
Identity in Homotopy Type Theory, Part I:
The Justification of Path Induction

Friday 24th October, 2014

Abstract

Homotopy type theory (HoTT) is a new branch of mathematics that
connects algebraic topology with logic and computer science, and which
has been proposed as a new language and conceptual framework for math-
ematical practice. Much of the power of HoTT lies in the correspondence
between the formal type theory and ideas from homotopy theory, in par-
ticular the interpretation of types, tokens, and equalities as (respectively)
spaces, points, and paths. Fundamental to the use of identity and equality
in HoTT is the powerful proof technique of path induction. In the ‘HoTT
Book’ [1] this principle is justified through the homotopy interpretation of
type theory, by treating identifications as paths and the induction step as
a homotopy between paths. This is incompatible with HoTT being an au-
tonomous foundation for mathematics, since any such foundation must be
able to justify its principles without recourse to existing areas of mathemat-
ics. In this paper it is shown that path induction can be motivated from
pre-mathematical considerations, and in particular without recourse to ho-
motopy theory. This makes HoTT a candidate for being an autonomous
foundation for mathematics.

Contents

1 Introduction 2

2 An overview of HoTT (without homotopy or identity) 6

2.1 Main features . 6

2.2 Logic and the rules for manipulating types 7

1

DRAFT: 00:25, Friday 24th October, 2014 Section 1.0

3 Identity types and path induction 11

3.1 Path induction and based path induction 12

3.1.1 Based path induction . 13

3.1.2 Path induction . 14

4 What would a justification of path induction look like? 14

5 Homotopy theory and the homotopy interpretation 15

6 Understanding path induction without the homotopy interpreta-
tion 17

6.1 Uniqueness principles for types . 17

6.2 The uniqueness principle for identity types 19

6.3 The substitution of equals for equals 20

7 Summary and Conclusions 21

1 Introduction

Homotopy Type Theory (HoTT) [1] is a new branch of mathematics that bridges
topology, logic, computer science, and category theory. It tightly connects the
hitherto disparate areas of homotopy theory in algebraic topology and type the-
ory in logic and computer science, and provides a way to deal with higher-order
equivalences that appear to be intractable in category theory. HoTT has also at-
tracted considerable excitement because it facilitates automatic proof verification
[1, p. 10]. HoTT is based on constructive intensional type theory due to Martin-
Löf ([2]) and hence is very different in character from an extensional theory such
as set theory. We give a brief exposition of some of the essential features of HoTT
in Section 2 below.1

1 Note that the subtitle of the HoTT Book is ‘Univalent Foundations of Mathematics’. This
refers to the ‘Univalence Axiom’ introduced by Voevodsky, which is one of the primary innova-
tions of the Homotopy Type Theory research programme. While this axiom is an important idea
in HoTT, and has major implications for the understanding of identity in HoTT (see [3]), it is
beyond the scope of the present paper. In particular, we focus on the basic language of HoTT,
which does not include Univalence. We will explore issues relating to Univalence in a subsequent
paper.

2

DRAFT: 00:25, Friday 24th October, 2014 Section 1.0

As well being a new branch of mathematics, HoTT is proposed to be a new foun-
dation for the rest of mathematics. However, the word ‘foundation’ is often used in
two different senses: a weaker sense, commonly used by mathematicians, which we
may gloss as a ‘framework’ or ‘language’ for mathematical practice; and a stronger
sense, more often used by philosophers of mathematics, which takes more seriously
the analogy with the foundations of a building [4] and requires that the system be
autonomous in something like the sense of [5].

The former sense, that of a framework in which to do mathematics, consists of
some mathematical entities that are considered elementary and some rules for
manipulating them. These resources are then used to define all other mathematical
entities and to prove any relevant theorems by application of the rules. Such
a framework involves a language in which the entities of the framework can be
described and into which, given the rules of the framework, all of mathematics can
be translated. A standard example of this is ZFC set theory, in which the basic
entities are sets (and perhaps some urelements), and the rules are those given by
the ZFC axioms. The rest of mathematics can then be built up from this starting
point – ordered pairs are defined as certain kinds of sets, relations are defined as
sets of ordered pairs, functions as relations satisfying certain conditions, and so
on. The language has the symbols for urelments (if any), and the symbols for the
membership relation and sets plus the background logical language.

