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1.- Introduction 

Information is everywhere, shaping our discourses and our thoughts. In everyday life, 

we know that the information spread by the media may trigger deep social, economical 

and political changes. In science, the concept of information has pervaded almost all 

scientific disciplines, from physics and chemistry to biology and psychology. 

Philosophy has echoed this situation in a number of articles in journals and books 

devoted to elucidate and analyze the concept of information in its different meanings.  

In the field of the philosophy of physics, Christopher Timpson (2003, 2004, 2005, 

2006, 2008, 2013) has published several works where he accurately designs an 

interpretation of the technical concept of information, that is, of the concept as used in 

information theory. In particular, he proposes a deflationary view about information, 

according to which the term ‘information’ is an abstract noun and, as a consequence, 

information is not part of the material contents of the world. This innovative and well 

articulated view has had a great impact on the philosophy of physics, especially among 

authors interested in the use of the concept of information for interpreting physical 

theories. For this reason, Timpson’s proposal deserves to be critically analyzed in detail, 

in order to assess the consequences usually drawn from it. The main purpose of the 

present article consists precisely in supplying such a critical analysis. 

On this basis, in Section 2 we will begin by recalling certain basic distinctions 

regarding the concept of information: this will allow us to focus on the technical 

statistical concept of information. Then, in Section 3, we will analyze Timpson’s 

reading of Shannon’s theory, considering the conceptual consequences of that reading. 

Section 4 will be devoted to recall and analyze the arguments appealed to by Timpson 

to ground his deflationary view of information; this analysis will lead us to claim that 

information is an item even more abstract than what Timpson claims. This conclusion 

will lead us, in Section 5, to wonder if the abstract nature of information prevents us to 

conceive it as a physical item. The negative answer to this question will allow us to 

consider, in Section 6, the differences between the epistemic and the physical 



 2

interpretation of information, and to propose, in Section 7, in contrast with Timpson’s 

monist interpretation, a pluralist view about information, according to which, even on 

the basis of a single formalism, the concept of information admits a variety of 

interpretations, each one useful in a different context. 

2.- Which information? 

As many recognize, information is a polysemantic concept that can be associated with 

different phenomena (Floridi 2010). In this conceptual tangle, the first distinction to be 

introduced in philosophy is that between a semantic and a non-semantic view of 

information. According to the first view, information is something that carries semantic 

content (Bar-Hillel and Carnap 1953; Bar-Hillel 1964, Floridi 2013); it is therefore 

strongly related with semantic notions such as reference, meaning and representation. In 

general, semantic information is carried by propositions that intend to represent states of 

affairs; so, it has intentionality, “aboutness”, that is, it is directed to other things. And 

although it remains controversial whether false factual content may qualify as 

information, semantic information maintains strong links with the notion of truth. 

Non-semantic information, also called ‘mathematical’ or ‘statistical’, is concerned 

with the statistical properties of a system and/or the correlations between the states of 

two systems, independently of the meanings of those states. The classical locus of 

mathematical information is the paper where Claude Shannon (1948) introduces a 

precise formalism designed to solve certain specific technological problems. Shannon’s 

theory is purely quantitative: it ignores any issue related to informational content: “[the] 

semantic aspects of communication are irrelevant to the engineering problem. The 

significant aspect is that the actual message is one selected from a set of possible 

messages.” (Shannon 1948, p. 379). 

Although very widespread (see also Floridi 2013, Adriaans 2013), the distinction 

between semantic and non-semantic information is not considered by Timpson. 

According to the author, the first and most important distinction is that between the 

everyday notion of information and the technical concept of information, such as that 

derived from the work of Shannon (Timpson 2004, pp. 4-5).1 The everyday notion of 

information is intimately associated with the concepts of knowledge, language and 

                                                 
1 Here we will always refer to Timpson’s PhD dissertation at the University of Oxford (Timpson 

2004), and not to the published version (Timpson 2013), because the dissertation was the original 
source of the great impact of Timpson’s proposal. 
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meaning; information in the everyday sense displays intentionality, it is directed 

towards something, it is about something. By contrast, a technical concept of 

information is specified by means of a mathematical and/or physical vocabulary and, 

prima facie, has at most limited and derivative links to semantic and epistemic concepts.  

In turn, the semantic view of information and the philosophers interested in it are 

barely mentioned in Timpson’s work. One exception is given by his analysis of Fred 

Dretske’s proposal: “The claim that the everyday and information-theoretic notions of 

information are to be kept distinct is defended against the view of Dretske (1981), who 

sought to base a semantic notion of information on Shannon’s theory.” (Timpson 2004, 

p. v).2  This quote and others −“Does this establish a link between the technical 

communication-theoretic notions of information and a semantic, everyday one?” ( ibid. 

p. 36)− suggest that Timpson equates the semantic and the everyday views of 

information. This suspicion is reinforced by the fact that the everyday concept is 

endowed with the same features as those traditionally used to characterize semantic 

information. In this way, Timpson seems to deprive the semantic view of any technical 

status, in opposition to many authors who are convinced that the elucidation of a 

technical concept of semantic information, with its links with knowledge, meaning and 

reference, makes philosophical sense (Dretske 1981, Barwise and Seligman 1997, 

Floridi 2013). As will be pointed out in the next sections, Timpson’s explicit 

estrangement from any semantic ingredient in the concept of information stands in 

tension with some of his further claims. 

Whereas Timpson devotes a couple of pages to the everyday notion of 

information and its relation with knowledge (2004, pp. 5-9), he announces that, since he 

is concerned with quantum and classical information theories, his work addresses the 

technical concept of information. He also stresses from the beginning that, although 

there are different technical concepts of information other than Shannon’s (Fisher 

                                                 
2 Timpson (2004, pp. 34-39) offers a criticism of Dretske’s position based on pointing out a formal 

error. However, the error can be consistently remediated and the core of Dretske’s proposal still 
deserves to be considered (see Lombardi 2005). Moreover, Timpson clasifies Dretske (1981) as a 
“semantic naturalizer”, that is, one of those philosophers who “hope, or expect, to achieve the 
reduction of semantic and related concepts to respectable physical ones” ( ibid. p. 30). But 
Dretske’s purpose is to formulate a semantic theory of information by endowing the formalism of 
Shannon’s theory (adequately adapted to deal with individual events) with semantic content, in 
order to explain sensory and cognitive processes in informational terms. Therefore, it is not clear at 
all that this purpose amounts to the attempt to reduce semantic concepts to physical ones: sensory 
and cognitive processes are not semantic items, and Shannon formalism is not, in principle, a 
physical theory. 
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information, algorithmic information, etc.), he will focus on the best known technical 

concept of information, the Shannon information, along with some closely related 

concepts from quantum information theory. So, let us begin by recalling the basic 

notions of Shannon’s theory. 

