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Abstract

In this paper I raise an objection to ante rem structuralism, proposed
by Stewart Shapiro: I show that it is in conflict with mathematical prac-
tice. Shapiro introduced so-called “finite cardinal structures” to illustrate
features of ante rem structuralism. I establish that these structures have
a well-known counterpart in mathematics, but this counterpart is incom-
patible with ante rem structuralism. Furthermore, there is a good reason
why, according to mathematical practice, these structures do not behave
as conceived by ante rem structuralism.

1 Introduction
When it comes to the nature of mathematical objects, many philosophers and
mathematicians embrace a form of structuralism. Philosophers of mathematics
have tried to formulate a metaphysics of mathematics in structuralist terms for
quite some time. One kind of structuralism is particularly popular: Stewart
Shapiro’s ante rem structuralism, first proposed in Shapiro (1997).

In this paper, I critically assess ante rem structuralism. After a short intro-
duction to ante rem structuralism, I raise my principal objection to this position
by showing that it is in conflict with mathematical practice. Shapiro introduced
so-called “finite cardinal structures” to illustrate features of ante rem structural-
ism. I establish that these structures have a well-known counterpart in group
theory, but this counterpart is incompatible with ante rem structuralism: It
has an in re character. Furthermore, there is a good reason why, according
to mathematical practice, these structures do not behave as conceived by ante
rem structuralism: We want to be able to establish connections between differ-
ent representations of abstract structures, and in order to do this, we rely on
“coordinates”, non-structural properties of structures.
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2 Ante Rem Structuralism: The Story So Far
The idea behind ante rem structuralism is that we should not think of math-
ematical structures in terms of their instantiations (in re), but in terms of
the structural features that the structures have independently of, or “before”,
instantiations (ante rem). For example, the structure of natural numbers is in-
dependent of its instantiations as, say, some ordinal structure. It is exhaustively
characterized by the axioms of natural numbers. The natural numbers are the
places in this structure, characterized in terms of the structural relations such
as the successor function. This is the so-called places-are-objects perspective of
ante rem structuralism.

Ante rem structuralism is an attractive position because each mathematical
structure is taken seriously in itself. We work exclusively with the properties
and relations that are naturally available in a structure; it is not necessary to
interpret structures in terms of, say, set theory. This meshes well with many
mathematician’s conception of the autonomy of mathematical subdisciplines: A
graph theorist is working with graphs, he is not doing some version of set theory.

A serious objection, however, has been raised against ante rem structural-
ism; see Burgess (1999) and Keränen (2001). The objection is based on two
facts. According to ante rem structuralism, we can characterize mathematical
objects exclusively in terms of the structural properties (including relations) of
the structure to which the objects belong. Secondly, Shapiro can be read as
endorsing a form of the Principle of the Identity of Indiscernibles (PII): if two
objects of a structure share all structural properties, then they should be identi-
fied; see Shapiro (2008, p. 286). This leads to the objection that structures with
certain symmetries are not adequately captured by ante rem structuralism.

The concept of structures exhibiting more or less symmetry can be made
more precise using the concept of automorphism. An automorphism is a bijec-
tive, structure-preserving function (isomorphism) from the structure to itself.
In the case of natural numbers, there is only one automorphism, the identity
function. Structures on which only this (trivial) automorphism can be defined
are called rigid. Structures admitting of non-trivial automorphisms are called
non-rigid. Places of structures linked by a non-trivial automorphism are called
structurally indiscernible.

Non-rigid structures, such as the complex numbers, do have places, e.g. i and
−i, that are structurally indiscernible – but which are nonetheless not identical:
the additive inverse of i is −i, not i itself. As 0 is the only complex number
additively inverting itself, and i is not 0, i and −i have to be different. But,
according to (IND), i and −i should be identified.1 Ante rem structuralism

1Note that i and −i need only be identified according to (IND), which is just one possible
formulation of PII. There are several notions of indiscernibility on the market; see Ketland
(2011) and Ladyman et al. (2010) for a discussion of these notions and their interrelations).
According to weak discernibility, i and −i are discernible by a formula φ(x, y) expressing the
fact that x and y are additive inverses: φ(i, i) is false in the complex number structure, while
φ(i,−i) is true. If (IND) were based on weak discernibility, then i and −i would be discernible
(but see Ketland (2006) for criticism of weak discernibiliy).
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appears not to adequately capture mathematics, which is unacceptable for a
nonrevisionist position, such as Shapiro’s.

