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Abstract: It is a commonplace in the foundations of physics, at-
tributed to Kretschmann, that any local physical theory can be rep-
resented using arbitrary coordinates, simply by using tensor calculus.
On the other hand, the physics and mathematics literature often claims
that spinors as such cannot be represented in coordinates in a curved
space-time. These commonplaces are inconsistent. What general co-
variance means for theories with fermions is thus unclear.

In fact both commonplaces are wrong. Though it is not widely known,
Ogievetsky and Polubarinov (OP) constructed spinors in coordinates
in 1965, enhancing the unity of physics and helping to spawn parti-
cle physicists’ concept of nonlinear group representations. Roughly
and locally, OP spinors resemble the orthonormal basis or tetrad
formalism in the symmetric gauge, but they are conceptually self-
sufficient and more economical. The typical tetrad formalism is thus
de-Ockhamized, with six extra field components and six compen-
sating gauge symmetries to cancel them out. As developed non-
perturbatively by Bilyalov, OP spinors admit any coordinates at a
point, but ‘time’ must be listed first; ‘time’ is defined in terms of an
eigenvalue problem involving the metric components and the matrix
diag(−1, 1, 1, 1), the product of which must have no negative eigenval-
ues. Thus even formal general covariance requires reconsideration; the
atlas of admissible coordinate charts should be sensitive to the types
and values of the fields involved.

Apart from coordinate order and the usual spinorial two-valuedness,
(densitized) Ogievetsky-Polubarinov spinors form, with the (confor-
mal part of the) metric, a nonlinear geometric object. Important re-
sults on Lie and covariant differentiation are recalled and applied. The
rather mild consequences of the coordinate order restriction are ex-
plored in two examples: the question of the conventionality of simul-
taneity in Special Relativity, and the Schwarzschild solution in General
Relativity.
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Introduction

During 1929-37 especially due to Weyl and Cartan, it was concluded
that spinor fields in curved space-time could not be treated using the
techniques of tensor calculus; a spinorial transformation law had to be
achieved with respect to some group unrelated to spatial rotations, with
the help of an orthonormal basis [1–5]. The no-go theorem in question is
usually taken to show that one cannot have spinors in a curved space-time
with spinorial behavior under coordinate transformations. This result was
considered foundational and permanent, not technical and provisional [6].

During the 1950s-60s it was found how to circumvent the Weyl-Cartan
result: spinors could be spinorial with respect to coordinate transforma-
tions if one allowed the new spinor components also depend nonlinearly
on the metric. But this result has yet to become widely known. The DeWitts
provided clues in the early 1950s [7]. Pauli might also have had a role [8].
The problem was solved, at least infinitesimally, by V. I. Ogievetsky and I.
V. Polubarinov [9, 10]. This work, which largely began particle physicists’
idea of nonlinear group representations, unfortunately never made con-
tact with the mathematics literature on nonlinear geometric objects, such
as ([11–15]). While it isn’t possible to write this paper in the 1960s, one can
imagine a different trajectory for certain literatures in the last 40+ years if
that connection had been made. As Ogievetsky and Polubarinov (hence-
forth “OP”) said in critique of Cartan, the Weyl-Cartan no-go result relies
essentially on largely tacit assumptions, such as that the new spinor com-
ponents should be linear in the old field components and that the old field
components should include only the spinor itself.1

One can approach OP formalism by gauge-fixing the orthonormal ba-
sis to make its components symmetric, moving an index with the signa-
ture matrix diag(−1, 1, 1, 1). For an indefinite signature, this gauge fixing
doesn’t always work. But it works often enough that one might decide to
live it, given the benefits of avoiding 6 extra fields and 6 extra symmetries
(local O(1, 3)) to gauge them away, and having Lie and covariant deriva-
tives with resulting benefits for symmetries and conservation laws.

Strikingly, a great many authors have in effect reinvented the OP for-
malism by such gauge fixing—generally without realizing that a formalism
that could stand on its own was thereby achieved, and often while even
denying that such a self-sufficient formalism was possible. The fact that
an orthonormal basis can be topologically obstructed on manifolds with a
metric shows that the symmetric square root of the metric is conceptually

1The content of this paper is explored in more detail in [16].
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independent of a tetrad. As simple a case as the 2-sphere with positive
definite metric makes the point.

