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Abstract

Say that an agent is epistemically humble if she is less than certain that
her opinions will converge to the truth, given an appropriate stream
of evidence. Is such humility rationally permissible? According to
the orgulity argument (Belot 2013): the answer is “yes,” but long-run
convergence-to-the-truth theorems force Bayesians to answer “no.”
That argument has no force against Bayesians who reject countable
additivity as a requirement of rationality. Such Bayesians are free to
count even extreme humility as rationally permissible.

1 Introduction

Presented with Bayesian confirmation theory, it is easy to feel cheated. One
might have hoped for a substantive, detailed account of what sorts of evi-
dence support what sorts of scientific hypotheses. Instead one is told how
one’s evidence determines reasonable attitudes toward such hypotheses
given a prior (an initial probability function). And one is told that different
priors deliver different outputs, even for the same batch of total evidence.

One might worry that given this dependence, Bayesianism is ill-placed
to explain the significant agreement observed among reasonable scientists,

∗Previously titled: “Dr. Belot or: How I Learned to Stop Worrying about Bayesian Con-
vergence Theorems and Love Finite Additivity”. For helpful comments and discussion,
thanks to Andrew Bacon, Gordon Belot, Cian Dorr, Kenny Easwaran, Jim Hawthorne, Bas
van Fraassen, Brian Weatherson, and Jonathan Wright. For an extremely congenial work
environment in July 2014, thanks to Mindy and Gene Stein.
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or to deliver an objective account of confirmation in science.1,2

In the face of this worry it is natural to seek comfort from some re-
markable long-run “convergence-to-the-truth” and “washing out” theo-
rems. These theorems show that unless priors differ radically, differences
between them become negligible in the long run, under the impact of a
stream of common evidence. This is sometimes thought to take the sting
out of the above worry, by showing that many differences between priors
don’t end up mattering.

But Belot (2013) argues that rather than helping Bayesianism, these con-
vergence theorems are a liability to it. The argument is that the theorems
preclude Bayesians from counting as rational “a reasonable modesty” about
whether one’s opinions will approach the truth in the long run.

I will argue:

1. Long-run convergence theorems are no liability to finitely additive
Bayesianism, a version of Bayesianism that rejects countable additiv-
ity as a requirement of rationality.3 Defenders of finitely additive
Bayesianism are free to count any amount of humility about conver-
gence to the truth—even extreme pessimism—as rationally permissi-
ble.4

2. Bayesians never needed to appeal to long-run convergence theorems
in the first place. In response to worries about scientific objectivity,
Bayesians can and should instead appeal to short-run convergence the-
orems (Howson and Urbach 2006, 238; Hawthorne 2014, §5). Those
theorems do not require countable additivity.

1For expressions (but not always endorsements) of this worry, see Chalmers (1999, 133)
as cited in Vallinder (2012, 8), Easwaran (2011, §2.6), Earman (1992, 137), Howson and
Urbach (2006, 237), Hawthorne (2014, §3.5).

2Note that for present purposes, a confirmation theory may count as Bayesian even if it
imposes constraints on priors more restrictive than mere coherence. Thanks here to Cian
Dorr.

3Here I apply observations from Juhl and Kelly (1994, 186) and Howson and Urbach
(2006, 28–29).

4Weatherson (2014) convincingly argues that unsharp Bayesians (who hold that states
of graded opinion should be represented not by probability functions, but rather by sets
of probability functions) are also free to count humility about convergence to the truth as
rationally permissible.
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2 Long-run convergence theorems

What are the long-run convergence theorems? And why think that they
get in the way of a Bayesian being sufficiently humble about whether her
opinions will converge to the truth?

For simplicity, follow Belot (2013) in restricting attention to the follow-
ing setup. Consider an immortal investigator whose evidence consists of
successive digits from a countably infinite binary sequence (a sequence con-
sisting of 0s and 1s). The investigator receives one digit of the sequence per
day, and is interested in H, a fixed hypothesis about the whole sequence.
For example, H might be the proposition that after a certain point, the se-
quence consist of all 1s. (For convenience I treat interchangeably a proposi-
tion about the sequence, and the corresponding set of sequences for which
that proposition holds.)