Similarly, HoTT is intended to provide a formalism in which all mathematical
entities can be described in the language of tokens and types, and in which the
theorems of mathematics can be proved by application of rules that embody a form
of constructive logic. In this paper we do not address the question of whether HoTT
provides a foundation for mathematics in this sense, and defer to the discussion in
the HoTT Book.2

For the purposes of giving a foundation in the sense of a framework, the entities
and the rules governing them can be anything we like, so long as they do indeed
allow us to reconstruct the existing objects and proofs of mathematics. Thus,
demonstrating that a proposed system qualifies as a foundation (in this sense) is
merely a formal exercise in spelling out how exactly some already-recognised foun-
dational system can be encoded in the proposed language. In particular, there is no
requirement to answer ontological questions justifying that the proposed founda-
tional entities exist, nor epistemological questions explaining how we come to know
about these entities and their properties, nor to give motivation or justification for
the particular rules that have been chosen.

This is not the case with the second sense of ‘foundation’ of mathematics, which

2 In particular see [1, Chapter 10] on the reconstruction of set theory in HoTT.

3

DRAFT: 00:25, Friday 24th October, 2014 Section 1.0

is the one more usually of interest to philosophers. A foundation in this second
sense, which Linnebo and Pettigrew [5] call an “autonomous” foundation, pro-
vides a conceptual and epistemological basis for mathematics. If we have such a
foundation, it must be possible to take any mathematical concept, expressed in
the formalisation, and explain it via simpler and simpler concepts, until eventually
arriving at concepts that are so simple that they require no pre-existing mathe-
matical comprehension to understand them [4]. Likewise it must be possible to
take any mathematical proof and break it down into steps whose justification re-
quires no pre-existing mathematical understanding. ZFC set theory is generally
taken to provide a foundation for mathematics in this stronger sense, because the
notion of ‘a collection of entities’ is suitably primitive to require no mathematical
explanation.3

An autonomous foundation must therefore use only concepts that can be pre-
mathematically understood, and rules that can be pre-mathematically motivated.
If any aspect of a purported foundation for mathematics relies for its formulation or
justification upon some advanced area of mathematics then it cannot be a founda-
tion for mathematics in this second sense. However, it may not be obvious whether
a particular collection of concepts and the justifications for the corresponding rules
can in fact be taken to be entirely pre-mathematical. A particular presentation
of a proposed foundation may fail to be autonomous, but this of course does not
mean that the system itself is not autonomous, since it may be possible to give an
alternative autonomous presentation of its entities and basic rules.

The presentation of HoTT given in the HoTT Book freely makes use of the analogy
between types and spaces (where the latter are understood as in homotopy theory),
and between identifications and paths.4 This manner of thinking is pervasive
throughout the HoTT Book from the Introduction onwards, since this is the aspect
of the theory that the authors wish to emphasise: they are interested in presenting
a framework for mathematics (i.e. a foundation in the first sense) with radically
novel connections to the sophisticated and powerful ideas from homotopy theory.
However, this manner of presentation obscures the question of whether HoTT can
form a foundation for mathematics in the second, stronger sense. To answer this
question it is necessary to give a different presentation of the concepts and rules
of HoTT, explaining and justifying them in a way that does not depend upon
homotopy theory or any other pre-existing mathematics. In Section 2 we give a
summary of how this can be done for the majority of the basic notions of HoTT.
(This presentation is explained in considerably more detail in Part I of [7].)

3 However, when we allow the collections to be infinite then we are quickly carried away from
the primitive understanding we began with, and the intuitive justification for the axioms of ZFC
may be called into question. [6]

4 For more details of this, see Section 5.

4

DRAFT: 00:25, Friday 24th October, 2014 Section 2.1

A particular sticking point in giving a pre-mathematical account of HoTT is ex-
plaining and justifying the principle of path induction, which is central to the
handling of identity (or equality) in HoTT. In the presentation in the HoTT Book
identifications such as a = b are interpreted as paths in (homotopy) spaces, and
the explanation and justification of path induction depends upon intuitions arising
from homotopy theory – in particular, that paths can be deformed and retracted
without changing their essential characteristics. (This is explained in more detail
in Section 5.)

If this were the only way of justifying path induction then this would of course
undermine any claims for HoTT as an autonomous foundation for mathematics
(although, of course, its status as a foundation of the first kind would not be im-
pugned). In this paper we show that the homotopy interpretation is not necessary
for the justification of path induction by giving a justification for this principle
that depends only upon pre-mathematical ideas. It is important to note that the
elimination rule for identity types that we are calling (following the HoTT Book)
‘path induction’ is part of the original formulation of Martin-Löf type theory [2].
Martin-Löf’s motivation for this principle of course owes nothing to the homotopy
interpretation which was introduced several decades later by Awodey and Warren
[8]. There is a wealth of literature that discusses other aspects of the justification
of Martin-Löf’s work. However, we have been unable to find the kind of elementary
justification of the elimination rule for identity, based on pre-mathematical ideas
about identity and the basic features of the type theory, that we provide here.

