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Abstract

The purpose of this short article is to build on the work of Ghirardi, Marinatto
and Weber (Ghirardi, Marinatto & Weber 2002; Ghirardi & Marinatto 2003, 2004,
2005) and Ladyman, Linnebo and Bigaj (2013), in supporting a redefinition of en-
tanglement for “indistinguishable” systems, particularly fermions. According to the
proposal, non-separability of the joint state is insufficient for entanglement. The re-
definition is justified by its physical significance, as enshrined in three biconditionals
whose analogues hold of “distinguishable” systems.
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1 Introduction

In this article, I wish to give support for a redefinition of ‘entanglement’ for “indis-
tinguishable” systems; i.e. systems for which permutation invariance is imposed. This
redefinition was first proposed by Ghirardi, Marinatto and Weber (Ghirardi, Marinatto
& Weber 2002; Ghirardi & Marinatto 2003, 2004, 2005), and has recently been endorsed
by Ladyman, Linnebo and Bigaj (2013). My contribution here will be to prove that the
proposed redefinition enjoys a physical significance that is not shared by the standard
concept, according to which a joint state of a quantum assembly is entangled iff it is
non-separable; i.e. inexpressible as a product state.
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The physical significance of the concept, which I here call GMW-entanglement, is
enshrined in three biconditionals the analogues of which hold for the standard concept
of entanglement for “distinguishable” systems; i.e. systems for which permutation in-
variance is not imposed. These three biconditionals are:

1. The joint state of any two-system assembly is entangled iff it violates a Bell in-
equality.

2. The joint state of any assembly is not entangled iff the constituent systems’ states
are pure.

3. The joint state of any assembly is not entangled iff the constituent systems’ states
determine the joint state.

Each of the three biconditionals can be construed in two way: (i) as about the stan-
dard notion of entanglement, as applied to “distinguishable” quantum systems (i.e. for
which permutation-invariance is not imposed); and (ii) as about GMW-entanglement,
as applied to “indistinguishable” quantum systems. The biconditionals under (i) are
well-known (the first is a Theorem due to Gisin 1991); under (ii) they are not known.

Proving the first biconditional under construal (ii) is the main work of this paper.
It will be crucial to this proof that a couple of other concepts be understood rather
differently, in a permutation-invariant setting, than in the usual setting. In particular,
we need to revise our understanding of what counts as a local operation and how to
extract the states of constituent systems from the joint state. The revision of both of
these concepts is necessary for the following reason: in the “distinguishable” case, these
concepts make essential appeal to the factor Hilbert spaces that make up the assembly’s
joint Hilbert space; and our best understanding of permutation invariance is one in which
factor Hilbert space indices—or, equivalently, the order in which they stand in the tensor
product—have no physical meaning. The second and third biconditionals will drop out
of a proper revision of these concepts.

In Section 2, I briefly review the topic of permutation invariance in quantum mechan-
ics, and argue that its best interpretation is one that treats the invariance as reflecting by
a representational redundancy in the standard quantum formalism. It is the fact of this
redundancy which motivates the revisions in the concepts of local operation, constituents’
states and entanglement. In Section 3, Gisin’s Theorem and GMW-entanglement are
both reviewed, and some confusions cleared up. Section 4 contains the proposed re-
definitions of local operations, constituents’ states and entanglement, and proofs of the
three biconditionals.

2 Permutation invariance, symmetric operators and the
wedge product

Permutation-invariant quantum mechanics is standard quantum mechanics with the ad-
ditional condition of permutation invariance. We begin with the single-system Hilbert
space H equipped with an algebra of quantities. From this we define the N -fold ten-
sor product bNH, the prima facie state space for N “indistinguishable” systems (their
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indistinguishability is expressed by the fact that any two factor Hilbert spaces are uni-
tarily equivalent). The joint Hilbert space bNH carries a natural unitary representation
U : SN Ñ UpbNHq of the group SN of permutations on N symbols. For example, the
permutation pijq, which swaps systems i and j, is represented by the unitary operator
Upijq defined on basis states (having chosen an orthonormal basis t|φkyu on H) by

Upijq|φk1y b . . .b |φkiy b . . .b |φkjy b . . .b |φkN y

“ |φk1y b . . .b |φkjy b . . .b |φkiy b . . .b |φkN y (1)

and then extended by linearity.

