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Abstract

Recently, Brukner and Zeilinger have presented a number of argu-

ments suggesting that the Shannon information is not well defined as

a measure of information in quantum mechanics. If established, this

result would be highly significant, as the Shannon information is fun-

damental to the way we think about information not only in classical

but also in quantum information theory. On consideration, however,

these arguments are found unsuccessful; I go on to suggest how they

might be arising as a consequence of Zeilinger’s proposed foundational

principle for quantum mechanics.
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1 Introduction

What role the concept of information might have to play in the foundations

of quantum mechanics is a question that has recently excited renewed

interest (see e.g., Fuchs 2002; Mermin 2002; Wheeler 1990). Zeilinger, for

example, has put forward an information-theoretic principle which he

suggests might serve as a foundational principle for quantum mechanics

(Zeilinger 1999). As a part of this project, Brukner and Zeilinger (2001)

have criticised the Shannon measure of information (Shannon 1948), the

quantity fundamental to the discussion of information in both classical and

quantum information theory. They claim that the Shannon information is

not appropriate as a measure of information in the quantum context and

have proposed in its stead their own preferred quantity and a notion of

‘total information content’ associated with it, which latter is supposed to

supplant the von Neumann entropy. Their argument takes two forms: first,

that the Shannon information is too intimately tied to classical notions of

measurement to be applicable in quantum mechanics; and second, that it

cannot be used to define an appropriate notion of ‘total information

content’ for quantum systems. I shall argue that neither of these strategies

is successful, concentrating rather more on the latter. I shall then try and

indicate why these arguments against the Shannon information are arising

as a consequence of Zeilinger’s proposed foundational principle for quantum

mechanics.
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2 Is the Shannon Information inherently

classical?

The Shannon information H(~p) is a measure of uncertainty; it measures the

spread of a probability distribution ~p = {p1, . . . , pn}, quantifying our

uncertainty about what the outcome of an experiment described by this

distribution will be. It takes the following form:

H(~p) = −
∑
i

pi log pi. (1)

Brukner and Zeilinger’s first concern is that interpreting H(~p) as a measure

of information would require a pre-existing sequence of possessed values in

a message being decoded, but such a sequence cannot be taken to exist in

general in quantum mechanics. (They consider the example of a string of

systems all prepared in a given state |ψ〉 which is not an eigenstate of the

observable measured.) Their worry here seems misplaced, however. The

possible absence of a pre-existing string of values does not affect the

interpretation of the Shannon information, at least as it is usually

understood.

Two sorts of explanation standardly relate the Shannon quantity to a

notion of information. The first exploits an intuitive link between measures

of uncertainty and information: the greater our uncertainty about the

outcome of an experiment, the more we stand to gain from actually
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performing it. From this point of view, the Shannon information tell us our

expected information gain before we perform an experiment, or our average

gain following many repetitions1. Clearly no pre-existing values are called

for here, all that is required is that the distribution ~p correctly characterise

the experiment in question.

The second link to information follows from Shannon’s 1948 noiseless

coding theorem, which states that H(~p) tells us the maximum amount that

messages drawn from an ensemble characterised by the distribution ~p can

be compressed, and hence indicates the channel resources required to

transmit messages produced by an information source modelled by such an

ensemble. Again there is no requirement that these messages are composed

of fixed pre-existing strings of values. To derive the bound on the optimal

compression, we consider very long strings of values. Then, given the

appropriate probability distribution we know ab initio that any sequence

observed will be one of the typical sequences in which the relative frequency

of any type of outcome matches its probability of occurrence; and this on

its own is sufficient to calculate the number of bits that will be necessary to

specify any string produced, pre-existing or not.

Brukner and Zeilinger’s second reason for concern that the Shannon

information involves problematic classical assumptions is somewhat more

substantial. Shannon’s original presentation included a uniqueness proof for

the form of H(~p) which involved putting forward a number of constraints as

reasonable requirements on a measure of uncertainty. The constraint that
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plays the key role in securing uniqueness is often known as the grouping

axiom and takes the following form in the more rigorous presentation of

Shannon’s argument due to Faddeev (1957):

For every n ≥ 2,

H(p1, p2, . . . , pn−1, q1, q2) = H(p1, . . . , pn−1, pn) + pnH(q1/pn, q2/pn) (2)

where pn = q1 + q2.