3.- Timpson on Shannon’s theory 

According to Shannon (1948; see also Shannon and Weaver 1949), a general 

communication system consists of five parts:  

− A source S, which generates the message to be received at the destination. 

− A transmitter T, which turns the message generated at the source into a signal to be 

transmitted. In the cases in which the information is codified, encoding is also 

implemented by this system. 

− A channel CH, that is, the medium used to transmit the signal from the transmitter to 

the receiver. 

− A receiver R, which reconstructs the message from the signal. 

− A destination D, which receives the message. 

The source S is a system with a range of possible states 1,..., ns s  usually called 

letters, whose respective probabilities of occurrence are 1( ),..., ( )np s p s . S produces 

sequences of states, usually called messages. The entropy of the source S is defined as 

1

( ) ( ) log(1 ( ))
n

i i
i

H S p s p s
=

=∑        (1) 

Analogously, the destination D is a system with a range of possible states 1,..., md d , 

with respective probabilities 1( ),..., ( )mp d p d . The entropy of the destination D is 

defined as 

1

( ) ( ) log(1 ( ))
m

j j
j

H D p d p d
=

=∑        (2) 

When ‘log’ is the logarithm to the base 2, the resulting unit of measurement for ( )H S  

and ( )H D  is called ‘bit’, contraction of binary unit. If the natural logarithm is used, the 

unit of measurement is the nat, contraction of natural unit, and in the case of the 

logarithm to base 10, the unit is the Hartley. 

The channel CH is defined by the matrix ( )j ip d s   , where ( )j ip d s  is the 

conditional probability of the occurrence of the state jd  at the destination D given the 

occurrence of the state is  at the source S, and the elements in any row must add up to 1. 
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The relationship between ( )H S  and ( )H D  can be represented as follows: 

       ( ; )H S D : mutual information 

       E : equivocation 

       N : noise 

The mutual information ( ; )H S D  is the information generated at the source S and 

received at the destination D: 

( ; ) ( ) ( )H S D H S E H D N= − = −       (3) 

E is the information generated at S but not received at D, and N is the information 

received at D but not generated at S. Equivocation E and noise N are measures of the 

dependence between source and destination and, therefore, are functions not only of S 

and R, but also of the channel CH. Thus, they are computed as 

1 1

( ) ( ) log(1 ( ))
n m

i j i j i
i j

N p s p d s p d s
= =

=∑ ∑      (4) 

1 1

( ) ( ) log(1 ( ))
m n

j i j i j
j i

E p d p s d p s d
= =

=∑ ∑      (5) 

where ( ) ( ) ( ) ( )i j j i i jp s d p d s p s p d= . The channel capacity C is defined as: 

( )max ( ; )
ip sC H S D=         (6) 

where the maximum is taken over all the possible distributions ( )ip s  at the source. C is 

the largest amount of information that can be transmitted over the communication 

channel CH. 

One of the most relevant results in Shannon’s theory is the noiseless coding 

theorem (or First Shannon Theorem), according to which the value of the entropy 

( )H S  of the source is equal to the average number of symbols necessary to code a letter 

of the source using an ideal code: ( )H S  measures the optimal compression of the 

source messages. In fact, the messages of N letters produced by S fall into two classes: 

one of approximately ( )2NH S  typical messages, and the other of atypical messages. 

When N → ∞ , the probability of an atypical message becomes negligible; so, the 

source can be conceived as producing only ( )2NH S  possible messages. This suggests a 

natural strategy for coding: each typical message is coded by a binary sequence of 

length ( )NH S , in general shorter than the length N  of the original message. 

H(S) H(D) 

H(S;D) E N 



 6

In turn, the noisy coding theorem (or Second Shannon Theorem) proves that the 

information transmitted over a communication channel can be increased without 

increasing the probability of error as long as the communication rate is maintained 

below the channel capacity. In other words, the channel capacity is equal to the 

maximum rate at which the information can be sent over the channel and recovered at 

the destination with a vanishingly low probability of error. 

Up to this point, the entropies ( )H S  and ( )H D  were not yet associated with the 

word ‘information’; nevertheless, it is clear that they play the role of measures of 

information in Shannon’s theory. But, what is information? In many presentations of the 

theory, ( )H S  and ( )H D  are defined directly in terms of the probabilities of the states 

of the source and the destination and, therefore, they are conceived as measures of the 

information generated at the source and received at the destination, respectively. This is 

Shannon’s strategy, who was interested in the engineering problem of transmitting very 

long messages with low probability of error. However, from a conceptual viewpoint, it 

makes sense to ask for the information generated at the source by the occurrence of one 

of its states. Moreover, since eqs. (1) and (2) have the form of a weighted average, it 

also makes sense to define the individual magnitudes on which the average is computed. 

Therefore, the amount of information ( )iI s  generated at the source by the occurrence of 

is  and the amount of information ( )jI d  received at the destination by the occurrence of 

jd  can be expressed as 

( ) log(1 ( ))i iI s p s=         (7) 

( ) log(1 ( ))j jI d p d=         (8) 

When defined by eqs. (1) and (2), ( )H S  and ( )H D  cannot be conceived as average 

amounts of information to the extent that individual amounts of information were not 

previously defined. But once ( )iI s  and ( )jI d  are introduced, the entropies ( )H S  and 

( )H D  turn out to be average amounts of information per letter generated by the source 

and received by the destination, respectively, and can be defined as (see, e.g., Abramson 

1963, p. 12; Lombardi 2005, pp. 24-25; Bub 2007, p. 558) 

1

( ) ( ) ( )
n

i i
i

H S p s I s
=

=∑         (9) 

1

( ) ( ) ( )
n

j j
i

H D p d I d
=

=∑        (10) 
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The distinction between conceiving the entropies of the source and the destination 

as amounts of information or as average amounts of information might seem an 

irrelevant detail. However, this is not the case when we are interested in elucidating the 

very notion of information −in Shannon’s sense−. In fact, Timpson takes the first 

strategy and does not define the amount of information generated by a single letter of 

the source: “It is crucial to realise that ‘information’ in Shannon’s theory is not 

associated with individual messages, but rather characterises the source of the 

messages.” (Timpson 2004, p. 11). In the few cases in which he speaks about the 

information that we would gain if the state is  were to occur (Timpson 2003, pp. 13-14), 

it is conceived as a “surprise information” associated with is , which only makes sense 

when is  is the outcome of a single experiment considered as a member of a long 

sequence of experiments −where, apparently, the probabilities are conceived as 

frequencies−. 

Assuming the conceptual priority of ( )H S  over individual amounts of 

information allows Timpson to define the concept of information in terms of the 

noiseless coding theorem: “the coding theorems that introduced the classical (Shannon, 

1948) and quantum (Schumacher, 1995) concepts of informationt [the technical concept 

of information] do not merely define measures of these quantities. They also introduce 

the concept of what it is that is transmitted, what it is that is measured.” (Timpson 2008, 

p. 23; emphasis in the original).3 In other words, Shannon information measures “the 

minimal amount of channel resources required to encode the output of the source in 

such a way that any message produced may be accurately reproduced at the destination. 

