinant of that 

mechanism’s behavior. Insofar as the discipline of systems neuroscience specializes in 

describing the organization of large network mechanisms in the brain, and insofar as the 

concept of organization remains poorly understood in philosophy of science, philosophers have 

much to gain from an improved understanding of mechanistic explanation in this increasingly 

important branch of neuroscientific research. 
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2. Three Research Traditions 

Systems neuroscience is motivated by the observation that the brain is a complex system of 

networks of different kinds and at different levels of organization, as well as the observation 

that these networks are involved in the production of a wide range of behavioral and 

neurological phenomena. Within systems neuroscience, three conceptually distinct but 

mutually beneficial research traditions can be distinguished. Whereas the network tradition 

concerns the identification, description and topological analysis of brain networks, the 

simulation tradition specializes in the design of artificial neural network models to simulate the 

biological brain’s behavioral dynamics and information-processing capacities. Both of these 

traditions are linked to the complexity tradition, the aim of which is to develop concise 

mathematical descriptions of the behavioral dynamics or information-processing capacities of 

artificial as well as biological brain networks. 

The network tradition in systems neuroscience aims to identify and describe brain 

networks of different kinds and at different levels of organization. Thus, networks have been 

identified at the level of individual neurons within a population, at the level of neural 

populations (e.g. cortical columns) within a cortical region, and at the level of the brain as 

whole: networks of cortical regions. At each one of these levels, researchers in the network 

tradition must first determine how to identify a network’s elements. Sometimes this choice is 

principled, as when biological principles are used to individuate nerve cells or cortical regions. 

At other times the choice is highly pragmatic, as when the network elements are chosen to 
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correspond with voxels in fMRI data or with the placement of electrodes in electrophysiological 

studies. After having identified a particular set of elements in this way, researchers in the 

network tradition must choose which kind of connections to pay attention to. Thus, networks 

might be defined over anatomical links such as synapses, but might also be defined over causal 

or functional links, typically operationalized as correlated activity over time. Once these choices 

have been made, brain networks can be identified via a variety of mapping and imaging 

techniques. These range from invasive methods such as histological studies of nerve cells and 

synaptic connections, to non-invasive methods such as structural, functional and diffusion MRI, 

among others (for a detailed overview of these methods, and of the network tradition in 

systems neuroscience as a whole, see: Sporns 2011).  

Once brain networks have been identified, researchers in the network tradition typically 

represent and study these networks by invoking the mathematical framework of graph theory. 

A graph theoretical representation of a brain network characterizes the network’s elements as 

nodes in a graph, and the anatomical, functional or causal links between these elements as 

(possibly weighted and/or directional) connections between individual nodes. Such graph 

theoretical representations facilitate the study of a network’s global and local organization or 

topology. Thus, large-scale brain networks of all kinds have been shown to exhibit small-world 

topologies, that is, a high-degree of local clustering with short average path-lengths (Bassett 

and Bullmore 2006). Similarly, researchers have demonstrated the existence of hub nodes of 

relatively high degree, network motifs (small sub-graphs that are repeated throughout a 

network), and modules, i.e. densely interconnected communities of nodes with relatively sparse 

links to nodes in other communities (Sporns, Honey, and Kötter 2007; Sporns and Kötter 2004; 
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Meunier, Lambiotte, and Bullmore 2010). To date, these and other graph theoretic concepts 

have been used to understand the topology of brain networks in C. elegans (White et al. 1986; 

Izquierdo and Beer 2013), as well as cats and macaque monkeys (Sporns and Kötter 2004), and 

are likely to prove instrumental in the eventual success of the Human Connectome Project 

(Sporns, Tononi, and Kötter 2005) and other human brain mapping initiatives. 

 

Figure 1. A schematic representation of model-development in the network tradition. 
The left pathway represents the development of structural network models; the right 
pathway represents the development of functional network models. Reprinted from 
Bullmore & Sporns (2009). 
 