Brukner and Zeilinger argue that if we are to understand the physical

content of this axiom then we must refer to the performance of joint

experiments. Thus if we take two experiments A and B with outcomes

a1, . . . , an; b1, . . . , bm respectively, then the grouping axiom relates our

uncertainty for the performance of these distinct experiments. Eqn. (2),

they suggest, will be equivalent to

H(A ∧B) = H(A) +H(B|A), (3)

where H(B|A) =
∑n
i=1 p(ai)H(p(b1|ai), . . . , p(bm|ai)).

This, however, seems to make it clear that the grouping axiom embodies a

particularly classical assumption about measurement, namely that

measurements can be made ideally non-disturbing2. Furthermore, it seems

that if we are going to be able to apply the grouping axiom, then we have

to be able to make the assumption that attributes corresponding to all

possible measurements can be assigned to a system simultaneously (in this
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case, ai, bj and ai ∧ bj). But we know this will not be true in general in

quantum mechanics. For non-commuting observables, the probabilities on

the left hand sides of eqns.(2) and (3) will not be defined and the grouping

axiom will fail to hold. Brukner and Zeilinger thus conclude that the

standard uniqueness proof fails in quantum mechanics and that the

Shannon information ceases to be justified as a measure of information as it

is conceptually tied to these classical assumptions in virtue of the grouping

axiom.

The prospects for the Shannon information are not really so bad as this,

however. Failure of the argument for uniqueness and inapplicability of the

grouping axiom need not imply that the Shannon information cannot

function as a measure of uncertainty. The Shannon information is in fact

one of a general class of measures of uncertainty, characterised by a set of

axioms in which the grouping axiom does not appear (Uffink 1990), hence

the grouping axiom is not necessary for the interpretation of the Shannon

information as a measure of uncertainty3 and any classical assumptions

that the axiom might embody would not transfer to the Shannon

information itself.

It can be argued further that Brukner and Zeilinger’s interpretation of the

grouping axiom is not equivalent to the standard form which does not

involve classical assumptions and is equally applicable in the quantum and

classical cases (Timpson 2001). Here, however, I want to note the possibility

that Brukner and Zeilinger’s worry about the Shannon information, as it
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finds expression in their grouping axiom argument, may be due at least in

part to the fact that they seem to desire a measure of information or

uncertainty intrinsic to a quantum system, rather than a measure

associated with particular experiments. (This would explain their emphasis

on non-commuting measurements on an individual system, for example.)

However, if we want a measure of information for a quantum system itself, a

measure of how uncertain we are in general when we know the state of the

system, then it is obvious from the beginning that the Shannon information

is not the correct sort of function for us; and there are other, familiar,

functions that will do the job instead. A measure of uncertainty is a

function of a probability distribution and we know that a joint probability

distribution for all possible measurements does not exist; it is for this reason

that we introduce measures of mixedness such as the von Neumann entropy

which are functions of the state rather than of a probability distribution. It

would be a mistake, however, to take it as a complaint against the Shannon

information that it does not play this very different sort of role. As a

measure of uncertainty it does as much as we could ask of it; we do not

want to confuse the question of what makes a good measure of uncertainty

with the question of when joint probability distributions can be defined.
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3 The Total Information Constraint

Brukner and Zeilinger’s other main argument against the Shannon

information is that it is not appropriately related to a notion of ‘total

information content’ for a quantum system. Here they compare H(~p)

unfavourably to their preferred quantity

I(~p) =
n∑
i=1

(pi − 1/n)2 , (4)

which they relate to their notion of total information content in the

following way.

