
Causal Decision Theory and EPR correlations !
Abstract. The paper argues that on three out of eight possible hypotheses about the 
EPR experiment we can construct novel and realistic decision problems on which (a) 
Causal Decision Theory and Evidential Decision Theory conflict (b) Causal Decision 
Theory and the EPR statistics conflict. We infer that anyone who fully accepts any of 
these three hypotheses has strong reasons to reject causal Decision Theory. Finally, 
we extend the original construction to show that anyone who gives any of the three 
hypotheses any non-zero credence has strong reasons to reject Causal Decision 
Theory. However, we concede that no version of the Many Worlds Interpretation 
(Vaidman 2014) gives rise to the conflicts that we point out. !
The paper argues (in ss. 1-7) that on three out of eight possible hypotheses 
about the EPR experiment we can construct novel and realistic decision prob-
lems on which (a) Causal Decision Theory and Evidential Decision Theory 
conflict (b) Causal Decision Theory and the statistics for the EPR experiment 
conflict. We infer (in s. 8) that anyone who accepts any of these three hy-
potheses has strong reasons to reject causal Decision Theory. Finally, we ar-
gue (in s. 9) that by a simple extension of the original construction, anyone 
who gives any of these hypotheses any non-zero credence has strong rea-
sons to reject Causal Decision Theory.  

Before turning to our main case let us briefly review the two decision 
theories. Evidential Decision Theory (EDT) recommends doing what is most 
auspicious. More formally, it recommends whichever option has the greatest 
V-score amongst those available. If V (P) ∈ R measures your news value for
—i.e. how pleased you would be to learn the truth of—an arbitrary proposition 
P, and if Cr (P) ∈ [0, 1] measures your confidence in an arbitrary proposition P, 
then for any (proposition describing an available) option O, Cr and V jointly 
satisfy: !

(1) V (O) = ∑S ∈ S V (O ∧ S) Cr (S⏐O) !
—S being any partition on the underlying space.    1

 Causal Decision Theory (CDT) recommends what is most efficacious 
i.e. the option with the greatest U-score, which we define as: !

(2) U (O) = ∑S ∈ S* V (O ∧ S) Cr (O → S) !
Cr (O → S) measures your confidence in the counterfactual proposition that if 
you were to realize O then S would be true, on a reading of the subjunctive 
that makes it sensitive to the effects but not to the causes or other correlated 
non-effects of what O describes.  

Here, S* is any partition whose cells (sometimes called ‘states of na-
ture’) capture everything you care about given what you do, i.e. if S ∈ S* then 
V (S ∧ O ∧ Y) = V (S ∧ O) for any available O, and Y such that Cr (S ∧ O ∧ Y) 
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> 0.  A convenient choice for S*, if available, will be such that (i) its cells cap2 -
ture everything that matters to me given what I do and (ii) which state of na-
ture or cell obtains cannot be causally influenced by what I do. For instance, if 
I am choosing between taking and not taking my umbrella and care only to 
stay dry, then the partition {S1 = I get wet, S2 = I don’t get wet} meets condition 
(i) but not condition (ii). But the partition {S1 = It rains, S2 = It doesn’t rain} 
meets both conditions. In that case the expression for an option’s U-score 
takes this particularly simple form: !

(3) U (O) = ∑S ∈ S* V (O ∧ S) Cr (S) !
It may seem odd that CDT is still applicable to a decision situation in 

which the state of nature is not causally influenced by what you do. But this is 
in fact a consequence of its concern with causality. Causally independent 
states of nature are those to which the causal contribution of my action is null: 
so it is a distinctive consequence of CDT, which all of its adherents accept, 
that in these cases one’s credences in the states of nature make the same 
contribution to the evaluation of every act, this being reflected in (3). In fact in 
these cases and as (3) suggests, the causal theory is equivalent to Savage’s 
original treatment.    3!!
1. Bell’s Theorem 
In order to appreciate the point it isn’t necessary to grasp any of the mathe-
matical details of EPR beyond the essentially statistical reasoning that creates 
the problem. For this purpose the following completely non-technical exposi-
tion, which follows Mermin (1981), is perfectly adequate.  
 It is technically feasible to produce a device with the following features. 
It has three components: a source S and two receivers A and B. The two re-
ceivers are placed on either side of the source and are so separated from one 
another that there is no possibility of causal commerce between them: at any 
rate, we are at the outset as sure that they are causally isolated as we are 
ever sure that any two systems are causally isolated. Each receiver has a 
display, and a switch with three settings labeled 1, 2 and 3. We can indepen-
dently move each switch to any one of these three settings. 
 After setting the switches we turn on the source. It emits two signals, 
each receiver picking up one. The display of each receiver then shows one of 
two readings: let these be ‘y’ and ‘n’. That represents one ‘run’ of the device. 
We record the run by noting down the setting of each receiver and the reading 
on its display. For instance, we might write ‘12yn’ to indicate that A was set to 
1, B was set to 2, the display on A was y and the display on B was n. Similarly, 
‘33nn’ indicates that both receivers were set to 3 and both displayed ‘n’.  
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 We perform repeated runs of the device with the receivers being set at 
random. Each possible setting of the receiver occurs with the same frequency 
as any other. Very many runs reveal the following statistical facts: !

(4) Whenever the switches on A and B are on the same setting (i.e. 
both on 1, both on 2 or both on 3) the devices display the same 
reading i.e. either they both say ‘y’ or they both say ‘n’. So we 
sometimes get runs like this: ‘11yy’, ‘22yy’. But we never get runs 
like this: ‘22yn’, ‘33ny’. !

(5) When the switches on A and B are on any particular different set-
tings (e.g. A on 1, B on 3), the devices display the same reading 
about 25% of the time. So we get runs like ‘12yn’ and ‘23ny’ about 
three times as often as we get runs like ‘12yy’ and ‘13nn’. !

That completes what we need to know about the workings of this device, 
which is not a mere fiction but has actually been realized, for instance as fol-
lows:  !

The two particles emerging from the [source] are spin 1/2 particles in 
the singlet state. The two receivers contain Stern-Gerlach magnets, 
and the three [positions of the switch on each receiver] determine 
whether the magnets are vertical or at 120° to the vertical in the plane 
perpendicular to the line of flight of the particles. When the switches 
have the same setting the magnets have the same orientation. One re-
ceiver [displays y or n] according to whether the measured spin is 
along or opposite to the field; the other uses the opposite… convention. 
Thus when the [displays give the same reading] the measured spin 
components are different.  

It is a well-known elementary result that, when the orientations 
of the magnets differ by an angle θ, then the probability of spin mea-
surements on each particle yielding opposite values is cos2 (θ/2). This 
probability is unity when θ = 0 [as in (4)] and 1/4 when θ = ±120° [as in 
(5)].  4!

So far we’ve stated only the bare facts concerning the mechanics and perfor-
mance of the device i.e. without any theoretical overlay. What follows is just 
one possible theoretical interpretation of it. 
 Fact (4) records a maximally strong correlation between the readings 
on the displays of the two receivers when both are set in the same way. Given 
that there is no causal communication between the two receivers, it seems 
that the only explanation for this fact is that the two particles are emitted from 
the source in the same state or ‘instruction set’. That is: let us write e.g. ‘YYN’ 
to describe the instruction set of a particle that would generate a reading of ‘y’ 
if the switch on the receiver were at setting 1 or 2 and ‘n’ if the switch were at 
setting 3 (etc.). If on a given run the source emits particles in the state NYN 
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then that would explain our getting (say) the result ‘11nn’ or ‘22yy’ as well as 
the fact that we do not get (say) the result ‘11ny’ or ‘33yn’. To connect with the 
philosophy of physics literature, we add that the hypothesis of a prior instruc-
tion set for the particles is just the hypothesis that there are local hidden vari-
ables causing – perhaps probabilistically – the results at the receivers. 
 Unfortunately the statistical fact (5) looks incompatible with this simple 
and (it seems) inescapable hypothesis. To see why, assume first that there is 
no correlation between the prior state of the particles and your decision to set 
the receivers to any particular pair of settings on any particular run. Let us 
write ‘Fr (X)’ for the frequency of some condition X and ‘Fr (X⏐Y)’ for the rela-
tive frequency of X given the condition Y. Let us write ‘Si’ for the ith state of a 
given particle (so that 1 ≤ i ≤ 3, and Si = Y or Si = N). And let us write ‘j;k’ for 
the proposition that one of the receivers is set to j and the other to k in either 
order (so that j, k = 1, 2 3). Then we may write down the ‘no-correlation’ as-
sumption in the following form: for any S1, S2, S3 and any j, k, we have: !

(6) Fr (S1S2S3⏐j;k) = Fr (S1S2S3) !
Now fact (5) implies that when the receivers are set at different values, 

we get the same reading one-quarter of the time. So in particular we have: !
(7) Fr (YYY⏐1;2) + Fr (YYN⏐1;2) + Fr (NNY⏐1;2) + Fr (NNN⏐1;2) = 

0.25 
(8) Fr (YYY⏐1;3) + Fr (YNY⏐1;3) + Fr (NYN⏐1;3) + Fr (NNN⏐1;3)= 

0.25 
(9) Fr (YYY⏐2;3) + Fr (NYY⏐2;3) + Fr (YNN⏐2;3) + Fr (NNN⏐2;3) = 

0.25 !
From (6) we can simplify these to: !

(10)Fr (YYY) + Fr (YYN) + Fr (NNY) + Fr (NNN) = 0.25 
(11)Fr (YYY) + Fr (YNY) + Fr (NYN) + Fr (NNN) = 0.25 
(12)Fr (YYY) + Fr (NYY) + Fr (YNN) + Fr (NNN) = 0.25 !

Adding these together we get: !
(13)2Fr (YYY) + 2Fr (NNN) + ΣS1, S2, S3 Fr (S1S2S3) = 0.75 !

We know by the probability calculus—which certainly applies to frequencies—
that: !

(14)ΣS1, S2, S3 Fr (S1S2S3) = 1 
(15)2Fr (YYY) + 2Fr (NNN) ≥ 0 !

But (13), (14) and (15) are jointly inconsistent. Since they follow from (5) and 
(6), and since (5) has been observationally verified as convincingly as you 
like, it seems that we are left with two options: either reject (6) and keep the 
hypothesis of a prior instruction set, i.e. retain local hidden variables; or reject 
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the hypothesis of an instruction set. This is the lesson of Bell’s Theorem.  In 
fact each option just mentioned itself involves further sub-options, as follows. !!
2. Eight responses 
(A) We can insist that there is a prior common state of the particles (a prior 
instruction set) but deny (6), i.e. maintain that that state is correlated with 
one’s possibly randomized choice of receiver setting.  

In the quantum mechanics literature, assumption (6) is known by several 
names, each of which reflects a particular interpretative gloss. For example, 
Hofer-Szabó (2012) calls it the no conspiracy assumption, e.g. Bell (1977) 
calls it the free will assumption, and e.g. Evans, Price & Wharton (2013) call it 
the no retrocausality assumption. We will not enter into the justification of 
these names, but it will be helpful to us to group the alternative glosses into 
two sub-options. 

One might claim (A1) that one’s present choice of setting of the receiv-
er has a retrocausal effect on the prior state of the hidden variables, so that, 
for instance, switching the receivers to A = 1 and B = 2 has the effect of in-
hibiting (though without altogether excluding) the prior instruction sets YYY, 
YYN, NNY and NNN.   5

Sub-option (A2) covers two alternatives to (A1). The first is to claim that 
one’s present choice is itself caused, either by the prior state of the particles 
itself, or by some still earlier state that was a common cause of both. Bell 
considered this incompatible with free will.  Whatever you think about that, it 6

certainly implicates the universe in a kind of conspiracy that nowadays is hard 
to credit. 

(A2) also includes the alternative view that the correlation between the 
setting on the receivers and the prior state of the particles is acausal, so that 
here we have a counterexample to Reichenbach’s principle that if a coinci-
dence occurs then there must be a common cause.  This interpretation of 7

events is perhaps less unpalatable than the other option on this branch; but 
as we’ll see, it looks worse than at least one option on another, more popular 
branch. 

A myth persists in the literature to the effect that Bell’s Theorem rules 
out hidden variable completions of quantum mechanics. The matter is some-
what delicate, depending on what one means by ‘local’, but the options under 
(A) certainly are hidden variable responses to Bell’s Theorem that rule out su-
perluminal signaling, either between the experimenter and distant receiver, or 
between the receivers themselves.  8

The alternative to (A) is to maintain that the prior instruction set—if 
there is one—is not correlated with your decision to put the receivers in any 
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particular settings. In that case, we must accept Bell’s finding that there is no 
prior instruction set. But now we are left with trying to explain fact (4): the fact 
that the two particles, when tested by receivers that are at the same setting, 
always give the same reading. 