Now apply Bayesian confirmation theory to this setup. In particular,
suppose that the investigator starts with a prior probability function P de-
fined over an appropriate domain that includes H,5 updates by condition-
alization each time she receives a digit, and is certain of all of the above.6

Before seeing any digits, the investigator might wonder: in the limit of
seeing more and more digits, how likely is it that I will arrive at the truth
about H? In other words, how likely is it that my probability for H will
converge to 1 if H is true and to 0 otherwise?

A pessimistic answer to that question is: I am unlikely to converge to
the truth (about H). A more confident answer is: I will probably converge
to the truth. A maximally confident answer is: my probability that I will
converge to the truth equals 1.

Long-run convergence theorems entail that if the investigator’s probability
function is countably additive, then she is committed to the maximally confi-
dent answer.7 In other words: (countably additive) Bayesian confirmation
theory entails that rationality requires investigators in the above situation

5We assume throughout that P is defined over at least the Borel-measurable subsets
of infinite binary sequences, where the set of sequences is given the natural topology—
the topology that has as a basis the set of rectangles, each of which is the set of sequences
satisfying a finite number of constraints of the form “digit k equals b”, where k is a natural
number and b equals 0 or 1.

6For present purposes, we needn’t decide the question of what happens when an inves-
tigator receives evidence that she had previously assigned zero probability.

7For a proof, see Halmos (1974, Theorem 49B, p. 213) (as cited in Schervish and Sei-
denfeld (1990, 410)). For an explanation emphasizing the role that countable additivity
plays in a similar proof, see Kelly (1996, 325–327). For more general results of this kind, see
Schervish and Seidenfeld (1990). For further discussion see Earman (1992, 144–145).
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to have full confidence that their opinions will converge to the truth.
But Belot (2013) gives an ingenious argument that rationality requires no

such thing.

3 The orgulity argument

Here is a stripped-down exposition of what I shall call “the orgulity
argument”—the main argument from Belot (2013).

As before, let H be a hypothesis about the infinite binary sequence that is
in the domain of the investigator’s probability function. Examples of such
hypotheses include: that the sequence eventually becomes periodic, that it
ends with the pattern “01010101 . . .”, that it is computed by a Turing Ma-
chine,8 or that it contains infinitely many 0s.9

Say that an investigator is open-minded with respect to H if for every
finite batch of evidence, there is a finite extension of it that would lead her
to assign probability greater than 1/2 to H, and also a finite extension of it
that would lead her to assign probability less than 1/2 to H.10,11 An open-
minded investigator commits to never irrevocably making up her mind
about whether H or not-H is more likely. Here is the first premise of the
orgulity argument:

Premise 1 It is rationally permissible to be open-minded with respect to
some hypothesis.12

8I.e., that the function d(i) giving successive digits of the sequence is a computable
function.

9Note that there is no requirement here that H be countable. Cf. Belot (2013, n. 32).
10Here I adopt the suggestion from Weatherson (2014) to modify the definition of “open-

minded” given in Belot (2013, 496) to introduce a pleasing symmetry. Nothing of substance
hinges on this.

11For an example of a countably additive prior that is open-minded with respect to a
countably infinite hypothesis, see Belot (2013, n. 32). For an example of a countably addi-
tive prior P that is open-minded with respect to an uncountable hypothesis H, take H to be
the set of sequences in which 1 occurs with limiting relative frequency 2/3 and take P to be
(B1/3 + B2/3)/2, where Bv is the Bernoulli measure with bias v (the probability measure that
treats the digits of the sequence as if they were generated by independent tosses of a coin
that has probability v of generating “1” on each toss). P is open-minded because it regards
finite evidence streams consisting of almost all 1s as strongly confirming H, and streams
consisting of almost all 0s as strongly disconfirming H.

12Here and below, all premises are assumed to concern the setup in which a Bayesian
investigator successively learns digits from an infinite binary sequence.
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Now take any Bayesian investigator with a countably additive prior who
is open-minded about some hypothesis H, and consider the set T of se-
quences that get her to converge to the truth about H. (In the remainder
of this section, “converge to the truth” abbreviates “converge to the truth
about H”.) We noted above that convergence theorems entail that this in-
vestigator must assign probability 1 to T. We will now see that T is in one
sense a “tiny” set.