That is, to ask how much informationt a source produces is ask to what degree is the 

output of the source compressible?” (Timpson 2008, p. 27; emphasis in the original). In 

the same vein, Timpson relates mutual information with the noisy coding theorem: “The 

most important interpretation of the mutual information does derive from the noisy 

coding theorem.” (2004, p. 19). 

The first thing to notice here is that the strategy of defining information via the 

noiseless coding theorem turns the theorem into a definition. In fact, now the entropy 

( )H S  of the source is not defined by eq. (1) as the average amount of information per 

letter generated by the source, but it is defined as the average number of bits necessary 

                                                 
3 Although in Section 1.2 of his thesis Timpson considers two other interpretations of Shannon 

information, from the whole text it turns out to be clear that the one based on the noiseless theorem 
is considered as the most relevant, and that the others are subsidiary to that one. 
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to code a letter of the source using an ideal code, and eq. (1) becomes a theorem 

resulting from a mathematical proof. Of course, there is no formal mistake in this 

strategy, but it causes a kind of uneasiness when considered from a conceptual 

viewpoint. 

In fact, if the noiseless coding theorem says what it is that is transmitted, now we 

know what ( )H S  is. But what about ( )H D ? If information is defined through the 

noiseless coding theorem, either ( )H D  does not represent information, or it is defined 

by eq. (2), breaking down the symmetry between eqs. (1) and (2) as the basic definitions 

of the theory. Moreover, if information is defined in terms of an ideal codification, what 

happens in the case of non-ideal codifications? Can we still say that a same amount of 

information can be better or worse codified?  

As said above, the coding theorem is demonstrated in the case of very long 

messages, strictly speaking, for messages of length N → ∞ . Thus, it says nothing about 

the relation between the information ( )iI s  generated at the source by the occurrence of 

the state is  and the length of the binary sequence used to codify it. Therefore, if the 

noiseless coding theorem embodies the very nature of information, ( )iI s  is deprived of 

its meaning as an individual amount of information. Not only that, but one wonders 

whether short binary messages can be conceived as embodying information to the 

extent that they are not covered by the noiseless coding theorem. 

The fact that the entropy ( )H S  can be expressed in different units of 

measurement (bits, nats, Hartleys, etc.), and that the messages of the source can be 

coded using different sets of symbols (Q-ary alphabets), also points to the conceptual 

difference between the amount of information associated with the occurrence of a state 

of the source and the number of binary symbols necessary to codify that event. In fact, 

one could measure the entropy ( )H S  of the source in Hartleys but codify the messages 

with a coding alphabet of two symbols, or measure ( )H S  in bits but codify the 

messages with a coding alphabet of ten symbols. In these cases, the result of the 

noiseless coding theorem has to be adapted by introducing the necessary change of 

measurement units. Of course, this might not be convenient from a practical viewpoint, 

but has nothing to do with the meaning of the concept of information. This situation is 

analogous to measuring a length in meters and decimeters, but then expressing it in a 

hexadecimal numerical system: this fact does not affect the meaning of the very concept 

of length. 
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When explaining the elements of the general communication system, Shannon 

(1948, p. 381) characterizes the transmitter as a system that operates on the message 

coming from the source in some way to produce a signal suitable for transmission over 

the channel. In many cases, such as in telegraphy, the transmitter is also responsible for 

encoding the source messages. However, in certain cases the message is not codified. 

For instance, in traditional telephony the transmitter operates as a mere transducer, by 

changing sound pressure into a proportional electrical current. If one insists on defining 

information in terms of the noiseless coding theorem, how should one talk about 

information in those situations where no coding is involved?  

None of these observations is an insurmountable criticism against defining 

information via the noiseless coding theorem. However, this definitional move conflates 

two aspects of communication that the traditional textbooks warned us not to 

conceptually confuse: the information generated at the source, which depends on its 

states and the probability distribution over them and is independent of coding −even of 

the very fact that the messages are coded or not−, and the number of symbols necessary 

to codify the occurrence of those states, which also depends on the alphabet used for 

codification. For Timpson, the conflation of these two aspects is not a serious problem 

to the extent that, as we will see in the next section, his deflationary position renders the 

concept of information void of any content other than referring to the entire protocol 

involved in communication.  

4.- The deflationary interpretation of information 

Timpson (2004, p.2) introduces a quote by Peter Strawson as the epigraph of the first 

part of his now famous PhD thesis: “To suppose that, whenever we use a singular 

substantive, we are, or ought to be, using it to refer to something, is an ancient, but no 

longer a respectable, error.” (Strawson 1950, p. 448). And, immediately at the 

beginning of that section, he recalls a quote by John L. Austin: “For ‘truth’ itself is an 

abstract noun, a camel, that is of a logical construction, which cannot get past the eye 

even of a grammarian. We approach it cap and categories in hand: we ask ourselves 

whether Truth is a substance (the Truth, the Body of Knowledge), or a quality 

(something like the colour red, inhering in truths), or a relation (‘correspondence’). But 

philosophers should take something more nearly their own size to strain at. What needs 

discussing rather is the use, or certain uses, of the word ‘true’.” (Austin 1950, p. 25). 

By relying on the analogy between ‘truth’ and ‘information’, Timpson takes these 
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quotes to support his claim that ‘information’ is an abstract noun: “Austin’s aim was to 

de-mystify the concept of truth, and make it amenable to discussion, by pointing to the 

fact that ‘truth’ is an abstract noun. So too is ‘information’.” (Timpson 2004, p. 3). So, 

much of the plausibility of that claim depends on the reliability of the analogy. 

Strawson’s and Austin’s quotes are taken from a well-known debate between the 

authors about the concept of truth. Whereas Austin intended to vindicate the 

correspondence theory of truth by reconstructing it in terms of certain demonstrative 

and descriptive conventions, Strawson took a deflationary stance according to which the 

predicate ‘is true’ has a performative rather than a descriptive function. In turn, the 

whole debate is framed in a semantic context in which truth is a prototypical semantic 

notion and the predicate ‘is true’ belongs to the metalanguage. Nothing of this sort 

happens in the case of the notion of information: in principle it is not one of the 

semantic concepts that have been traditionally analyzed by the philosophy of language, 

and it does not belong to a metalanguage that speaks about another language −object 

language−. On the other hand, the discussions about abstract nouns in general focus on 

the relation between the abstract-concrete dichotomy and the universal-particular 

dichotomy, on abstraction as the operation of removing particular features, on the 

different kinds of abstract nouns −those referring to mathematical entities, those derived 

from nominalization of adjectives or verbs, those naming fictional characters or musical 

or literary compositions, etc.−, among other issues; however, the semantic notion of 

truth does not appear in those discussions since it involves peculiar difficulties that are 

completely alien to the abstract-concrete question. Therefore, the appeal to the analogy 

with truth to argue for the abstract character of the word ‘information’ sounds as a 

forced analogy in the context of the philosophy of language. 