In Section 2 we give a brief overview of some of the essential ideas of HoTT, up
to but not including identity. Section 3 describes identity in HoTT, and states
the principle of path induction without giving a justification, while Section 4 con-
siders the general form that a justification for path induction would have to take.
Section 5 sketches the basic ideas of homotopy theory, and outlines the argument
given in the HoTT Book for path induction using these ideas. The positive contri-
bution of this paper is in Section 6 where we give a justification of path induction
that relies only upon pre-mathematical ideas, without reference to homotopy or
to any other pre-existing mathematics.

5

DRAFT: 00:25, Friday 24th October, 2014 Section 2.1

2 An overview of HoTT (without homotopy or

identity)

2.1 Main features

As a type theory, the basic elements of HoTT are tokens and types. In HoTT there
is a type associated with each mathematical proposition that can be expressed in
the language, and we think of the tokens of a type as ‘certificates’ to the truth of
the corresponding proposition.5 Each token belongs to exactly one type. A given
type may have no tokens (i.e. it may be ‘uninhabited’) if it corresponds to a false
proposition, but an inhabited type may have multiple distinct tokens. We write
‘x : A’ to denote that x is a token of type A.

We can also define types that are more usefully thought of as mathematical objects,
such as the type N each of whose tokens corresponds to a natural number. HoTT
therefore does not make a sharp distinction between mathematical objects and
mathematical propositions: both are treated on an equal footing.

The types in HoTT are treated intensionally rather than extensionally. Practically
this means that we should think of types as being distinguished by the descriptions
that define them, rather than by their contents. Thus, for example, the types
‘positive integer less than 3’ and ‘integer exponent n for which an + bn = cn has
a solution in the positive integers’ are fundamentally distinct types, even though
it can be proved that they are extensionally equal. This extends to empty types
as well: the type ‘even divisor of 9’ is a distinct type from ‘even divisor of 11’,
even though both types are uninhabited. This has the advantage that the basic
elements of the theory are closer to the descriptions of mathematical entities and
the mathematical concepts that are directly used in practice.

The distinction between token and type should not be taken to be a ‘linguistic vs.
semantic’ distinction. In some literature on type theory ‘token’ is used to refer to
syntax, but this is not what is done in the HoTT Book, where the word ‘token’
is used interchangeably with words such as ’object’, ‘point’, and ‘element’.6 Of
course we must have expressions in a formal language, which serve as the names
of tokens and types. The rules for the use of HoTT are most directly expressed
as manipulations of expressions, but they can just as well be thought of as ma-

5 tokens are sometimes called ‘witnesses’ or ‘proofs’ to their corresponding propositions, but
we prefer to avoid this terminology, for reasons explained in [7].

6 We avoid this terminology: ‘object’ begs the question of how tokens are to be interpreted,
likewise ‘point’ implies a spatial interpretation of types, and ‘element’ is too reminiscent of set
theory. Rather than introducing a brand new word, such as ‘item’, we retain the usual word
‘token’, but do not assume in advance any particular interpretation of what tokens are.

6

DRAFT: 00:25, Friday 24th October, 2014 Section 2.2

nipulations of tokens and types directly, and this is generally more convenient.
The type formation rules allow us to produce new types from old ones, and cor-
respondingly produce tokens of the new types when given tokens of the old ones.
The consistency of the basic theory ([2], [1, Appendix A]) guarantees that if we
begin with expressions that name tokens or types then the expressions produced
will also name tokens or types – no application of the rules can produce an empty
name, unless we begin with empty or contradictory expressions.7

A proof in HoTT therefore consists of a sequence of applications of these rules,
beginning with tokens of the given premises and ending with a token of the con-
clusion. Thus the logic of HoTT is constructive. However, unlike the situation in
ZFC set theory, in which we must first define first-order logic and then use this
to set out the axioms of set theory on top of that, in HoTT the logic emerges
from the basic notion of types as propositions and tokens of a type as certificates
to that proposition, and is incorporated directly into the rules for manipulating
tokens and types. (For a more extensive discussion of this see [9].)

2.2 Logic and the rules for manipulating types

In this section we briefly outline the basic language of HoTT and the rules for
manipulating tokens and types, with the exception of identity (or equality), which
is introduced in Section 3. (For a more detailed exposition see [1, Chapter 1] or
[7].)