The taxonomy of ways that one may proceed here is determined by the 
other assumptions required to derive a Bell inequality—one of which, if we re-
tain the no-conspiracy assumption, must therefore be rejected.  Recall from 
Shimony (1990) that, apart from the no-conspiracy assumption (associated 
with (A), above), one must make two more assumptions: outcome indepen-
dence and parameter independence. !
(B) Outcome independence is the assumption that space-like separated mea-
surement outcomes are probabilistically independent, when conditioned on 
the measurement settings for both devices and the value of the hidden vari-
ables (if any). This may be denied in two ways. 

(B1) One might maintain that each particle carries its own instruction 
set—in effect a disposition to produce a reading Si when placed in a receiver 
switched to i—but that there is some non-local causal connection, that is, ac-
tion at a distance between the particles. Labeling the particles A and B, we 
can write SAi and SBj, 1 ≤ i, j ≤ 3 to specify these instruction sets.  

So in particular and in spite of a spacelike interval, screening devices 
and any other causal barrier that one might erect between the receivers, one 
would nonetheless be claiming that choosing to subject particle A to a receiver 
in setting 1 somehow influences its arbitrarily distant and isolated ‘twin’ to ac-
quire a specification SB1 = SA1. Like the retrocausal interpretation (A1) then, 
this view does commit us to the existence of non-relativistic causality, i.e. to 
the faster-than-light transmission of causal influence.  9

Also under (B1) we put responses which deny outcome dependence by 
postulating a (non-local) causal connection between measurement out-
comes—such responses may reject hidden variables altogether. An example 
of such a theory is the Ghirardi-Rimini-Weber theory of spontaneous dynami-
cal collapse (see Ghirardi et al. 1986). 

(B2) One might alternatively take the line that there is a non-causal cor-
relation between the hidden variables associated with the particles, so that 
learning that the first receiver has displayed y when switched to setting 1 (say) 
can certainly tell us that the second receiver will give the same result if 
switched to that setting, but that there is no causal connection underlying this 
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correlation, so that any reading on any receiver is in fact causally independent 
of any reading on the other receiver. This reading has the disadvantage of hy-
pothesizing (causally) unexplained correlations between the states on the two 
receivers. On the other hand we might well prefer it to the second version of 
(A2), which also postulates unexplained correlations but which appeals in ad-
dition to a pre-existing instruction set.  !
(C) Parameter independence is the assumption that measurement outcomes 
are probabilistically independent of the choice of apparatus settings for space-
like separated measurement devices, when conditioned on the hidden vari-
ables (if any). Theories that reject parameter independence must be hidden-
variable theories, since bare quantum mechanics (in which nothing supplants 
or is added to the wave-function) obeys parameter independence.  One ex-
ample of such a theory is the de Broglie-Bohm ‘pilot wave’ theory, in which 
particles have determinate trajectories but are guided by the wave-function, 
which is construed as a physical entity.  10

Parameter dependence allows for the possibility, given a particular spec-
ification of values for the hidden variables, of superluminal signaling, since the 
non-local correlations involve parameters (measurement settings) over which 
experimenters may have direct control.  However, the practical possibility of 
such superluminal signaling for the experimenters is ruled out so long as the 
experimenters are unaware of the hidden variables’ true values, and the rela-
tive frequencies for the various values are as prescribed, via the Born rule, by 
the wave-function.   Later we will consider cases for the de Broglie-Bohm 11

theory in which these frequencies are not given by the Born rule. 
In any case, parameter dependence entails case-by-case superluminal 

signaling between measurement devices, whether or not it is observable, or 
manipulable, by experimenters.  This has strange results.  For, if two events, 
(a) the choice of a measurement setting at A, and (b) a measurement at B are 
space-like separated, then there will be frames of reference in which (a) oc-
curs before (b) and other frames—equally good ones from the point of view of 
special relativity—in which (b) occurs before (a). Faced with a correlation be-
tween (a) and (b), as parameter dependence demands, there are two alterna-
tives to consider. 

(C1) One might wish to claim that the human choice of measurement 
setting (a) always causes (b) (perhaps for reasons similar to Bell’s in his ac-
ceptance of the no-conspiracy assumption). In this case, as in (A1), it seems 
that one must believe in an agent’s action to bring about an effect retrocausal-
ly; for, given any choice of inertial frame, one could construct an experiment in 
which the (b)-type event precedes the (a)-type event in that frame. 
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(C2) One might instead wish to allow that, at least sometimes—most 
plausibly in those cases in which the (b)-type event precedes the correspond-
ing (a)-type event, in some hypothesized privileged inertial frame—the (b)-
type event causes the (a)-type event, i.e. the human choice of measurement 
setting. In these cases we may treat the various outcomes at B as states of 
nature, as described above. 

Also to be included in (C2) is any view that denies causation for at least 
some instances of the EPR experiment. Like (B2), the statistical correlation is 
treated as brute, i.e. non-causal. !
(D) We have not yet discussed Everettian or ‘many worlds’ approaches to the 
EPR experiment. These are worth separating from (A)-(C), since the interpre-
tation of probability for these theories, e.g. in the statement of the above 
probabilistic independence assumptions, is far from straightforward.  It has 
been argued (Timpson and Brown 2002)—and we agree—that the postula-
tion, in the Everett approach, that every possible measurement outcome hap-
pens allows the approach to account for the EPR experiment without invoking 
non-locality of any kind, even that brought about by retrocausality. 

Within the Everettian response, we distinguish between (D1) the deci-
sion-theoretic project of Deutsch, Wallace and Greaves (Deutsch 1999; Wal-
lace 2002, 2003, 2012; Greaves 2004) and (D2) the so-called ‘many minds’ 
response (Albert & Loewer 1988). We discuss these further at s. 7 below. !
Not all of these eight approaches carry the same interest for decision theory, 
at least not for the clash between Causal and Evidential Decision Theory. For 
present purposes the responses of interest are (A2), (B2) and (C2). What 
unites these views is that they all reject certain causal dependencies, though 
different ones in different cases. Thus (A2) grants that there is a common 
cause of the prior state of the hidden variables and the experimenter’s choice 
of setting. But it denies any causal dependence of the former upon the latter. 
Option (B2) on the other hand denies that there is any prior state to be causal-
ly dependent or independent. But what is of interest is that it denies any 
causal dependency between the disposition of one particle to provoke such 
and such display at a receiver in such and such setting, and the correspond-
ing disposition of the other particle.  

The argument will then be as follows. First we argue that anyone who 
takes any of the views (A2), (B2) or (C2) is committed to a disparity between 
EDT and CDT in certain decision cases that we’ll shortly describe. This will 
take slightly different arguments for (A)-type, (B)-type and (C)-type theories: 
that is, first for adherents of (A2), second for adherents of (B2), and finally for 
adherents of (C2). We will discuss the situation for (D)-type theories separate-
ly. 

Then, we argue that this disparity raises two problems for Causal Deci-
sion Theory. The first is that its recommendations in both types of case seem 
to involve a bet against the laws of nature. The second is a more general 
point, which is that what CDT recommends seems to vary depending on 
which of various and (as far as we know) empirically indistinguishable theories 
is true. Thus CDT is oversensitive: its recommendations turn on matters that 
ought to be irrelevant to rational decision. If this second objection applies it 
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appears to rule out any theory of rational decision based upon anything 
stronger than a Humean i.e. purely statistical conception of causality .   12!!
3. A-type theories 
Suppose first that you accept (A2): you think that there is a prior instruction 
set and that its state is not caused by your current decision to switch the re-
ceivers to any particular settings, because: (i) you think that both have a 
common cause; or (ii) you think that it is the prior instruction set that has 
caused your current choice of measurement settings; or (iii) you think that 
there are no relevant causal relations in play.   
 Now consider the following arrangement. Your options are to set the 
receivers in any of these three possible ways: you can set A to 1 and B to 2; A 
to 1 and B to 3; or A to 2 and B to 3. So on every available option the re-
ceivers are in different settings. At the same time you must also make a bet: 
you can bet, either (‘hom’) that the two receivers will display the same read-
ing, or (‘het’) that they will display different readings. In effect you are choos-
ing i, j, for 1 ≤ i < j ≤ 3, and betting either that Si = Sj or that Si ≠ Sj. Finally, the 
‘hom’ bets all have a payoff of $2 and the ‘het’ bets have a payoff of $1.  

So there are 2 × 3 = 6 options; we’ll abbreviate these by two numbers 
to reflect the settings, followed by ‘hom’ or ‘het’ depending on whether you bet 
‘same’ or ‘different’. Thus e.g. ‘12hom’ denotes the option of switching receiv-
er A to setting 1, receiver B to setting 2 and betting that they will give the 
same readings, and ‘23het’ denotes the option of switching receiver A to set-
ting 2, receiver B to setting 3 and betting that they will give different readings.  

According to the (A)-type theories that we are now considering, what 
determines the causal relation between the setting of each receiver and the 
reading that it displays is the prior common state of the particles YYY, NYN 
etc. This common state therefore also determines the payoff of each option. 
For instance, if you take the option ‘13het’ then if the particles are in state 
YYY you will win $0, since S1 = S3 and you have bet that S1 ≠ S3. We may 
therefore take the instruction sets to be the relevant states of nature. The rela-
tions between these, your options and your payoffs are then as summarized 
in the following table: !

YYY YYN YNY YNN NYY NYN NNY NNN

12hom 2 2 0 0 0 0 2 2

13hom 2 0 2 0 0 2 0 2

23hom 2 0 0 2 2 0 0 2

12het 0 0 1 1 1 1 0 0

13het 0 1 0 1 1 0 1 0

23het 0 1 1 0 0 1 1 0
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Table 1: (A)-type EPR case 1 !
Notice that you can never be certain of which column actually obtains even 
after the run. But this makes no difference to the feasibility of the game, be-
cause your payoff is always fixed and verifiable. For instance, if you take the 
option 13het and both receivers read ‘y’, then you don’t know whether the pri-
or state is YYY or YNY. But you do know that your payoff is $0.   
 One problem that arises at this point is that according to (A2), the cor-
relations that are relevant to one’s payoffs are determined by a prior instruc-
tion set that is not in your causal control, and so in a sense fundamentally un-
determined. And it might now seem unclear how a rational recommendation 
can be made at all, using any decision theory.  
 But the assumption that the correlations are non-causal does not in fact 
make either Evidential or Causal Decision Theory inapplicable. In the case of 
Evidential Decision Theory, the stochastic data are all that matter: anyone 
who accepts facts (4) and (5) will, from its perspective, have credences over 
the outcomes that are sufficiently precise to be action-guiding irrespective of 
one’s confidence, or lack of confidence, in any causal structure underlying 
them. And as for Causal Decision Theory: the assumption that the prior in-
struction set is not causally sensitive to the settings on the receivers means 
that we may treat the former as causally independent of anything that you do. 
This in turn makes it possible to apply the representation (3) to the problem in 
Table 1 relative to a partition S* of the event space into possible prior instruc-
tion sets.    

To see how these points apply in detail, let us now consider which of 
the six options EDT and CDT recommend. First consider EDT. In this case the 
matter is simple: if she is sensible then the agent’s conditional credences will 
reflect the relative frequencies as recorded in fact (5). In particular she will 
think: given that the receivers are in different settings—and regardless of 
whether I bet ‘hom’ or ‘het’—, prior instruction sets in which the corresponding 
states are different are about three times as likely as prior instruction sets in 
which the corresponding states are the same. So for i, j such that 1 ≤ i < j ≤ 3, 
we have: !

(16)Cr (Si = Sj⏐ijhom) = Cr (Si = Sj⏐ijhet) = 0.25 
(17)Cr (Si ≠ Sj⏐ijhom) = Cr (Si ≠ Sj⏐ijhet) = 0.75 !

It follows from (1), (16), (17) and Table 1 that the same V-score applies to any 
‘het’ option and the same to any ‘hom’ option; also that the former exceeds 
the latter. For instance: !