Timpson recalls that very often abstract nouns arise as nominalizations of various 

adjectival or verbal forms. On this basis, he extends the analogy between truth and 

information: “Austin leads us from the substantive ‘truth’ to the adjective ‘true’. 

Similarly, ‘information’ is to be explained in terms of the verb ‘inform’” (Timpson 2004, 

p. 3). But, what does ‘to inform’ mean? “To inform someone is to bring them to know 

something (that they did not already know).” (ibid. p. 3). In other words, the meaning of 

‘information’ is given by the operation of bringing knowledge. However, as pointed out 

above, later in the text we are said that only the everyday concept of information has 

meaningful links with knowledge; thus, the analogy with truth and the transition from 

the verb ‘inform’ to the noun ‘information’ only applies to the everyday concept: 
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“ ‘Information’ in the technical sense is evidently not derived from a nominalization of 

this verb.” ( ibid. p. 20). Therefore, the reason why ‘information’, in its technical sense, 

is an abstract noun is not given yet, and must be based on a further argument. In fact, 

immediately below, Timpson gives not one, but two arguments. 

The first argument relies on defining Shannon information as a measure of the 

compressibility of messages (on the basis of the First Shannon Theorem) and mutual 

information as a measure of the capacity of the channel (on the basis of the Second 

Shannon Theorem) (Timpson 2004, p. 21). Of course, these definitions favor the claim 

that information in its technical sense is an abstract item. However, as argued in the 

previous section, the entropy of the source can be defined as the average amount of 

information produced at the source without reference to coding (see eqs. (1) or (9)), and 

the strategy of defining information via the noiseless coding theorem can be objected 

for different reasons. Analogously, mutual information can be defined as the 

information generated at the source and received by the destination without reference to 

the capacity of the channel (see eqs. (3), (4) and (5)), which, in turn, can be defined in 

terms of the mutual information as usual (see eq. (6)). These definitions of the concepts 

of Shannon entropy and mutual information, are different from those proposed by 

Timpson: taking eq. (1) and eq. (3) as the definitions of Shannon entropy and mutual 

information respectively, as usual, is compatible with interpretations of the technical 

concept of information which are different from the “abstract-noun” reading, in 

particular, with a physical interpretation of information (we will come back to this issue 

in Section 6). The point to emphasize here is that, in this first argument offered by 

Timpson, the conclusion about the abstract nature of information −in its technical 

sense− is a direct consequence of the previous decision about the way in which the 

relevant magnitudes are defined. In other words, this argument retrieves from the 

definition what was injected in it from the very beginning. 

The second and best known argument relies on the philosophical distinction 

between types and tokens. Let us consider that the source produces the sequence of 

states 8 5 1 2 2 4 7 7 2 9 3 1, , , , , ,..., , , ,..., , ,s s s s s s s s s s s s. According to Timpson, what we want to 

transmit is not the sequence of states itself, but another token of the same type: “one 

should distinguish between the concrete systems that the source outputs and the type 

that this output instantiates.” (Timpson 2004, p. 22; see also Timpson 2008). The goal 

of communication, then, is to reproduce at the destination another token of the same 

type: “What will be required at the end of the communication protocol is either that 
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another token of this type actually be reproduced at a distant point” (Timpson 2008, p. 

25). Once this claim is accepted, the argument runs easily: since the information 

produced by the source, that we desire to transmit, is the sequence type, not the token, 

and types are abstract, then information is abstract and ‘information’ is an abstract noun 

(see Timpson 2004, pp. 21-22; see also 2008).  

Of course, this argumentative strategy allows Timpson to dissolve many problems 

involved in the transmission of information, in particular those related with 

communication based on entanglement. For instance, in teleportation it is said that the 

very large −potentially infinite− amount of information required to specify the 

teletransported state is transferred from the source to the destination by sending only 

two classical bits and without a physical channel between them. This has lead many 

physicists to search for the physical link that can play the role of the carrier of 

information: for some, the information travels backwards in time to the event at which 

the entangled pair was produced and then travels forwards to the future (Penrose 1998; 

Jozsa 1998, 2004); for others, the information travels hidden in the classical bits 

(Deutsch and Hayden 2000). With his abstract-noun interpretation of information, 

Timpson cuts the Gordian knot of teletransportation: “Once it is recognized that 

‘information’ is an abstract noun, then it is clear that there is no further question to be 

answered regarding how information is transmitted in teleportation that goes beyond 

providing a description of the physical processes involved in achieving the aim of the 

protocol.” (Timpson 2006, p. 599). 

Although very convincing at first sight, the argument deserves to be examined in 

detail. If information is abstract because it is the type transmitted, and information can 

be measured, what is the measure of a type? In turn, is it true that the goal of 

communication (in the context of Shannon’s theory) is to reproduce at the destination a 

token of the same type produced at the source? As Shannon stresses, in communication, 

“[t] he significant aspect is that the actual message is one selected from a set of possible 

messages.” (1948, p. 379; emphasis in the original). The states jd  of the destination 

system D can be any kind of states, completely different than the states is  of the source 

system S: the goal of communication is to identify at the destination which sequence of 

states is  was produced by the source. Timpson explains that “ if the source X produces a 

string of letters like the following: 2 1 3 1 4 2 1 7 1 4, , , , ,..., , , , ,x x x x x x x x x x, say, then the type is 

the sequence ‘2 1 3 1 4 2 1 7 1 4, , , , ,..., , , , ,x x x x x x x x x x’; we might name this ‘sequence 17’. The 

aim is to produce at the receiving end of the communication channel another token of 
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this type. What has been transmitted, though, the information transmitted on this run of 

the protocol, is sequence 17.” (2004, pp. 21-22). But this is not the case: what has been 

transmitted is not sequence 17, but that sequence 17 is the actual message selected from 

the set of the possible messages of the source. Indeed, the fact that sequence 17 was 

produced in the source can be identified by means of the occurrence in D of a sequence 

7 4 3 4 5 7 4 7 4 5, , , , ,..., , , , ,d d d d d d d d d d, which can hardly be regarded as a token of the type 

‘ 2 1 3 1 4 2 1 7 1 4, , , , ,..., , , , ,x x x x x x x x x x’. Therefore, in principle the sequences of the source 

and of the destination do not need to be tokens of the same type in any sense that does 

not empty the very philosophical distinction type-token of any content. 