Start by defining the Banach-Mazur game. In this game two players gener-
ate an infinite binary sequence together, starting with the empty sequence.
The players alternate moves; at each move a player extends the sequence by
appending whatever finite block of digits she wishes. The goal of the player
who moves second is to have the resulting infinite sequence fall outside of
some fixed set G.13

G is said to be meager if there exists a winning strategy for the second
player in this game—in other words, if the second player can force the gen-
erated sequence to avoid G. When a set of sequences is meager, it is “tiny”
in one sense—it is easy to avoid.14 It is sometimes said that sequences “typ-
ically” have a property if the set of sequences that fail to have the property
is meager.

Now for the main fact that drives the argument:

Fact (Belot 2013, 498-499) The set of sequences that get an open-minded
Bayesian investigator to converge to the truth, is meager. In other
words: “typical” sequences prevent the investigator from converging
to the truth.15

Since we can see the truth of this fact, so can a reasonable open-minded
investigator. She can see that typical sequences prevent her from converg-
ing to the truth. Given this, it seems permissible for her to be less than
certain that she will converge to the truth. That is the next premise of the
argument:

13This is actually the special case of the Banach-Mazur game appropriate to the present
context. For a general discussion, see Oxtoby (1980).

14This is just one of several equivalent characterizations of the meager sets.
15Proof: In the Banach-Mazur game, player 2 can force the generated sequence to be

one that prevents the investigator from converging to the truth about H by at each of her
turns appending “a string of bits that causes P to [assign probability greater than 1/2 to
H] followed by a string of bits that causes P to [assign probability less than 1/2 to H]. This
always results in an infinite sequence that [causes P to not converge on any probability for
H].” (Belot 2013, n. 41) Player 2 can implement this strategy because P is open-minded.
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Premise 2 If it is rationally permissible to be open-minded about a hypoth-
esis, then it is rationally permissible to be less than certain that one
will converge to the truth about that hypothesis.

From Premises 1 and 2 we get the conclusion of the orgulity argument:

Conclusion It is rationally permissible to be less than certain that one will
converge to the truth about some hypothesis.

We saw in §2 that (countably additive) Bayesianism entails the negation of
this conclusion. So if the argument is sound, then that theory stands refuted.

4 Points in favor of the orgulity argument

Before suggesting a response to the orgulity argument, let me make a few
points in its favor.

A defender of countably additive Bayesianism might try to reject
Premise 1 by claiming that open-mindedness is irrational. That is, he might
propose that investigators are rationally required to permanently make up
their minds about whether H or not-H is more likely, upon receiving an
appropriate finite batch of evidence.

That proposal is unappealing because (in the presence of countable ad-
ditivity), it entails that investigators are rationally required to become cer-
tain about whether H is true upon receiving an appropriate finite batch of
evidence. (For a proof, see Appendix A.)

For example, suppose that H is the claim that the sequence contains in-
finitely many 0s. The above proposal entails that if a Bayesian investigator
is rational, some finite string of digits would get her to assign probability
0 or 1 to H. But that is absurd. It is absurd that rationality requires every
investigator to count some finite string of digits as settling with certainty
whether the whole string contains infinitely many 0s.

What about Premise 2? Belot (2013, 500) considers an opponent who re-
jects Premise 2 for the following reason: sequences of evidence digits that
prevent an open-minded investigator from converging to the truth are skep-
tical scenarios, and the investigator may therefore reasonably assign them
total probability zero. Belot responds that such sequences are not skeptical
scenarios. Whatever one thinks of that response, however, an additional
response is available: Even granting that the scenarios in question are skep-
tical scenarios, it does not immediately follow that they deserve zero prob-
ability.
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As an example, consider a regularity that is very well confirmed: that
gravity is an attractive. Here is a skeptical scenario: one year from now,
gravity will suddenly turn repulsive. Given our evidence, that scenario
deserves only a miniscule amount of probability. But that the scenario is
a skeptical one does not immediately show that it deserves absolutely no
probability. So simply calling failure-to-converge scenarios “skeptical sce-
narios” does not on its own make it reasonable to reject Premise 2.

Furthermore, the Fact gives at least initial support to Premise 2. It is
unsettling to think that to be rational one must be certain that one will con-
verge to the truth, given that “typical” sequences prevent one from doing
so.16

Moral: the orgulity argument has some force as an objection to countably
additive Bayesianism.