(18)V (12hom) = 2Cr (YYY⏐12hom) + 2Cr (YYN⏐12hom) + Cr 
(NNY⏐12hom) + 2Cr (NNN⏐12hom) by Table 1; so: 

(19)V (12hom) = 2Cr (S1 = S2⏐12hom) = 0.5 by (16), (18) 
(20)V (12het) = Cr (YNY⏐12hom) + Cr (YNN⏐12hom) + Cr 

(NYY⏐12hom) + Cr (NYN⏐12hom) by Table 1; so: 
(21)V (12het) = Cr (S1 ≠ S2⏐12het) = 0.75 by (17), (20) !

#10



The same reasoning clearly goes for each of the other options. So EDT reck-
ons the value of any ‘hom’ option (the first three options in Table 1) to be 0.5 
and that of any ‘het’ option (the last three options there) to be 0.75. According-
ly EDT is indifferent between any of the ‘het’ options and prefers any of them 
to any ‘hom’ option :  13!

(22)For any i, j, k, l s.t. (1, 1) ≤ (i, k) < (j, l) ≤ (3, 3): ijhet EDT klhom  !
 Turn now to CDT. Its recommendations won’t depend on the condition-
al credences Cr (YYY⏐12hom) etc. but upon one’s credences in the counter-
factuals Cr (12hom → YYY) etc. But given the theoretical assumption (A2), 
we know that the prior state is not caused by one’s current setting of the re-
ceivers. Assuming, as is surely plausible, that your choice of bet (‘hom’ or 
‘het’) makes no difference to that prior state either, it follows that Cr (12hom → 
YYY) = Cr (YYY) etc. More generally, for any 1 ≤ i < j ≤ 3, and S1, S2, S3 ∈ {Y, 
N}:  !

(23)Cr (ijhom → S1S2S3) = Cr (ijhet → S1S2S3) = Cr (S1S2S3) !
So (3) applies, and it follows that the U-scores for the three ‘hom’ options are 
as follows: !

(24)U (12hom) = 2 (Cr (YYY) + Cr (YYN) + Cr (NNY) + Cr (NNN)) 
(25)U (13hom) = 2 (Cr (YYY) + Cr (YNY) + Cr (NYN) + Cr (NNN)) 
(26)U (23hom) = 2 (Cr (YYY) + Cr (YNN) + Cr (NYY) + Cr (NNN)) !

Similarly the U-scores for the three ‘het’ options are as follows: !
(27)U (12het) = Cr (YNY) + Cr (YNN) + Cr (NYY) + Cr (NYN) 
(28)U (13het) = Cr (YYN) + Cr (YNN) + Cr (NYY) + Cr (NNY) 
(29)U (23het) = Cr (YYN) + Cr (YNY) + Cr (NYN) + Cr (NNY) 

  
Now suppose that each ‘het’ option that gets a higher U-score than its 

corresponding hom option. Then all of the following must be true: !
(30)U (12het) > U (12hom) 
(31)U (13het) > U (13hom) 
(32)U (23het) > U (23hom) !

Substituting (24)-(29) into (30)-(32) and adding the three resulting inequalities 
gives: !
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 In (22) and (35) we are adopting the notational conventions that (a, b) < (c, d) iff a < c and 13

b < d, and (a, b) ≤ (c, d) iff a ≤ c and b ≤ d. Also, if P and Q are options then P EDT Q means 
that EDT strictly prefers P to Q. Similarly, P EDT Q means that EDT reckons P at least as 
choiceworthy as Q. Similarly with ‘CDT’ replacing ‘EDT’.   



(33)2 (Cr (YYN) + Cr (YNY) + Cr (YNN) + Cr (NYY) + Cr (NYN) + Cr 
(NNY)) > 6 (Cr (YYY) + Cr (NNN)) + 2 (Cr (YYN) + Cr (YNY) + Cr 
(YNN) + Cr (NYY) + Cr (NYN) + Cr (NNY)); hence 

(34)0 > 6 (Cr (YYY) + Cr (NNN)) !
But (34) is a contradiction since the credences on the right hand side are both 
at least zero , and so the supposition that entails (30)-(32) must be false. 14

There must be some ‘hom’ option that gets at least as high a U-score as its 
corresponding ‘het’ option. This is the only possibility that is consistent with 
one’s having any credences about the prior state at all. !

(35)For some i, j s.t. 1 ≤ i < j ≤ 3: ijhom CDT ijhet in Table 1 !
But taken together (22) and (35) imply that there must be some pair of 

options ijhom and ijhet over whose relative ranking EDT and CDT disagree. In 
particular and without loss of generality, let this be the pair 12hom and 12het. 
Then: !

(36)V (12het) > V (12hom) 
(37)U (12hom) ≥ U (12het) !
Finally, consider the same decision situation as before but with payoffs 

that make irrelevant all of the options except for these two: !

Table 2: (A)-type EPR case 2 !
Plainly nothing about the difference in payoffs under the other options makes 
a difference to the V-scores and the U-scores of 12hom and 12het, to which 
(36) and (37) still apply. It’s also clear that both EDT and CDT take 12hom 
and 12het to be at least as good as any other option in this case.  So in the 15

YYY YYN YNY YNN NYY NYN NNY NNN

12hom 2 2 0 0 0 0 2 2

13hom 0 0 0 0 0 0 0 0

23hom 0 0 0 0 0 0 0 0

12het 0 0 1 1 1 1 0 0

13het 0 0 0 0 0 0 0 0

23het 0 0 0 0 0 0 0 0
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 We are here assuming that we cannot invoke negative probabilities, as some quantum 14

theorists have suggested (e.g. Muckenheim 1982, Feynman 1987).  

 For EDT this is clear from (19), (21) and the fact that every other option in Table 2 gets V-15

score 0. For CDT it follows from the fact that 12hom and 12het both weakly dominate all of 
the other four options. 



case that Table 2 describes, EDT and CDT make different recommendations: 
EDT recommends only 12het, which gets a V-score 0.75, and CDT endorses 
12hom, which is getting some unknown U-score that is no less than U (12het).  

So we see that EDT and CDT give different recommendations in Table 
2 to anyone who accepts interpretation (A2) of the EPR phenomena that we 
described in section 1. This situation, although lacking the prima facie realism 
of ‘medical Newcomb cases’ (currently the best known loci of disagreement 
between EDT and CDT), is in fact relatively plausible. It is in fact technologi-
cally feasible today—something that you could not say either of the standard 
Newcomb case, which involves a supernatural ‘predictor’, or of the medical 
cases, which involve correlations between physical state and choice that are 
unknown to medical science.  In fact the cases discussed here are, to our 16

knowledge, the only currently feasible ways to arrange for practical disagree-
ment between EDT and CDT.    

One immediate objection is that although the technical apparatus 
needed to arrange for a situation like Table 2 is in no way fantastical, still the 
existence of a disagreement between EDT and CDT does require some rather 
unusual beliefs on the part of the agent. In particular, she must believe that 
there is a prior instruction set (a ‘local hidden variable’) ; and this is some17 -
thing that many physicists have taken not to be a live option in face of Bell’s 
Theorem. 
  Of course this objection needn’t be fatal to the broader point that we’ll 
use the example to make. As we’ll see, all that we need for that purpose is a 
case where EDT and CDT lead in different directions an agent whose beliefs 
are at least sane and coherent; the fact that these beliefs represent a minority 
position doesn’t by itself make the case any more irrelevant to decision theory 
than is the standard Newcomb case. On the other hand, the oddity of the per-
spective from which Table 2 forces this divergence inevitably diminishes the 
interest of the case. We turn therefore to an argument that does not rely on 
there being hidden variables at all, but on which the correlations between 
manifest states are acausal.  

In fact the argument at ss. 4-5 applies to all of the responses (A2), (B2) 
and (C2), relying as it does only on their common consequence that the set-
tings at one receiver have no causal influence on the readings at the other; 
we shall exploit this fact at s. 9 part (iv). If that is right, it was not strictly nec-
essary for our argument to treat (A2), (B2) and (C2) separately. Nevertheless, 
we think that doing so is instructive, because it reveals the distinctive difficul-
ties for CDT that attend the three standard ways of avoiding a Bell inequality. 
(As we have said, Everettian approaches require quite separate treatment.) !!
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 For ‘medical’ Newcomb cases see e.g. Price 1991. Nozick 1969 presents the standard ver16 -
sion of the Newcomb problem.

 Of course, she must also believe that the prior state either causes or shares a common 17

cause, or is acausally correlated, with one’s present choice to set the receivers this or that 
way. But this is not implausible: given that one already opts for (A) and so has swallowed hid-
den variables themselves, baulking at the idea that the experimenter lacks retrocausal pow-
ers (that being the only alternative to (A2)) is arguably straining at a gnat.   



4. An argument not relying on hidden variables 
Let us then suppose what many physicists actually do think about this case, 
namely that there is a non-causal correlation between the results of measur-
ing the spin of the particles along any particular pair of directions. (Recall that 
the correlation is this: if the receivers measure along directions that are sepa-
rated by an angle θ, then the probability of getting a matching reading is cos2 
(θ/2).)   
 On this supposition there is no possibility of a situation quite like those 
summarized in Tables 1 and 2, because there is no common prior state on 
which to ‘bet’. But it is still feasible to offer and take bets on the displays on 
the two receivers, taken either individually or together. For instance: you might 
have the option, just before a particular run of the device, to switch receiver A 
to setting 1 and bet that its display will read ‘y’. Here you are not betting on 
the prior state of the hidden variables (in particular, you’re not betting in this 
case that S1 = Y). But you are making an operationally bona fide bet. For giv-
en your choice, the observable display on the receivers will always settle your 
monetary payoff.  

For instance, ‘12het’ still represents a feasible option: you are switching 
receiver A to setting 1 and receiver B to setting 2, and you are betting that 
they will display different readings. Even more simply, one can bet on the 
readings of either receiver taken individually: that is, one might bet e.g. that 
receiver B will display ‘y’ on the next run. These bets, and any others that de-
pend for their payoffs only on verifiable events like displays on receivers, are 
ones that punters will certainly either win or lose. So even if we deny the exis-
tence of any instruction set that determines their outcomes in advance, both 
Evidential and Causal Decision Theories should tell us at what odds these 
bets represent good value, which out of many such bets to choose, etc. 

It’s clear enough that Evidential Decision Theory applies to such bets. 
The only credences that it needs agents to have are conditional credences on 
the readings given that one takes this or that option. And these conditional 
credences are certainly available whether or not one accepts any prior in-
struction set. In the simple scenarios that we consider here, they reflect avail-
able statistical records correlating options with outcomes, i.e. facts (4) and (5). 

And prima facie there isn’t any problem for Causal Decision Theory ei-
ther. Consider for instance the case where one has three options O1, O2 and 
O3, these being respectively the options of switching receiver A into setting 1, 
2 or 3 whilst simultaneously betting that the reading on the receiver will be y. 
One is not here betting on any prior state (i.e. on the proposition S1 = Y) but 
rather on a subsequent one that may or may not be causally dependent on 
the choice of setting.  The difference is that we cannot calculate the U-score 18

of an option by partitioning on prior states of the world that (a) obtain causally 
independently of the option chosen whilst (b) determining the chance of each 
option’s producing this or that payoff. There is no such state of the world. So 
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 Remember, (B2) is not denying that switching either receiver to this or that setting has any 18

causal influence on its own reading (and neither are (A2) or (C2)). Rather what it denies is 
any superluminal, retroactive or common causality between anything going on in the region of 
one receiver, including its setting, and anything going on in the region of the other.



(3) does not apply, and instead we are forced back on the direct calculation of 
U-scores by means of (2), applied to counterfactual credences themselves. 

For instance, in the case below there are two possible readings on 
each receiver and so four possible combinations of each reading. Letting ‘yn’ 
correspond to ‘y’ on receiver A and ‘n’ on receiver B etc., the payoffs are as 
follows: !

Table 3: illustrative game without h.v. !
So by (2) and Table 3, the following expression gives the U-score of, say, O1: !

(38)U (O1) = Cr (O1 → yy) + Cr (O1 → yn) !
But in order to calculate the credences in (38) we cannot (as we said) partition 
over prior states of the world; instead we must directly evaluate these cre-
dences by means of formulas of this type: !

(39)Cr (O1 → yy) = ∫0 ≤ x ≤ 1 x Cr (Ch (yy⏐O1) = x)) dx !
—in which Cr expresses one’s distribution function over the possible values 
for the conditional chance, just before one’s act, that a particular setting of re-
ceiver A gives to some particular combination of readings on receiver A and 
receiver B.  So the right-hand side of (39) is Cr’s expectation of this condi19 -
tional chance. Here, conditional chance is taken to reflect causal tendencies: 
the extent to which the conditional chance of Y on X, Ch (Y⏐X), exceeds the 
unconditional chance Ch (Y) of Y, reflects the extent to which the occurrence 
of X causally promotes the occurrence of Y.  

