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Supplement to “A Material Defense of Inductive Inference” 

 

The inductive problem of extending the sequence 1, 3, 5, 7, is 

solved when these numbers are the ratios of the incremental 

distances fallen in successive unit times. The controlling fact is 

Galileo’s assumption that these ratios are invariant under a change 

of the unit of time. It admits few laws and only one is compatible 

with the two-numbered initial sequence 1, 3. 

1.	
  Introduction	
  

 Here is a simple problem in inductive inference. You have measured the distances fallen 

by a body in free fall after times 1, 2, 3 and 4 and find that the total distances fallen are in the 

ratios 1 to 4 to 9 to 16; and that the incremental distances fallen in each unit of time are in the 

ratios 1 to 3 to 5 to 7. What is the general rule? Famously, the answer Galileo gave is that that 

total distances fallen increase with the squares of the time, while the incremental distances 

increase as the odd numbers. 

 This formulation of the problem greatly oversimplifies the inductive problem Galileo 

faced in his discovery of his law of fall. However the formulation is part of the problem. In his 

Two New Sciences (1638, pp. 178-79), Galileo describes an experiment that would measure the 

distances fallen and the times taken. Instead of a body in free fall, the experiment uses a 
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surrogate system of a ball rolling down a grooved inclined place, so that the times taken are 

sufficiently slowed to enable precise measurement. Time is measured by weighing water 

collected from a thin jet during the motion. We cannot know if Galileo himself really performed 

the experiment or whether it was a fictional artifice of the dialog. Stillman Drake (1978, p. 89), 

however, has identified an earlier Galileo manuscript in which, Drake believes, Galileo recorded 

the experimentally measured distances traversed by a body rolling down a grooved inclined 

plane. Drake conjectures that Galileo tied gut frets across the groove. He then carefully spaced 

them so that the rolling ball beat out a uniform rhythm. The gut frets are then spaced so that they 

mark the distances fallen after 1, 2, 3, … units of time. 

 Let us then posit a Galile0-like inductive problem. Given the experimentally obtained 

numbers above, how can we infer inductively to the full law, using the resources available to 

Galileo? In Norton (2014), I have described how this induction can be warranted by two material 

facts. First is a Platonic assumption: that fall conforms to a rule that may be written simply using 

the mathematical vocabulary available to Galileo. The second is an invariance assumption: that 

the law of fall is invariant under a change of the unit of time. I asserted in Norton (2014) that this 

second assumption places a powerful restriction on the admissible laws of fall. My purpose in 

this note is to restate the invariance and then to show, using techniques not available to Galileo, 

just how profoundly this invariance restricts the admissible laws of fall. 

2.	
  Invariance	
  under	
  the	
  Change	
  of	
  the	
  Unit	
  of	
  Time	
  

 Galileo was clearly aware of the invariance of his law of fall under the selection of a 

different unit of time. It is explicit in his statement of the incremental form of the law. He wrote 

in Two New Sciences (1638, Third Day, Naturally Accelerated Motion, Thm. II, Prop. II, Cor. I; 

my emphasis) 

Hence it is clear that if we take any equal intervals of time whatever, counting from 

the beginning of the motion, such as AD, DE, EF, FG, in which the spaces HL, LM, 

MN, NI are traversed, these spaces will bear to one another the same ratio as the 

series of odd numbers, 1, 3, 5, 7;… 

This is an important property of his law of fall. For Galileo’s experiments, in so far as we can 

reconstruct them, did not employ a single, accurately reproducible unit of time. Rather, he could 
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divide the time of the experiment into equal parts that became a temporary unit. He would then 

assume that his results were insensitive to the choice of unit. The alternative was the unlikely 

possibility that the results held only for certain choices of the unit of time and that Galileo had by 

good fortune implemented them in his experiment. 

 We can see the invariance of the law Galileo discovered with some arithmetic. In times 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

the total distances fallen will be in the ratios 

1, 4, 9, 16, 25, 36, 49, 64, 81, 100 

and the incremental distances 

1, 3, 5, 7, 9, 11, 13, 15, 17, 19 

Now choose a different unit of time that is twice as long as the original. Measured with this new 

unit, the even numbered subset 2, 4, 6, 8, 10 of the original times are now labeled 

1, 2, 3, 4, 5 

and the total distances fallen are 

4, 16, 36, 64, 100 

=  4x1, 4x4, 4x9, 4x16, 4x25 

The factor of 4 does not appear in the ratios of the distances fallen, which now once again are in 

the ratios of 1 to 4 to 9 to 16 to 25. The original square numbers are restored. Correspondingly, 

the incremental distances are 

1+3, 5+7, 9+11, 13+15, 17+19 

= 4, 12, 20, 28, 36 

= 4x1, 4x3, 4x5, 4x7, 4x9 

Dropping the factor of 4, the original odd number ratios of 1 to 3 to 5 to 7 to 9 are restored. 