5 Finitely additive Bayesianism permits humility

Happily, the argument has no force at all against finitely additive Bayesian-
ism, a version of Bayesianism that rejects countable additivity as an across-
the-board requirement of rationality.17 That is because finitely additive
Bayesians18 can comfortably accept the conclusion of the argument. They
can accept that it is rationally permissible for an open-minded investigator
in the sequence situation to be less than certain that she will converge to the
truth.

Indeed, they can (if they wish) accept something much stronger. Let us
say that an investigator in the sequence situation is completely pessimistic if
she is certain that she will “converge to the false” — that her probability for
H will converge to 0 if H is true and to 1 otherwise. It turns out that some
open-minded investigators with finitely additive priors are completely pes-
simistic.19 (For a proof, see Appendix B.)

16Here I grant for the sake of argument that topological notions of size are relevant to
what propositions it is rationally permissible to assign positive probability. One might of
course flatly deny this, and so deny that Premise 2 has any appeal.

17Juhl and Kelly (1994, 185–188) and Howson and Urbach (2006, 28–29) make similar
points in response to the concern that the long-run convergence theorems yield implausibly
strong constraints on rationality.

18By “finitely additive Bayesians” I mean Bayesians who reject countable additivity as a
requirement of rationality.

19Some may find it uncomfortable to think that such extreme pessimism is rationally per-
missible. That discomfort might derive from discomfort with rational failures of conglom-
erability in countable partitions. If so, there there is little recourse but to impose countable
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So finitely additive Bayesians are free to count even complete pessimism
as being rationally permissible. That is as much humility as anyone can de-
mand. Furthermore, finitely additive Bayesianism has significant indepen-
dent appeal.20

Moral: the orgulity argument has no force against finitely additive
Bayesianism, a viable alternative to countably additive Bayesianism.

6 Convergence in the short-run

Recall from §1 the motive given for appealing to long-run convergence the-
orems: The deliverances of Bayesianism depend on a choice of prior prob-
ability function. As a result, Bayesianism faces the charge of being exces-
sively subjective, and of not sufficiently explaining agreement among rea-
sonable scientists.

In response to those charges, it is tempting to appeal to long-run conver-
gence theorems in order to show that differences between rational priors
disappear in the long run. Bayesians who reject countable additivity can-
not appeal to those theorems in this way, since those theorems depend on
countable additivity. So it might seem that such Bayesians give up a valu-
able defense against the charge of excessive subjectivity.

But in fact, they do not. For the long-run convergence theorems were
red herrings all along—they never provided an answer to the charge of ex-
cessive subjectivity. That is because that charge concerns not what happens
in the infinite long run, but rather what happens in the near future (Earman
1992, 148, Howson and Urbach 2006, 238). The charge is that Bayesians can-
not explain the extent to which reasonable scientists agree now, on the basis

additivity (Kadane et al. 1986, Schervish et al. 1984). But if the discomfort is simply with
probability functions that manifest complete pessimism, then one might instead adopt con-
ditions that rule out complete pessimism without ruling out more moderate pessimism.

20See, for example, de Finetti (1974), Savage (1954) and Levi (1980). Works that at least
take very seriously the hypothesis that countable additivity should be rejected include Sei-
denfeld and Schervish (1983), Dubins and Savage (1965), Kelly (1996), and Juhl and Kelly
(1994).

Of course, there are objections to rejecting countable additivity as well, and an assess-
ment of the costs and benefits of doing so is beyond the scope of this discussion. Such an
assessment would need to address concerns about susceptibility to infinite Dutch Books
(Bartha 2004, Seidenfeld and Schervish 1983), the possibility of paradoxical-seeming fail-
ures of conglomerability (Kadane et al. 1986, Schervish et al. 1984), the possibility of uni-
form distributions over countably infinite spaces (de Finetti 1974, 122), violations of in-
tuitive comparative dominance principles (Easwaran 2013), as well as considerations of
general mathematical utility (Dubins and Savage 1965).
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of their actual (finite) batches of shared evidence. What happens in the limit
of infinite investigation is not directly relevant.