Still, despite this change in the manner of calculating the U-score, it is 
easy to see that CDT will give some advice; and in Table 3, which in no way 
involves the statistical peculiarities of the EPR setup, there is no obvious rea-
son why its advice should diverge from that of EDT. 
  But all of this changes when we turn to types of problem that exploit 
facts (4) and (5). The first of these is a family of cases D (i, z) for i = 1, 2, 3 
and 0 ≤ z ≤ 1. Each one takes the following form: you may set both receivers 
to the same setting i, say setting 1. You then win $(1 – z) if both receivers give 
the same reading. But you lose $z if the readings are different. The alternative 
option Q (‘quit’) is to decline any bet. The payoffs for any particular D (i, z) are 

yy yn ny nn

O1 1 1 0 0

O2 1 0 1 0

O3 0 0 0 1
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 For the continuous case, read Cr (Ch (yy⏐O1) = x)) as F’ (x): the first derivative of the cu19 -
mulative distribution function F (x) = Cr (Ch (yy｜O1) ≤ x).



therefore as follows (remember that the headings to each column now de-
scribe the readings on the receivers, not any prior state): !

Table 4: EPR without h.v.: D (i, z)  !
What do EDT and CDT advise? 
 Remember that in any D (i, z) we are, if we bet, switching the receivers 
to the same setting (i.e. both to 1, both to 2 or both to 3). Fact (4) therefore 
assures us that they will always give the same reading, if we bet. So the rele-
vant conditional credences are as follows: !

(40)Cr (yy ∨ nn⏐iihom) = 1 
(41)Cr (yn⏐iihom) = Cr (ny⏐iihom) = 0 !

It follows from (1), (40) and (41) that for any i, z the V-scores of the options in 
D (i, z) are: !

(42)V (iihom) = 1 – z 
(43)V (Q) = 0 !

Hence for any i = 1, 2, 3 and z such that 0 ≤ z ≤ 1, EDT will at least endorse 
playing iihom in D (i, z); if in addition z < 1 it will definitely prefer iihom to Q. In 
other words it always endorses and sometimes requires that you should bet 
on the receivers giving the same reading if they are on the same setting. 
 What about CDT? For any i and z, the U-scores of the options in D (i, 
z) are as follows: !

(44)U (iihom) = (1- z)(Cr (iihom → yy) + Cr (iihom → nn)) – z (Cr (iihom 
→ yn) + Cr (iihom → ny)) 

(45)U (Q) = 0 !
Now consider the quantity (Cr (iihom → yn) + Cr (iihom → ny)) on the right-
hand side of (44). It’s easy to see that if this quantity exceeds 0 then there is 
some strictly positive z* < 1 such that U (iihom) < U (Q) in D (i, z) for any z ≥ 
z*.  In other words, we have a continuum of decision situations in which CDT 20

and EDT diverge i.e. for any z ≥ z*, in D (i, z) CDT will endorse quitting but 
EDT will endorse betting. 

yy yn ny nn

iihom 1-z -z -z 1-z

Q 0 0 0 0

#16

 Since Cr (O1 → yy) + Cr (O1 → nn) + Cr (O1 → yn) + Cr (O1 → ny) =1, it is possible to write 20

U (iihom) as (1 – z)x + z(1-x) = x – z, where 1 - x = Cr (iihom → yn) + Cr (iihom → ny). So if 1 
– x > 0 then x < 1, hence there is some z* < 1 s.t. z* > x ≥ 0. So if z ≥ z* then U (iihom) < 0 = 
U (Q). 



 The situation would look like this. You have in effect the option of pay-
ing a fee of $z to take a bet that pays $1 if you win and $0 if you lose; and you 
will win if fact (4) is something that can be relied upon. The evidentialist will 
therefore pay any fee short of $1 to take this bet. But the causalist will decline 
the bet at any fee beyond some threshold $z* < $1.   
 So if both are repeatedly offered these bets at a rate $z for z > z*, the 
causalist will keep declining and winning nothing, and the evidentialist will 
keep accepting and winning $(1 – z). For instance, suppose we have z* = 0.8. 
Then we can keep charging both parties 90¢ for a bet that pays $1 iff both re-
ceivers give the same reading on the next run in which they are switched to 
the same setting. Then the evidentialist will always accept and the causalist 
will always decline, and the evidentialist will make 10¢ over the causalist 
every time. So here we have decision problem over which EDT and CDT dis-
agree in a way that does not depend on the assumption of hidden variables. 
 But it does depend on a different assumption, namely that for some i 
the factor (Cr (iihom → yn) + Cr (iihom → ny)) exceeds 0. If we drop this as-
sumption then the causalist will only decline the bet at z ≥ z* = 1, at which rate 
EDT will also endorse not betting, because the expected value of iihom is now 
0. So assuming that 0 ≤ z ≤ 1 there is in that case no D (i, z) in that continuum 
of decision situations on which EDT and CDT diverge.  

But as we now argue, if we do drop the assumption then there will in-
evitably be other EPR situations in which EDT and CDT disagree. We address 
this point first in connection with (B2). !!
5. B-type theories 
Suppose then that we drop the assumption above. Since Cr is a probability 
function the only alternative is that for any i = 1, 2, 3 we have: !

(46)Cr (iihom → ny) = Cr (iihom → yn) = 0 !
Now consider a decision situation just like the six-option case that we consid-
ered in section 3 in connection with the hidden-variable theories under (A2). 
You can choose any of three joint settings for each receiver: A on 1 and B on 
2, A on 2 and B on 3, and A on 2 and B on 3. And for each setting you can bet 
either that the receivers will display the same reading on the next run or that 
they will display a different reading on the next run. As before we’ll label the 
six resulting options 12hom, 13hom, 23hom, 12het, 13het and 23het. 
 The payoffs depend, determinately and in a decidable manner, on the 
readings on the receivers. These are similar to those in Table 1, except that 
now we have ‘yy’ etc. instead of ‘YYY’ etc. at the top of each column, to indi-
cate that we are making a bet on the readings of the receivers themselves, 
without speculating about any prior state: !

yy yn ny nn

12hom 2 0 0 2
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Table 5: (B)-type EPR case 1 !
 What does EDT recommend in this situation? Here again the answer is 
quite straightforward if we suppose that your conditional credences reflect the 
statistical regularities (4) and (5). In particular then, the reasoning behind (19) 
and (21) applies in this case too and shows that any ‘het’ option, which gets a 
V-score of 0.75, is EDT-preferred to every ‘hom’ option, which gets a V-score 
of 0.5. So just as before and as you’d expect, even on this no-hidden-vari-
ables hypothesis EDT prefers any ‘het’ option to any ‘hom’ option. Whether or 
not there are ‘hidden variables’ is a purely theoretical question that makes no 
difference to the observed outcomes and so no difference to the practical ad-
vice that EDT gives.  
 When we turn to CDT, things are different. It would be nice to be able 
to represent the problem in terms of ‘states of nature’ that are causally inde-
pendent of the options and which together with the options determine the 
payoff. Table 5 is not such a representation, for there is no guarantee that e.g. 
the display on receiver A is causally independent of whether you set that re-
ceiver to 1 or 2. Nor is it obvious that there is such a partition.  

This is in fact the crucial point of contrast between Table 1 and Table 5. 
In Table 1 the prior instruction set is both causally independent of your choice 
and determinative of your payoff in conjunction with your choice. But since 
there is no prior instruction set on B-type interpretations of the experiment, we 
cannot take any partition over its possible configurations as our set of ‘causal-
ly independent states of nature’.  

But it turns out that even though there is no prior instruction set, we can 
still generate a partition that plays exactly the same role as it. In intuitive 
terms, the argument is that your hypothesized response to D (i, z) forces his 
credences to mimic those of an agent facing Table 1; in particular, what play 
the roles of configurations of the prior instruction set are conditional chances 
of readings given settings. The argument turns on four points.  

(i) It is surely absurd to suppose that the choice of bet between ‘het’ 
and ‘hom’ makes any difference to the reading on either receiver once we are 
given their settings. We could in any case impose this condition by brute 
force: i.e., by requiring that you choose the kind of bet on any given run (i.e. 
between ‘hom’ and ‘het’) after the run is over but before you have had a 
chance to see the relevant readings. So we can write e.g.: !

(47)Ch (yy⏐12) =def. Ch (yy⏐12het) = Ch (yy⏐12hom)  !

13hom 2 0 0 2

23hom 2 0 0 2

12het 0 1 1 0

13het 0 1 1 0

23het 0 1 1 0
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(ii) Since on (B2) the readings on the receivers are causally indepen-
dent of one another, the chance of either reading on either receiver is inde-
pendent of the reading on the other receiver, even given the settings on both 
receivers. So if we label the receivers ‘A’ and ‘B’, and if we write 1A, yB etc. for 
the settings and the readings on each receiver, then we have e.g.: !

(48)Ch (yy⏐12) = Ch (yAyB⏐1A2B) = Ch (yA⏐1A2B) Ch (yB⏐1A2B) 
(49)Ch (yy⏐22) = Ch (yAyB⏐2A2B) = Ch (yA⏐2A2B) Ch (yB⏐2A2B) 

  
Note that, as (49) illustrates, this point of course applies to chances condition-
al on any pair of settings, including those that the present decision problem 
does not associate with any bet.  

(iii) The reading on either receiver is causally independent of the set-
ting on the other receiver given its own setting. (This follows from the assump-
tion that there is no prior instruction set.) So we have e.g.: !

(50)Ch (yA⏐1A2B) = Ch (yA⏐1A) 
(51)Ch (yA⏐2A2B) = Ch (yA⏐2A) 
(52)Ch (yB⏐2A2B) = Ch (yB⏐2B) !

Again and as (51) and (52) illustrate, this point applies to all pairs of settings, 
not only those to that the present decision situation associates with bets.  21

(iv) The fourth simplification goes back to the family of decision prob-
lems D (i, z). Recall that if EDT and CDT agree over all of those cases then 
(46) must be true. (And if they do not, then we have already found a decision-
theoretic case on which they disagree and to which all of the forthcoming ar-
guments will apply.) 

Now it follows from (46) that you are certain of: !
(53)Ch (yy ∨ nn⏐11) = 1 
(54)Ch (yy ∨ nn⏐22) = 1 
(55)Ch (yy ∨ nn⏐33) = 1 !

Focusing on (54)—the arguments from (53) and (55) are parallel—we see 
that: !

(56)Ch (yy⏐22) + Ch (nn⏐22) = 1 
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 Note that points (i)-(iii) suffice to derive a Bell inequality for the Ch function. This does not 21

contradict the predictions of quantum mechanics so long as the chances given by Ch do not 
reflect long-run relative frequencies. It is permitted if, for example, Ch represents single-case 
chances that vary from case to case. And that is what Ch should represent if conditional 
chance matters to Causal Decision Theory: for CDT is supposed to be sensitive to the ten-
dency of a setting to causally promote this or that outcome in the particular decision situation 
to which you are applying it. The situation here is similar to that in Newcomb’s problem, 
where, even though there is a long-run correlation between one’s choosing one box and this 
having been predicted, the latter is, on any occasion, conditionally independent of the former 
with respect to the appropriately causal chance function. This is consistent with the claim that 
chances control long run frequencies if, as in the Newcomb and as here, these one-off condi-
tional chances vary from one occasion to the next.   



!
And so by (49), (51), (52) and their analogues for ‘nn’ we have: !

(57)Ch (yA⏐2A) Ch (yB⏐2B) + Ch (nA⏐2A) Ch (nB⏐2B) = 1 !
And corresponding results follow from (53) and (55).  

Now from (57) and its analogues we get:  22!
(58)Ch (yA⏐1A) = Ch (yB⏐1B) ∈ {0, 1} 
(59)Ch (yA⏐2A) = Ch (yB⏐2B) ∈ {0, 1} 
(60)Ch (yA⏐3A) = Ch (yB⏐3B) ∈ {0, 1} !

This gives eight possibilities for the values of these conditional chances de-
pending on which ones take the value 1 and which take the value 0. 

Now putting these four points together, we see that the conditional 
chance of each reading (yy, yn etc.) on each option (12hom, 13het etc.) is ei-
ther 1 or 0; and this is determined by which of the eight possibilities just out-
lined obtains. For instance, suppose that the following situation obtains: !