Functions in HoTT are defined by lambda abstraction: given an expression Φ
naming a token of type B, possibly containing one or more instances of a variable
x stipulated to be of type A, we get a function [x 7→ Φ] (more traditionally written
‘λx.Φ’) of type A→ B. Evaluation of such a function with an argument y of type A

is given by substituting the expression naming y for each instance of x in Φ (with
renaming to avoid collisions, as usual), thus producing an expression of type B.8

For any types A and B there is a function type A → B whose tokens are functions
defined as above. Given a token of A→ B and a token of A we can combine them

7 This way of thinking is not explicit in the HoTT Book, but we recommend it for reasons
explained in [7]. Note that the consistency proof cited above is for the basic theory, but has
not yet been extended to cover the additions made in the HoTT Book such as ‘higher inductive
types’ and the ‘Univalence Axiom’. The only proofs of consistency for the expanded system are
relative to ZFC and large cardinals. (We thank Steve Awodey for drawing our attention to this
point.)

8 Although this idea derives from lambda calculus, the basic notion of substitution in an
expression is a simple pre-mathematical one, familiar to anyone who, for example, is able to use
pronouns in natural language. We therefore do not consider this to be an obstruction to the
autonomous status of HoTT.

7

DRAFT: 00:25, Friday 24th October, 2014 Section 2.2

to produce a token of B. Since tokens of types are understood as certificates to
the truth of their corresponding propositions, this suggests that the proposition
corresponding to the function type A→ B is the implication A⇒ B. This parallel
between functions in type theory and implications in logic is the first step of the
Curry-Howard correspondence.

The other basic logical operations – conjunction, disjunction, and negation – can
all be interpreted in type theory as well:

• A certificate to the truth of a conjunction of two propositions is just a pair
of certificates to those two respective propositions. Given a : A and b : B,
we write ‘(a, b)’ for the pair of these tokens. The type corresponding to the
conjunction, having these pairs as its tokens, is written ‘A× B’, and is called
the product of A and B.

• A certificate to the truth of a disjunction of two propositions A and B is a
token that is either a certificate to A or a certificate to B. Since every token
belongs to exactly one type, the tokens a : A and b : B cannot also belong to
this new type. We therefore formally introduce counterparts to these tokens,
written as ‘inl(a)’ and ‘inr(b)’. The type corresponding to the disjunction,
to which these tokens belong, is written ‘A + B’ and is called the coproduct
of A and B.

• A certificate to the truth of the negation of a proposition is something that,
if combined with a certificate to the proposition itself, would give a contra-
diction. Since there cannot be a witness to the truth of a contradiction, the
negation of proposition P therefore corresponds to a function P→ 0, where
0 is a type that by definition has no token constructors.9

Just as 0 corresponds to a proposition that is by definition false, we also introduce
a type 1 corresponding to a proposition that is by definition true. This Unit type
is defined to have exactly one token, denoted ∗.10

We can also define types that correspond to (bounded) quantified propositions, i.e.
statements saying that that every token of a given type satisfies some condition,
or that there exists a token of a given type that satisfies some condition. Since the
logic of HoTT is constructive, these quantifiers must be interpreted constructively.
This means that we can only assert that something exists if we have a method of
producing it.

9 Consistency of the system then consists in the claim that 0 has no tokens.
10 Here we set aside a detail that we examine more carefully in Section 6.1.

8

DRAFT: 00:25, Friday 24th October, 2014 Section 2.2

• A certificate to the statement that all tokens of type A satisfy some condition
is something that provides, for each x : A, a certificate to the fact that x does
indeed satisfy that condition, i.e. a function that takes tokens of A as inputs
and returns these certificates as outputs.

• A certificate to the statement that there exists a token of type A that satisfies
some condition consists of a pair (x, c), where x is a token of A and c is a
certificate to the fact that this particular x satisfies the condition.

The statement that some particular x : A satisfies a particular condition is a
proposition, and so corresponds to a type in the theory. The statement that some
other token y satisfies the condition is a different proposition, and so has a different
corresponding type. For any condition on A we therefore have a family of types,
indexed by the tokens of A, each saying of some token of A that it satisfies the
condition. We can think of this as a function taking tokens of A as input and
returning a type as output.11 We call such functions predicates.

We can now interpret quantified statements in HoTT. In order to do this we intro-
duce two new ways of forming types, generalisations of the function and product
types described above.

• Given a predicate P on A, a dependent function is a function whose output
type is not fixed in advance, but depends upon the input token: when given
x : A it returns a token of P(x), when given y : A it returns a token of
P(y), and so on. We write the type to which these dependent functions
belong as ‘

∏
a:A P(a)’ to emphasise its correspondence with the universally

quantified statement that all tokens of A satisfy predicate P. Alternatively,
we may write the type as ‘〈a : A〉 → P(a)’ to emphasise its similarity to the
(non-dependent) function type.