Permutation invariance, otherwise known as the Indistinguishability Postulate (Mes-
siah & Greenberg 1964, French & Krause 2006), is the condition on any operator
Q P BpbNHq, which is to represent a legitimate physical quantity, that it be symmetric;1

i.e. for all permutations π P SN and all states |ψy P bNH,

xψ|U :pπqQUpπq|ψy “ xψ|Q|ψy (2)

The representation U is reducible, and decomposes into various irreducible representa-
tions, each irreducible representation corresponding to a different symmetry type; namely
bosonic states, fermionic states and (if N ě 3) a variety of paraparticle states (see
e.g. Tung 1985, Ch. 5). If we consider only the information provided by the symmetric
operators, we treat permutation invariance as a superselection rule, and each superse-
lection sector corresponds to one of these symmetry types.

What does it mean to “impose” permutation invariance? Isn’t it rather that per-
mutation invariance holds of some operators and not others? I propose to impose per-
mutation invariance means to lay it down as a necessary condition on any operator’s
receiving a physical interpretation. This justifies, and is justified by, treating the factor
Hilbert space labels—i.e. the order in which single-system operators and states lie in the
tensor product—as nothing but an artefact of the mathematical formalism of quantum
mechanics.

What is the justification for interpreting the factor Hilbert space labels in this way?
The ultimate justification is of course that it leads to an empirically adequate theory.
It is an empirical fact that elementary particles exhibit statistics consistent with their
being either bosons or fermions. But this fact is logically weaker than the claim that
factor Hilbert space labels represent nothing. It could be that factor Hilbert space labels
represent (or name), for example, the constituent systems, and that the joint state of
any assembly of elementary particles remains in the fermionic or bosonic sector under
all actual physical evolutions due only to the fact that the corresponding Hamiltonian
happens to be permutation-invariant. Indeed, this interpretative gloss is either explicitly
propounded or implicitly assumed by most authors in the literature (e.g. French &
Redhead 1988; Butterfield 1993; Huggett 1999, 2003; French & Krause 2006; Muller &
Saunders 2008; Muller & Seevnick 2009; Caulton 2013). However, it may be argued that
the physical emptiness of the factor Hilbert space labels offers the best explanation of the
empirical fact that permutation invariance seems always to hold true. This suggestion
is in line with a more general interpretative stance in physics: that any exact symmetry
is a symptom of representational redundancy in the corresponding theory’s formalism.

1This use of ‘symmetric’ is not to be confused with the condition that xψ|Qφy “ xQψ|φy for all
|ψy, |φy P dompQq.

3



The focus of this paper is fermionic states and their compositional structure. Picking
some orthonormal basis t|φiyu in H, these states are spanned by states of the form

1
?
N !

ÿ

πPSN

p´1qdeg π|φiπp1qy b |φiπp2qy b . . .b |φiπpNqy (3)

and carry the alternating irreducible representation of SN ; i.e. any permutation π is
represented by multiplication by p´1qdeg π, where deg π is the degree of the permutation
π (i.e. the number of pairwise swaps into which π may be decomposed).

Following Ladyman, Linnebo and Bigaj (2013), we may use the mathematical appara-
tus of Grassmann or exterior algebras to represent fermionic states. The exterior algebra
ΛpV q over the vector space V (over the field of complex numbers C) is obtained by quo-
tienting the tensor algebra T pV q :“

À8
k“0 T

kpV q “ C‘V ‘pV bV q‘pV bV bV q‘ . . .
with the equivalence relation „ defined so that α „ β iff α and β have the same anti-
symmetrization;2 i.e.

ΛpV q :“ T pV q{ „ . (4)

For example, rxb ys “ r´y b xs and rxb xs “ r0s. We may set V “ H, then there is a
natural isomorphism ι from the elements of ΛpHq onto the vectors of the fermionic Fock
space F´pHq :“

ÀdimH
N“0 ApbNHq. ι simply takes any „-equivalence class of degree-r

vectors of T rpHq to the anti-symmetric degree-r vector in ApbrHq that is their common
anti-symmetrization. Therefore we may pick out any N -fermion state in ApbNHq by
specifying its pre-image under ι in ΛN pHq (i.e. the subalgebra of ΛpHq containing only
degree-N vectors).

Elements of ΛpV q are called decomposable iff they are equivalence classes rxi1 b
xi2 b . . . b xir s containing product vectors. (Not all elements are decomposable.) To
anticipate, the decomposable elements of ΛN pHq correspond to states of ApbNHq that
are non-GMW-entangled.