(61)Ch (yA⏐1A) = Ch (yB⏐1B) = 0 
(62)Ch (yA⏐2A) = Ch (yB⏐2B) = 1 
(63)Ch (yA⏐3A) = Ch (yB⏐3B) = 1 !

Then by (47), (48) and (50) it follows that: !
(64)Ch (yy⏐12het) = 0 !

More generally, any specification of the conditional chances in (58)-(60), to-
gether with a specification of your choice, determines the reading on the re-
ceivers and hence also your payoff. Finally, whichever of the eight possibilities 
in (58)-(60) obtains is causally independent of your choice: for if chance con-
ditional on what you do takes either value 0 or value 1 then nothing that you 
do could make any difference to that conditional chance itself. 
 What this means is that we can rewrite the decision problem in Table 5 
in terms of states of nature that are causally independent of your choice in 
that situation. To that end we’ll use the following code: ‘abc’, where a, b, c ∈ 
{0, 1}, means: !

(65)abc ≡def. Ch (yA⏐1A) = Ch (yB⏐1B) = a ∧ Ch (yA⏐2A) = Ch (yB⏐2B) = 
b ∧ Ch (yA⏐3A) = Ch (yB⏐3B) = c !

So for instance, ‘011’ corresponds to the possible distribution stated at (61)-
(63). The new representation of the problem then looks like this: !
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 To see this consider that (57) takes the form xy + (1-x)(1-y) = 1. So for (0, 0)  0(x, y) , (1, 1) 22

the only solutions are x = y = 0 and x = y = 1.



Table 6: (B)-type EPR case 1 with independent states of nature !
And since the ‘states of nature’ that the top row represents—that is, the pos-
sible distributions of conditional chances of readings on setting—are indepen-
dent of whatever option is chosen, the calculation of the U-score for each op-
tion is a straightforward matter. In particular we can apply (3) to Table 6. The 
U-scores for the three ‘hom’ options are: !

(66)U (12hom) = 2 (Cr (111) + Cr (110) + Cr (001) + Cr (000)) 
(67)U (13hom) = 2 (Cr (111) + Cr (101) + Cr (010) + Cr (000)) 
(68)U (23hom) = 2 (Cr (111) + Cr (100) + Cr (011) + Cr (000)) !

And the U-scores for the three ‘het’ options are: !
(69)U (12het) = Cr (101) + Cr (100) + Cr (011) + Cr (010) 
(70)U (13het) = Cr (110) + Cr (100) + Cr (011) + Cr (001) 
(71)U (23het) = Cr (110) + Cr (101) + Cr (010) + Cr (001) !
But these scores exactly parallel the U-scores of the corresponding op-

tions in the (A)-type EPR case 1, except with ‘1’ and ‘0’ in place of ‘Y’ and ‘N’ 
respectively. See Table 1 and equations (24)-(29). So from this point we can 
apply exactly parallel reasoning to that applied to the (A)-type case at the cor-
responding point in the argument, since nothing in that part of the argument 
((30)-(35)) depended on any special feature of the hidden variables interpreta-
tion but only on the fact that Cr is a probability function.  

Without explicitly repeating the reasoning to it, we therefore draw a 
conclusion that parallels that for the (A)-type case. There must be some ‘hom’ 
option that CDT takes to be at least as good as the corresponding ‘het’ option 
in Table 6. But since the options in table 6 just are the options in Table 5, this 
means that CDT must consider some ‘hom’ option to be at least as good as 
the corresponding ‘het’ option there too. Combining that with the entirely 
straightforward reasoning about EDT that immediately followed Table 5, we 
have: !

(72)For any i < j: ijhet EDT ijhom in Table 5 
(73)For some i < j: ijhom CDT ijhet in Table 5 !

111 110 101 100 011 010 001 000

12hom 2 2 0 0 0 0 2 2

13hom 2 0 2 0 0 2 0 2

23hom 2 0 0 2 2 0 0 2

12het 0 0 1 1 1 1 0 0

13het 0 1 0 1 1 0 1 0

23het 0 1 1 0 0 1 1 0
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Without loss of generality we can take i = 1 and j = 2 to witness (73), in which 
case the following decision situation represents a technically feasible scenario 
in which EDT and CDT give conflicting advice to anyone who rejects both hid-
den variables and non-relativistic causation.  !

Table 7: (B)-type EPR case 2 !
In table 7 CDT endorses the first option 12hom, whereas EDT recommends 
only the fourth option 12het.  

It might be worth briefly stepping back from the formal details to give an 
intuitive overview of the construction. The basic idea is that anyone who 
thinks that the receivers are causally independent must think that only its own 
setting is causally relevant to the reading on any receiver. If in addition this 
person thinks that when the receivers are in the same setting they always 
force the same reading (as he must do if he takes every bet in the family D (i, 
z)), then he is committed to saying that the causal relevances pertaining to 
each receiver are (a) perfectly synchronized; (b) completely deterministic. In 
short, any gambler who takes fact (4) seriously when the receivers are at the 

yy yn ny nn

12hom 2 0 0 2

13hom 0 0 0 0

23hom 0 0 0 0

12het 0 1 1 0

13het 0 0 0 0

23het 0 0 0 0
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same setting must also be betting as if there was a prior instruction set when 
the receivers are at different settings.   23!!
6. C-type theories 
Approaches to the EPR experiment that accept non-causal correlations be-
tween the actions of experimenters and the outcomes of measurements (per-
haps because they are space-like separated), i.e. (C2)-type approaches, also 
offer the prospect of a divergence between EDT and CDT. One reason for this 
is that the foregoing argument of course applies as well to them as it does to 
(B2)-type theories: CDT and EDT will give conflicting advice over Table 4, or 
over Tables 5-7, to any agent who accepts (C2). But it is illuminating to dis-
cuss a further case over which EDT and CDT give different advice specifically 
in consequence of the (C2) version of parameter dependence. 

First we need to outline a little more of the details of parameter depen-
dence. Given any value X for the hidden variables, and letting sA and sB be 
variables ranging over the readings at each receiver, with settings i and j re-
spectively, we have from Bayes’s Theorem that: !

(74)  Cr (sA, sB⏐i, j, X) = Cr (sA⏐sB, i, j, X) Cr (sB⏐i, j, X) !
Assuming outcome independence,  this becomes 24!
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 It’s also worth contrasting the construction in this paper with two other attempts (the only 23

ones known to us) to exploit violations of the Bell inequalities in order to make EDT and CDT 
disagree. Berkovitz’s example (1995) assumes that the agent rejects all of the (A)- and (B)-
hypotheses and instead believes in a prior instruction set that is uncorrelated with her setting 
of the receiver. It therefore depends on a theoretical assumption that is demonstrably false 
and so is no more realistic than the supernaturalistic Newcomb cases on which we had been 
seeking an improvement.  

Cavalcanti’s argument (2010), which invokes the CHSH arrangement (Clauser et al. 
1969), appears to mischaracterize the causal theory. His case depends crucially on there be-
ing two agents, one at each wing of the experiment. But his calculation of the U-score of any 
option available to one of these agents treats both agents’ choices as actions i.e. ignores their 
evidential bearing on anything other than their effects. (A formal symptom of this is the sym-
metric treatment of the terms ‘AR’ and ‘BG’ in his equation (16).) But this is a mistake: from the 
point of view of either experimenter the other agent’s choice—which is not up to her—itself 
partly characterizes the ‘state of nature’, and her credence should reflect this. Cavalcanti’s 
reasoning that the causalist must bet against quantum mechanics in these scenarios (2010: 
585-6) is therefore invalid. 

In any case Cavalcanti’s argument concerns only the case in which the agent be-
lieves in a prior instruction set (i.e. the analogues of what we called (A)-type interpretations of 
the Stern-Gerlach experiment). He does mention (2010: 589) his own belief that CDT’s advice 
in these cases would carry over to the case where the agent rejects any hidden variables (in 
particular to the case that I called (B2)); but he gives no good argument that this is so. (There 
is a one-sentence argument to this effect at 2010: 589, which however the already-mentioned 
mischaracterization of CDT entirely vitiates.) It turns out that his suspicion is correct. But it 
has taken some work to show this, including the invention of a totally new family of problems 
D (i, z).

 Of course, it is consistent to deal with EPR-like phenomena by denying both outcome in24 -
dependence and parameter independence (although we know of no such approach in the 
literature). In that case, our argument above cannot be run; but the arguments covering (B2) 
in sections 4-5 will still stand.



(75) Cr (sA, sB⏐i, j, X) = Cr (sA⏐i, j, X) Cr (sB⏐i, j, X) !
But we must have that !

(76) Cr (sA, sB⏐i, j, X) ≠ Cr (sA⏐i, X) Cr(sB⏐j, X) !
on pain of otherwise deriving an experimentally violated Bell inequality (at 
least on the assumption, which we have made throughout, that one’s cre-
dences match the observed frequencies).  Due to symmetry between i and j, 
we can without loss of generality say that !

(77) Cr (sB⏐i, j, X) ≠ Cr (sB⏐j, X) !
But assuming (C2), it must also be true that !

(78) Cr (i → sB⏐j, X) = Cr(sB⏐j, X) !
since the agent does not cause the outcome at B by choosing a setting at A.  
We will rely on (77) and (78). 

We invite our agent to play the following game, at cost $z. If the agent 
agrees to play, then she sets her device at A to i.  Meanwhile, it is arranged 
that, space-like separated from this setting event—space-like separated, if we 
like, even from the agent’s choice whether to play the game—a measurement 
is made at B on setting j. Once the news comes in from B, if the outcome is y, 
then the agent receives some reward $wy; if the outcome is n, then the agent 
receives some other reward $wn. Before she decides to play, the agent knows 
both: (i) the value of the hidden variable X; and (ii) that the setting at B is j. 
The choice facing the agent is represented by the following table: !

Table 8: (C)-type EPR case !
(Note that (C2) entails that we can treat the outcomes at B as states of 
nature.) 

The V-score for the agent playing the game (= P) is: !
(79) V (P) = V (i, yB, j, X) Cr (yB⏐i, j, X) + V (i, nB, j, X) Cr (nB⏐i, j, X) = 

wn – z + (wy – wn) Cr (yB⏐i, j, X)   !
while, given (78), the U-score is: 
  

(80) U (P) = V (i, yB, j, X) Cr (yB⏐j, X) + V (i, nB, j, X) Cr (nB⏐j, X)  
= wn - z + (wy - wn) Cr (yB⏐j, X) !

yB nB

P wy wn

Q 0 0
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From (77), we know that these scores must be unequal. There are two possi-
bilities. If Cr (yB⏐i, j, X) > Cr (yB⏐j, X), then we set wy > wn. Then V (P) > U (P). 
If Cr (yB⏐i, j, X) < Cr (yB⏐j, X), then we set wy < wn. Once again V (P) > U (P). 
If we now set the cost of the game $z such that: !

(81) wn + (wy - wn) Cr (yB⏐i, j, X) < 2z < wn + (wy - wn) Cr (yB⏐j, X) !
(which is always possible) then EDT recommends that the agent plays the 
game, while CDT recommends that the agent declines. 

One drawback of this argument against CDT is that it depends on the 
game-setter and the agent both having knowledge of the values of the hidden 
variables—or at least a probability distribution over such values other than 
that recommended by the Born rule.  We merely point out in response to this 
that the most successful hidden variable completion of quantum mechanics, 
the de Broglie-Bohm theory, allows for the possibility of such ‘non-equilibrium’ 
probability distributions (see Valentini 2002). !!
7. D-type theories 
Interpretations of quantum mechanics that fall under the broad heading of 
Everettian or ‘many worlds’ are characterized as postulating no collapse of the 
quantum state, nor any hidden variables.  In consequence, all possible out25 -
comes of a given measurement are taken to occur, in some sense of ‘occur’. 
As a result, the assignment of non-extremal probabilities to measurement out-
comes is a rather delicate matter, and so deserves a separate treatment. 

(D1) The first version of the Everettian account we shall discuss is 
widely known as the Deutsch-Wallace account.  This account may be charac-
terized by what Wallace (2012: 228) calls the decision-theoretic strategy: non-
extremal probabilities for measurement outcomes enter the theory through the 
rational preferences of agents.  More specifically, there is a representation 
theorem: the (typically non-extremal) probabilities for measurement outcomes 
as prescribed by the Born rule are, under certain assumptions, the uniquely 
rational credences for an agent to assign to those outcomes just prior to mea-
surement. 