That does not mean that Bayesians are defenseless against the charge of
excessive subjectivity. Other convergence theorems—call them “short-run”
convergence theorems—do help Bayesians ward off that charge. As a toy
example of such a theorem, consider two Bayesian agents who are about to
observe what they both regard to be independent random draws from an
urn with an unknown proportion of white and black balls. Straightforward
calculations show that unless the agents start out with extremely different
opinions about what the proportion is, they will be confident that their opin-
ions about the urn’s composition will become extremely similar—not just in
the limit of infinite draws, but soon (after a small number of draws).21

Now, the assumption of independent sampling in the above case is ad-
mittedly quite strong. But short-run convergence results have been proven
that rely on significantly weaker assumptions. For example, Hawthorne
(1993, Theorem 6) can be thought of as a short-run convergence result that
applies to Bayesian agents who do not regard successive batches of evi-
dence as independent random draws. What is required instead is a much
weaker condition: that the agents expect successive batches to be, on aver-
age, at least slightly informative about the hypothesis in question.22

The bottom line is that while existing theorems do not decisively settle
the matter (one can always claim that in a particular case, there is or should
be more convergence to the truth than Bayesianism can account for), short-
run convergence theorems at least substantially address the charge of ex-
cessive subjectivity.

Happily, none of these short-run convergence theorems rely on count-
able additivity. So finitely additive Bayesians can freely appeal to them.

21For short-run convergence results for cases of roughly this kind, see Savage (1954, §3.6),
Edwards et al. (1963, 541–545), Earman (1992, 142–143), Howson and Urbach (2006, 239),
and Hawthorne (2014, §4.1).

22I have given here only the barest sketch of the wonderful convergence theorem pre-
sented in Hawthorne (1993, Thm. 6) and explained in a simplified form in Hawthorne
(2014, §5).
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Appendix

Notation: Unless otherwise noted, “sequence” shall mean: countably infi-
nite binary sequence. Let S be the set of countably infinite binary sequences.
When x ∈ S, we write xi for the ith digit of x, and xi for the set of sequences
whose first i digits agree with x. For any finite binary sequence s, let [s] be
the set of infinite binary sequences that start with s.

A Proof that countably additive priors are either
closed-minded or extremely open-minded

In §4 it is claimed that under the assumption of countable additivity, if
it is irrational for an investigator to be open-minded, then it is rationally
required for her to be closed-minded in a certain sense. Here we prove a
slightly stronger claim from which the above claim easily follows.

Say that an investigator with prior P is closed-minded with respect to H
if some finite sequence would get her to become certain about H—in other
words, if for some finite sequence s, P(H|[s]) equals 0 or 1.

Say that an investigator with prior P is extremely open-minded with
respect to H if for every ε > 0 and for every finite batch of evidence, there is
a finite extension of that evidence that would lead her to assign probability
less than ε to H, and also a finite extension of it that would lead her to assign
probability greater than 1− ε to H.
Claim: Suppose that an investigator has a countably additive prior P, and

let H be any hypothesis in the domain of P. Then the investigator
is either closed-minded with respect to H or extremely open-minded
with respect to it.

Proof: Assume that the investigator is not closed-minded with respect to H.
We will show that she is extremely open-minded with respect to it.

Take any finite sequence s. Note that 0 < P(H|[s]) < 1, since the inves-
tigator is not closed-minded about H. Let P′(·) = P(·|[s]) be the result of
conditionalizing P on [s]. For any number v, let Mv be the set of sequences
x for which limi→∞ P′(H|xi) equals v. By the long-run convergence theo-
rem described in §2, P′ is certain that P′ converges to the truth about H.
So P′((H ∩ M1) ∪ (H ∩ M0)) = P′(H ∩ M1) + P′(H ∩ M0) = 1. But 1 >
P(H|[s]) = P′(H) ≥ P′(H ∩M0), so 0 < P′(H ∩M0) ≤ P′(M0). So M0 is
nonempty and hence there exists a sequence x such that limi→∞ P′(H|xi) =
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0. So for any ε > 0 there exists an n such that P′(H|xn) < ε. It follows that
for any ε > 0, there is a finite extension s′ of s such that P(H|[s′]) < ε. A
similar argument shows that for any ε > 0 there is a finite extension s′ of s
such that P(H|[s′]) > 1− ε. So the investigator is extremely open-minded.

B Proof of the existence of an open-minded, com-
pletely pessimistic finitely additive probability
measure:

In the following definitions, v ranges over reals in the unit interval and i
ranges over natural numbers.

Let Lv be the set of sequences whose limiting relative frequency of 1s
equals v.

Let Bv be Bernoulli measure with bias v, the unique countably additive
probability measure on S that treats the digits of the sequence as if they were
generated by independent tosses of a coin with probability v of landing “1”.