The product on the exterior algebra is the exterior or wedge product ^, defined by
its action on decomposable elements as follows:

rxi1 b xi2 b . . .b xir s ^ rxir`1 b xir`2 b . . .b xir`ss “ rxi1 b xi2 b . . .b xir`ss , (5)

where tx1, x2, . . . xdimV u is an orthonormal basis for V and each ik P t1, 2, . . . ,dimV u.
We then extend the definition of ^ to non-decomposable elements by bilinearity. (Note
that if there is a pair ij “ ik for j ‰ k, then the righthand side of (5) is r0s.) For any
α P ΛrpV q and any β P ΛspV q, α^ β “ p´1qrsβ ^ α P Λr`spV q.

In the following, I will, like Ladyman, Linnebo and Bigaj (2013), make use of a
harmless abuse of notation by referring to anti-symmetric states by their corresponding
wedge product. In particular, given an orthonormal basis t|φiyu on H,

|φi1y ^ |φi2y ^ . . .^ |φiN y (6)

will be used as a shorthand for

1
?
N !

ÿ

πPSN

p´1qdeg π|φiπp1qy b |φiπp2qy b . . .b |φiπpNqy . (7)

2Equivalently, ΛpV q is the quotient algebra T pV q{DpV 2
q of T pV q by the two-sided ideal DpV 2

q

generated by all 2-vectors of the form xb x. See e.g. Mac Lane & Birkoff (1991, §XVI.6).
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It is common to represent an r-dimensional subspace of V by a wedge product of r
degree-1 vectors (i.e. vectors in V ). Correspondingly, joint states of r fermions which
correspond to decomposable degree-r vectors—i.e. joint states which are non-GMW-
entangled—may be aptly (that is: completely and non-redundantly) represented by
r-dimensional subspaces of H. I return to this point at the end of Section 4.

3 What is entanglement?

Entanglement is standardly defined formally as the non-separability of the assembly’s
state; i.e. a state is entangled iff it cannot be written as a product state (see e.g. Nielsen
& Chuang 2010, 96). The physical significance of this definition is underpinned by a
biconditional, one half of which is Gisin’s Theorem, which applies to assemblies of two
(“distinguishable”) subsystems:

Theorem 3.1 (Gisin 1991) Let |ψy P H1 b H2. If |ψy is entangled (i.e. |ψy is not
a product state), then |ψy violates a Bell inequality. That is, there is some state |χy P
h1 b h2, where h1 ď H1, h2 ď H2 and dim h1 “ dim h2, accessible from |ψy by a local

operation, and a triplet of 2ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q on H1 and a triplet of

2ˆ 2 matrices σp2q “ pσ
p2q
x , σ

p2q
y , σ

p2q
z q, on H2, each satisfying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , (8)

and four 3-vectors a,a1,b,b1 such that

I :“ |Epa,bq ´ Epa,b1q| ` |Epa1,bq ` Epa1,b1q| ą 2 , (9)

where
Epa,bq :“ xχ|a.σp1q b b.σp2q|χy , (10)

etc.

Proof See Gisin (1991). l

So for the joint Hilbert space H1bH2 to contain any entangled states, we must have
dimH1, dimH2 ě 2. The other half of the biconditional is the “easy half”:

Proposition 3.2 Let |ψy P H1bH2. If |ψy is not entangled (i.e. |ψy is expressible as a
product state), then |ψy satisfies any Bell inequality; that is, for any state |χy accessible

from |ψy by a local operation, and any triplet of 2 ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q

on H1 and any triplet of 2ˆ 2 matrices σp2q “ pσ
p2q
x , σ

p2q
y , σ

p2q
z q, on H2, each satisfying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , (11)

and any four 3-vectors a,a1,b,b1, then

I :“ |Epa,bq ´ Epa,b1q| ` |Epa1,bq ` Epa1,b1q| ď 2 . (12)

Proof. Since |ψy is non-entangled, then it has the form

|ψy “ |φy b |θy (13)
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for some |φy and |θy. Any state accessible from |ψy by a local operation also has this
form, so we proceed with |χy “ |ψy. Any Epa,bq then takes the form

Epa,bq :“ xψ|a.σp1q b b.σp2q|ψy (14)

“ xφ|a.σp1q|φyxθ|b.σp2q|θy (15)

“: αβ (16)

where α :“ xφ|a.σp1q|φy and β :“ xθ|b.σp2q|θy. If we similarly define α1, β1, then

I “ |αpβ ´ β1q| ` |α1pβ ` β1q| , (17)

and since |α|, |α1|, |β|, |β1| ď 1, there is no set of values for which I exceeds 2. l

Corollary 3.3 Let |ψy P H1 bH2. |ψy is entangled iff it violates a Bell inequality.