A set of measurements is called mutually unbiased if the sets of projectors

{P}, {Q} associated with any pair of measurement bases satisfy

Tr(PQ) = 1/n, where n is the dimensionality of the system; there can exist

at most n+ 1 such bases (Wootters and Fields 1989), constituting a

complete set4. Noting the fact that an unknown state ρ may be completely

determined by measurement of such a complete set on an ensemble of

similarly prepared systems (Ivanovic 1981), Brukner and Zeilinger suggest

that the total information content of a quantum system should be defined

as a sum of individual information measures for a complete set of mutually

unbiased observables. Adopting the measure I(~p), we get:

Itot =
n+1∑
j=1

I(~pj) =
∑
ji

(
pji − 1/n

)2
= Tr (ρ− 1/n)2 . (5)
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The fact that this quantity is invariant under unitary transformations is

important, because Brukner and Zeilinger also suggest that it is a necessary

constraint on a measure of total information content that it be unitarily

invariant. This is the problem they raise for the Shannon information —

substituting H(~p) in eqn. (5) does not result in a unitarily invariant

quantity. That is, H(~p) fails to satisfy what we might call Brukner and

Zeilinger’s ‘total information constraint’, that a measure of information has

to sum to a unitarily invariant quantity that can be interpreted as a ‘total

information content’ for a complete set of mutually unbiased measurements.

The picture is that the Shannon measure is inadequate as a measure of

information gain because it does not satisfy the total information constraint

and hence does not tell us how much of the total information content of a

system we learn by performing measurements in a given basis. Similarly, a

complaint is raised against the von Neumann entropy that it is merely a

measure of mixedness, as unlike Itot, it has no relation to the information

gained in a measurement unless we happen to measure in the eigenbasis of

ρ.

This argument against the Shannon information is only compelling if the

total information constraint is in fact a reasonable constraint on individual

measures of information. Unfortunately, it is not obvious that it is. To

begin with, the ‘information content’ of a quantum state can mean several

different things; we might, for example, be interested in the maximum

amount that can be encoded into a given quantum system (the Holevo
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bound (Holevo 1973)), or in the average amount of information needed to

specify the state of a system drawn from a given ensemble (the classical

information of the source). Since ‘information content’ is not univocal, it

seems difficult to maintain that all meaningful individual information

measures and measures of information content must have the particular

fixed relation expressed in the total information constraint. A further

important consideration is that we may well demand to know why

information measures for a complete set of mutually unbiased

measurements should be expected to sum to a particularly interesting

quantity in any case. To make this question more pointed, let us ask why it

is that I(~p) in fact happens to sum to a unitarily invariant quantity.

I(~p) is not especially novel as a measure of information; it is one of the

general class of measures of the concentration of a probability distribution

given by Uffink (1990). A measure of concentration is the reciprocal of a

measure of uncertainty, increasing as a probability distribution becomes

more peaked. I(~p) is a Schur convex function, rather than a Schur concave

function like H(~p) and measures of uncertainty; it could be said to measure

how well we can predict the outcome of an experiment, rather than how

uncertain we are about it. I(~p), however, has a particular geometric

property as well as being a measure of information; and it is this property,

tangential to its role as a measure of information, which explains the

relation to Itot and how it satisfies the total information constraint. To see
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this, we will use the Hilbert-Schmidt representation of density operators, a

more general form of the familiar Bloch sphere representation.

3.1 The Relation between Total Information Content

and I(~p)

The set of complex n× n Hermitian matrices forms an n2-dimensional real

Hilbert space Vh(C
n) on which we have defined an inner product

(A,B) = Tr(AB);A,B ∈ Vh(Cn) and a norm ‖A‖ =
√

Tr(A2) (Fano 1957;

Wichmann 1963). The density matrix ρ of an n dimensional quantum

system can be represented as a vector in this space. The requirements on ρ

of unit trace and positivity imply that the tip of any such vector must lie in

the n2 − 1 dimensional hyperplane T a distance 1/
√
n from the origin and

perpendicular to the unit operator 1, and on or within a hypersphere of

radius one centred on the origin.

It is useful to introduce a set of basis operators on our space; we require n2

linearly independent operators Ui ∈ Vh(Cn) and it may be useful to require

orthogonality: Tr(UiUj) = const.× δij. Any operator on the system can

then be expanded in terms of this basis and in particular, ρ can be written

as

ρ = 1/n+
n2−1∑
i=1

Tr(ρUi)Ui,

where we have chosen U0 = 1 to take care of the trace condition.