• Given a predicate P on A, a dependent pair is a pair the type of whose
second component is not fixed in advance, but depends upon the type of its
first component: if the first component is x : A then the second component
is a token of type P(x), if the first component is y : A then the second
component is a token of type P(y), and so on. We write the type to which
these dependent pairs belong as ‘

∑
a:A P(a)’ to emphasise its correspondence

with the existentially quantified statement that there exists a token of A that

11 Compare with the definition of functions above, where we said that a function returns a
token of its output type. This way of thinking therefore requires the introduction of a higher-
order type, called TYPE, that has other types as its tokens. This must be done with care to avoid
paradox – in particular we must disallow TYPE from being a token of itself. For more details see
[1, Section 1.3] or [7].

9

DRAFT: 00:25, Friday 24th October, 2014 Section 2.2

satisfies predicate P. Alternatively, we may write the type as ‘〈a : A〉 × P(a)’
to emphasise its similarity to the (non-dependent) product type.

Dependent pair types are useful in two different ways. The first is the reading
as an existentially quantified proposition as described above. We can also think
of a dependent pair type as a way of forming a subtype by imposing a predicate:
the type

∑
a:A P(a) consists of those tokens of A that satisfy the predicate P, each

accompanied by a certificate to that fact.

These are the type formers and token constructors for the basic vocabulary of
HoTT (aside from identity). But to give the definition of a type it is not sufficient
merely to say how the type and its tokens are produced: we must also specify how
they can be used. Functions themselves (i.e. tokens of function types A → B) are
used by applying them to arguments of their input types, or by composing them
with other functions to give new functions. For the other types above we specify
how they are used by giving an elimination rule for the type, i.e. the method for
defining functions from that type to an arbitrary other type.12

The language described so far is sufficient to allow proofs in (constructive) predi-
cate logic to be carried out, and enables us to define and introduce new types as
needed and to prove theorems about them. In summary, to define a new type we
must specify:

• a type former that gives the name of the new type, given the names of the
input types and tokens (if any);

• one or more token constructors: functions that output tokens of the new
type;

• an elimination rule: a method for using tokens of the type, such as rules for
constructing functions from the new type to an arbitrary other type.

The type theory described above is not the whole of HoTT since it is missing
an essential component: it has no way of asserting that two things are equal
or identical.13 (We discuss the definition of this remaining component, called
identity types, in the next section.) However, the theory described so far provides
a language that is sufficiently powerful for us to define many important types used

12 The elimination rules for the types described above are fairly obvious, and won’t be needed
in what follows here. For details see [1] or [7].

13 There are other features of the full theory of HoTT missing as well, such as Univalence and
function extensionality. As noted in Section 1, we will not examine these in this paper as they
are not basic features of the language of the theory.

10

DRAFT: 00:25, Friday 24th October, 2014 Section 3.0

in ordinary mathematics. For example, we can introduce a type N whose tokens
correspond to natural numbers.

Call the theory defined so far HoTT−. Note that none of the definitions or rules in
HoTT− depend upon any sophisticated domain of mathematics such as homotopy
theory: they were all derived from considerations of elementary pre-mathematical
notions, such as substitution and conjunction. Everything in HoTT− is therefore
eligible to form part of an autonomous foundation for mathematics.14

3 Identity types and path induction

HoTT− is quite powerful, but without identity types many elementary mathemat-
ical truths cannot be expressed, because identity types are required to represent
equality in mathematical theories. Without a notion of equality we cannot do even
the most basic number theory because there are no equations, and we can’t even
state (let alone prove) that, for example, the sum of the natural numbers up to
n is n(n− 1)/2. Furthermore, we cannot prove (or even state) elementary prop-
erties about the things we can define in HoTT−, for example that two alternative
definitions of a function give the same output for all inputs. Equality is obviously
an essential component of a language that claims to serve as a foundation for
mathematics.

Since a statement of equality between two tokens is a proposition, it corresponds
to a type. HoTT− does not enable us to form a type corresponding to this propo-
sition, so we must supplement the language by introducing identity types. In the
remainder of this section we introduce and explain the type former and token con-
structor for the identity type, and then state the elimination rule without providing
motivation or justification for it. In the following sections we give two different
justifications for this rule: the first from the HoTT Book, using homotopy theory,
and then our own justification avoiding the using of sophisticated mathematical
ideas.15

For any two tokens a : A and b : A of the same type we can state the proposition
that a and b are equal. tokens that are not of the same type cannot be equal. Thus
the type former for the identity type must take as inputs a type A and two tokens
a : A and b : A. The type corresponding to the proposition that a : A and b : A

14 We examine the autonomy of HoTT− and related issues in a companion paper [10].
15 An alternative justification for path induction via the Yoneda lemma from category theory

is hinted at in the HoTT Book [1, p. 216]. But such a justification would be of no help in
establishing HoTT as an autonomous foundation since it requires the machinery of category
theory, so we will not examine it further.