Somebody who seems to suspect that there is something odd in Timpson’s 

argument is Armond Duwell. After publishing an article to argue that quantum 

information is not different from classical information (Duwell 2003), Duwell changes 

his mind under the influence of Timpson’s works. So, in a later article he also takes into 

account the distinction between types and tokens, which, roughly speaking, “is the 

distinction between kinds of things and their concrete instances, respectively.” (Duwell 

2008, p. 199). Nevertheless, he acknowledges that: “To describe the success criterion of 

Shannon’s theory as being the reproduction of the tokens produced at the information 

source at the destination is unacceptable because it lacks the precision required of a 

success criterion.” (ibid., p. 199). The reasons are several. First, any token is a token of 

many different types simultaneously; so the type-token argument leaves undetermined 

the supposedly transmitted type (ibid. p. 199). Moreover, in Shannon’s theory the 

success criterion is given by a one-one mapping from the set of letters that characterize 

the source to the set of letters that characterize the destination, and this mapping is 

completely arbitrary (ibid. p. 200). Later Duwell notes that the Shannon entropy 

associated with a source can change due to the change of the probability distribution 

describing the source, without the change of the types that the source produces tokens of 

(ibid. p. 202). Moreover, the types a source produces tokens of can change without the 

Shannon entropy of the source changing (ibid. 203). 

We might suppose that all these correct observations are sufficient to lead Duwell 

to conclude that the technical concept of information cannot be characterized in terms of 

the type-token distinction. However, this is not the conclusion drawn by him. On the 

contrary, he develops a number of distinctions and arguments to retain Timpson’s 

characterization of information. In particular, Duwell distinguishes the success of 

communication from the goal of communication, which “is to produce, at the 
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destination, a token of the type produced by the information source. For example, if the 

information source produces a sequence of letters, the destination ought to produce the 

same sequence of letters.” (Duwell 2008, p. 199). In this way, he retains Timpson’s 

proposal at the cost of introducing a notion, the goal of communication, which is absent 

in Shannon’s original theory. 

Moreover, Duwell considers that the one-to-one mapping that determines the 

success criterion in Shannon’s theory “establishes an identity between the symbols that 

characterize the source and destination […]. In other words, this function establishes 

the appropriate conditions for token instantiation of the type that the information source 

produced tokens of.” (Duwell 2008, p. 200). But, as stressed above, the mapping is 

completely arbitrary, and the states of the source and the states of the destination may be 

of a completely different nature: for instance, the source may be a dice and the 

destination a dash of lights; or the source may be a device that produces words in 

English and the destination a device that operates a machine. It is difficult to say in what 

sense a face of a dice and a light in a dash are tokens of a same type: which is the type 

in this case? The fact that any token is a token of different types does not mean that any 

two things arbitrarily chosen can always be conceived as tokens of the same type. As 

stressed above, admitting arbitrary functions as defining the relation “x is a token of the 

same type as the token y” deprives the distinction type-token of any philosophical 

content and conceptual usefulness (see Wetzel 2011). 

In his argumentative effort to retain the relevance of the type-token relationship to 

the elucidation of the nature of information −in its technical sense−, Duwell recalls the 

distinction, introduced by Timpson (2004, pp. 20-21), between Shannon quantity-

information, which “is that which is quantified by the Shannon entropy” (Duwell 2008, 

p. 201), and Shannon type-information, which “is what is produced at the information 

source that is required to be reproduced at the destination.” (ibid., p. 201). However, 

far from elucidating the technical concept of information, this distinction makes clear 

that the information usually measured in bits, and which engineers are really interested 

in, is the quantity-information, which is not a type and has nothing to do with types and 

tokens. In other words, the information in its technical sense, referred to by Shannon’s 

theory, is the quantity-information. The notion of type-information introduced by 

Timpson does not correspond to the technical concept of information because, 

according to Shannon’s theory, successful communication does not require that the 

states of source and destination are tokens of the same type.  
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The philosophical distinction between types and tokens, although not confined to 

logic and philosophy of language, finds its paradigmatic example in the difference 

between a proposition and its concrete sentence utterances: “one will distinguish in the 

standard way between the sentence tokens inscribed and what is said by the sentences: 

the propositions expressed.” (Timpson 2004, p. 22). This is a difference we have 

learned when studying logico-semantic topics, in order to avoid the confusion between 

the concrete instance of a sentence and its semantic content expressed by the 

proposition. Of course, when Timpson introduces the idea of type-information, he is not 

endowing types with meaning. However, a type needs to have some content to be able 

to identify its tokens: the distinction between types and tokens is not merely formal or 

syntactic. On the contrary, Shannon information is neutral with respect to any content, 

since the only relevant issue is the selection of a message among many. It seems that, 

although Timpson explicitly keeps distance from endowing information with any 

semantic content, certain semantic notions creeps up into his argumentation, in such a 

way that his concept of information turns out to acquire a sort of content completely 

alien to Shannon’s original proposal. 

Summing up, the arguments developed by Timpson in favor of the abstract nature 

of information are not conclusive. Nevertheless, the task of analyzing them has led us to 

notice that information in Shannon’s theory is even more abstract than types. But, in 

Timpson’s general argumentation, the abstract nature of information is the cornerstone 

of his claim that information is not physical. Therefore, it seems that, from a different 

argumentative line, we should arrive at the same conclusion. However, this is not the 

case, as we will see in the next section. 

5.- Why is information not physical? 

According to Timpson, in the transmission of information what is transmitted is a type 

sequence, and “types are abstracta. They are not themselves part of the contents of the 

material world, nor do they have a spatio-temporal location.” (Timpson 2008, p. 27; 

emphasis in the original). Since ‘information’ is an abstract noun, “it doesn’t serve to 

refer to a material thing or substance.” (Timpson 2004, p. 20). Therefore, “one should 

not understand the transmission of information on the model of transporting potatoes, 

or butter, say, or piping water.” (2008, p. 31). 
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The claim that information is not a substance or a kind of stuff is repeated many 

times in Timpson’s works (see, e.g., 2004, p. 34, 2008, p. 28). Even accepting that 

information is not a substance, one can still ask about its existence: Does information 

exist? Timpson does not offer a single answer to this question. Sometimes, he claims 

that his position does not imply nominalism: although information is an abstractum, 

there is no need to conclude thereby that it does not exist, since many abstracta are very 

often usefully said to exist. From a non-nominalist position, “a sufficient condition for 

type existence will be that there be facts about whether particular concrete objects 

would or would not be tokens of that type.” (2008, p. 28). Nevertheless, the quote from 

Strawson that opens his PhD thesis seems to suggest something different, when pointing 

out that to assume that any noun refers to something is “an ancient, but no longer a 

respectable, error” (2004, p. 2). One could suppose that the idea that ‘information’ is a 

non-referring term, although present in his first works, disappears in his more recent 

publications. However, this is not the case. In his paper about teleportation we can read 

that “there is not a question of information being a substance or entity that is 

transported, nor of ‘the information’ being a referring term.” (2006, p. 599), and the 

quote from Strawson is still there in his very recent book (2013, p. 10). This means that 

it is not only that information is not a material thing or a substance, but that there is 

nothing that counts as the reference of the term ‘information’. 