In reaction to this objection, Shapiro (2008) agrees that it would be fatal
if ante rem structuralism were committed to the above form of PII. However,
he denies that this is the case. He thinks that in mathematics, identity cannot
be defined in a non-circular way, and that mathematics presupposes identity.2
Ante rem structuralism can thus be amended in the following way: we use only
structural properties that are naturally available in a mathematical structure to
characterize the objects belonging to that structure, and identity is one of these
structural properties.

If we accept identity as a primitive relation, then Shapiro has successfully
averted attacks based on PII. For the sake of the argument, I accept Shapiro’s
solution and assume that identity is available as a primitive relation. What
follows has nothing to do with metaphysically motivated principles, such as PII.

3 The Problem: No-Name Places
The feature of ante rem structuralism that I consider to be problematic concerns
reference in mathematics. To see the problem more clearly, I will underline an
implicit distinction made by Shapiro.

In Shapiro’s opinion, one attractive feature of ante rem structuralism is
that “in most cases, reference is straightforward” (Shapiro, 2008, p. 290). One
straightforward case is the structure of natural numbers with unique, struc-
turally characterized places interpreted as objects: the numeral “4” refers to the
fifth place in this structure. While Shapiro accepts the idea that “singular terms
in true sentences [... suggest] that there are objects denoted by those terms”, he
denies the converse: “It is simply false that to be an object is to be the sort of
thing that can be picked out uniquely with a singular term.” (Ibid.) How can
this be the case?

Shapiro gives several examples where reference to mathematical objects fails.
For big structures, such as the real numbers, at least one problem of reference
is well-known: Given a countable supply of names, we cannot name or describe
all real numbers at once, as they are uncountable. We can “diagonalize out”
of any list of members of these structures. Therefore, the countable supply
of names cannot be in a one-one-correspondence with the members of these
structures. There are probably further problems with reference to members of
big or random structures, but I will not discuss them further, as the claim about
failure of reference due to uncountability is uncontroversial.

My focus will be on a different type of example: structures that are too
homogeneous for reference. Shapiro thinks that certain mathematical structures
with symmetries have the property that we cannot name or refer to the objects,
or places, in these structures because they are too homogeneous. He writes:

2See Shapiro (2008, p. 292) and Leitgeb and Ladyman (2008) on this point. The proposal
that identity is presupposed in mathematical practice has been made in Ketland (2006), as
Shapiro notes.
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There simply is no naming any point in Euclidean space, nor any
place in a finite cardinal structure and in some graph, no matter how
much we idealize on our abilities to pick things out. The objects are
too homogeneous for there to be a mechanism, even in principle, for
singling out one such place, as required for reference, as that relation
is usually understood.(Shapiro, 2008, p. 291)

I take it that the reason why we cannot name the objects in these structures
is that there are no structural properties to pick them out, or discern them.
Identity is of no help, as structurally indiscernible places can be nonidentical. I
will call this the “no-naming constraint” of ante rem structuralism.

I think that the no-naming constraint is an undesirable feature of ante rem
structuralism, because it is in conflict with mathematical practice. This I will
show by examining the paradigm of homogeneous structures, the finite cardinal
structures mentioned in the above quote. Finite cardinal structures comply with
the no-naming constraint to the extreme: none of their places can be named,
because they are too homogeneous. I will show that a correlate of finite cardinal
structures in mathematics does not comply with the no-naming constraint.

This creates a problem for Shapiro, because he also endorses the so-called
faithfulness constraint. This is the “desideratum [...] to provide an interpretation
that takes as much as possible of what mathematicians say about their subject as
literally true, understood at or near face value” (Shapiro, 2008, p. 289, emphasis
in original).3 Shapiro wants his position to be in agreement with mathematical
practice as much as possible. If naming the objects of finite cardinal structures is
no problem in practice, then either the no-naming constraint or the faithfulness
constraint has got to go.

4 Finite Cardinal Structures in Mathematics
Shapiro characterizes the cardinal-four structure, one kind of finite cardinal
structures, as follows:

The cardinal-four structure [...] has four places, and no relations.
[...] Since there are no relations to preserve, every bijection of the
domain is an automorphism. Each of the four places is structurally
indiscernible from the others and yet, by definition, there are four
such places, and so not just one. (Shapiro, 2008, p. 287)

The cardinal-four structure has four objects, or places, and no relation be-
tween these objects; therefore, every bijection between the objects is an au-
tomorphism. Technically speaking, the places are pairwise structurally indis-
cernible.