Whereas the network tradition seeks the description and topological analysis of brain 

networks, the simulation tradition aims to develop artificial neural network models to 



7 
 

reproduce the brain’s behavioral dynamics or information-processing capacities. Thus, the 

primary purpose of these models is to understand the parameters under which brain networks 

might produce oscillations, synchronized firing patterns, and robustness to perturbation, as well 

as to understand when such networks are particularly good or bad at processing and 

integrating information. Although the relevant parameters are often local—determining e.g. 

the way in which individual network elements transform inputs to outputs—perhaps the most 

interesting research in this tradition seeks to understand the influence of topological 

parameters. Thus for example, Perez et al. (2011) have explored the extent to which random, 

small-world and scale-free networks exhibit local and global patterns of synchronization. 

Similarly, Tononi & Sporns (2003) have studied the relationship between the degree of 

modularity in a network and the degree of information integration—the ease by which 

information can be transmitted between any two network elements. In general, whereas the 

network tradition in systems neuroscience seeks to describe the kinds of networks that actually 

exist in the brain, the simulation tradition seeks to understand what these kinds of networks 

can do. 

The third main research tradition within the discipline of systems neuroscience can be 

termed the complexity tradition. Building on decades of research in the discipline of complexity 

science, this tradition within systems neuroscience aims to develop concise mathematical 

models of behavior and information-processing in biological and artificial networks. These 

models are typically developed using the mathematical concepts and methods of dynamical 

systems theory and information theory. Whereas the former can be used to concisely 

characterize a network’s behavior over time, the latter shows how information is processed and 
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integrated. One of the key features of these models is their relative simplicity. Whereas a 

particular network may consist of myriad reciprocally and non-linearly connected elements, its 

behavioral dynamics is often quite simple, exhibiting periodic oscillation or stability over time, 

and its information-processing efficient. The complexity tradition in systems neuroscience seeks 

to mathematically characterize these simple behaviors, which are often also characterized as 

the “emergent” properties of brain networks.  

 Although most research projects in systems neuroscience can be associated with either 

one of these three research traditions, it is not uncommon to see researchers combine the 

methods and results of two or more of them. Thus, researchers working in the simulation 

tradition increasingly seek to replace highly unrealistic artificial neural network models with 

“biologically inspired” network models that are rooted in the findings of the network tradition. 

Similarly, although many of the mathematical models developed in the complexity tradition 

were originally developed to characterize the global behavior of artificial neural networks, 

some of these models are proving themselves to be exceedingly useful for understanding the 

behavioral dynamics or information-processing of the biological brain. Notably, these combined 

research efforts are likely to be particularly influential in the future, since they apply the 

analytic power of computer simulations and mathematical analyses to increasingly accurate 

and biologically plausible models of the brain. 

 

3. Abandoning Mechanistic Explanation 
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To what extent do researchers working within these three research traditions provide 

mechanistic explanations of behavioral and neurological phenomena? Mechanistic explanations 

center on descriptions or models of the mechanisms responsible for the phenomena being 

explained. Although there have been many different formulations of what constitutes a 

mechanism, the basic idea is that of an organized system of parts (or “entities”) and operations 

(or “activities”) whose changing properties over time exhibit a phenomenon of explanatory 

interest (Bechtel and Richardson 1993; Machamer, Darden, and Craver 2000; Bechtel and 

Abrahamsen 2010; Craver 2007). Notably, although most early contributions to the literature 

emphasize the characteristically diagrammatic nature of mechanistic explanations, many recent 

treatments acknowledge the possibility and prevalence of mathematical mechanism-

descriptions. Thus, Kaplan & Craver (2011) have recently proposed a model-mechanism-

mapping constraint (3M) intended to capture the requirements all mechanistic models must 

satisfy for them to be used in mechanistic explanations: 