Generalized Polar Decomposition

One can obtain the symmetric square root of the metric using a general-
ized polar decomposition of the tetrad, treated as a matrix of components.
The usual polar decomposition factors a positive definite matrix into an or-
thogonal (rotation) factor and a symmetric (shear and expansion) factors.
(Clearly the expansion, which corresponds to the volume element in our
applications, goes along for the ride and can be separated out using a uni-
modular matrix and a scalar density factor.) Isham, Salam and Strathdee
have invoked the polar decomposition near the identity, but without math-
ematical control over what happens for large transformations [17, 18]. A re-
cent paper in the modern style is also noteworthy [19], though still working
near the identity. There might be some interesting connection to Ol’shankiĭ
decompositions [20]. In any case progress in linear algebra has filled the
hole.

A generalized polar decomposition makes use of a “signature ma-
trix” like η = diag(−1, 1, 1, 1) [21, 22]. A matrix M is η-orthogonal iff
MT ηM = η. It is called η-symmetric if symmetric with index moved by η.
Tweaking some notation a bit, one has the following theorem applicable to
generalized polar decomposition of a tetrad into a symmetric square root
and a boost-rotation:

Theorem 5.1. If [tetrad component matrix] E ∈ Rn×n and
ηETηE has no eigenvalues on the nonpositive real axis, then
E has a unique indefinite polar decomposition E = QS, where
Q is η-orthogonal and S is η-symmetric with eigenvalues in the
open right half-plane. [22, p. 513]

One can find the boost-rotation explicitly: Q = E(ηETηE)−
1
2 . Having

made this decomposition of the tetrad E, the OP formalism works with
S or R = ηS, throwing away the local O(1, 3) factor, which is pure gauge,
and keeping the symmetric factor, the symmetric square root of the metric,
a physical quantity equivalent to the metric but more directly coupled to
the spinor in the Dirac equation.

General Covariance and Coordinate Reordering

General coordinate transformations contain a certain collection of trans-
formations that probably no one has ever regarded as interesting prior to
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Ranat Bilyalov’s work on spinors [23]. The usual formalisms require that
the coordinates be expressed in some definite order, but no significance
is attached to that order. Consider Special Relativity in Cartesian coordi-
nates. Coordinates are listed as an ordered quadruple (t, x, y, z) with their
usual meanings. A slightly nontrivial change is a reordering that involves
the time coordinate: (t, x, y, z) might be replaced by (x, t, y, z). Now the
matrix diag(−1, 1, 1, 1) is inappropriate; the invariant interval in the new
coordinates is given by diag(1,−1, 1, 1). In short, one needs tensor calculus,
or a small fragment of it, namely the part that introduces a metric tensor
and its coordinate transformation law, in order to permit the coordinate
reordering. One certainly could formulate Special Relativity in this fash-
ion. Presumably no one would bother to introduce a metric tensor simply
for the slight gain in generality of admitting reorderings of the Cartesian
coordinates, however. The indefinite signature of the metric, which dis-
tinguishes temporal from spatial coordinates, is crucial here. Roughly, the
freedom to write ‘time’ (suitably generalized) as the second, third or fourth
coordinate (in four space-time dimensions) is what one gives up in the OP
spinor formalism [24]. Contrary to the usual modern practice of admitting
all possible coordinates, it is fitting to take the atlas of admissible coordi-
nate charts to vary with the types of fields present in order to make a lean
ontology manifest.

It is helpful to remember an argument that Einstein made in 1916 when
the issue was novel:

The method hitherto employed for laying co-ordinates into the
space-time continuum in a definite manner [yielding observ-
able time or space intervals] thus breaks down, and there seems
to be no other way which would allow us to adapt systems of
co-ordinates to the four-dimensional universe so that we might
expect from their application a particularly simple formulation
of the laws of nature. So there is nothing for it but to regard
all imaginable systems of co-ordinates, on principle, as equally
suitable for the description of nature. [25, p. 117, emphasis
added]

Indeed coordinates with quantitative physical meaning are not available
with adequate generality in the curved space-times of GR. The next cru-
cial step involves inferring the nonexistence of something, given the fail-
ure thus far (in 1916) to imagine it. This step was eminently reasonable
in 1916 and indeed for some time afterward. But clearly the argument is
defeasible, and now it is defeated.
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Geometric Objects, Especially Nonlinear Ones

The theory of geometric objects, which was largely complete in the 1960s
in the linear case, describes tensors and more general geometric objects, in-
cluding connections, as well as some little known nonlinear entities, some
but not all of which are equivalent to linear ones. This theory, which was
never well known, is even less so now (except for some work on “natural
bundles” [26, 27]).