This biconditional gives entanglement physical meaning, since the Bell inequalities rep-
resent physically realisable results—at least so long as we assume that any bounded
self-adjoint operator represents a physical quantity.

However, when we turn to permutation-invariant quantum mechanics, the signifi-
cance of this biconditional should be doubted. Permutation invariance puts restrictions
on the available algebra of quantities for the joint system, and some of those prohib-
ited quantities are involved in the definition of the correlation functions Epa,bq. In a
permutation-invariant setting, H1 “ H2 and the only symmetric correlation functions
are of the form

Epa,aq :“ xψ|a.σ b a.σ|ψy . (18)

Yet the Bell inequality requires us to independently vary the quantities on each sys-
tem. Therefore, under permutation invariance the usual Bell inequality cannot even be
constructed.

Two responses are available to us, only one of which is normally taken. The com-
mon response is to refrain from the interpretative strategy endorsed in Section 2, and to
lift the restriction on the joint algebra placed by permutation invariance. Permutation-
invariance is then construed as nothing more than a “dynamical inaccessibility”: the
prohibited quantitiess still have physical meaning; it is just that dynamical evolution
under them is unavailable to the joint system. Any proponent of this response may still
want to say that the biconditional linking entanglement to the violation of a Bell inequal-
ity can be taken seriously, and that therefore non-separability is the right definition of
entanglement.

However, as I argued in Section 2, we ought to take a stronger reading of permutation
invariance. Under this reading, any element in the mathematical formalism that is not
invariant under arbitrary permutation should not be given a physical interpretation. In
that case, the non-symmetric quantities used in the definition of the correlation functions
simply cannot be given any physical meaning. In that case, we must renounce the idea
that non-separability provides a physically adequate definition of entanglement.

These doubts have been expressed by Ghirardi, Marinatto and Weber in a se-
ries of papers (Ghirardi, Marinatto & Weber 2002; Ghirardi & Marinatto 2003, 2004,
2005). They propose an alternative definition of entanglement, which have called GMW-
entanglement. Although not their explicit definition, it turns out to be equivalent to
following:
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Definition 3.1 A joint state is GMW-entangled iff it is not the anti-symmetrization of
a product state.

So, for example, the spin-singlet state | Òy ^ | Óy “ 1?
2
p| Òy b | Óy ´ | Óy b | Òyq counts as

non-GMW-entangled.

It may come as a surprise that a state which we have all learned to think of as
maximally entangled—indeed, the state most commonly used to illustrate the violation
of a Bell inequality—should come out as non-entangled on any reasonable definition.
But there need be no confusion here. The singlet state is indeed entangled, so long as
we have access to the full algebra of bounded operators. If we do not, as in the case of
permutation invariance, then that attribution needs to be revised.

But aren’t electrons, which are fermions, and therefore subject to permutation invari-
ance, involved in physical violations of the Bell inequality? And don’t those violations
arise in particular when the electrons are prepared in the singlet state? The answer to
both these questions is Yes, but we need to be careful about all of the electrons’ degrees
of freedom. As Ghirardi, Marinatto & Weber (2003, 3) and Ladyman, Linnebo & Bigaj
(2013, 216) point out, the full state in the standard EPRB experiment is

1

2
p|Ly1 b |Ry2 ` |Ry1 b |Ly2q b p|Òy1 b |Óy2 ´ |Óy1 b |Òy2q , (19)

where |Ly and |Ry represent spatial wavefunctions concentrated at the left-hand and
right-hand sides of the lab respectively. Written using the wedge product, this state is

1
?

2
p|L, Òy ^ |R, Óy ´ |L, Óy ^ |R, Òyq , (20)

which is manifestly not expressible as the anti-symmetrization of a product state. So it
counts as GMW-entangled.

But we still lack some way of making sense of Bell inequality violation under per-
mutation invariance—one that agrees with the prevailing belief that state (19) violates
a Bell inequality. It is the purpose of the next Section to do that.

4 Bell inequalities, local operations and constituent states
under permutation invariance

In order to define a Bell inequality in a permutation-invariant setting, we need some way
of picking out the subsystems that is permutation-invariant—in particular, we may not
appeal to the factor Hilbert space labels. Our solution, inspired by Ghirardi, Marinatto
& Weber (2002) and Dieks & Lubberdink (2011), is to appeal to the states of the
subsystems. This may be seen as the quantum analogue of Russell’s (1905) strategy of
picking out objects with a property that is uniquely satisfied.