“3M: In successful explanatory models…(a) the variables in the model correspond to 
components, activities, properties, and organizational features of the target mechanism 
that produces, maintains, or underlies the phenomenon, and (b) the (perhaps 
mathematical) dependencies posited among these variables in the model correspond to 
the (perhaps quantifiable) causal relations among the components of the target 
mechanism.” (Kaplan and Craver 2011, 611) 
 

 Before a mechanism can be described, it must be discovered: Researchers in 

neuroscience do not typically know in advance what the component parts and operations of a 

brain mechanism might be. According to Bechtel & Richardson’s (1993) celebrated account of 

mechanism discovery, neuroscientists typically rely on the heuristic strategies of decomposition 

and localization to identify a mechanism’s component parts and operations, and thus, to 
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develop a description or model of that mechanism. That is, they analyze the target 

phenomenon into a series or complex of relatively simple operations, break apart the physical 

system from which that phenomenon arises into a collection of smaller parts, and then study in 

detail the behavior of individual parts in order to link those parts to particular operations. 

Because of their perceived importance to mechanistic explanation in several disciplines, 

decomposition and localization are now often considered to be “the sine qua non of 

mechanistic explanation” (Silberstein and Chemero 2012, 3). 

It is generally agreed that brain networks are mechanisms in the above sense. For one, 

they can clearly be viewed as organized systems of parts and operations. For another, insofar as 

many brain networks can be associated with particular behavioral or neurological processes, 

they can be said to exhibit various phenomena of explanatory interest. But although brain 

networks are mechanisms, some commentators have questioned whether the researchers who 

study these networks seek mechanistic explanations, as opposed to other kinds of explanations. 

Their questioning usually centers on the models being developed in systems neuroscience: 

what kinds of models these are, what kinds of properties they describe, and how these models 

are developed. 

Unlike their colleagues in other branches of neuroscience, systems neuroscientists 

rarely invoke the heuristic strategies of decomposition and localization. This can be observed in 

all three of the research traditions introduced above. In the complexity tradition, researchers 

do not attempt to describe a brain network’s component parts and operations at all, but just 

seek to describe its overall behavior. Thus, the mathematical models being developed in this 
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tradition are often phenomenological models rather than mechanistic models: they accurately 

describe the phenomenon being explained, without representing the causal structures and 

processes responsible therefore (Mauk 2000; Weiskopf 2011). 

In the simulation tradition, the brain’s behavioral dynamics and information-processing 

capacities are reproduced by way of artificial neural network models. Although these models 

can be construed as mechanistic models because they describe a network’s component 

elements and connections, they are not usually developed via the heuristic strategies of 

decomposition and localization. In this tradition, the phenomenon being modeled is rarely 

analyzed into a series of localizable operations, and it is rare to see systems neuroscientists 

characterize the contributions of individual parts to the network mechanism’s overall behavior. 

Thus, in Bechtel & Richardson’s assessment, the simulation tradition 

“emphasizes systems whose dynamic behavior corresponds to the activity we want to 
explain, but in which the components of the system do not perform recognizable 
subtasks of the overall task…The overall architecture of the system—and especially the 
way components are connected—is what explains cognitive capacities, and not the 
specific tasks performed by the components. We have abandoned decomposition and 
localization.” (Bechtel and Richardson 1993, 222–223) 
  

Thus, rather than describe the contributions of a network’s individual elements and 

connections by deploying the strategies of decomposition and localization, researchers in the 

simulation tradition focus on the contribution of the network’s organization to its overall 

behavior. 