Evidently, ρ may be determined experimentally by finding the expectation
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values of the n2 − 1 operators Ui in the state ρ. If we include the operator 1

in our basis set, then the idempotent projectors associated with

measurement of any maximal (non-degenerate) observable will provide a

maximum of a further n− 1 linearly independent operators. Obtaining the

probability distribution for a given maximal observable will thus provide

n− 1 of the parameters required to determine the state, and the minimum

number of measurements of maximal observables that will be needed in

total is n+ 1, if each observable provides a full complement of linearly

independent projectors.

Each such set of projectors spans an n− 1 dimensional hyperplane in

Vh(C
n) and their expectation values specify the projection of the state ρ

into this hyperplane. Ivanovic (1981) noted that projectors P,Q belonging

to any two different mutually unbiased bases will be orthogonal in T, hence

the hyperplanes associated with measurement of mutually unbiased

observables are orthogonal in the space in which density operators are

constrained to lie in virtue of the trace condition. If n+ 1 mutually

unbiased observables can be found, then, Vh(C
n) can be decomposed into

orthogonal subspaces given by the one dimensional subspace spanned by 1

and the n+ 1 subspaces associated with the mutually unbiased observables.

The state ρ can then be expressed as:

ρ = 1/n+
n+1∑
j=1

n∑
i=1

qji P̄
j
i , (6)
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where P̄ j
i = P j

i − 1/n is the projection onto T of the ith idempotent

projector in the jth mutually unbiased basis set, and qji = (pji − 1/n) is the

expectation value of this operator in the state ρ. For a given value of j, the

vectors P̄i span an (n− 1) dimensional orthogonal subspace and the square

of the length of a vector expressed in the form (6) lying in subspace j will

be given by
∑n
i=1(qji )

2 = I(~pj).

It is then simple to see that I(~p) satisfies the total information constraint

because these squared lengths of the components of ρ in orthogonal spaces

can just be added to get the length squared of ρ in T, i.e. the square of the

distance of ρ from the maximally mixed state Tr(ρ− 1/n)2 = Itot; and this

is what eqn. (5) reports.

Thus I(~p) satisfies the total information constraint because it has the

particular geometrical property of measuring a length. The question now is,

would H(~p) have to be a measure of length in order to be a measure of

information? That is, does it suffer from not satisfying the total information

constraint? The short answer is no — H(~p) can be a perfectly good

measure of information without having to be a measure of the length of the

projection of ρ into the subspace associated with an observable. The longer

answer involves pointing out that when considered strictly as measures of

information, I(~p) and H(~p) function in much the same way; and in fact, as

measures of information, H(~p) stands to S(ρ), the von Neumann entropy, in

the same relation as I(~p) stands to Itot, as we shall now see.

Brukner and Zeilinger’s total information content Itot seems best
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interpreted as a measure of mixedness, a measure of how much we know in

general about what the outcomes of experiments will be given the state

(Brukner and Zeilinger 1999b). The functioning of measures of mixedness

can usefully be approached via the notions of majorization and Schur

convexity (concavity). The majorization relation ≺ imposes a pre-order on

probability distributions (Uffink 1990; Nielsen 2001). A probability

distribution ~q is majorized by ~p, ~q ≺ ~p, iff qi =
∑
j Sijpj, where Sij is a

doubly stochastic matrix. That is (via Birkhoff’s theorem), if ~q is a mixture

of permutations of ~p. Thus if ~q ≺ ~p, then ~q is a more mixed or disordered

distribution than ~p.

Schur convex (concave) functions respect the ordering of the majorization

relation: a function f is Schur convex if, if ~q ≺ ~p then f(~q) ≤ f(~p), and

Schur concave if, if ~q ≺ ~p then f(~q) ≥ f(~p) (for strictly Schur convex(cave)

functions, equality holds only if ~q and ~p are permutations of one another).