We will now locate the cardinal-four structure in mathematical practice.
Initially, it is unclear how to interpret the cardinal-four structure in ordinary

3See Shapiro (1997, ch. 1) for more on the faithfulness constraint.
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mathematical terms, because if we cannot name the objects of a structure, it is
not clear how to define a function on the structure.4 We will therefore choose a
familiar starting point, and work our way from there. We will use the familiar
idea that structures can be characterized via structure-preserving functions.

Usually, a structure is defined by giving some domain, say C = {1, 2, 3, 4},
on which we can define functions in the usual way. There are no relations on
C, so every f : C → C, with f bijective, is an automorphism. In mathematics,
a bijection on a (finite) domain which is not required to respect any relations,
is called a permutation of C. Mathematicians are interested in permutations
because the set of permutations of a (finite) domain, equipped with composition
of functions, forms an important group called symmetric group, written Sn if
the size of C is n. The members of the group S4 are the permutations of C.5

Clearly, C is not the cardinal-four structure: the elements of C are natural
numbers, thus we can name them. This carries over to the permutation group
on C: According to the ante rem structuralist, some of the permutations of C
should be indistinguishable. Take the functions f , defined as f(1) = 2, f(2) =
1, f(3) = 3, f(4) = 4, and g, defined as g(1) = 3, g(2) = 2, g(3) = 1, g(4) = 4.
They are different members of S4. However, the only difference between f and
g is that f permutes 1 and 2, while g permutes 1 and 3.

1

3 4

21

3 4

2

Figure 1: Functions f (left) and g (right)

Thus we cannot use the permutation group S4 to characterize the cardinal-
four structure: f and g are distinguishable, which should not be the case, as 2
and 3 play the same structural role. We have to “identify” f , g, and any other
permutation of C that only swap two places of C and leaves all other places
untouched.

In mathematics, the result of this identification is well-known and has many
different, but equivalent descriptions. A particularly intuitive approach is based
on the notion of cycles. To understand how this works, we need the cycle
notation of permutations. A cycle of length r ≤ n, written (i1i2...ir), is a
permutation a ∈ Sn such that a(i1) = i2, a(i2) = i3, ..., a(ir−1) = ir, a(ir) =
i1, a(ik) = ik for k 6= 1...r, i.e. it sends r places of the domain around in a
cycle and leaves the other places alone. For example, f above is the cycle (12).

4This worry has been formulated before, see Hellman (2005, p. 545, fn. 10).
5The portion of elementary group theory used in the following can be found in any intro-

duction to group theory, see e.g. Rotman (1995).
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Figure 2: Function on Cardinal-Four Structure

Alternatively, we can also write f as (12)(3)(4), i.e. 3 and 4 are cycles of length
one.

It is a theorem of group theory that all permutations can be written as a
product of disjoint cycles. Thus we can think of permutations as cycles. This is
very useful for our purposes, because we can use the cycle notation to classify
all permutations into cycle types, also known as cycle structure. The cycle type
of a permutation only depends on the number of cycles of length one, two,
etc. of the permutation. The cycle type of a permutation a ∈ Sn is written
(1m1 , 2m2 , ..., nmn), meaning that the permutation a has m1 cycles of length 1,
m2 cycles of length 2, and so on. For example, the permutation (12)(3)(4) ∈ S4

above is of type (12, 21, 30, 40). Some thought reveals that the permutations in
S4 fall into five cycle types. Here is one instance of each type: (1)(2)(3)(4),
(12)(3)(4), (123)(4), (1234), (12)(34).

Cycle types are one way of representing finite cardinal structures. A cardinal-
four structure is characterized by the fact that we can define five “essentially
different bijections” on its places: All permutations are automorphisms, but
some permutations have to be be identified. Now, the five essentially different
bijections on the cardinal-four structure coincide with the five cycle types of
S4, see figure 3 below. These cycle types represent kinds of permutations by
abstracting from the particular numbers (or places) that are permuted. They
only appeal to facts such as the number of places mapped to themselves, the
number of places mapped to each other, the number of places mapped in three-
cycles, and so on – the structure of cycles.