Roughly, a geometric object is, for each space-time point and each lo-
cal coordinate system around it, a finite ordered set of components and a
transformation law relating components in different coordinate systems at
the same point [12, 28, 29]. Tensors have linear homogeneous transforma-
tion laws: v′ ∼ v, where the usual flurry of indices is suppressed, partly for
generality. A linear homogeneous transformation law also exists for ten-
sor densities [30], for which the transformation law involves some power

of the determinant of the matrix ∂xµ′

∂xν . An affine connection is a geomet-
ric object with a linear but inhomogeneous (affine) transformation law.
These are all the geometric objects in wide circulation, but others exist,
such as the metric perturbation gµν − ηµν (where ηµν = diag(−1, 1, 1, 1))
[9, 10]. It has an affine transformation law with only first derivatives, so
it has nice Lie and covariant derivatives [31]. It should be emphasized
that ηµν = diag(−1, 1, 1, 1)) is a purely numerical scalar matrix. Somewhat
awkwardly as far as notation is concerned, the theory of nonlinear geomet-
ric objects, linear for a subgroup, involves cases where Greek coordinate
indices and Latin indices merge [9, 32].

Besides linear and affine geometric objects, there are geometric objects
with nonlinear transformation laws: the new components are nonlinear

functions of the old components, as well as depending on ∂xµ′

∂xν (p) and the

like. Consider the symmetric square root rµν of the metric,2 defined implic-
itly in any (admissible) coordinate system by

gµν = rµαηαβrβν. (1)

This entity rµν exists at least in many coordinate systems, most obvi-
ously in those not terribly far from freely falling Cartesian coordinates.
If one expresses the metric gµν as some perturbation about the matrix

2The square root of the metric or inverse metric has become important recently
in devising pure spin 2 massive gravity [33]. Some of the theories in question were
first developed by OP [10], though OP did not notice or resolve the problem [34]
that getting rid of the ghost spin 0 by making it infinitely heavy in linearized mas-
sive gravity might not get rid of it to all orders.
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ηαβ = diag(−1, 1, 1, 1), then one can use the binomial series expansion for
rµα . The result (when convergent [7]) is [9]

rµν =
∞

∑
k=0

1
2 !

( 1
2 − k)!k!

[(gµ• − ηµ• )η•• . . . (g•ν − η•ν )]k f actors o f g

= ηµν +
1

2
(gµν − ηµν )− 1

8
(gµα − ηµα )ηαβ(gβν − ηβν ) + . . . . (2)

The expression 1
2 !/( 1

2 − k)! stands for 1
2 · ( 1

2 − 1) · . . . · ( 1
2 − k + 1). The co-

ordinate transformation law for rµα follows from the metric transforma-
tion law for gµν and the definition as applied to both coordinate systems:
g = rηr and g′ = r′ηr′ :

r′µαηαβr′βν =
∂xα

∂xµ′ rαρηρσrσβ
∂xβ

∂xν′ .

This result is somewhat implicit in that r′µα does not appear alone on the

left side. The matrix diag(−1, 1, 1, 1) puts time first; if one tries to or-
der the coordinates otherwise, then either one has to replace the matrix
diag(−1, 1, 1, 1) with something else or one gets perturbations of magni-
tude ±2. Bilyalov presents a theorem [23] regarding the necessity and suf-
ficiency of reordering the coordinates, not simply a plausibility argument
for its necessity. The coordinate reordering is in effect part of the service
rendered by his matrix T, which combines a permutation and a reflection.

It is evident from the definition of the symmetric square root of the
metric that there is a transformation rule for it, at least between admissible
coordinate systems. That fact is illustrated in the ‘commutative diagram’
(with factors of diag(−1, 1, 1, 1) suppressed):

g′
tensor←−−−− g

root





y
root





y

r′ ?←−−−− r

But what can be said that is explicit and practical about the transformation
from rµν to r′µν , labeled as “?” in the diagram? It is

r′µν =

√

∂xα

∂xµ′ rαβηβγ rγρ
∂xρ

∂xσ′ η
σδηδν . (3)

When the perturbative expansion exists, one can use
(

∂x
∂x′

)ᵀ

rηr ∂x
∂x′ η − I as

the perturbation in the binomial series expansion. Thus the transformation
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rule, at least in the perturbative context, is an infinite series in even pow-
ers of r. The series expansion chooses the root near the identity, that is,
near diag(−1, 1, 1, 1); presumably one wants the ‘positive’ principal square
root in all other contexts also. Bilyalov’s generalized eigenvector formal-
ism works more generally [24], but still requires that ‘time’ be listed first
among the coordinates; otherwise negative eigenvalues can appear, yield-
ing a complex square root of the metric.