In any case, the final aim of Timpson’s argumentation about the abstract nature of 

information consists in denying the physical interpretation of information. For him, the 

dictum ‘Information is physical’, applied to the technical concept of information, if not 

trivial −meaning that some physically defined quantity is physical−, is false precisely 

because ‘information’ is an abstract noun. And this leads to all the consequences 

pointed out above: information is not a stuff or a substance, it is not located in space and 

time, it is not material. The question is: are these features sufficient to say that 

information is not physical? 

There is, certainly, a previous question: what does it mean to be a physical item? 

In Timpson’s arguments, the physical world seems to be given once and for all, 

independently of science. The style of his argumentation is typical of the traditional 

analytical philosophy of language: the physical world is what ordinary language talks 

about and, consequently, we discover the world’s structure by analyzing the grammar of 

that language. For this reason, the grammatical fact that a noun is abstract expresses the 

non-existence of its referent in the physical world. It is true that Timpson distinguishes 
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between the everyday notion and the technical notion of information. Nevertheless, in 

both cases the strategy is the same: to analyze the grammatical role played by the word 

‘information’ in the non-formal language, and to draw ontological conclusions from that 

analysis. However, it is hard to suppose that physicists appeal to that strategy to decide 

what is a physical item when they say, as Rolf Landauer (1991, 1996), that information 

is physical. If one does not want to turn the structure of non-formal languages into the 

clue witness about what exists and does not exist in the physical world, a more 

reasonable strategy seems to be to admit that the physical world is the world that 

physics talks about. Therefore, in order to decide whether or not a certain item belongs 

to the physical world, it is necessary to see what role it plays in physical science. 

From this perspective, the first thing to notice is that it is not necessary to be a 

substance, or a concrete thing, or a material entity, to be physical. The realm of physics 

is populated by countless properties, usually referred to as ‘observables’, which are not 

substances nor concrete or material things. In fact, physical properties as position, 

velocity, charge, mass, etc. are abstracta, and many of them cannot be conceived as 

existing in space and time in any meaningful sense: what is the space-time location of 

position? Nonetheless, they inhabit the world described by physics, they are 

undoubtedly physical items. Pace Timpson, only from an extreme nominalist 

perspective can the existence of physical properties be called into question. It could be 

argued that, whereas position and electric charge are properties, information is not a 

property. But the decision about conceiving a noun belonging to particular physical 

theory as naming an individual entity, a stuff or a property is not fixed by grammar, but 

depends on the interpretation of the particular theory considered. In any case, it is not 

necessary to be a substance or a material determinate thing to be a physical item. 

From a philosophical perspective, it is well known that physics, far from being a 

static body of knowledge, changes substantially through history. In this process, 

concepts undergo deep mutations that modify the worldview described by physics. Let 

us consider, for instance, the concept of a wave, which begins by referring to a property 

of a physical medium: a wave is nothing else than an abstract description of how a 

material medium changes its properties in space and/or in time. In this sense, the 

concept of a wave does not belong to the category of substance, but to the category of 

property: there are no waves without a material medium that carries them. However, 

with the development of physics waves become something that do not need an 

underlying material substratum to exist. Although at present the ontological status of a 
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field is still under debate, it is agreed that a field is something that exists by itself, with 

no need of a material medium, and that has its own properties and its specific physical 

description (for a historical account of this transformation, see Berkson 1974). 

The example of waves shows that physics, in its evolution, tends to perform a 

substantialization of certain concepts4: from originally being conceived as properties, 

certain magnitudes turn into substances, but not in the sense of becoming kinds of stuff, 

referents of mass nouns −the sense used by Timpson−, but in the Aristotelian sense 

(“primary substance” in Categories) of being objects of predication but not predicable 

of anything else, and being bearers of properties (see Robinson 2014). One might 

wonder whether the −technical− concept of information is undergoing a mutation 

analogous to that experienced by the concept of waves, and is beginning to be 

conceived as a physical magnitude that exists by itself, without the need of a material 

carrier supporting it. 

A concept that immediately comes to one’s mind when thinking about a physical 

interpretation of information is that of energy, since energy also seems to be something 

“abstract” and non-material, at least when compared to, say, a molecule. Timpson 

considers the analogy between information and energy, but assumes that, by contrast to 

‘information’, ‘energy’ is a property name. In the context of this analogy, he asks 

whether information is “adventitious”, that is, added from without, from the perspective 

of the pragmatic interest of an agent: “Is it a fundamental one? […] Or is it an 

adventitious one: of the nature of an addition from without; an addition from the 

parochial perspective of an agent wishing to treat some system information-

theoretically, for whatever reason?” (Timpson 2008, pp. 46-47; emphasis in the 

original). Also with respect to this aspect the comparison with energy is relevant. In fact, 

in the context of strict Newtonian mechanics, the concept of energy is subsidiary to the 

dynamical description of a system; in Timpson’s terms, it is an adventitious concept 

designed to measure the capacity of a system to perform a certain task −work−. 

However, in the framework of physics as a whole, it acquired its own, not merely 

adventitious, reference, and became one of the fundamental physical concepts. The 

words of William Thomson in the nineteenth century already express clearly this 

transformation: “The very name energy, though first used in its present sense by Dr. 

Thomas Young about the beginning of this century, has only come into use practically 

                                                 
4 This is not the only movement in the evolution of physics; in certain cases, properties applied to a 

single object become relations. 



 19

after the doctrine which defines it had […] been raised from a mere formula of 

mathematical dynamics to the position it now holds of a principle pervading all nature 

and guiding the investigator in every field of science” (Thomson 1881, p. 475). At 

present, the word ‘energy’ does not refer to something concrete: if a perturbation in a 

physical medium is transmitted between two points of space, nothing material is 

transmitted; nevertheless, there is transference of energy between those points. And 

although sometimes it is still used as a property name, in general energy has acquired a 

substantial nature −in the Aristotelian sense− that plays a central unifying role in 

physics: energy is a magnitude essentially referred to by absolutely all present-day 

physical theories; it is conceived as something that can be generated, accumulated, 

stored, processed, converted from one form to another, and transmitted from one place 

to another. 

In his insistence on depriving information of physical nature, Timpson says that 

“Quantum information theory and quantum computation are theories about what we 

can do using physical systems” (Timpson 2004, p. 33; emphasis in the original). 