This explains the utility of such functions as measures of the concentration

and uncertainty of probability distributions, respectively. Now, it can be

shown (Nielsen 2001) that the probability distribution ~p for the outcomes of

any projective measurement is majorized by the vector of eigenvalues ~λ of

the pre-measurement state ρ. This entails that S(ρ) is the infimum of H(~p),

H(~p) ≥ S(ρ) (since H(~p) is Schur concave), and Itot is the supremum of

I(~p), I(~p) ≤ Itot (I(~p) Schur convex); both inequalities reflecting the same

fact from the theory of majorization. These relations illustrate why a

measure of mixedness is a measure of how much we know given the state:
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the more mixed a state, the more uncertain we must be about the outcome

of any given measurement. However, they also make it clear that S(ρ) does

have an explicit relation to the information gain from measurement that

would justify its interpretation as a total information content. Conversely,

they establish that H(~p) does have an appropriate relation to a measure of

information content, despite not satisfying the total information constraint;

the same relation, in fact, that I(~p) has to its associated notion of

information content, up to an irrelevant change in sign. We must conclude

that the total information constraint is not a reasonable requirement on

measures of information; the Shannon information survives Brukner and

Zeilinger’s final argument unscathed.

4 Zeilinger’s Foundational Principle

We have seen that Brukner and Zeilinger’s worries about the applicability

of the Shannon information are misplaced; the Shannon information is

perfectly well defined and meaningful as a measure of information in

quantum mechanics. I want now to suggest that these worries may have

arisen in the first place as a consequence of a proposed foundational

principle for quantum mechanics.

Zeilinger (1999) puts forward the following principle as a possible

foundation for the whole of quantum theory. Two formulations of the

Principle are presented:
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FP1) An elementary system represents the truth value of one proposition.

FP2) An elementary system carries one bit of information.

Brukner and Zeilinger claim that this Principle can explain, amongst other

things, the irreducible randomness of quantum measurement and the

phenomenon of entanglement.

It is not immediately obvious that FP1 and FP2 are actually equivalent,

neither is it clear how the Foundational Principle might in fact be supposed

to function. As it stands it does not appear to distinguish between classical

and quantum; FP1 and FP2 seem to be as true of a single classical (Ising

model) spin as of a qubit. Unfortunately, space does not allow us to discuss

properly the prospects for the Foundational Principle as a foundational

principle here (see Timpson (2001)), we shall have to rest content with

trying to become a little clearer on what it actually means. To this end, we

need to discuss Zeilinger’s conception of the quantum state and to elaborate

what he means by a system ‘carrying’, or ‘representing’ information.

Zeilinger adopts an explicitly instrumentalist view of the quantum state:

The initial state...represents all our information as obtained by

earlier observation...[the time evolved] state is just a short hand

way of representing the outcomes of all possible future

observations.(Zeilinger 1999, 634)

Such instrumentalist sentiments are common. Where Brukner and Zeilinger

depart from the norm, however, is in adopting a very literal construal of the

17



information taken to constitute the state, by adopting, at least inchoately,

the Hilbert-Schmidt representation of states:

We describe a photon by a catalog of information (“information

vector”) ~i = (i1, i2) about mutually complementary propositions

{P1,P2}. Such propositions are, for example, P1: “the

polarization of the photon is vertical (horizontal)” (Brukner and

Zeilinger 1999a)

The component i1 is defined as (p− q), where p and q are the probabilities

for vertical and horizontal polarization respectively5. Thus, the components

of the information vector ~i correspond, effectively, to the coefficients qji in

eqn. (6), and the propositions P to the operators P̄ j
i .

On this conception, an amount of information in the form of probabilities

has been associated to propositions representing the outcomes of mutually

unbiased measurements; the information and the experimental propositions

it is about can be read off directly from the Hilbert-Schmidt representation

of the state, given some choice of basis operators (choice of complete set of

mutually unbiased measurements). Illustrating the general idea, if

probability 1 is associated to some proposition, then the state says the

maximum possible about the outcome of the measurement with which that

proposition is associated; if there is a flat distribution for outcomes of a

measurement, the state contains no information about it. In general the

state will contain partial information about a number of mutually unbiased

observables. Endorsing the instrumentalist line, all that the state is is an
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amount of information in this way about mutually complementary

observables.