Let Bi
v be the countably additive probability measure on S that treats

the first i digits of the sequence as if they were generated by independent
tosses of a coin with probability v of landing “1”, and the remaining digits
as if they were generated by independent tosses of a coin with probability
1− v of landing “1”.23

Now define P0 and P1 as follows. For any set K of sequences, let P0(K) =
blim∞

i=1 Bi
.9(K), and let P1(K) = blim∞

i=1 Bi
.1(K), where blim is a Banach limit

operator.24

It is easy to check that P0 and P1 are finitely additive probability
measures. For example, whenever K and K′ are disjoint sets of se-
quences, P0(K ∪ K′) = blim∞

i=1 Bi
.9(K ∪ K′) = blim∞

i=1 (Bi
.9(K) + Bi

.9(K
′)) =

23In other words, for v ∈ (0, 1) Bi
v is the unique countably additive measure on S such

that for any finite string s, Bi
v = vn(1− v)z(1− v)n′vz′ , where n and z are the number of

1s and 0s, respectively, in the first i digits of s and n′ and z′ are the number of 1s and 0s,
respectively, in any remaining digits of s.

24A Banach limit operator is a linear operator on all bounded sequences of reals, defined
so that it coincides with the ordinary limit whenever that limit exists. Banach limit opera-
tors are not unique, and their existence nonconstructively follows from the axiom of choice
(see Rao and Rao (1983, 39–40)). Dependence on a Banach limit is what makes the present
conditions on P0 and P1 fail to be constructive.
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blim∞
i=1 Bi

.9(K) + blim∞
i=1 Bi

.9(K
′) = P0(K) + P0(K′).

(Informally, we can think of P0 and P1 in the following way: P0 treats the
sequence as if a large initial segment of it is generated by tosses of a coin
biased toward “1”, and the rest by a coin biased toward “0”. P1 treats the
sequence in exactly the opposite way. In each case, the initial segment is
expected to be extremely long, in the following sense: for every k, however
large, P0 and P1 treat the first k digits as if they are part of the initial segment.
That is what forces P0 and P1 to be merely finitely additive.)

Let P = (P0 + P1)/2. P is clearly a finitely additive probability function.
We will now complete the proof by showing that P is open-minded and
completely pessimistic with respect to the hypothesis L.9. Note that for any
x ∈ L.9 and for any i,

P(L.9|xi) =
P(L.9 ∩ xi)

P(xi)
=

(1/2)(P0(L.9 ∩ xi) + P1(L.9 ∩ xi))

(1/2)(P0(xi) + P1(xi))
(1)

=
(1/2)(0 + P1(xi))

(1/2)(P0(xi) + P1(xi))
(2)

=
P1(xi)

P0(xi) + P1(xi)
=

1
1 + P0(xi)/P1(xi)

(3)

=
1

1 + B.9(xi)/B.1(xi)
. (4)

(1) holds by definition. (2) holds because P1(L.9) = 1 and P0(L.9) = 0, since
for each i, Bi

.1(L.9) = 1 and Bi
.9(L.9) = 0 by the strong law of large numbers.

(3) is simple algebra. (4) holds because for any binary sequence x and any
natural number i, P0(xi) = B.9(xi) and P1(xi) = B.1(xi). To see why, note
that P0(xi) = blim∞

j=1Bj
.9(xi) = blim∞

j=iB
j
.9(xi) = blim∞

j=iB.9(xi) = B.9(xi).
Now consider what happens to (4) as i approaches infinity: The propor-

tion of 1s in the first i digits of x approaches .9 (since x ∈ L.9). As a result,
B.9(xi)/B.1(xi) grows without bound, and hence (4) approaches 0. So when
x ∈ L.9, limi→∞ P(L.9|xi) = 0. A similar argument shows that when x ∈ L.1,
limi→∞ P(L.1|xi) = 0.

It follows that P is open-minded, since for any initial segment of digits,
appending a large enough finite block consisting of 90% 1s will force P to
assign a probability to L.9 that is arbitrarily close to 1, and appending a large
enough finite block consisting of 90% 0s will force P to assign a probability
to L.9 that is arbitrarily close to 0.

It also follows that P is completely pessimistic, since P(L.9 ∪ L.1) = 1,
and the above argument shows that P converges to the wrong verdict about
L.9 for any sequence in L.9 ∪ L.1.
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