Following with the analogy with energy, one can say that the concept of energy also 

began as a tool to describe what we can do with physical systems. However, its status 

gradually changed with the historical development of physics: now energy is an 

undoubtedly physical item which, although non-material, plays an essential role in 

physical sciences. In the light of the strong presence of the concept of information in 

present-day physics, it is not difficult to suppose that it is following a historical 

trajectory analogous to that followed by the concept of energy in the nineteenth century. 

Summing up, it is quite clear that the world described by contemporary physics is 

not a world of material individuals and stuffs. This traditional ontology was superseded 

by the world of quantum field theory, where particles lose any classical feature and 

fields become substantial items (see, e.g., Kuhlmann 2010), and by the general 

relativistic universe, where energy acquires a sort of “materiality” and space-time is no 

longer a neutral container of material things (see, e.g., Earman 1989). Once one admits 

that it is physics and not grammar that decides if an item is physical or not, it is clear 

that it does not matter what kinds of words are used to refer to properties, such as 

charge and mass, and to name items that acquired substantiality through the history of 

science, such as fields and energy. What only matters is that all those items inhabit the 

world of physics, that is, according to physics they are part of the furniture of the world. 
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And this implies that contemporary physics offers no grounds to deny the possibility of 

a meaningful physical interpretation of the concept of information. 

6.- The many faces of information 

Timpson considers that there is a single correct interpretation of the technical concept of 

information (or, at least, of Shannon’s concept) and, for this reason, he devotes a great 

effort to elucidate it. This “monist” view contrasts with the “pluralist” perspective 

adopted by Shannon when claiming that “[t]he word ‘information’ has been given 

different meanings by various writers in the general field of information theory. [...] It is 

hardly to be expected that a single concept of information would satisfactorily account 

for the numerous possible applications of this general field.” (Shannon 1993, 180). If 

this pluralistic stance was worthy of consideration in Shannon’s times, at present it is 

even more plausible given the fact that the concept of information has permeated almost 

all the domains of science. From this perspective, it is philosophically interesting to 

realize that there are different interpretations of the concept of information, each useful 

in a different specific context. 

Once the focus is on non-semantic information, the first step consists in 

specifying the formal context that frames the discussion about the meaning of the 

concept of information. In fact, although Shannon’s theory is the traditional formalism 

to quantify information, it is not the only one. For instance, Fisher information measures 

the dependence of a random variable X on an unknown parameter θ upon which the 

probability of X depends (Fisher 1925), and algorithmic information measures the 

length of the shortest program that produces a string on a universal Turing machine 

(Chaitin 1987). In quantum information theory, von Neumann entropy gives a measure 

of the quantum resources necessary to faithfully encode the state of the source-system 

(Schumacher 1995). 

It might be supposed that, when confined to a particular formal framework, the 

meaning of the word ‘information’ becomes clear and unequivocal: given the 

mathematical theory, information is what this theory describes. However, this is not the 

case. Even on the basis of the same formalism, there may be different interpretations of 

the concept of information. Although disagreements may arise regarding any formalism, 

let us consider Shannon’s theory. 
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A concept usually connected with the notion of information is that of knowledge: 

information provides knowledge, modifies the state of knowledge of those who receive 

it. As pointed out above, Timpson believes that the link between information and 

knowledge is a feature of the everyday notion of information, which must be carefully 

distinguished from Shannon’s technical concept. However, the idea of knowledge is 

present also in the philosophical and the physical discourse about information. In fact, it 

is common to find authors who even define information in terms of knowledge. For 

instance, taking Shannon’s theory as the underlying formalism for his proposal, Fred 

Dretske says: “information is a commodity that, given the right recipient, is capable of 

yielding knowledge.” (1981, p. 47). According to Donald MacKay, information is 

related to an increase in knowledge on the destination end: “Suppose we begin by asking 

ourselves what we mean by information. Roughly speaking, we say that we have gained 

information when we know something now that we didn't know before; when ‘what we 

know’ has changed.” (1969, p. 10). 

The strong presence of the notion of knowledge is not confined to the works of 

those who try to add semantic content to statistical information. Some authors devoted 

to special sciences are also persuaded that the core meaning of the concept of 

information, even in its technical sense, is linked to the concept of knowledge. In this 

trend, Jon M. Dunn defines information as “what is left of knowledge when one takes 

away believe, justification and truth” (2001, p. 423), and for Bertram Brookes, 

knowledge is “a structure of concepts linked by their relations”, with information 

defined as “a small part of that structure” (1981, p. 131). Also physicists frequently 

speak about what we know or may know when dealing with information. For instance, 

Anton Zeilinger even equates information and knowledge when he says that “[w]e have 

knowledge, i.e., information, of an object only through observation” (1999, p. 633) or, 

with Časlav Bruckner, “[f]or convenience we will use here not a measure of information 

or knowledge, but rather its opposite, a measure of uncertainty or entropy.” (2009, pp. 

681-682). In a traditional textbook about Shannon’s theory applied to engineering it can 

also be read that information “is measured as a difference between the state of 

knowledge of the recipient before and after the communication of information.” (Bell 

1957, p. 7), and that it must be relativized with respect to the background knowledge 

available before the transmission: “the datum point of information is then the whole 

body of knowledge possessed at the receiving end before the communication.” (ibid., p. 

7). In certain cases, the epistemic interpretation of information is what served as the 
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basis for philosophically motivated attempts to add a semantic dimension to a formal 

theory of information (MacKay 1969; Nauta 1972; Dretske 1981). 

It is worth noting that, from the epistemic perspective, the possibility of acquiring 

knowledge about the source of information by consulting the state of the destination is 

rooted in the nomic connection between them, that is, in the lawfulness of the 

regularities underlying the whole situation. In fact, the conditional probabilities that 

define the channel do not represent merely de facto correlations; they are determined by 

a network of lawful connections between the states of the source and the states of the 

destination. 

A different view about information is that which detaches the concept from the 

notion of knowledge and considers information as a physical magnitude. This is the 

position of many physicists (see, e.g., Rovelli 1996) and most engineers, for whom the 

essential feature of information consists in its capacity to be generated at one point of 

the physical space and transmitted to another point; it can also be accumulated, stored 

and converted from one form to another. In this case, the capability of providing 

knowledge is not a central issue, since the transmission of information can be used only 

for control purposes, such as operating a device at the destination end by modifying the 

state of the source. According to this view, it is precisely because of the physical nature 

of information that the dynamics of its flow is constrained by physical laws and facts: 

“ Information handling is limited by the laws of physics and the number of parts 

available in the universe” (Landauer 1991, p. 29; see also Bennett and Landauer 1985). 