It is not necessary to capture finite cardinal structures in terms of cycle
types; the idea can be restated in many different forms. For example, there
is a natural correspondence between cycle types and certain subgroups of Sn

called conjugacy classes: Two permutations are of the same cycle type if and
only if they are in the same conjugacy class.6 Another perspective is in terms
of partitions of natural numbers. A partition of n is a (non-strictly) increasing
sequence of natural numbers i1, i2, ...ir such that i1 + i2 + ... + ir = n.7 There

6If G is a group and a a member of G, the conjugacy class of a is the set of b such that
b = xax−1 for some x in G.

7Note, incidentally, that a closed form expression for p(n), the number of partitions of n
is not known, see Simon (1996, p. 96). By extension, the same is true for the number of
“essentially different” bijections on finite cardinal structures.
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Figure 3: Cycle Types of S4

is a one-one correspondence between partitions of n, cycle types of length n,
conjugacy classes of Sn, and “essentially different” bijections on C, and we can
use any one of these concepts to capture finite cardinal structures.8

5 Ante Rem Structuralism vs. Mathematical Prac-
tice

After this detour into mathematics, we are ready for our philosophical problem.
Are cycle types ante rem structures in Shapiro’s sense or not? More specifically,
is it possible to name their places? Mathematical textbooks do not give a direct
answer to this question, because naming is not a mathematical notion. However,
they give an indirect answer.

In mathematics, different permutations such as f and g that belong to
the same cycle type are always distinguishable. This follows from the way
in which the permutations belonging to a certain cycle type are counted. A
theorem tells us that the number of permutations of type (1m1 , 2m2 , ..., nmn) is
n!/

(
Πn

j=1(mj)!j
mj

)
see Simon (1996, Theorem VI. 1.2.). Applied to the cycle

type (12, 21, 30, 40) of f and g, we find that the number of permutations of this
type is 4!/

(
2!12 · 1!21 · 0!30 · 0!40

)
= 6; these are the 6 permutations of the set C

that swap two places and leave two places untouched. This means that we can
recover all the cycles belonging to a cycle type, all the different bijections on C,
and especially f and g. We can move freely between cycle types as in figure 2
and cycles as in figure 1.

This is not so according to ante rem structuralism. In figure 2, the places 2
and 3, while nonidentical, are structurally indiscernible. There are no properties
or relations to discern them, and we cannot name them. From the perspective
of ante rem structuralism, there is exactly one function in figure 2. But there

8Shapiro (2008) points out a suggestion in Leitgeb and Ladyman (2008) according to
which finite cardinal structures are (isomorphic to) certain graphs. This is yet another way
to conceive of finite cardinal structures.
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is no way to recover, or count, different permutations such as f and g in figure
1 that instantiate the function in figure 2.

The reason for this is that the ante rem structuralist can only use structural
differences and identity to distinguish between f and g. However, they have the
same structural role: they swap two places, and leave two places alone. In par-
ticular, the ante rem structuralist cannot use the fact that f and g are different
because f swaps 1 and 2 while g swaps 1 and 3. All that can possibly matter for
the ante rem structuralist is that two (nonidentical) places are swapped, while
two further places, not identical to the former two, are left alone. There is one
such situation, not two, or six.

Now, the ante rem structuralist could maintain that it is a primitive fact of
identity that f and g are different permutations. However, this is not a fact that
can be grounded in the identity and structural discernibility of the places that
are permuted. Both f and g swap two nonidentical, structurally indiscernible
places, so the nonidentity of places is of no help in distinguishing the two.
The ante rem structuralist would need additional facts about the identity and
discernibility of functions; more specifically, he would have to assume that there
are exactly six different permutations with the same cycle type as f – and so for
all other cycle types of all permutation groups. I think this is not an attractive
option.

The easy way out would be to state the obvious: f and g are different
because, well, 2 and 3 are different. This, however, the ante rem structuralist
cannot do, as he would have to label the places of the cardinal-four structure as
1, 2, 3, 4, and then describe the different permutations between these numbers,
which, arguably, amounts to naming the places. Once he has adopted the ante
rem perspective, the ante rem structuralist cannot move freely from figure 2 to
figure 1.

Why is the situation different for the mathematician? The mathematician
simply uses non-structural properties to discern the places of cycle types; for
example by defining the permutations on a set of natural numbers. He can then
use the non-structural properties of the places of permutations to calculate how
many permutations belong to each cycle type.9 It appears that mathematicians
adopt an in re perspective for circle types: They are not considered in isolation
from their instantiations, but in close correspondence.