Conformal Group Yields Linear Transformation Law

Besides the full nonlinear transformation law for (nearly) general coordi-
nate transformations, it is of interest to ascertain when the transformation
law is linear—the stabilizer group. The answer is the 15-parameter confor-
mal group. (At times only the Poincaré group, not the full 15-parameter
conformal group, has been noticed [9].) One can show that infinitesimally
using the Lie derivative of OP spinors, as given in ([9]). One can also show
it using the finite coordinate transformation law. No special assumptions
about the metric geometry or the coordinate system are made; the transfor-
mations involve purely formal relations between a new coordinate system
and an old one, regardless of the metric or the metrical properties of the
coordinates. Thus the simple linear spinor-only law for Lorentz transfor-
mations in quantum field theory books arises as a special case.

Differentiation of Nonlinear Geometric Objects and OP Spinors

For a nonlinear geometric object χ, generally the Lie and covariant deriva-
tives themselves are not geometric objects, but the pairs 〈χ,Lξχ〉 and
〈χ,∇χ〉 are both geometric objects [11, 13–15, 31]. One often reads that
spinors do not admit Lie differentiation, unless the generating vector field
is a conformal Killing vector field [35] [36, p. 101]. OP spinors do in fact
have a classical Lie derivative, as one would expect from their having a
spinorial coordinate transformation law and no additional gauge group.
One in fact must consider a pair such as 〈rµν, ψ〉 as a candidate for Lie
differentiation. Thus 〈rµν, ψ,Lξrµν,Lξ ψ〉 is a geometric object (apart from
coordinate restrictions and spinorial double-valuedness). Regarding the
covariant derivative of the metric, one has that ∇gµν = 0 ↔ ∇rµν = 0.
Thus the covariant derivative of OP spinors simplifies somewhat due to
the disappearance of∇rµν terms.

7
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Conformal Invariance of Dirac Operator with Densities

One common theme in modern physics is the value of identifying and
eliminating surplus structure [30, 37–39]. There are two distinct but com-
patible ways of eliminating surplus structure from the typical formulation
of the massless Dirac equation in a curved space-time. One entity that can
be eliminated, as was realized by Haantjes and Schouten in the 1930s [40–
42] but mostly forgotten afterwards, is the volume element

√−g. Many au-
thors nowadays discuss the covariance of the Dirac operator (the left side of
the massless Dirac equation) under conformal changes of metric, but one
can, using a suitable choice of primitive fields, achieve invariance, in which√−g disappears altogether from the theory. Failure to notice leads some
authors to think that Killing vectors only [27, 43–46], not conformal Killing
vectors, have a special status in relation to Lie derivatives of spinors.

It is perhaps novel to combine the elimination of the tetrad’s surplus
structure (6 components) with the elimination of the volume element, 1
component of surplus structure. One benefit is that it is clear by inspec-
tion that the symmetry group in (conformally) flat space-time is the 15-
parameter conformal group. The appropriate spinor turns out to have

weight 3
8 in four space-time dimensions or, more generally, n−1

2n in n space-
time dimensions. That conformally invariant Dirac operator is γµ r̂µν∇νψw,
where γµ denotes a set of numerical Dirac matrices, r̂µν is the symmet-
ric square root of the inverse conformal metric density ĝµν , ∇ν is the OP
covariant derivative for spinors with the density weight term (with the
weight altered to match the usual western rather than Russian conven-

tions), and ψw is a spinor with weight w = n−1
2n . No use is made of any

volume element in defining this operator, so it is a concomitant of just the
weighted spinor and the conformal metric density. The Lagrangian den-
sity in this formalism with the densitized variables is also manifestly con-
formally invariant in any dimension:

L =
√

−gψ̄γνrνµ∇µψ = ψ̄wγν r̂νµ∇µψw. (4)