Before we get to these assumptions, we must first say something 
about how Everettian rational agents are to be located in the quantum formal-
ism.  Following Wallace 2002, rational agents are, like other macroscopic ob-
jects, relatively stable patterns in the states enjoyed by the underlying physi-
cal ontology (elementary particles or fields), which we assume is governed by 
quantum mechanics.  As such, an experimenter, or rather her particles, upon 
making a measurement, becomes entangled with her measurement device 
(which, being a measurement device, has become entangled with the system 
being measured).  This entanglement spreads uncontrollably to the surround-
ing environment, giving rise to an entangled superposition of approximately 
dynamically isolated, quasi-classical ‘branches’.  Each branch exhibits its own 
relatively stable, experimenter-like pattern; in that sense we may say that a 
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measurement causes a splitting of the experimenter into several co-existing 
post-measurement copies, each of whom experiences her own outcome.   

This approximate branching into quasi-classical alternatives is taken to 
justify the application of decision theory in a context of classical branching 
(such as envisaged by Lewis 1976).  The experimenter, prior to measurement, 
anticipates a splitting as just described, and must somehow weigh the out-
comes expected to be experienced by her various post-measurement de-
scendants, to decide now upon some course of action—such as whether or 
not to take a bet on the measurement’s outcome.  Note that to assume that 
this weighing of future outcomes makes sense does not require us to claim 
that the weights correspond to any degree of uncertainty on the experi-
menter’s part, about e.g. which descendant she will turn out to be.  (This is 
just as well, since it is doubtful whether this question has any sense; but see 
Saunders 1998 for a defence.)  Following Greaves 2004, we may call the ex-
perimenter’s weights on anticipated outcomes a ‘caring measure’: it is a mea-
sure of how much the experimenter cares about each of her post-measure-
ment descendants. 

The central claim of the Deutsch-Wallace approach is that there is one 
uniquely rational caring measure.  The assumptions required to prove this re-
sult have been honed somewhat since the first paper by Deutsch 1999; the 
most recent treatment (which we rely on here) is summarized in Wallace 
2012.  The assumptions fall under three broad categories: axioms of richness, 
which put minimal conditions on the set of actions available to the agent; ax-
ioms of rationality, which require the agent’s preferences to be transitive and 
consistent over time (particularly, between pre- and post-branching selves); 
and axioms of ‘Everettian rationality’.  These demand that: (i) the agent be in-
different to the fine-grained details of the physical state, given its correspond-
ing macroscopic outcome; (ii) the agent be indifferent too to the branching 
brought about by the act of measurement; (iii) the agent’s preferences super-
vene only on the post-measurement states; and (iv) the agent’s preferences 
be robust under mild perturbations (where the metric to determine what 
counts as ‘mild’ is inherited from the inner product of the quantum formalism). 

We will not engage here in a critical discussion of the assumptions re-
quired for the representation theorem; our interest is only in what the ap-
proach has to say about the comparative merits of EDT and CDT.  On this 
matter, the Deutsch-Wallace approach seems to put us in rather a back-to-
front position.  We are looking for scenarios in which credences for various 
outcomes may be defined, and for which the recommendations from two theo-
ries of rational behaviour, EDT and CDT, come apart. But here we already 
have a theory of rationality: the one encapsulated in the Deutsch-Wallace as-
sumptions.  And we use that theory to derive credences for the experimenter.  
What can be said about the relative standings of EDT and CDT? 

We doubt that any wedge can be driven between EDT and CDT in the 
Deutsch-Wallace approach.  We do not expect the two theories to give con-
flicting advice, for the simple reason that the CDT proponent will be able to 
interpret any dependence between the experimenter’s actions and the result-
ing outcomes, which the EDT proponent will represent with conditional proba-
bilities, as causal. In performing any measurement the experimenter brings 
about her own splitting, so any probabilistic dependence of observed out-
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comes on the experimenter’s actions is explicable in terms of the experi-
menter’s causing those outcomes. 

This is true even in the case where, due to the caring measure’s ex-
hibiting outcome dependence, the non-local correlation between distant out-
comes is thought to be brought about by acts of measurement at the local de-
vices. The reason that it is usually (i.e. in non-Everettian approaches) tempt-
ing to say that the correlation here must be non-local is that a measurement 
could also be made, still space-like separated, on the distant device to find (as 
quantum mechanics predicts) correlated results. In an interpretation in which 
only one outcome occurs at each device, the distant device must already 
‘know’ which outcome to give, given a measurement on the local device. 

But in Everettian quantum mechanics, every possible outcome hap-
pens at each device, so there is no reason to demand that the distant device’s 
outcome is already decided once the local measurement has been made. In-
stead, the rapid entanglement of the local device’s state with its surrounding 
environment (including the experimenter), and the rapid entanglement of the 
distant device’s state with its surrounding environment, can each happen 
separately and locally (that is, within the light-cone). It is only once the two 
expanding spheres of ever-entangling environment meet that the correlation 
between the two devices can be said to come about—it is only then that two 
measurement outcomes belong to the same quasi-classical branch. In that 
case, according to Everettian quantum mechanics, a local measurement 
brings about a local correlation between the two devices (see Timpson and 
Brown 2002). It is permitted for the CDT proponent to treat this correlation as 
caused—and perverse of him not to. Consequently, the credence assigned to 
any causal link between the experimenter’s actions and measurement corre-
lations ought to be the same as the corresponding conditional credences, and 
we have no disagreement between CDT and EDT. 
 (D2) The second and final version of the Everett interpretation we shall 
consider is the ‘many minds’ interpretation. According to this version (see Al-
bert & Loewer 1988), we associate with each prima facie observer a continu-
um of minds—i.e., a continuum of separate consciousnesses. Given any pri-
ma facie observer, the proportion of its associated consciousness that sees a 
particular outcome of a measurement is given, by dint of a separate postulate, 
by the Born rule. 

If we now trace the biography of a single such consciousness over 
time, then it becomes clear that life for such a consciousness is completely 
fatalistic. (We don’t say ‘deterministic’, since that term is often used in a tech-
nical sense, to describe the supervenience of future states on past states; and 
here supervenience of the future on the past does not hold, since many con-
sciousnesses share the same past but not the same future.) That is, by se-
lecting any single mind one has thereby selected a maximally specific biogra-
phy. 

It is hard to see how a conflict between EDT and CDT can even get off 
the ground here, for the very notion of causation seems impossible to apply.  
In other cases of complete determination (e.g. as in Newtonian mechanics), 
we have determinism, so we can appeal to the laws to ground the counterfac-
tual claims that may support an account of causation. 
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One proposal is to adopt an account of probabilistic causation in which 
the probabilities reflects self-locating ignorance on the part of individual 
minds. However, this tempting line leads to us to the same agreement be-
tween EDT and CDT on all matters that we saw for the Deutsch-Wallace ap-
proach. After all, the conditional probabilities appealed to will be exactly those 
that EDT will respect. 

In sum: if we adopt the Everett interpretation, then we will find no con-
flict between EDT and CDT.  Either the recommendations they make will, 
plausibly, be identical; or else we cannot talk of causation, and therefore not 
of CDT, at all.  

Indeed the point goes beyond the two versions of the Many Worlds In-
terpretation that this section considers.  Any plausible version of the Many 
Worlds approach must deal with the preferred basis problem, and it is almost 
universally accepted that the most promising solution lies with decoherence 
(see Vaidman 2014).  But, as we argued in our discussion of the Deutsch-
Wallace approach, it is likely that the CDT-proponent will seize on decoher-
ence as the causal process responsible for correlations between outcomes; 
and this will result in agreement between the probabilities of the CDT-propo-
nent’s causal statements and the corresponding EDT-proponent’s conditional 
probabilities.  Therefore any version of the Many Worlds Interpretation that 
appeals to decoherence is immune to the difficulties that seem to arise for 
some version of every one of the other approaches that we have considered 
(i.e. (A), (B) and (C)-type approaches). Thus from the perspective of the Many 
World Interpretation as presented in Vaidman 2014, the conflict between CDT 
and EDT cannot be seen. !
Let us now summarize the position with regards to the eight interpretations of 
the EPR experiment as described in s. 1. The following table identifies (i) the 
interpretations on which EDT and CDT are in disagreement over some practi-
cal question; (ii) the locus or loci of disagreement in each case. !

Table 9: Summary of our findings !

Interpretation Case where EDT and CDT disagree

Deny ‘no conspiracy’: (A1) None

Deny ‘no conspiracy’: (A2) Tables 1-2; Table 4 or Tables 5-7

Deny outcome independence: (B1) None

Deny outcome independence: (B2) Table 4 or Tables 5-7

Deny parameter independence: (C1) None

Deny parameter independence: (C2) Table 4 or Tables 5-7; Table 8

Everett – DWG: (D1) None

Everett – Many minds: (D2) None
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That is, on three of these eight interpretations it is possible to construct a case 
in which CDT and EDT give different advice. In particular, a causalist who ac-
cepts (A2), (B2) or (C2) is committed to some course of action that violates 
the evidentialist conception of rationality and indeed to betting against the 
EPR statistics themselves.  ! !
8. EPR vs CDT 
Of course the fact that a conflict between EDT and CDT can feasibly arise, at 
least on interpretations (A2), (B2) and (C2), does not by itself refute either 
theory. But it does make especially vivid just what is involved in preferring 
CDT to EDT. The constructions in this paper are feasible cases where the 
theories genuinely clash; and it lacks all of the psychological clutter of ‘tickles’ 
and other forms of self-knowledge that so gummed up the works of previous 
attempts to construct realistic cases where the theories gave different 
advice.   26

And on reflection they prompt two obvious objections to CDT. The first 
is familiar: ‘Why ain’cha rich?’ CDT advises anyone who accepts interpretation 
(A2) to take option 12hom in Table 2 whereas EDT will advise 12het. Similarly, 
CDT advises anyone who accepts (B2) or (C2) to take option 12hom in the 
decision problem in Table 7 ; whereas EDT will again insist on 12het. 27

And everyone knows what will happen in either case. CDT i.e. 12hom 
will on average win $2 in one out of every four runs. EDT i.e. 12het will on av-
erage win $1 in three out of every four runs. So EDT is making $1.50 for every 
$1 that CDT is making. Everyone knows this; so everyone knows in advance 
that EDT will outperform CDT. How could you rationally recommend or follow 
a strategy that you know is going to underperform? 
 In terms of its form there is nothing new about this point, which dates 
back to early discussions of Newcomb’s problem.  What is new is the con28 -
text, which is naturalistic by the usual standards of these debates and, we 
think, all the more vivid for all that.   
 We should like to put the point as strongly as this. Focus on (B)-type 
EPR case 2 as represented in Table 7 and suppose that all parties’ credences 
make it a site of conflict between EDT and CDT. Let you and one of us be two 
financiers, and suppose that we take it in turns to choose an option from Table 
7. On your turns, I pay you what you win; on my turns you pay me what I win. 
So if I follow EDT and you follow CDT then I will on average win $3 from you 
on my goes, and lose $1 to you on your goes, in every eight runs. We publicly 
challenge any defender of CDT to play this game against us. Unfortunately we 
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are certain that these people would stop being causalists long before they 
stopped being solvent.  
 The second objection to CDT is not that it is giving bad advice in any 
identifiable case, but that what advice it is giving turns on theoretical ques-
tions that are (today, and perhaps in principle) impossible to settle by means 
of observation and experiment.  
 For instance, if you think that retrocausality is a live option then you 
may well take (A1) to be the—or at least: a possibly—correct description of 
what is happening in the experiment; the same goes for action at a distance in 
connection with (B1). Of course nothing in the bare statistics forces either in-
terpretation upon us; and yet the practical advice that CDT gives does depend 
on whether we adopt one of these interpretations or instead one of the non-
causal interpretations (= (A2), (B2), (C2)). CDT prefers 12hom to 12het in e.g. 
Table 2 if we are given e.g. (A2); but it reverses this preference on the hy-
pothesis (A1). Similarly, on hypothesis (B2) CDT advises either not betting in 
some D (i, z) as in Table 4 or prefers 12hom to 12het in Table 7; but again, it 
reverses these preferences under (B1). So its recommendation depends not 
only upon the statistical facts that we can observe but also upon theoretical 
questions about causal structure that they do not, and which maybe nothing 
ever could, settle. 
 But it should seem strange that the answer to a practical question 
(‘Which bet?’) turns on relatively abstruse theoretical matters. After all, nothing 
about the theoretical situation has any impact upon the facts that will actually 
settle your payoffs. We know in advance what these are. We know in advance 
that whether or not e.g. retrocausality is operating, the return to 12het in Table 
7 will on average exceed the return to 12hom by 50%.  
 To make it more vivid: suppose that I am running Table 7-style books 
on two similar EPR devices, X and Y, and that you for some reason think that 
action-at-a-distance is operative in X but not in Y, the devices being otherwise 
identical. Then CDT will advise different approaches to X and to Y, even 
though you know in advance that they will generate the same expected re-
turns to the same strategies. Worse still: suppose you forget which device is X 
and which is Y, and I offer to remind you for a fee. If you expect to play many 
times then CDT recommends that you pay up, even though you can be arbi-
trarily confident of the same long-run return whether you play 12het on X and 
12hom on Y or vice versa. 
 This complaint against CDT goes to the heart of what distinguishes it 
from the evidential theory. It makes a practical question of what to do depend 
on possibly irresoluble metaphysical matters that may have no observable 
consequences. That in turns appears to implicate it in a complete misconcep-
tion of what practical reasoning involves and why it should matter. To give 
non-trivially different practical advice in practically indistinguishable situations 
is to fail to understand that you are supposed to be offering practical advice, 
not to be engaging in theoretical speculation. 
 This aspect of CDT is not a moving part of the other cases that distin-
guish it from EDT. In standard Newcomb cases (Nozick 1969: 207-8) the 
causal structure of the situation is clear because stipulated: there simply is no 
retrocausality or action at a distance from your decision to the state of nature 
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that it reveals, in this case the prediction ; similarly in cases not involving 29