11

DRAFT: 00:25, Friday 24th October, 2014 Section 3.1

are equal is written as ‘IdA(a, b)’, or sometimes as ‘a =A b’. A token of IdA(a, b)
is a certificate to the proposition that the tokens a and b are equal. We call such
a token an identification of a and b. As with any type in the theory, in general
there may be multiple tokens of IdA(a, b), or just one, or none at all. That is, we
do not consider the options ‘equal’ or ‘not equal’ to exhaust the possibilities, but
rather there may be multiple different identifications of two tokens.16

The token constructor for the identity type provides the identifications that should
be included as part of the definition of identity. It’s clear that we shouldn’t just be
able to freely create tokens of IdA(a, b) for arbitrary a and b, since this corresponds
to proving that any two tokens of a type are equal (for example, that two arbitrary
natural numbers are equal). The only identifications that are guaranteed to exist
(with no further assumptions or premises) are the trivial self-identifications. That
is, for any type A we must have a certificate to the proposition that each token of
A is self identical – i.e. that identity is reflexive. The token constructor for the
identity type is therefore a function that gives us, for any type A and any token
x : A, a token of IdA(x, x), which we write as reflx.

Since the token constructor for the identity type allows us to construct one cer-
tificate to IdA(x, x) for any x : A, and nothing else, the identity type may appear
to be of little use. After all, what good is an equality sign if we can only assert
things of the form a = a and x = x, etc.? However, the situation is more subtle
than this.

3.1 Path induction and based path induction

The elimination rule for the identity type is called path induction.17 The essential
idea of path induction is as follows: to prove that a property holds for all identi-
fications between tokens in some A it suffices to show that the property holds for
all trivial self-identities refla.

For comparison, consider the general form of inductive proofs on the natural num-
bers. Here, to prove that a property holds of all numbers we must prove that it
holds for the base case, 0, and then prove that if it holds for a given number n
then it also holds for the successor n+ 1.

The situation with identity types is slightly different. Here, the principle of path
induction takes the place of the inductive step. That is, we establish just once, for

16 This is the essence of HoTT’s being an intensional type theory. If we added a rule eliminating
the possibility of multiple identifications we would reduce HoTT to an extensional type theory.
See [1, p. 71, p. 128] for further details.

17 While the elimination rule was part of Martin-Löf’s intensional type theory [2], this name
for it comes from the homotopy interpretation, see Section 5.

12

DRAFT: 00:25, Friday 24th October, 2014 Section 3.1

all properties, that if the base case satisfies that property then all identifications
do.18 Thus we are left to prove just the base case (i.e. that the property holds for
all trivial self-identifications reflx).

To understand this better we now give a more formal statement of the principle.
We begin by setting out the definition of a variant called based path induction,
which is equivalent to path induction ([11], [1, Section 1.12.2]) but a little easier
to explain.19

3.1.1 Based path induction

We can form an identity type IdA(a, x) for any pair of tokens a and x of a given
type A.20 Thus for any a : A we can define a predicate IdA[a] that, when given
a token b, returns the identity type IdA(a, b). That is, IdA[a] is the ‘equal to a’
predicate.

Fixing a particular a : A, we can use the predicate IdA[a] to form the dependent
pair type

∑
x:A IdA(a, x), which we call the based identity type. As a dependent

pair type, the tokens of this type are pairs (b, p), where b is a token of A and p is
a token of IdA(a, b) (i.e. an identification of a with that particular b). This type
corresponds to the proposition ‘there exists a token of A that is equal to a’. This
proposition is of course true, since identity is reflexive, and so the token (a, refla)
is guaranteed to exist. But there may in general be many other tokens as well.

Now consider a predicate Y on the based identity type, which is a function that
takes a pair (b, p) and returns a type involving b and p (corresponding to a propo-
sition about p). Such a predicate therefore corresponds to a property that identi-
fications involving a may or may not satisfy.

Based path induction says that if we have a token y of Y(a, refla) – i.e. a certificate
to the fact that refla satisfies the property Y – then we can produce a certificate to
Y(b, p) for every token (b, p) of

∑
x:A IdA(a, x). More specifically, it says that given

y : Y(a, refla) we have a function that takes a pair (b, p) as input and returns a
token of Y(b, p) as output, in particular giving y itself when given (a, refla) as
input.

18 In the homotopy interpretation the inductive nature of path induction is more apparent (see
Section 5).

19 Henceforth we will sometimes omit ‘based’ where the distinction is not important.
20 Recall the distinction between forming the type IdA(a, x), which corresponds to forming the

proposition that a and x are equal (which we can do for any pair of tokens), and forming a token
of IdA(a, x), which corresponds to proving this proposition.