Spinors and the Partial Conventionality of Simultaneity

The conventionality of simultaneity has been a longstanding issue in the
philosophy of physics. The question has arisen whether spinor fields pose
distinctive issues for the conventionality of simultaneity. Detaching spinor-
hood from spatial coordinate rotations is curious [5, pp. 150, 151] [47]—but
an appropriate response to the supposed impossibility of including spinors
as such within the realm of coordinate transformations.
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Due to OP, that impossibility is overcome. Cartan’s and Bain’s prefer-
ence for unification, which they thought unsatisfiable, is adequately real-
ized using OP spinors, for which the group that makes ψ a spinor is the
(double cover of) a Lorentz group that is a subgroup of the space-time coor-
dinate transformations. OP spinors are friendly to conventionalism about
simultaneity, but not for reasons that have appeared previously. A great
variety of time coordinates is permitted, including all of them usually
considered in the debate over the conventionality of simultaneity debate
and some that are not. That is not, however, because any coordinate
whatsoever (nor even any ‘flat’ one linearly related to standard coordi-
nates in Minkowski space-time) is admissible as time; in fact some co-
ordinates are inadmissible as time coordinates in the OP spinor formal-
ism. The dividing line is apparently unprecedented. Let the transforma-
tion from standard to nonstandard simultaneity coordinates be given by

xµ′ = (x0 + (2ε1 − 1)x1 + (2ε2 − 1)x2 + (2ε3 − 1)x3, x1 , x2 , x3). Standard
simultaneity is the case ε1 = ε2 = ε3 = 1

2 . It is convenient to define

~n = (2ε1 − 1, 2ε2 − 1, 2ε3 − 1), so then xµ′ = xµ + δ
µ
0 nix

i . One finds the
inverse metric for Minkowski space-time with nonstandard simultaneity
to be









−1 +~n2 n1 n2 n3

n1 1 0 0
n2 0 1 0
n3 0 0 1









.

(5)

It is convenient to rotate coordinates to let ~n lie along one coordinate axis,
and then suppress the two trivial dimensions. Using an eigenvalue formal-
ism, one sees that for |n| ≥ 2, the eigenvalues are real and negative, which
is bad. Coordinates with |n|< 2 are permitted. The final result is

r′µν =







−
(

1− n2

2

) (

1− n2

4

)− 1
2 n

2

(

1− n2

4

)− 1
2

n
2

(

1− n2

4

)− 1
2

(

1− n2

4

)− 1
2







=

[

−1 + 3n2

8 + . . . n
2 + . . .

n
2 + . . . 1 + n2

8 + . . .

]

.

(6)

Recalling that n = 2ε− 1 and that the usual range of ε in discussions of the
conventionality of simultaneity is between 0 and 1, the usual range of n is
between −1 and 1. The OP formalism permits −2 < n < 2, considerably
larger than the typical −1 < n < 1 of the conventionality of simultaneity
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discussion, but less than the full Kretschmannian arbitrariness of tensor
calculus. The corresponding transformation of the spinor is

S = I cosh

[

1

2
ln

√

1− n/2

1 + n/2

]

+ γ0γ1 sinh

[

1

2
ln

√

1− n/2

1 + n/2

]

=
1

2
I

[

4

√

1− n/2

1 + n/2
+ 4

√

1 + n/2

1− n/2

]

+
1

2
γ0γ1

[

4

√

1− n/2

1 + n/2
− 4

√

1 + n/2

1− n/2

]

= I − n

4
γ0γ1 + . . . . (7)

A coordinate transformation from standard simultaneity to nonstandard
simultaneity induces an n-dependent boost of the spinor.

The Schwarzschild Radius and ‘Time’ Coordinates

Part of the lore of general relativists is the role of Eddington-Finkelstein
coordinates in the late 1950s in helping to overcome ‘Schwarzschild singu-
larity’ at r = 2M; instead that radius came to be known as the “horizon”
of a black hole, through which one might readily enough pass on the way
to the curvature singularity at r = 0 [48]. One might well conclude that
holding too tightly to an association between a coordinate and some qual-
itative temporal or spatial character played a negative role in the context
of discovery for the significance of r = 2M, a role only overcome with
difficulty using infalling coordinates that made no such qualitative associ-
ations. Does the OP formalism un-learn lesson of Schwarzschild radius?