dominance such as ‘Death in Damascus  and its variants.  So although it is 30

(in our view) always true that the statistical facts are enough by themselves 
for practical purposes, it is only in the EPR cases here discussed that they are 
clear but the underlying causal structure is completely open. That is why they 
are well suited to reveal CDT’s implausible sensitivity to variations in one’s 
background theorizing about the operation of the device.  31

 But just how serious a problem does CDT really face? After all, we 
have only shown that on three out of eight possible hypotheses about the 
workings of the device do EDT and CDT make different practical recommen-
dations. So if you don’t fully grant any of (A2), (B2) or (C2), as many people 
do not, it seems that you can maintain CDT in the face of everything that we 
have said so far.  

In fact this is not true. As we’ll see, all it takes for the clash to arise, and 
so all it takes for the criticisms here to bite, is that you are not absolutely con-
fident that all of (A2), (B2), (C2) are false. For any agent who gives any of 
these non-causal hypotheses any positive credence at all, it’s possible to con-
struct a case concerning which: (a) CDT and EDT give different advice to the 
agent; (b) EDT is known to have a better expected return that CDT; (c) CDT 
still gives practical advice that depends on your metaphysical views about the 
setup. So the argument here pressed against CDT does not only apply to that 
(presumably quite small) class of people who fully accept one of (A2), (B2) 
and (C2) but also to that (presumably much larger) class of people who don’t 
completely reject all of them. 

The following section expands on this point before turning to three oth-
er objections.  !
   
9. Objections 
A defender of CDT might object: (i) that—as just suggested—no reasonable 
person would place all of her credence in any of (A2), (B2) or (C2) (ii) that 
CDT does not make the recommendations that we have claimed, given hy-
pothesis (B2); (iii) that it is unclear whether it does, because it is unclear what 
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are supposed to count as causal connections here; (iv) that in any case the 
examples, being non-constructive, pose no definite objection to CDT. !

(i) Mixed theoretical beliefs.  
We have so far proceeded entirely on the assumption that an agent lends all 
of her credence to some one of the eight theoretical options that we identified 
at section 2.  
 That is, we are asking her to accept one of three specific interpreta-
tions of the experiment i.e. (A2), (B2) or (C2). And this is something of a 
stretch: it is hard to be certain that there really are lawlike (i.e. theoretically 
predicted) correlations between states that are causally independent and 
share no causal ancestor.  32

What is more likely is that a well-informed agent spreads her credence 
across all of the causal hypotheses concerning the working of the device, just 
as in any everyday decision situation she spreads credence across various 
hypotheses concerning the effects of the actions that are available to her in 
that case. The question is whether this makes a difference to the overall deci-
sion-theoretic recommendations. Are causalists and evidentialists of this more 
realistic and ambivalent type bound to disagree over the EPR cases that we 
have been considering? 
 Yes they are, as we now argue. First and in order to simplify matters, 
let us define C (for ‘causality’) to abbreviate those hypotheses (A1), (B1), 
(C1), (D1) and (D2) on which the causal influence of the settings forces EDT 
and CDT to agree over all cases: in particular over Tables 4-7. So ¬C abbre-
viates all of those other hypotheses (A2), (B2) and (C2) that deny any such 
form of influence: 
  

(83) C ≡def. A1 ∨ B1 ∨ C1 ∨ D1 ∨ D2; so: 
(84) ¬C ≡ A2 ∨ B2 ∨ C2 !
Next, consider some decision problem D (i, z) as at Table 4. For any 

such problem, the V-score of betting iihom is simply (1 – z), and that of Q is 
simply zero. And this is true under any hypothesis about the causal structure 
of the device, since EDT makes recommendations that are independent of 
any metaphysical hypotheses about causation and instead depend only on 
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the observed statistics. So EDT will recommend iihom in Table 4 to any agent 
meeting that condition, including any agent whose credence is divided 
amongst the hypotheses that we have outlined.   

We cannot directly calculate what recommendation CDT makes to 
such an agent. However it is true even of such an agent that CDT will recom-
mend quitting in D (i, z) for some z < 1 unless equation (46) holds. Recall that 
the only premises in the argument for (46) were (44) and (45), neither of 
which depended on the agent’s specific credences in this or that particular 
causal hypothesis. Putting together this point with the insensitivity of EDT to 
these credences, we can see that the argument against CDT will hold even on 
the assumption of divided credence unless (46) holds. So we may take for-
ward (46) from the foregoing argument. 

Next, consider the following decision problem, α > 1: !

Table 10: Mixed EPR case α !
In this problem there are two different types of states of nature: those in which 
the causal hypothesis C holds and those in which the causal hypothesis fails. 
However the payoffs are completely fixed and verifiable, these depending only 
upon one’s initial setting of the receivers and their readings. For instance, if 
one takes option 13hom and both receivers give reading ‘y’ then one gets a 
payoff of α, whichever of the hypotheses C and ¬C is true. Which one of C 
and ¬C is true is not in fact something on which the agent has any strong 
view, her credence being ex hypothesi divided between them.  
 What EDT recommends to this ‘mixed’ agent depends in the following 
manner on the precise value of α: !

(84)V (12hom) = α Cr (yy ∨ nn⏐12hom) = 0.25α 
(85)V (12het) = Cr (yn ∨ ny⏐12hom) = 0.75 !

—and similarly for the other ‘hom’ and ‘het’ options. So EDT recommends any 
‘het’ option over every ‘hom’ option if and only if α < 3; and in fact this recom-
mendation is quite independent of the precise value of the agent’s Cr (C).  

C  
yy

C  
yn

C  
ny

C 
nn

¬C 
yy

¬C 
yn

¬C 
ny

¬C 
nn

12hom α 0 0 α α 0 0 α

13hom α 0 0 α α 0 0 α

23hom α 0 0 α α 0 0 α

12het 0 1 1 0 0 1 1 0

13het 0 1 1 0 0 1 1 0

23het 0 1 1 0 0 1 1 0
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What about CDT? Here things are only slightly more complicated. 
Comparing 12hom and 12het, the general expressions for the relevant utilities 
take the following forms: !

(86)U (12hom) = α (Cr (12hom → (C ∧ (yy ∨ nn))) + Cr (12hom → (¬C ∧ 
(yy ∨ nn)) 

(87)U (12het) = Cr (12het → (C ∧ (yn ∨ ny)) + Cr (12hom → ¬C ∧ (yn ∨ 
ny)) !

To evaluate these, note first that since neither the choice of setting nor 
the choice of bet has any effect on which causal hypothesis is true, and in 
particular no effect upon which of C and ¬C is true, the following identities 
must be true for any state S ∈ {yy ∨ nn, yn ∨ ny}, here writing ‘12’ indifferently 
for ‘12hom’ and ‘12het’: !

(88)Cr (12 → (C ∧ S)) = Cr (C ∧ (12 → S)) 
(89)Cr (12 → (¬C ∧ S)) = Cr (¬C ∧ (12 → S)) !

Now the right hand sides of (88) and (89) resolve into: !
(90)Cr (C ∧ (12 → S)) = Cr (12 → S⏐C) Cr (C) 
(91)Cr (¬C ∧ (12 → S)) = Cr (12 → S⏐¬C) Cr (¬C) !

It is straightforward to calculate the conditional probabilities on the right of (90) 
and (91) for the two possible values of S. In particular, if the causal hypothesis 
is true then we should expect the settings to have a causal effect upon the 
readings that mirrors the statistics (4) and (5). So we have: !

(92)Cr (12 → yy ∨ nn⏐C) = 0.25 
(93)Cr (12 → yn ∨ ny⏐C) = 0.75 !

But if the causal hypothesis is false then no setting has any causal impact on 
the reading on the opposite wings. So by the argument at s. 4 we have: !

(94)Cr (12 → (yy ∨ nn)⏐¬C) = Cr (111 ∨ 110 ∨ 001 ∨ 000⏐¬C)    !
—where 111, 110 etc. are as defined at (65).  Writing c for Cr (C) and CrC, 33

Cr¬C for the marginal distributions Cr (x⏐C) and Cr (x⏐¬C) respectively, we 
may now substitute into (86) and (87) to get: !

(95)U (12hom) = 0.25αc + α(1-c) Cr¬C (111 ∨ 110 ∨ 001 ∨ 000) 
(96)U (12het) = 0.75c + (1-c) Cr¬C (101 ∨ 100 ∨ 011 ∨ 010) !
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(B2) and (C2) because on the former hypothesis 111, 110 etc. are respectively equivalent to 
YYY, YYN etc. 



By the same reasoning on the other four options we have: !
(97)U (13hom) = 0.25αc + α (1-c) Cr¬C (111 ∨ 101 ∨ 010 ∨ 000) 
(98)U (13het) = 0.75c + (1-c) Cr¬C (110 ∨ 100 ∨ 011 ∨ 001)  
(99)U (23hom) = 0.25αc + α (1-c) Cr¬C (111 ∨ 011 ∨ 100 ∨ 000) 
(100)U (23het) = 0.75c + (1-c) Cr¬C (110 ∨ 010 ∨ 101 ∨ 001) !

Now we know by the structurally identical reasoning of (24)-(34)—which ap-
plies just as well here because Cr¬C is a probability distribution—that (say) 
twice the marginal credence on the right of (95) equals or exceeds the corre-
sponding quantity on the right of (96): !

(101)2 Cr¬C (111 ∨ 110 ∨ 001 ∨ 000) ≥ Cr¬C (101 ∨ 100 ∨ 011 ∨ 010) !
--at any rate, either this inequality holds or some corresponding one holds for 
the marginal credences in (97) and (98), or for those in (99) and (100). 

So suppose without loss of generality that (101) is true. If we now write 
t =def. α - 2, p =def. Cr¬C (111 ∨ 110 ∨ 001 ∨ 000) and q =def. Cr¬C (101 ∨ 100 ∨ 
011 ∨ 010) then subtracting (96) from (95) gives: !

(102)U (12hom) – U (12het) = 0.25c(t-1) + p(2+t)(1-c) – q(1-c) !
Since (101) tells us that 2p-q ≥ 0, it follows that: !

(103)U (12hom) – U (12het) > 0 if 0.25c(t-1) + pt(1-c) > 0; hence: 
(104)U (12hom) – U (12het) > 0 if t > c/(c + 4p (1-c))    !

Elementary calculations tell us that if c < 1 and p > 0 then there is always 
some t strictly between 0 and 1 that satisfies the right hand side of (104).  

But since α = t + 2, this means that if c < 1 and p > 0 then we can al-
ways choose some payoff to the hom options α, strictly between 2 and 3, on 
which the causalist will prefer 12hom to 12het (or more generally, some ‘hom’ 
option to the corresponding ‘het’ option). But that p > 0 is an innocuous as-
sumption. And by (84) and (85), we know that α < 3 guarantees that EDT al-
ways prefers any ‘het’ option to every ‘hom’ option. So if c > 0 i.e. if the agent 
gives any credence at all to the non-causal hypotheses (A2), (B2), or (C2) 
then EDT and CDT will diverge over Mixed EPR case α for some α.  