Now the statements FP1 and FP2 refer to an elementary system carrying

or representing an amount of information. By this, Zeilinger says, he means

the following:

...that a system “represents” the truth value of a proposition or

that it “carries” one bit of information only implies a statement

concerning what can be said about possible measurement

results. (Zeilinger 1999, 635)

Thus rather than, for example, being a restriction on how much

information might be encoded into, or read from, a physical system, we see

that the Foundational Principle is a restriction on how much can be said

about measurement outcomes, and hence, in particular, is a restriction on

how much the state can say about measurement outcomes. For Zeilinger,

the state will in general be constituted by amounts of partial information

about measurement outcomes. The Foundational Principle requires that

the state can only contain a limited amount of information, namely one bit;

hence it follows that the amounts of partial information contained in the

state, although how these are to be quantified has not yet been specified in

detail, must add up to one bit’s worth in total.

This, however, rules out the Shannon information as the measure of the

amount ‘carried’ by the state about a given measurement; we know that in

general we will not have a sum to unity for amounts of partial information
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conceived in the way outlined. (As H(~p) does not sum to a unitarily

invariant quantity for a complete set of mutually unbiased measurements,

we cannot guarantee that we will attain the value of one for any given pure

state.)

Thus the conjunction of the Foundational Principle with Brukner and

Zeilinger’s brand of literal instrumentalism about the quantum state is

inconsistent with adopting the Shannon information to measure the amount

of information ‘carried’ about a measurement. I suggest that it is this fact

that tempts Brukner and Zeilinger to argue, unsuccessfully as it turns out,

that the Shannon information is not the correct measure of information and

cannot be applied in quantum mechanics.

We close with two final comments. First, consider what someone rather

more realist about the quantum state might make of the Foundational

Principle. Here the information idiom would no longer be particularly

enticing and a more precise statement of what is being expressed by the

Foundational Principle would be natural:

‘R’ FP) Any projective measurement other than in the

eigenbasis of ρ results in a shorter vector in Vh(C
n)

(‘R’ FP for ‘realist’ Foundational Principle.) That is, any such measurement

would result in a more spread probability distribution; if we began with a

pure state then post- (non-selective) measurement, the ensemble will no

longer be represented by a one-dimensional projector. Given this statement

of the Principle, we see that it is a matter of choice whether or not, or with
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which quantities, we chose to discuss the uncertainties associated with the

probability distributions generated by the state.

Second, we might wonder whether the foregoing indicates that for the

instrumentalist at least, I(~p) does after all represent the ‘correct’ measure

of information in quantum mechanics. Such a choice would appear very

artificial given the close relation between the functioning of I(~p) and H(~p)

discussed earlier. Note, however, that one could still be an instrumentalist

about the quantum state while adopting ‘R’FP as more genuinely

informative than FP1 and FP2. The instrumentalist is not, then, forced to

accept I(~p) as the only correct measure of information in quantum

mechanics.

So, to conclude: we have seen that Brukner and Zeilinger’s arguments

against the applicability of the Shannon information in quantum mechanics

are unsuccessful; and we have seen, moreover, that these arguments seem to

be motivated by the conjunction of Zeilinger’s Foundational Principle with

a particular form of instrumentalism about the quantum state. Even if one

has instrumentalist leanings, however, this does not imply that the

Brukner-Zeilinger measure can be the only correct measure of information

in quantum mechanics. The Shannon information remains perfectly well

defined and meaningful as a measure of information in the quantum

context.
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Notes

1H(~p) actually takes the form of an expectation value of a function,

− log pi, that decreases the more likely an outcome is.

2Eqn. (3) can be read as saying that if we first perform A and then B,

our uncertainty in B can just be updated conditional on the A outcome, our

ability to predict B values not being degraded by the A measurement.

3Uffink (1990, §1.6.3) argues further that the grouping axiom is not a

natural constraint on a measure of information, even in the classical case, and

should not be insisted upon as a necessary constraint, pace Jaynes (1957).

4For the n = 2 case, the three spatially orthogonal components of spin

constitute a familiar example of a complete set of mutually unbiased observ-

ables.

5For this two-dimensional quantum system, we have here, essentially, the

Bloch sphere representation.
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