I illustrate the strategy for the case N “ 2; its generalisation to N ą 2 will be
obvious. The quantum analogue of a 1-place formula is a projector that acts on the
single-system Hilbert space H. So to pick out two subsystems we select two projectors
E1, E2 on H such that E1 K E2, i.e. E1E2 “ E2E1 “ 0; I call this condition orthogonality.
The orthogonality of the projectors is crucial, since it is necessary and sufficient to ensure
that, for any joint state, the two projectors do not select the same subsystem.
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However, there is still the danger that one of the projectors, E1 say, will pick out
both subsystems. Since the subsystems are fermions, we can rely on Pauli exclusion to
protect us from this if we impose dimE1 “ dimE2 “ 1. However, this condition is far
too strong, since it will select subsystems only in the corresponding pure states, and we
want to allow the subsystems to occupy mixed states. (In fact GMW-entangled states
are precisely those for which we can ascribe the subsystems mixed states; see Caulton
ms.)

It is sufficient to demand that the joint state |ψy be an eigenstate of the projector

E1 b E2 ` E2 b E1 (21)

with eigenvalue 1; I call this condition exhaustion. Note that this projector is permutation-
invariant. I propose that we interpret it as picking out those joint states in which one
subsystem is in a state in ranpE1q and the other is in a state in ranpE2q. But it must be
emphasized that (21) should not be interpreted as the quantum disjunction, ‘Subsystem
1 is in a state in ranpE1q and subsystem 2 is in a state in ranpE2q QOR subsystem 1 is
in a state in ranpE2q and subsystem 2 is in a state in ranpE1q.’ The individual disjuncts
of this proposition are not permutation-invariant and so have no physical interpreta-
tion. Rather, we must interpret (21) primitively as the proposition ‘Exactly one of the
subsystems is in a state in ranpE1q and exactly one of the subsystems is in a state in
ranpE2q.’ Interpreting the projector primitively in this way (i.e. not as a disjunction)
is supported by the following fact: if dimE1 “ dimE2 “ 1, then (21) projects onto a
single ray in the fermionic Hilbert space, and so could not be a non-trivial disjunction
of other propositions.

Therefore our two conditions on what we might call individuating projectors E1

and E2 are that they be: (i) orthogonal; and (ii) exhaustive. A pair of individuating
projectors can always be found for any given 2-fermion state. (For a proof, see Caulton
ms.). The same is not true for bosonic or paraparticle states.

Once we have these individuating projectors, we can define operators associated
with the corresponding subsystems. The proposal is simple: any operator A on H is
associated with the subsystem individuated by Ei iff EiAEi “ A. (Note that if we had
demanded that dimE1 “ dimE2 “ 1, then the algebra of operators associated with each
subsystem would be Abelian.) We can now define permutation-invariant operators on
the joint system which act separately on each subsystem; i.e. they are the permutation-
invariant analogues of Ab 1 and 1bB. They have the general form

E1AE1 b E2BE2 ` E2BE2 b E1AE1 , where A,B P BpHq . (22)

All this leads to the following proposal for what is for a fermionic joint state |ψy to
violate a permutation-invariant Bell inequality:

Definition 4.1 Let |ψy P ApHbHq. |ψy violates a permutation-invariant Bell inequal-
ity iff there is some state |χy, accessible from |ψy by a local operation, and two projectors
E1, E2 on H, such that E1 K E2 and

pE1 b E2 ` E2 b E1q |χy “ |χy , (23)

and two triplets of 2 ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q,σp2q “ pσ

p2q
x , σ

p2q
y , σ

p2q
z q, satis-

fying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , Eiσ

piq
a Ei “ σpiqa , (24)
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and four 3-vectors a,a1,b,b1 such that

IPI :“ |F pa,bq ´ F pa,b1q| ` |F pa1,bq ` F pa1,b1q| ą 2 , (25)

where
F pa,bq :“ xχ|

´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy , (26)

etc.

It is important to notice that the formal explication of a “local” operation, used in the
definition above, must also change under permutation-invariance. The guiding physical
idea is the same for both: just as, for “distinguishable” systems, a local operation is
one that acts on each subsystem—i.e. each factor Hilbert space—independently (and so
has product form), so too under permutation-invariance a local operation should act on
each subsystem—as individuated by E1 and E2—independently. So under permutation
invariance a local operation is one whose form is given in (22).

We are now ready to prove the biconditional linking GMW-entanglement to the
violation of a permutation-invariant Bell inequality. Each direction of the biconditional
will be proved separately.