The infalling Eddington-Finkelstein coordinates are a radial coordinate
r, a null coordinate Ṽ, and two angles θ, φ. The line element is given by

ds2 = −
(

1− 2M

r

)

dṼ2 + 2dṼdr + r2(dθ2 + sin2θdφ2)

[48, p. 828]. A null coordinate such as Ṽ is, in some rough sense, half spa-
tial and half temporal. r seems quite unambiguously spatial. One can use
the generalized eigenvalue formalism to ascertain the coordinate ranges of
admissibility for these coordinates. The results are surprising in more than
one respect. One can show that the OP admissibility range of 〈Ṽ, r, θ, φ〉
(noting the order) is r >

2M
3 . That seems plausible enough—something

strange happens somewhere inside the Schwarzschild radius, but at least
one can get inside it before having to switch coordinates. That fact alone in-
dicates that the OP ‘time’ coordinate restrictions do not unlearn the lessons
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about coordinates from 1958 that contributed to the modern understand-
ing of black holes. At any rate one can get inside the horizon, and there is

no reason to assume that r >
2M

3 is a real barrier.

One can also consider the OP admissibility of 〈r, Ṽ, θ, φ〉, with r coming
first. This is, intuitively, the ‘wrong’ order, because a spatial coordinate is
playing the role of OP ‘time,’ while a null (half time, half space) coordinate
is playing the role of space. One might expect this coordinate system not
to be admissible, or to be admissible only in some small exotic region, such
as inside the horizon. But on doing the calculation, one finds these coordi-
nates to be admissible for r > 0! The eigenvalues are complex. As noted
above, complex eigenvalues cause no trouble because they permit a real
square root with eigenvalues in the right half of the complex plane. Thus

for r > 2M
3 there is more than one right order: 〈Ṽ, r, θ, φ〉 and 〈r, Ṽ, θ, φ〉

are both admissible. The relation between the spinor components in the
two systems is presumably quite nontrivial, in contrast to the relationship
between the metric tensor components.

In short, there are cases in which more than one right order exists, and
cases where an intuitively wrong order is admissible and an intuitively
more right order is inadmissible. The lesson of the Schwarzschild radius is
not unlearned by OP spinors.

Conclusion

It is usually tacitly assumed that most of the important foundational ques-
tions about space-time arise in the context of tensor fields in Special Rel-
ativity and General Relativity, so one need not think about spinor fields
to answer them. It is also widely believed that such differences as spinor
fields make are those described by Weyl in 1929, with some elaboration in
terms of global methods. To the contrary, one of the most important devel-
opments for space-time theory since the rise of General Relativity appeared
in a 1960s Russian journal due to the work of particle physicists wielding
perturbative expansions. That work can be unified with the classical dif-
ferential geometry literature on nonlinear geometric objects. The result is
a formalism with fewer fields, fewer symmetries to gauge the extra fields
away, and well defined Lie and covariant derivatives. Fermions are more
relevant to foundational questions about time and space-time theory, more
like bosons in some respects, and less like bosons in others, than has been
widely believed.
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Mathématiques, Astronomiques et Physiques, 11:687, 1963.

[15] Andrzej Szybiak. On the Lie derivative of geometric objects from the
point of view of functional equations. Prace Matematyczne=Schedae

12



TIME AND MATTER 2013 CONFERENCE

Mathematicae, 11:85, 1966.
[16] J. Brian Pitts. The nontriviality of trivial general covariance: How

electrons restrict time coordinates, spinors (almost) fit into tensor
calculus, and 7/16 of a tetrad is surplus structure. Studies in His-
tory and Philosophy of Modern Physics, 43:1–24, 2012. http://philsci-
archive.pitt.edu/8895/; arXiv:1111.4586.

[17] Chris J. Isham, Abdus Salam, and J. Strathdee. Nonlinear realizations
of space-time symmetries. Scalar and tensor gravity. Annals of Physics,
62:98, 1971.

[18] Chris J. Isham, Abdus Salam, and J. Strathdee. Infinity suppression
in gravity-modified quantum electrodynamics. Physical Review D,
3:1805, 1973.

[19] Giovanni Giachetta. Nonlinear realizations of the diffeomorphism
group in metric-affine gauge theory of gravity. Journal of Mathemat-
ical Physics, 40:939–954, 1999.

[20] Jimmie D. Lawson. Polar and Ol’shanskiĭ decompositions. Journal für
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