13

DRAFT: 00:25, Friday 24th October, 2014 Section 4.0

3.1.2 Path induction

The definition of path induction is similar. We begin by defining the total identity
type,

∑
s,t:A IdA(s, t). Whereas the based identity type fixed one token of A and

let the other range over all values in A, the total identity type lets both variables
vary across A. Its tokens are therefore triples (x, y, p), where p is an identification
between x and y. In the based identity type the reflexivity of identity provided the
single distinguished token (a, refla). In the total identity type reflexivity gives a
token (x, x, reflx) for each x : A.

Now consider a predicate Z on the total identity type, which corresponds to a
property that arbitrary identifications between tokens of A may or may not satisfy.
Path induction says that if we have a certificate to the fact that every trivial self-
identification reflx satisfies the property Z, which is given by a token z of∏

x:A

Z(x, x, reflx)

then we can produce a certificate to Z(a, b, p) for every (a, b, p). Specifically, it says
that given z we have a function that takes a triple (a, b, p) as input and returns a
token of Z(a, b, p) as output, in particular giving z itself when given (a, a, refla)
as input.

4 What would a justification of path induction

look like?

How is the principle of (based) path induction to be justified? In more familiar
inductive proofs, such as induction over the natural numbers (i.e. proving P (n)
for all natural numbers n, for some property P) we must prove both a base case
P (0) and an inductive step P (n) ⇒ P (n + 1). However, the principle of path
induction says that to prove that a property holds of all identifications it suffices
to prove it only for the base case refla. That is, no inductive step is required –
or, put another way, the principle of path induction proves the inductive step for
us in advance, for all predicates on identifications.

A natural way to justify path induction would follow from a natural interpreta-
tion of the token former for identity types. Since the token former provides the
trivial self-identifications refla for each a : A and no other identifications, then
it would be natural to assume that these are the only identifications that exist.
The principle of path induction would then be trivially true: to prove something

14

DRAFT: 00:25, Friday 24th October, 2014 Section 5.0

for all identifications it suffices to prove it for all identifications of the form refla,
because there are no other identifications.

However, the HoTT Book [1, Remark 1.12.1] explicitly rules out this interpreta-
tion of path induction. Indeed, if this interpretation were correct then the project
of Homotopy Type Theory would be of considerably less interest, since it is the
non-trivial behaviour of identity types and the possibility of higher-order structure
in them that allows the powerful connection with homotopy theory [1, Chapter 2].
Moreover, even with path induction it is not possible to prove a statement express-
ing ‘all identifications trivial self-identifications’ in the language of HoTT – indeed,
we cannot even prove that all self-identifications are trivial self-identifications. So
while it may seem natural to interpret the token constructor and path induction
in this way, this is not an assertion that HoTT itself validates, nor is it a desirable
additional assumption to add to HoTT.

Another way to justify path induction is to argue that there is a structure amongst
identity types that ensures that properties held by trivial self-identifications must
also be shared by other identifications. We could draw an analogy with vector
spaces or groups. Given a basis for a vector space, we can define a (linear) function
on the vector space by specifying its output just on the basis vectors. Similarly,
given a presentation of a group in terms of generators and relations, we can define
a (homomorphic) function on the group by specifying its output on the generators.
In each case it is sufficient to specify the function’s behaviour at a distinguished
subset of elements, and then the linear or group structure ensures that the function
is well-defined for all other elements. But of course in neither case would it make
sense to argue that this indicates that the basis vectors or generators are the only
elements of the vector space or group.

So in the present case what is the structure of the identity types, corresponding to
the linear or group structure in the above examples? The HoTT Book [1, p. 67]
says that “the family of types (x =A y), as x, y vary over all elements of A, is
inductively defined by the elements of the form reflx”. This is supported by
appeal to the homotopy interpretation of the type theory, to which we turn in the
next section.

5 Homotopy theory and the homotopy interpre-

tation

Homotopy theory, briefly, is the study of spaces up to continuous distortions. That
is, the properties of spaces studied in homotopy theory are those that are preserved

15

DRAFT: 00:25, Friday 24th October, 2014 Section 5.0

by continuous deformations, and any property that is not so preserved ‘cannot be
seen’ by homotopy.

Homotopy is generally defined by first considering topological spaces and contin-
uous functions between them. Given any two continuous functions f, g : X → Y
we define a homotopy between f and g as a continuous function h : [0, 1]×X → Y
such that ∀x ∈ X, h(0, x) = f(x) and h(1, x) = g(x). We think of h as providing
a continuous interpolation from f to g, or a smooth distortion from the image of
X under f to the image of X under g. If there is such a function h then we say f
and g are homotopic, written f ∼ g.