Theorem 4.1 Let |ψy P ApHbHq. If |ψy is not GMW-entangled, (i.e. |ψy is the anti-
symmetrization of a product state) then |ψy satisfies any Bell inequality for symmetric
quantities. That is, for any state |χy accessible from |ψy by a local operation, and any
two projectors E1, E2 on H such that

(i) E1 K E2; and

(ii) pE1 b E2 ` E2 b E1q |χy “ |χy ;

there is no pair of triplets of 2ˆ2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q,σp2q “ pσ

p2q
x , σ

p2q
y , σ

p2q
z q

satisfying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , Eiσ

piq
a Ei “ σpiqa (27)

for which, for some choice of four 3-vectors a,a1,b,b1,

IPI :“ |F pa,bq ´ F pa,b1q| ` |F pa1,bq ` F pa1,b1q| ą 2 , (28)

where
F pa,bq :“ xχ|

´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy , (29)

etc.

Proof. If dimH ă 4, then no pair of triplets of 2 ˆ 2 matrices satisfying the above
conditions can be found. So we assume dimH ě 4. Any two projectors E1 and E2

satisfying the above conditions must satisfy E1|φ1y “ |φ1y, E2|φ2y “ |φ2y, E1|φ2y “
E2|φ1y “ 0, where |ψy can be written

|ψy “ |φ1y ^ |φ2y . (30)
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Any state accessible from |ψy by a local operation (in the permutation-invariant sense)

also has this form, so we proceed with |χy “ |ψy. Since E1 K E2 and Eiσ
piq
a Ei “ σ

piq
a ,

σpiq|φjy “ 0 if i ‰ j (i, j P t1, 2u). Therefore

F pa,bq “ xφ1|a.σ
p1q|φ1yxφ2|b.σ

p2q|φ2y (31)

“: αβ (32)

where α :“ xφ1|a.σ
p1q|φ1y and β :“ xφ2|b.σ

p2q|φ2y. If we similarly define α1, β1, then

IPI “ |αpβ ´ β1q| ` |α1pβ ` β1q| , (33)

and since |α|, |α1|, |β|, |β1| ď 1, there is no set of values for which IPI exceeds 2. l

An important example of a non-GMW-entangled state is

|L, Òy ^ |R, Óy :“
1
?

2
p|L, Òy b |R, Óy ` |R, Óy b |L, Òyq . (34)

No permutation-invariant Bell inequality is violated for this state.

For the second half of the biconditional, we will need a lemma (also used by Schlie-
mann et al 2001 and Ghirardi & Marinatto 2004), which is the fermionic analogue of
the Schmidt bi-orthogonal decomposition theorem; I merely report it here.

Lemma 4.2 For any antisymmetric d ˆ d complex matrix A (i.e. A P Mpd,Cq and
AT “ ´A), there exists a unitary transformation U such that A “ UZUT , where Z is a
block-diagonal matrix of the form

Z “ diagrZ1, . . . Zr, Z0s, where Zi “

ˆ

0 ci
´ci 0

˙

and ci P C (35)

and Z0 is the pd´ 2rq ˆ pd´ 2rq zero matrix.

Proof. See Mehta (1989).

Theorem 4.3 Let |ψy P ApH bHq. If |ψy is GMW-entangled (i.e. |ψy is not the anti-
symmetrization of a product state), then |ψy violates a Bell inequality for symmetric
quantities. That is, there is some state |χy, accessible from |ψy by a local operation, and
two projectors E1, E2 on H, such that E1 K E2 and

pE1 b E2 ` E2 b E1q |χy “ |χy , (36)

and two triplets of 2 ˆ 2 matrices σp1q “ pσ
p1q
x , σ

p1q
y , σ

p1q
z q,σp2q “ pσ

p2q
x , σ

p2q
y , σ

p2q
z q, satis-

fying

rσpiqa , σ
piq
b s “ 2iεabcσ

piq
c , tσpiqa , σ

piq
b u “ 2δab , Eiσ

piq
a Ei “ σpiqa , (37)

and four 3-vectors a,a1,b,b1 such that

IPI :“ |F pa,bq ´ F pa,b1q| ` |F pa1,bq ` F pa1,b1q| ą 2 , (38)

where
F pa,bq :“ xχ|

´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy , (39)

etc.
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Proof. |ψy has the general form

|ψy “
ÿ

ij

aij |θiy b |θjy (40)

where aij “ ´aji. We can represent |ψy as a complex d ˆ d anti-symmetric matrix A.
Any unitary transformation U on H corresponds to the transformation A ÞÑ UAUT . So,
given Lemma 4.2, we can find a basis t|φiyu such that

|ψy “

z d
2

{
ÿ

i“1

ci|φ2i´1y ^ |φ2iy . (41)