Researchers working in the network tradition within systems neuroscience similarly 

focus on overall organization rather than individual components. Although developing a 
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network model of a biological brain network involves physically decomposing the brain or brain 

area being studied to determine the individual elements of the model, researchers rarely seek 

to describe in detail the structural features of these elements. Indeed, more often than not 

such network elements correspond to spatially-defined voxels or segments, rather than 

biologically-defined cortical structures that might plausibly be viewed as a mechanism’s 

“working parts” (Craver 2007). In addition, it can be hard to interpret the connections between 

the elements of such a network model as a mechanism’s component operations. Although 

some studies have begun to identify causal interactions between brain structures, far more is 

known about the brain’s structural and statistical connectivity. Thus, although it may be known 

that a brain network’s elements are structurally linked and/or statistically interrelated, it 

remains generally unclear exactly how these individual elements interact, and thus, unclear 

how they each contribute to the behavioral or neurological phenomena of explanatory interest. 

In each one of the three research traditions, the focus on overall behavior and 

organization rather than detailed composition is often by necessity, rather than by choice. It 

has long been known (and current research in the network tradition has confirmed) that brain 

networks at all levels of organization often feature massively reciprocal and non-linear 

interactions (Varela, Thompson, and Rosch 2001; Sporns 2011). In such systems, the behavior 

of any individual component is at all times influencing, but also being influenced by, the 

behavior of the rest of the system. Thus, although it may be possible to physically individuate 

neurons, neural populations, and cortical regions, it can be difficult (or indeed, computationally 

intractable) to describe their individual contribution to the behavior of the system as a whole. 

What researchers in the simulation and complexity traditions of systems neuroscience have 
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shown, in contrast, is that a network’s behavior can often be more usefully predicted and 

understood by focusing on holistic organizational properties instead. Thus, in Silberstein & 

Chemero’s words, 

“rather than viewing the neurons, cell groups or brain regions as the basic unit of 
explanation, it is brain multiscale networks and their large-scale, distributed and non-
local connections or interactions that are the basic unit of explanation.” (Silberstein and 
Chemero 2012, 5)  
 

To summarize: Unlike their colleagues in other branches of neuroscience, systems 

neuroscientists do not invoke the heuristic strategies of decomposition and localization to 

discover and describe mechanisms, and indeed, are frequently prevented from doing so due to 

the characteristic complexity of brain networks. Because their focus is placed squarely on 

network organization rather than detailed composition, there are good reasons to be skeptical 

about systems neuroscientists’ commitment to mechanistic explanation. 

 

4. Mechanistic Explanation in Systems Neuroscience 

The previous section described reasons for believing that systems neuroscientists have 

abandoned mechanistic explanation. This section argues that these reasons rely on an 

unnecessarily narrow conception of mechanistic explanation. Mechanistic explanation need not 

invoke the heuristic strategies of decomposition and localization, and need not be focused on 

component parts and operations. Indeed, when a particular mechanism’s behavior is largely 

determined by its overall organization, emphasizing this organization is appropriate and 

consistent with the norms of mechanistic explanation. 
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 Consider first the suggestion that systems neuroscientists have abandoned mechanistic 

explanation just because they eschew the heuristic strategies of decomposition and 

localization. Taken at face value, this suggestion concerns the epistemic practices researchers 

invoke during the process of model development. Thus construed, however, it is wrong to 

assume that decomposition and localization are “the sine qua non of mechanistic explanation” 

as Silberstein & Chemero suggest. According to the conception of scientific discovery embraced 

by Bechtel & Richardson (1993), decomposition and localization greatly facilitate mechanism 

discovery by allowing researchers to quickly (albeit fallibly) traverse a conceptual space of 

“how-possibly” mechanistic models, with the goal of eventually identifying a “how-actually” 

model of the mechanism. However, decomposition and localization are not the only heuristic 

strategies that can be used for this purpose: there are a wide range of strategies to choose 

from.  