It could be asked10 whether the problem of distinguishing the functions f
and g could be solved by treating the places of the cardinal-four structure as
parameters. We could skolemize the axiom of the cardinal-four structure

∃x1, x2, x3, x4(x1 6= x2 ∧ ... ∧ x3 6= x4 ∧ ∀y(y = x1 ∨ y = x2 ∨ y = x3 ∨ y = x4))

by eliminating the outermost existential quantifiers by introducing a new
9The point that in mathematics, we use non-structural properties to discern places in

structures has been made before, see e.g. Hellman (2001). Hellman’s criticism of ante rem
structuralism is more general and severe than the one advanced here, as he considers the
position to be incoherent.

10I thank an anonymous referee for this question.
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parameter for each quantifier. This procedure is akin to the rule of existential
instantiation. If we now conceive of the functions as being defined on these
parameters, we can very well distinguish the functions f and g.11 Drawing on
second-order logic, it is even possible to formally deduce that there are exactly
six different permutations on the cardinal-four structure, i.e., on the structure
with exactly four objects.12

However, using parameters does not solve the problem, for the following
reason. I certainly agree that the parameters can be used to represent the
places of the cardinal-four structure. However, we can only distinguish the
functions f and g as functions between parameters, which represent the places.
If we want to establish, additionally, that we the functions f and g between
the places are distinguishable as well, we would need a stable relation, a one-
one correspondence between parameters and places (an interpretation of the
parameters). This, however, would essentially amount to naming the places
using parameters, which is impossible according to ante rem structuralism. The
use of parameters also affects the possibility of deducing the intended result
within second-order logic: such an argument presumably relies on skolemization,
and therefore yields the result that there are exactly six permutations of four
parameters, not four places.

6 Ante Rem vs. In Re
My objection against ante rem structuralism is not a priori or metaphysical.
The problem is Shapiro’s faithfulness constraint, which it is in tension with the
no-naming constraint; I argued that the no-naming constraint has consequences
that contradict mathematical practice. Of course, the ante rem structuralist
can claim that cycle types and the other structures above do not really cap-
ture his idea of finite cardinal structures. However, these structures are as
close as mathematics gets to Shapiro’s finite cardinal structures. If he does not
think that cycle types adequately capture his idea, we can reasonably question
the relevance of these structures for mathematics – unless he comes up with a
mathematical structure that captures finite cardinal structures even better.

According to Shapiro, the faithfulness constraint is relative and has to be
weighted against other desiderata. If the feature of mathematics that is not
faithfully mirrored by ante rem structuralism is only of minor importance, we
could still dismiss it; after all, ante rem structuralism is able to capture some
aspects of mathematical practice. Are there good reasons for conceiving of
structures as in re rather than ante rem? Why is it important to count cycles
of a certain type in a certain way?

11See Shapiro (2008) and Pettigrew (2008) on this issue.
12Such an argument would begin with the introduction of the above axiom; we would then

eliminate the existential quantifiers using parameters. After constructing the six different
permutations between four parameters, we would conclude, by reductio, that all permutations
have to be identical to one of the six permutations just constructed; see Shapiro (1991) for
the necessary background. I thank an anonymous referee for drawing my attention to this
possibility.
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There are good reasons for adopting an in re perspective. One reason is
that it is an important part of mathematics to explore different perspectives,
or representations, of one and the same abstract, ante rem structure. We saw
an example of this practice above: We can think of finite cardinal structures
in terms of cycle types, but also in terms of conjugacy classes or partitions of
natural numbers. One advantage of these different representations is that we
can use our knowledge of one of the representations for all the others.

However, in order to do this, we have to be able to prove that the different
representations are equivalent, and in these proofs, we often use instances of
abstract structures (“Let π be a permutation of type x ...”), and structure-
preserving mappings between these instances. This is why it is important that
we can move freely between an abstract structure and its instances. This is
impossible if we adopt an ante rem perspective, as we saw in the case of the
cardinal-four structure.

In conclusion, ante rem structuralism is right in emphasizing that we should
take abstract mathematical structures seriously – they are more than their in-
stantiations. However, I argued in this paper that we should not take abstraction
too far. If we start to think of abstract mathematical structures as completely
freestanding and independent of their instantiations, we lose sight of the fact
that mathematics is also about the different representations of structures. If we
want to make use of these representations, we have to be able to move back and
forth between abstract structures and their instantiations, or an ante rem and
an in re perspective.
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