If |ψy is GMW-entangled, then we can order the basis vectors so that c1, c2 ‰ 0. Now
define

|χy :“
c1|φ1y ^ |φ2y ` c2|φ3y ^ |φ4y

a

|c1|2 ` |c2|2
. (42)

|χy may be obtained from |ψy by a local, selective operation. The idea now is to treat
the state |χy analogously to the entangled state

c1|φ1y b |φ2y ` c2|φ3y b |φ4y , (43)

which is subject to Gisin’s Theorem. Define

E1 :“ |φ1yxφ1| ` |φ3yxφ3| , E2 :“ |φ2yxφ2| ` |φ4yxφ4| . (44)

Then it may be checked that pE1 b E2 ` E2 b E1q |χy “ |χy. The proof now follows
analogously to Gisin (1991). We define Pauli-like matrices for the factor spaces. Let

σp1qx :“ |φ1yxφ3| ` |φ3yxφ1| (45)

σp1qy :“ ´i p|φ1yxφ3| ´ |φ3yxφ1|q (46)

σp1qz :“ |φ1yxφ1| ´ |φ3yxφ3| (47)

and

σp2qx :“ |φ2yxφ4| ` |φ4yxφ2| (48)

σp2qy :“ ´i p|φ2yxφ4| ´ |φ4yxφ2|q (49)

σp2qz :“ |φ2yxφ2| ´ |φ4yxφ4| (50)

It may be checked that these operators satisfy the conditions above. Some calculation
yields

F pa,bq :“ xχ|
´

a.σp1q b b.σp2q ` b.σp2q b a.σp1q
¯

|χy

“ azbz `
2<epc1c

˚
2q

|c1|2 ` |c2|2
paxbx ´ aybyq `

2=mpc1c
˚
2q

|c1|2 ` |c2|2
paxby ` aybxq (51)

“: azbz ` ξ cos γpaxbx ´ aybyq ` ξ sin γpaxby ` aybxq (52)

where ξ :“ 2|c1c2|
|c1|2`|c2|2

and γ :“ argpc1c
˚
2q. Note that 0 ă ξ ď 1. We now choose

ax “ sinα, ay “ 0, az “ cosα; bx “ sinβ cos γ, by “ sinβ sin γ, bz “ cosβ to obtain

F pa,bq “ cosα cosβ ` ξ sinα sinβ (53)
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Making similar choices for a1,b1, and selecting α “ 0, α1 “ π
2 , we obtain

ˇ

ˇF pa,bq ´ F pa,b1q
ˇ

ˇ` |F pa1,bq ` F pa1,b1q| “
ˇ

ˇcosβ ´ cosβ1
ˇ

ˇ` ξ
ˇ

ˇsinβ ` sinβ1
ˇ

ˇ (54)

We may choose cosβ “ ´ cosβ1 “: η, sinβ “ sinβ1 “
a

1´ η2, for which

ˇ

ˇF pa,bq ´ F pa,b1q
ˇ

ˇ` |F pa1,bq ` F pa1,b1q| “ 2pη ` ξ
a

1´ η2q. (55)

This quantity is maximal for η “ 1?
1`4ξ2

, for which it takes the value 2p1`2ξ2q?
1`4ξ2

, which is

strictly greater than 2 for all ξ ą 0; i.e. for all non-zero c1 and c2. l

Corollary 4.4 Let |ψy P ApHbHq. |ψy is GMW-entangled iff it violates a permutation-
invariant Bell inequality.

As mentioned above, an important example of a GMW-entangled state is the EPRB
state of two electrons:

1
?

2
p|L, Òy ^ |R, Óy ´ |L, Óy ^ |R, Òyq . (56)

If we use the individuating projectors |LyxL| b 1spin and |RyxR| b 1spin, and the sub-
systems do not change their location, then this state is physically equivalent (because
unitarily equivalent) to the state

1
?

2
p|ÒyL b |ÓyR ´ |ÓyL b |ÒyRq P C2 b C2, (57)

in which the subsystems are indexed by their locations L and R, and permutation
invariance is not imposed.3 (This is essentially pointed out by Huggett & Imbo 2009.)
In particular, state (57) violates the standard Bell inequality.