 Zednik (in press) has recently explored some alternative strategies for mechanism 

discovery. To cite just one example, consider the way researchers in evolutionary robotics 

invoke evolutionary algorithms to develop simulated mechanisms for minimally cognitive tasks 

(Harvey et al. 2005; Beer 2003). Because the simulated mechanisms that emerge from such 

evolutionary algorithms are relatively unconstrained by the ingenuity and design preferences of 

human researchers, many of them are characterized by features often seen as obstacles to 

mechanistic explanation: reciprocal non-linear interactions, a close integration of brain, body, 

and environment, and high sensitivity to temporal detail. Although it remains to be seen to 

what extent the discovery of such mechanisms in simulation can be used to make concrete 

inferences about analogous real-world mechanisms (for discussion see Webb (2009) and 
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responses to this target article), the evolution and analysis of these simulated mechanisms can 

surely be viewed as a heuristic strategy that helps to identify areas of the space of possible 

mechanistic models that merit further exploration. Thus, the approach adopted by evolutionary 

roboticists can be understood as a proof of concept that there exist heuristic strategies for 

mechanism discovery beyond decomposition and localization. 

 Considered as heuristic strategies, therefore, decomposition and localization are not in 

fact essential for mechanistic explanation. As a consequence, the mere fact that systems 

neuroscientists rarely invoke these heuristic strategies does not by itself show that they have 

abandoned mechanistic explanation. That said, an alternative way of understanding the claim 

that decomposition and localization are “the sine qua non of mechanistic explanation” concerns 

not the heuristic strategies themselves, but the result of applying these strategies: descriptions 

of the component parts and operations of mechanisms. Are such componential descriptions, as 

opposed to descriptions that mainly or exclusively describe a mechanism’s organization, 

essential for mechanistic explanation? 

 Recall that mechanisms are organized systems of parts and operations that exhibit a 

particular phenomenon of explanatory interest, and that mechanistic explanations center on 

descriptions or models of such mechanisms. Moreover, recall that according to Kaplan & 

Craver’s 3M constraint, models that figure in mechanistic explanations contain variables that 

“correspond to components, activities, properties, and organizational features of the target 

mechanism”, the dependencies between which “correspond to the (perhaps quantifiable) 

causal relations among the components of the target mechanism” (Kaplan and Craver 2011, 
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611). Notably, the second part of the 3M constraint is indicative of one of the most important 

norms of mechanistic explanation, viz. that such explanations should demonstrate how a target 

phenomenon “is situated in the causal structure of the world” (Craver 2013, 135). Exactly what 

such a demonstration would amount to is of course controversial, but one common measure of 

success is that a mechanistic model should render the represented mechanism amenable to 

interventions of manipulation and control (Woodward 2003; Craver 2007). That is, the model 

should represent (just) those properties of the mechanism that, when lesioned, activated, or 

otherwise influenced, effect predictable changes in the mechanism’s behavior. Notably, 

although this norm is usually understood in terms of interventions on individual component 

parts or operations, it is also satisfied by models that facilitate interventions on the 

mechanism’s overall organization. 

 Recall that many of the artificial and biological networks studied by systems 

neuroscientists consist of a large number of elements with reciprocal non-linear interactions. In 

these networks, organizational properties are frequently the primary determinants of overall 

behavior (Sporns 2011; Varela, Thompson, and Rosch 2001). Indeed, these properties can often 

be thought of as order parameters, the modification of which predicts changes in the network’s 

overall behavioral dynamics and information processing capacities. Thus for example, Tononi & 

Sporns (2003) measure the effect varying degrees of modularity have on the degree of 

information integration within a network, presenting their results as a continuous function in 

which information integration is highest for networks with intermediate degrees of modularity, 

and lower for completely modular and completely homogeneous networks. Such studies reveal 

that network models can emphasize organizational properties instead of properties of 
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individual component parts and operations, while still rendering the relevant network 

mechanism amenable to interventions of manipulation and control. Insofar as this is one of the 

principal norms of mechanistic explanation, models that describe brain networks in ways that 

satisfy this norm should be considered mechanistic. Therefore, systems neuroscience 

explanations that center on such models can after all be viewed as mechanistic explanations. 