In general, the physical interpretation of information appears strongly linked with 

the idea expressed by the well-known dictum ‘no information without representation’: 

the transmission of information between two points of the physical space necessarily 

requires an information-bearing signal, that is, a physical process propagating from one 

point to the other. Landauer is an explicit defender of this position when he claims that 

“[i] nformation is not a disembodied abstract entity; it is always tied to a physical 

representation. It is represented by engraving on a stone tablet, a spin, a charge, a hole 

in a punched card, a mark on a paper, or some other equivalent.” (1996, p. 188). This 

view is also adopted by some philosophers of science; for instance, Peter Kosso states 

that “information is transferred between states through interaction.” (1989, p. 37). The 

need of a carrier signal sounds natural in the light of the generic idea that physical 

influences can only be transferred through interactions. On this basis, information is 

conceived by many physicists as a physical entity with the same ontological status as 
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energy; it has also been claimed that its essential property is the power to manifest itself 

as structure when added to matter (Stonier 1990, 1996). 

The difference between the epistemic and the physical interpretations of 

information is not merely nominal, but may yield different conclusions regarding 

certain common physical situations. For instance, in the important philosophical 

tradition that explains scientific observation in terms of information (Shapere 1982, 

Brown 1987, Kosso 1989), the way in which information is conceived leads to very 

different consequences regarding observation. This turns out to be particularly clear in 

the so-called ‘negative experiments’ (see Jammer 1974), in which it is assumed that an 

object or event has been observed by noting the absence of some other object or event. 

From the informational view of scientific observation, observation without a direct 

physical interaction between the observed object and an appropriate destination is only 

admissible from an epistemic interpretation of information. According to a physical 

interpretation, by contrast, detection at the destination end does not amount to the 

observation of the object: the presence of the object is only inferred (see Lombardi 

2004). It is interesting to wonder whether taking into account the distinction between 

the epistemic and the physical interpretations of information could contribute to unravel 

the puzzles involved in the informational interpretation of quantum entanglement, in 

particular, of teleportation (see Timpson 2006). 

This presentation of the difference between the epistemic and the physical 

interpretations of Shannon information may suggest that the two interpretations are rival 

and, as a consequence, it is necessary to decide for one of them. Nevertheless, as it will 

be argued in the next section, this is not necessarily the case. 

7.- Information: formalism and interpretations 

Although the physical interpretation of information prevailed in the traditional 

textbooks used for engineers’ training, this situation has changed in recent times: in 

general, present-day textbooks introduce information theory from a formal perspective, 

with no mention of transmitters, receivers or signals, and the basic concepts are 

explained in terms of random variables and probability distributions over their possible 

values. Only when the formalism has been presented, is the theory applied to the 

traditional case of communication. A clear example of this trend is the extensively used 

book by Thomas Cover and Joy Thomas, where the authors emphasize that: 
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“ Information theory answers two fundamental questions in communication theory […]. 

For this reason some consider information theory to be a subset of communication 

theory. We will argue that it is much more. Indeed, it has fundamental contributions to 

make in statistical physics […] , computer sciences […] , statistical inference […] and to 

probability and statistics.” (1991, p. 1). 

The idea that the concept of information is completely formal is not new. Already 

Aleksandr Khinchin (1957) and Fazlollah Reza (1961) conceived information theory as 

a new chapter of the theory of probability. From this perspective, Shannon information 

not only is not a physical magnitude, but also loses its nomic ingredient: the mutual 

information between two random variables can be defined even if there is no lawful 

relationship between them and the conditional probabilities connecting them express 

only de facto correlations. 

If the concept of information is purely formal and belongs to a mathematical 

theory, the word ‘information’ does not pertain to the language of empirical sciences 

−or to any referential language−: it has no extralinguistic reference in itself. Its 

“meaning” has only a syntactic dimension. According to this view, the generality of the 

concept of Shannon information derives from its exclusively formal nature; and this 

generality is what makes it a powerful formal tool for empirical science, applicable to a 

wide variety of fields. 

From this formal perspective, the relationship between the word ‘information’ and 

the different views about the nature of information is the logical relationship between a 

mathematical object and its interpretations, each one of which endows the term with a 

specific referential content. The epistemic view, then, is one of the many different 

interpretations, which may be applied in different technical domains, for example, in the 

attempts to ground a theory of knowledge on informational bases (Dretske 1981), or in 

psychology and cognitive sciences to conceptualize the human abilities of acquiring 

knowledge (see, e.g., Hoel, Albantakis and Tononi 2013). 

At the same time, the physical view, which turns information into a physical 

magnitude carried by signals, is appropriate for communication theory, in which the 

main problem consists in optimizing the transmission of information by means of 

physical bearers whose energy and bandwidth is constrained by technological and 

economic limitations. But this is not the only possible physical interpretation: if the 

source S is interpreted as a system in a macrostate compatible with many equiprobable 
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microstates, ( )I S  represents the Boltzmann entropy of S. Furthermore, in computer 

sciences, if S is interpreted as a binary string of finite length, ( )I S  can be related with 

the algorithmic complexity of S. Perhaps a kind of physical interpretation is also 

adequate in molecular biology, where the language of information became ubiquitous, 

starting from the work of James Watson and Francis Crick in the fifties (see, e.g., 

Maynard Smith 2000), and even in evolutionary biology, where it has been argued that 

abstract patterns in evolutionary processes can be described using informational 

concepts (Harms 2004). 

Summing up, from a perspective that conceives the concept of information −in the 

context of Shannon’s theory− as a formal concept, the epistemic and the physical 

interpretations are no longer rival, but they rather become two of the several possible 

interpretations of that formal concept. Of course, this pluralist strategy does not solve by 

itself the many problems involved in the widespread use of informational notions in 

most fields of science. However, the clear differentiation between the several 

interpretations of information is a first step towards overcoming those obstacles based 

in misunderstandings that prevent conceptual agreements. 

8.- Conclusions 

The concept of information is one of the most elusive in the context of present-day 

philosophy of science, not only due to its abstract character, but also because it appears 

in multiple and varied scientific disciplines. It is for this reason that the philosophical 

analysis of its meaning and scope is nowadays an urgent task. In this sense, the works of 

Timpson constitute an outstanding contribution to the field, since they have brought to 

the fore many aspects of the concept of information: the domain of application of 

Shannon’s theory (Timpson 2003), the relation between information transmission and 

quantum entanglement (Timpson 2005), the interpretation of teleportation (Timpson 

2006), the nature of quantum information and its relation with the interpretations of 

quantum mechanics (Timpson 2008, 2013), among others. Nevertheless, the 

acknowledgement of the high value of his work does not amount to uncritical agreement. 

In this article we have focused, in particular, on Timpson’s elucidation of the 

concept of information, according to which ‘information’ is an abstract noun and, as a 

consequence, information is not part of the physical contents of the world. Here we 

proposed a strategy in a certain sense opposed to that of Timpson: instead of attempting 
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to cut the Gordian knot of the meaning of ‘information’ by means of a notion almost 

empty of referential content, we embrace a pluralist stance, which recognizes the 

legitimacy of different interpretations of the concept of information, not mutually 

exclusive and each useful in a specific context. 
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