Two more biconditionals characterise entanglement for “distinguishable” systems,
both of which can be extended to GMW-entanglement under permutation invariance.
The first biconditional is that any joint state |ψy is not entangled iff the constituent
systems occupy pure states. In a permutation-invariant setting, we may say that con-
stituent systems occupy pure states just in case individuating projectors E1, E2 may
be found that satisfy our two conditions above (orthogonality and exhaustion) and
dimE1 “ dimE2 “ 1. This conditional is obviously equivalent to |ψy’s being the anti-
symmetrization of a product state, i.e. |ψy’s being non-GMW-entangled.

The second biconditional is that |ψy is not entangled iff the constituents’ states
determine the joint state. (Or in metaphysicians’ jargon: |ψy is not entangled iff the
joint state supervenes on the constituents’ states.) This biconditional is linked to the
first by the following two facts: (i) the joint state is always pure; and (ii) pure states are
maximally informative (and so a fortiori more informative than mixed states). Since, by
the first biconditional, the constituent states are pure iff the joint state is not entangled,

3To be more precise: the Hilbert space H spanned by the four fermionic states t|L, Òy ^ |R, Òy, |L, Ò
y ^ |R, Óy, |L, Óy ^ |R, Òy, |L, Óy ^ |R, Óyu, and its associated algebra of bounded operators, is unitarily
equivalent to the Hilbert space spanned by the four “distinguishable”-system states t| ÒyL b | ÒyR, | Ò
yL b | ÓyR, | ÓyL b | ÒyR, | ÓyL b | ÓyRu, and its associated algebra of bounded operators. The relevant

unitary is the restriction of
?

2|Ly1xL| b 1
p1q
spin b |Ry2xR| b 1

p2q
spin to H, which sends (56) to (57). This

unitary equivalence is discussed in a more general setting in Caulton (ms.).
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the constituents’ states carry enough information to collectively determine the joint state
iff the joint state is not entangled. This reasoning carries over for GMW-entanglement
in the permutation-invariant setting, so long the symmetry type of the constituents is
given. In particular, for fermions: any collection of n mutually orthgonal single-system
pure states serves to determine a unique, non-GMW-entangled joint state: namely, their
anti-symmetric combination, or wedge product.

It is important to note that the above suggestions for redefinition entanglement,
constituents’ states and local operations all rely on our two conditions, (i) orthogonality,
E1 K E2, and (ii) exhaustion, pE1 b E2 ` E2 b E1q|ψy “ |ψy, holding; and that (i) and
(ii) are impossible to satisfy for certain bosonic states. (In particular, product states
with identical factors: |φy b |φy.) It is not yet known how to make sense of physical
entanglement for such states.

I conclude with a curious feature of fermionic joint states. It almost goes without
saying that in the case of “distinguishable” systems any given joint state determines
the constituents’ states; one merely has to perform the appropriate partial trace on
the joint system’s density operator |ψyxψ|. One might therefore expect the same to be
true under permutation invariance. However, the partial trace has no physical meaning
under permutation-invariance, since it requires selecting a preferred factor Hilbert space,
a selection that, according to our favoured interpretation of permutation invariance, has
no physical significance.

We must therefore revise how we extract constituents’ states in a permutation-
invariant setting. The most natural alternative—for non-GMW-entangled states at
least—is to look to the degree-1 vectors into which the joint state is decomposable.
However, as is familiar from the use of the wedge product in differential geometry, any
degree-n decomposable wedge product (any non-GMW-entangled joint state of fermions)
can be decomposed in several—indeed continuum-many—ways, as the anti-symmetric
combination of a family of n orthogonal degree-1 vectors (n orthogonal constituents’
pure states). Therefore there is a sense in which a non-GMW-entangled fermionic joint
state fails to determine the states of the constituents; a phenomenon that is, so to speak,
the opposite of entanglement.

However, any two families of n degree-1 vectors, into which a non-GMW-entangled
fermionic state may be decomposed, have the same linear span. So, as mentioned in
Section 2, any non-GMW-entangled state of N constituents may be associated with an
N -dimensional subspace of the single-system Hilbert space H. We may say that any
non-GMW-entangled fermionic joint state fails to determine its constituents’ states in
a way exactly analogous to the failure of a multi-dimensional vector space to determine
the 1-dimensional rays whose span it is. This phenomenon is unique to fermions, and
suggests one more revision to our standard concepts: the sense in which an assembly is
composed from its constituents. A full discussion of that is a matter for another paper.
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