 How far can this line of reasoning be pushed? Although the network models being 

developed in the network and simulation traditions emphasize topological properties, they still 

provide some (admittedly not very detailed) insight into the individual component parts and 

operations of network mechanisms. Therefore, these models satisfy both parts of the 3M 

constraint, while additionally facilitating interventions of manipulation and control. But now 

compare these models to the models developed in the complexity tradition, the aim of which is 

to provide concise mathematical descriptions of brain networks’ behavioral dynamics and 

information-processing capacities. As was discussed previously, such descriptions often amount 

to phenomenological models, i.e. models that describe the phenomena being explained 

without representing the causal structures and processes—and a fortiori, the mechanisms—

responsible therefore. But not all models in the complexity tradition are pure 

phenomenological models. Indeed, some of the most interesting models in this tradition link 

variables that describe a network’s global behavior to parameters that represent its topology. 

Although these models do not represent the relevant network mechanism’s individual parts 

and operations, they do represent its organization in a way that renders it amenable for 

interventions of manipulation and control. Are these models mechanistic as well? 
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Whereas the network models developed in the network and simulation traditions are 

quite clearly mechanistic, and the systems neuroscientists in the network and simulation 

traditions can therefore be thought to provide mechanistic explanations, it is not so clear what 

to make of non-phenomenological models in the complexity tradition. On one hand, these 

models fail to describe what is often viewed as essential for mechanistic explanation: the 

relevant mechanism’s component parts and operations. On the other hand, they do at least 

describe the mechanism’s organization, and researchers often exploit this fact for the purposes 

of manipulation and control. Therefore, whether or not these models are mechanistic models 

depends on how these competing considerations are weighed against one another. Perhaps the 

following additional consideration can be used to break the tie in favor of the latter: Insofar as 

mechanistic models should just represent those properties that significantly contribute to a 

mechanism’s behavior, and insofar as in brain networks these properties are often 

predominantly organizational, it seems that even those models in the complexity tradition that 

exclude compositional details entirely should be construed mechanistically. 

 

5. Conclusion: Toward an Account of Mechanistic Organization 

The preceding sections aimed to show that systems neuroscience—spanning the network, 

simulation, and complexity traditions—can often be thought to provide mechanistic 

explanations of behavioral and neurological phenomena. Although systems neuroscientists only 

rarely invoke the heuristic strategies of decomposition and localization, these strategies are not 

essential for mechanistic explanation. Moreover, and most importantly, although systems 
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neuroscientists typically emphasize organizational properties over and above the properties of 

individual component parts and operations, these properties can often be used for the 

purposes of manipulation and control. Thus, although they might pay far less attention to 

individual component parts and operations, systems neuroscientists seem to embrace many of 

the same explanatory methods and norms as their colleagues in other branches of 

neuroscience. 

 In closing, it is worth reflecting on the further philosophical significance of this 

mechanistic construal of systems neuroscience. Because systems neuroscientists specialize in 

characterizing the organization of a particular family of mechanisms—brain networks—their 

work is likely to be particularly beneficial to philosophers of science seeking an improved 

understanding of mechanistic organization. Although the concept of organization has long been 

included in philosophical definitions of “mechanism”, it remains poorly understood, and 

indeed, its importance underestimated. Thus for example, one particularly influential treatment 

of mechanistic explanation presupposes that mechanisms are organized linearly, from “set up 

to termination conditions” (Machamer, Darden, and Craver 2000). In contrast, Bechtel & 

Abrahamsen (2010) have demonstrated that many mechanisms in neuroscience and biology are 

organized cyclically, and Levy & Bechtel (2013) have sought to explore the role of motif-like 

organizational building blocks in mechanisms in the life sciences. Insofar as systems 

neuroscientists have revealed many canonical forms of mechanistic organization in the brain—

as well as many ways of studying this organization—it stands to reason that philosophers of 

science have much to gain from paying increased attention to this exciting and increasingly 

influential area of research. 
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