So the objection fails: as long as the agent is not absolutely certain of 
retroactive causation, superluminal causation or the Everett interpretation, it is 
possible to construct an EPR case in which EDT and CDT give divergent ad-
vice. Any such case will equally support both of the arguments against CDT 
that section 8 based upon ‘pure’ EPR cases like those in Tables 1, 4, 5 and 8.  !

(ii) Counterfactual indefiniteness.  
The (B2)-type cases in Tables 4-7 require that for CDT to give the verdicts 
that we are attributing to it, e.g. at (73), there must be a definite credence in 
counterfactuals such as (12hom → yy); for expressions denoting such quanti-
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ties appear throughout the argument, e.g. at (44). But—the objector says—
(B2) is itself incompatible with this: according to it, there is no prior state of the 
particles that could make any such counterfactual true in the first place, and 
so no state of affairs the agent’s confidence in which Cr (12hom → yy) is 
measuring. So I cannot argue that CDT makes these recommendations after 
all.  
 The objection relies on the assumption that a counterfactual cannot be 
true unless there is in actuality some categorical fact (like the prior instruction 
set) to ground it: that there cannot in Dummett’s terms be counterfactuals that 
are barely true.  This is a very natural assumption. We should feel deep un34 -
ease at the idea that two equally filled and identically constituted vessels (say, 
two otherwise indistinguishable bowls of water) should, when struck in the 
same way, give off different notes. If we came across a case that looked like 
this, it would be almost irresistible to think that what explains this difference in 
their propensities is some unnoticed difference in their actual constitution.   35

 But it is not quite irresistible that we should think this in every case; and 
there are actual as well as possible philosophical positions that allow counter-
factuals to be barely true. An actual such position arises from Lewis’s seman-
tics for counterfactuals (1973), on which the truth-value of a counterfactual 
concerning an object’s behaviour depends only on that object’s (or its coun-
terparts’) behaviour at the relevant nearby possible worlds and not necessarily 
on any intrinsic feature of it. On that view it is entirely possible that two intrin-
sically identical objects should have different propensities i.e. be disposed to 
respond differently under the same counterfactual stimulation, and so there is 
nothing wrong with a distribution of credence that allows this. For instance in 
the case at hand, Cr (12hom → yy) is perfectly well defined as long as there is 
an appropriately measurable set of worlds in which A and B are set to ‘1’ and 
‘2’ and ‘yy’ has this or that chance of occurring. Nothing in this account de-
mands any categorical truthmaker for the counterfactual.        36

 But in any case, even if we do accept the assumption that counterfac-
tuals cannot be barely true, this makes things no better for CDT. If we reject 
hidden variables then it now seems that we cannot make any claim at all 
about the counterfactual (hence causal) dependence or independence read-
ings of the receivers upon their settings. And this means that far from agree-
ing with EDT in these cases, CDT actually gives no advice at all. So there is 
still a divergence between the two theories over these cases, only it is not the 
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 The example is from Evans (1980: 276-7).35

 A possible such position would be an atheistic version of Berkeleian phenomenalism. We 36

usually think that what makes it true, that if I were in my office now then I’d see a desk in my 
office, is that there now is a desk in my office. But for Berkeley it is the other way around: it is 
counterfactuals about what I or somebody else would observe that make true the apparent 
categorical statements about ‘physical’ objects (1985: 90 (Principles s3)). For Berkeley him-
self the counterfactuals are themselves made true by God’s categorical will; but for the atheist 
phenomenalist they would have to be barely true. It is for that phenomenalist simply a brute 
fact, not obtaining in virtue of anything that is actually already there, or in virtue of anyone’s 
actual present willing, that if I were now in my office I should see my desk (Berlin 1999: 43ff.). 



difference between a theory that advises (say) betting in Table 4 and one that 
advises not betting there, but rather between a theory that advises betting and 
a theory that gives no advice. And this is just as damaging for CDT: what we 
have constructed (at least on assumption (B2)) is a family of cases in which 
practical action is called for but whereof CDT is silent. 
 That silence extends even to the simplest cases: if nothing makes the 
counterfactual 12 → yy true then nothing makes 1A → yA true either. But then 
CDT gives no advice even in the almost trivial situation where one must 
choose between switching receiver A to setting 1, thereby betting $1 on yA, 
and not doing so, as in the following table: !

Table 11: (B)-type EPR case 3 !
If CDT had anything to say about this case it would be that it’s worth taking 
the bet if and only if your Cr (1A → yA) > 0.5; but since, on the current propos-
al, the expression on the left hand side of this inequality is meaningless, CDT 
has no advice to give about even this simplest of decision problems. On the 
other hand, EDT gives advice here, and it is commonsensical: you should 
take such bets as Table 11 describes if and only if you’d expect to win them 
more often than to lose them (given risk-neutrality). 
 Perhaps the causalist could reply that EDT gives correct advice in EPR 
cases where the relevant counterfactuals make no sense; but in more every-
day cases (which we can describe in terms of causality) we should follow the 
advice of CDT. But what could motivate this eclecticism? Why wouldn’t it be 
equally sensible, by causalist lights, to follow maximin, or minimax regret, or 
any other decision rule you please, in those cases where CDT is silent?  If 37

EDT is giving proper advice in EPR cases then that must be because the sta-
tistical facts (4) and (5) are decisive there. But if statistical facts alone are de-
cisive in these cases then why are they not also decisive in other cases of di-
vergence from EDT? 
 Specifically: consider a rival theory that advises you to follow CDT in 
cases where it makes sense to speak of causal dependence or independence 
etc. of states of the world upon your acts, but to follow Fictionalist CDT 
(FCDT) in the EPR cases, where FCDT asks us to pretend to accept the 
causal descriptions of these situations that would explain the regularities that 
we observe if only they made sense and were true, e.g. those that ultimately 
motivate (66)-(71) in connection with Table 6. FCDT then gives exactly the 
sane results as those claimed for CDT in the EPR case. Now the eclectic view 
has no answer to the question: if we should prefer EDT to FCDT where they 
clash in EPR cases, then why should we not equally prefer EDT to CDT in 
classical i.e. non-EPR cases where they clash?   

yA nA

1A 1 -1

¬1A 0 0
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!
(iii) The varieties of causation 

The third line of objection is that by presenting the eight interpretations as 
genuine alternatives we are ignoring the different notions of causation that 
might be of interest to physicists studying these phenomena: when we try to 
be more specific, we may find that one or more of these positions drops out. 
For instance, if we think that causality must involve the transfer of information 
then the wings of the experiment must be causally isolated because of the 
prohibition on superluminal signaling; so on this view we must rule out (B1). If 
we think of causality as involving correlations that no prior state screens off, 
then the receivers are causally related on any no-hidden-variables theory; on 
this view (B1) may be true but (B2) has to go.  
 It’s true that we haven’t said anything about what causation is sup-
posed to be. But that is only because our purposes do not demand it. The 
idea behind the approach was supposed to be that there are some feasible 
theoretical assumptions on which EDT and CDT diverge, not that every theo-
retical approach forces that view of things.  To establish this it isn’t necessary 38

to defend any particular analysis of the causal relation but only to show that 
on some views of it there is no action at a spacelike distance.  
 Of course there is more to be said. The interesting question is really: 
which of these notions, if any, is the one that the causalist had in mind all 
along? What is it about the causal relation that makes it the one that rational 
decision-making should especially respect? We don’t think that there ever 
was any answer to this question. What was intuitively appealing about CDT’s 
appeal to causation was not any specific feature of the counterfactual or 
causal relation that some explications of this notion preserve but which others 
do not.  It is rather the intuitive idea of bringing about that is supposed to be 39

doing this work. And let us not enquire too closely, or at all, into what it is 
about ‘bringing about’ that somehow works a magic that mere statistics can 
never achieve.  !

(iv) Does it matter that the argument is non-constructive?  
The discussion of (A2) in s. 3 was non-constructive in the sense that although 
it identifies a particular decision situation (Table 1) over which EDT and CDT 
are bound to disagree, it does not identify which option, of the ones that EDT 
rules out, is the one that CDT endorses. The discussion of the B-type interpre-
tation (B2) in ss. 4-5 was non-constructive in the further sense of not even 
identifying a specific problem over which EDT and CDT give conflicting ad-
vice. We know that they disagree either over some D (i, z) as described at Ta-
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 That stronger demand would certainly rule out at least some of the cases that are of inter38 -
est to decision theory. E.g. the standard Newcomb Problem (Nozick 1969: 207-8) only gener-
ates divergence between EDT and CDT if we are willing to go along with the stipulation that 
the case involves no backwards causation, even though the phenomena of the problem admit 
that interpretation if anything does. So there is nothing new about the idea of presenting an 
example against a background of specific theoretical assumptions.   

 Papineau 2003: 179. As well as noting that no answer to this question is standardly forth39 -
coming, Papineau discusses and criticizes an evidentialist justification of causal decision the-
ory (ibid. ss. 12-15). For further criticisms of that approach see Ahmed 2014 ch. 8.  



ble 4 or over the B-type EPR case 1 at Table 5, but nothing in the argument 
tells us which. It was also non-constructive in the same sense as our discus-
sion of the A-type interpretations: even within Table 5 itself there is nothing to 
say which of the ‘hom’ options that EDT rules out gets endorsed by CDT.  
 But this doesn’t matter for the purposes of the two arguments against 
CDT that section 5 built upon these and other cases. All that those arguments 
required was (i) that some such cases exist; (ii) in the case of the first argu-
ment: that in those cases the statistical facts (4) and (5) favour EDT over CDT; 
and (iii) in the case of the second argument: that CDT will in such cases give 
differing advice depending on one’s credence in metaphysical questions that 
remain undetermined by our actual, and perhaps by all possible, observa-
tions. Constructive argumentation is not necessary for these purposes.    

But in any case, it would certainly be feasible in principle to construct a 
locus of disagreement between the two decision theories, if we are given an 
agent who accepts (say) interpretation (B2), on the supposition that the agent 
also takes the same attitude towards the relevant counterfactuals on different 
runs of the device.  On the first three runs of the device we offer him three 40

successive decision problems of the form of Table 7. Problem 1 is just as in 
Table 7. Problem 2 is like problem 1 except that it permutes the payoffs to 
‘12hom’ and to ‘13hom’, and permutes the payoffs to ‘12het’ and to ‘13het’. 
Problem 3 is like problem 1 except that it permutes ‘12hom’ with ‘23hom’ and 
‘12het’ with ‘23het’. If the agent takes the ‘hom’ option in one if these cases 
(or would do so for an arbitrarily small incentive) then we have found a dis-
agreement with EDT. If he does not disagree with EDT on any of these cases, 
then (46) must be false. In that case, let him face a sequence of decision 
problems (Problem 4, Problem 5…) where the Problem i is D (i*, 1 – 2-i) as in 
Table 4, where i* = (1 + i mod 3). Then the argument of section 4 has been 
that we will eventually reach a problem D (i*, 1 – 2-i), i being finite, in which the 
agent chooses to quit rather than to bet i*i*hom, in contradiction to EDT. So if 
it matters (though it may not), we can, for any agent that follows CDT, con-
struct an EPR case in which his choice violates EDT’s preferences over some 
specific and identifiable set of options. !!
10. Conclusion 
Suppose that your beliefs about the arrangement in s. 1 meet the following 
very light condition: that you have some non-zero credence in at least one of 
the hypotheses (A2), (B2) or (C2) on which the wings of the experiment are 
causally unrelated. In that case, the constructions in this paper represent real-
istic and novel loci of disagreement between the purely statistical (i.e. eviden-
tial) and the causal approach to decision theory. We also think that they rep-
resent clear counterexamples to the causal theory.  

Our recommendation to all such persons, which presumably includes 
most of us, is to drop Causal Decision Theory, if they ever held it, and instead 
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 This assumption is not logically unquestionable; but it is not really contentious either. If it 40

were not the case that most people’s credences are relatively stable across time in the ab-
sence of new information, it would be very hard to know anyone’s beliefs about anything in 
the intervals between explicit avowals. 



to base decisions about these games purely on the statistical evidence where 
this is available. Of course in the case considered here, those statistics, as 
embodied in (4) and (5), are not only available but as extensive, consistent 
and reliable as these things ever get.  41 !!
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