 This arithmetic argument shows only one case of the invariance in which the old and new 

time units are in the simple arithmetic ratio of 1 to 2. Will the law of fall remain invariant under 

arbitrary rescaling of the unit? A simple geometric argument establishes that it will. Extending 

Galileo’s geometric methods slightly, we can represent the law of fall by a triangle, shown in 

Figure 1. 
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Figure 1. Galileo’s Law of Fall Showing Total Distances Fallen 

 

The lengths OA, OB, OC and OD along the base represent times and the areas of the triangles 

OAW, OBX, OCY and ODZ above the base segments correspond to distances fallen. These 

triangles increase in area in proportion to the square of the base segments, thereby expressing the 

law of fall. We can also see both forms of the law of fall in the figure by a counting procedure. 

We take the triangle OAW as a unit distance and use it to fill the triangle, as shown. We can 

count the total distances fallen in times OA, OB, OC and OD by the number of unit triangles in 

the triangles, OAW, OBX, OCY and ODZ. As shown, there are 1, 4, 9 and 16 of these unit 

triangles, respectively.  
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Figure 2. Galileo’s Law of Fall Showing Incremental Distances Fallen 

 

The incremental distances fallen in the time intervals OA, AB, BC and CD are represented in 

Figure 2 by the areas of the columns above the unit times, OA, AB, BC and CD. There are 1, 3, 5 

and 7 of the unit triangles in the columns. 

 The selection of a new unit merely involves replacing the old selection of OA by a new 

one OA’, otherwise keeping the original triangle the same, that is, keeping the original motion 

unchanged. It is immediately clear that any new selection—such as shown in Figure 3—will be 

geometrically similar to the original construction and will return the same ratios for the total and 

incremental distances fallen. 
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Figure 3. Galileo’s Law of Fall with a New Unit of Time 

 

 The simplest argument for the generality of the invariance is algebraic. If s(t) is the total 

distance fallen by t and d(t)=s(t)-s(t-1) the incremental distance fallen between t-1 and t, then 

Galileo’s law of fall asserts (up to multiplicative constant) that 

s(t) = t2       d(t) = t2 – (t-1)2 = 2t-1                                                                    (1) 

Adopting any new unit of time corresponds to rescaling t to t’=rt, for any positive r. The 

corresponding rescaled laws are 

s’(t’) = (t’/r)2 = (1/r2) t’2 = constant t’2         

d’(t’) = (t’/r)2 - ((t’-1)/r)2 = (1/r2) (t’2 – (t’-1)2) 

= (1/r2) (2t’-1) = constant (2t’-1) 

The constants do not affect the ratios, so the original law is preserved. With the new time unit, 

the ratios of total distance grows with the square of time and the incremental distances as the odd 

numbers, as before. 
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2.	
  Laws	
  of	
  Fall	
  Invariant	
  under	
  a	
  Change	
  of	
  Unit	
  of	
  Time	
  

 Galileo’s law of fall is invariant under a change of unit of time. Which others laws also 

respect this invariance? The result to be proven shortly is that there are very few. If s(t) is the 

total distance fallen by t and d(t)=s(t)-s(t-1) the incremental distance fallen in time t-1 to t, then 

the only laws of fall with this invariance are 

s(t) = Ktp     d(t) = K(tp – (t-1)p)                                                             (2) 

for any real p >0 and an arbitrary constant K>0.1 This is highly restrictive, especially if we make 

the natural choice for Galileo and restrict p to natural numbers. Then (setting K=1) the 

admissible laws reduce to: 

 s(t) = t2  d(t) = 2t-1  

 s(t) = t3  d(t) =3t2-3t+1  

 s(t) = t4  d(t) =4t3-6t2+4t-1  

 s(t) = t5  d(t) =5t4-10t3+10t2-5t+1  

 …  …  

 

 Restricting the law to whole number values of p is unnecessary, however. For the law has 

just one free parameter, p. (The constant of proportionality K does not affect the ratios of s(t) and 

the ratios of d(t), so its value need not be determined or can be set arbitrarily.) It follows 

immediately from (2) that, once Galileo has collected very little data, it is possible to show that 

his law of fall is the only law of fall with this invariance. For example, all that is needed are the 

first two values, s(1) and s(2). For we have from (2) that 

s(2)/s(1) = 2p/1p = 2p 

But since the measured s(2)/s(1) =  4/1, it follows immediately that p=2. 

                                                
1 The only additional antecedent condition is that there has to be at least value of t>0 at which the 

function s(t) is differentiable. In physical terms, that means that, in the course of the fall, there 

has to be at least one moment at which the instantaneous velocity is defined. The proof below 

cannot preclude the possibility of additional laws of fall that respect the invariance but are 

differentiable at no moment of time at all. That is, for them, at no moment is an instantaneous 

velocity defined. 
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 We have a most striking conclusion. Given the above background and, in particular, 

invariance under the unit of time, the only admissible continuation of the sequence of total 

distances s(t) with just two members 1, 4, is the sequence of squares. The only admissible 

continuation of the sequence of incremental distances d(t) with just two members, 1, 3, is the odd 

number sequence. 

3.	
  Proof	
  

To prove that (2) follows from the invariance, we need to write the condition that a general law 

of fall s(t) is invariant under a change of the unit of time. Changing the unit of time corresponds 

to replacing the time variable t by a new time variable 

t’ = r t 

where r is any positive, real rescaling factor. When we rescale the time variable, the distance 

function s will transform to a new function s’(t’). Since we are only relabeling times, the distance 

fallen by t as recorded by s(t) must be the same as the distance fallen by t’=rt as recorded by 

s’(t’). That is, 

s’(t’) = s(t)                                                                         (3) 

There is a further condition. The ratios s(1) to s(2) to … to s(T) must be the same as the ratios 

s’(1) to s’(2) to … to s’(T), for any T>0. This expresses the rule’s invariance under a change of 

the unit of time. It follows that 

€ 

s'(T )
s'(1)

=
s(T )
s(1)

   and  

€ 

s'(T ) =
s'(1)
s(1)

s(T ) = f (r)s(T )                                      (4) 

where the ratio s’(1)/s(1) can only be a function of r and is written as f(r). Combining (3) and (4) 

and setting T to be t’=rt we have 

s’(t’) = s(t) = f(r) s(rt)                                                                (5) 

Setting t=1 in (5) entails that 

f(r) = s(1)/s(r) 

Hence we can rewrite (5) as 

s(1) s(rt) = s(r) s(t)                                                                  (6) 

We proceed with the simplifying assumption that s(t) is differentiable. It turns out that we need 

assume much less. In the appendix it is shown that, if s(t) is differentiable at just one value of 

t>0, then it is differentiable at all t>0. 
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 Differentiating (5) with respect to r and separately with respect to t and considering 

parameter values t>0 and r>0, we recover two equations 

€ 

s(1) ds(rt)
d(rt)

t =
ds(r)
dr

s(t)    and   

€ 

s(1) ds(rt)
d(rt)

r = s(r) ds(t)
dt

 

Eliminating s(1) ds(rt)/d(rt) from the two equations, we have 

€ 

ds(r)
dr

s(t)
t

=
s(r)
r

ds(t)
dt

 

Rearranging we have 

€ 

r
s(r)

ds(r)
dr

=
t
s(t)

ds(t)
dt

= p                                                    (7) 

The first quantity is a function of the variable r only and the second is a function of the variable t 

only, yet they are equal. Therefore they must be a constant, independent of both r and t. That 

constant is labeled p. The second equality is an easily solved differential equation: 

€ 

1
s(t)

ds(t)
dt

=
d ln s(t)
dt

=
p
t

 

Integrating we have 

€ 

ln s(t) t1
t2 = ln s(t2 )

s(t1)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = p 1

t
dt = p ln

t1

t2∫ t2
t1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ln

t2
t1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

p

 

This simplifies to 

s(t) = Ktp 

We have as an initial condition that s(0) = 0, so that p>0.2 The incremental form of the law, 

d(t) = s(t) – s(t-1) = K(tp – (t-1)p) 

follows immediately. Equation (2) above has now been recovered. Finally we have 

f(r) =  s(1)/s(r) = 1/tp 

Appendix.	
  Relaxing	
  the	
  Requirement	
  of	
  Differentiability	
  

 The proof above assumed that s(t) is everywhere differentiable for t>0. That expansive 

differentiability can be derived from (6) if we assume in addition that there is just one value of t 

at which s(t) is differentiable. To see this, write (6) with t replaced by t+Δt. We then have 

                                                
2 We preclude the degenerate case of K=0 since then s(t)=0. 
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s(1)s(r(t+Δt)) = s(r) s(t+ Δt) 

Subtracting (6) and dividing by rΔt, we have 

€ 

s(1) s(rt + rΔt)− s(rt)
rΔt

=
s(r)
r

s(t +Δt)− s(t)
Δt

 

A corresponding manipulation in which r is replaced by r+Δr in (6) yields 

€ 

s(1) s(rt + tΔr)− s(rt)
tΔr

=
s(t)
t
s(r +Δr)− s(r)

Δr
 

We now require Δt and Δr to satisfy 

rΔt = tΔr                                                                         (8) 

With this restriction, it follows that 

€ 

s(r)
r

s(t +Δt)− s(t)
Δt

=
s(t)
t
s(r +Δr)− s(r)

Δr
 

Rearranging, we recover 

€ 

t
s(t)

s(t +Δt)− s(t)
Δt

=
r
s(r)

s(r +Δr)− s(r)
Δr

                                           (9) 

Let the particular value of t>0 in (9) be the one value of t for which we assume that s(t) is 

differentiable. Call it t*. It now follows that the limit of the left hand side of (9) as Δt goes to 

zero must exist and be equal to a quantity containing the derivative ds(t)/dt: 

€ 

LimΔt→0
t*

s(t* )
s(t* +Δt)− s(t* )

Δt
=

t*

s(t* )
ds(t)
dt t=t*

 

Since we have from (8) that Δr = (r/t)Δt, it now follows that the limit on the right hand side of (9) 

also converges and is equal to  

€ 

LimΔr→0
r
s(r)

s(r +Δr)− s(r)
Δr

=
r
s(r)

ds(r)
dr

 

But r is any value greater than zero. Hence it follows that s(r) is differentiable for any r>0. 
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