Two spaces X and Y are homotopy equivalent if there are maps f : X → Y and
f ′ : Y → X such that f ′ ◦ f ∼ idX and f ◦ f ′ ∼ idY . Homotopy equivalence
is reflexive, symmetric and transitive, so we can define the equivalence class [X]
of all topological spaces homotopy equivalent to X. This is called the homotopy
type of X. Homotopy theory does not distinguish between spaces that are ho-
motopy equivalent, and thus homotopy types, rather than the topological spaces
themselves, are the basic objects of study in homotopy theory.

For example, consider the topological space P consisting of a single point, and
D2, the unit disc in R2. There is a continuous function f from D2 to P , and a
continuous function f ′ from P to D2 which picks out some point p ∈ D2. The
composition f ◦f ′ is just the identity on P , while f ′ ◦f maps the entire disc to the
point p. To define a homotopy h between f ′ ◦f and idD2 we just pick out, for each
x ∈ D2, the straight line γx between x and p, parameterised by the interval [0, 1],
and then define h(t, x) as γx(t). This shows that the unit disc D2 is homotopy
equivalent to a single point, or ‘contractible’. That is, homotopy theory does not
distinguish between the unit disc and the single point.

The homotopy interpretation of HoTT describes types as spaces (i.e. homotopy
types), tokens a, b in a type as points in the space (i.e. functions from the single
point into the space), and identifications p between tokens as paths between points
(i.e. functions from [0, 1] to the space having those points as its end-points) [1,
p. 5]. Thus the identity type IdA(a, b) corresponds to the path space consisting of
all paths from the point a to the point b in space A.

Using this interpretation we can give an account of the structure amongst identifi-
cations that justifies the principle of path induction. Given a fixed point a in space
A, the constant path at a, corresponding to the trivial self-identification refla, is
the function ka : [0, 1]→ A that sends every point in the interval to a. Given any
point b and any path p from a to b, we can define a homotopy h between ka and
p by h(t, x) = p(t× x).

This relation of homotopy between paths is the structure in the identity types

16

DRAFT: 00:25, Friday 24th October, 2014 Section 6.1

required to justify path induction. Since the paths p and ka are homotopic, any
properties of ka that respect homotopy must be shared by the path p. Thus, to
show that all paths starting at a have such a property, it suffices to show that the
constant path at a has that property, which is the homotopy-theoretic counterpart
to the statement of based path induction. A similar argument gives the counterpart
to path induction. In short, if we are free to vary one or both ends of a path, then
any path can be retracted to a constant path at some point.

While this argument provides a justification for path induction, it clearly relies
upon the details of homotopy theory for its motivation, and so this approach to
justifying path induction is not suitable for an autonomous foundation for mathe-
matics. In order to defend HoTT’s claims to provide such a foundation, a different
argument for path induction is needed.21

6 Understanding path induction without the ho-

motopy interpretation

In this section we introduce two basic principles and give elementary arguments
from pre-mathematical grounds that justify them. We then show that path in-
duction follows straightforwardly from them, thus providing a justification for the
elimination rule for identity types that does not depend upon sophisticated math-
ematics such as homotopy theory. It is known to type theorists that the two
principles discussed below entail path induction – see, for example, [12, pp. 23-
29], but as far as we are aware they do not put this fact to use in the way we do
here. In particular, as mentioned above, in the HoTT Book there is no motivation
for path induction independently of the homotopy interpretation.22

6.1 Uniqueness principles for types

When we introduced the token formers for product, coproduct, and dependent
types in Section 2 we said that the constructors for a type give us all the tokens of

21 We might wonder how much of the sophistication of homotopy theory is really required to
get the above argument moving, and imagine that a stripped-down version might be given that
avoids these technical details. That is, we might seek to give an argument for path induction
modelled on the above but using only an intuitive pre-mathematical notion of space, point, and
path. However, it is not at all clear that our ordinary common-sense notion of space supports the
features required by the above argument: that identifications between points can be understood
as paths, that paths can be continuously retracted without losing their essential features, and so
on.

22 Aside from the argument via the Yoneda lemma mentioned in footnote 15.

17

DRAFT: 00:25, Friday 24th October, 2014 Section 6.2

that type. So, for example, we said that every token in A + B is either inl(a) for
some a : A or inr(b) for some b : B, because inl and inr are the two constructors
for the coproduct. Likewise, we said that every token of A× B is of the form (a, b)
for some a : A and some b : B.

However, now that we’ve introduced identity types we can turn this claim into a
formal statement that can be expressed within the language of HoTT. That is, we
can state formally that every token of a given type is equal to the output of one of
the token constructors for that type. Thus, for example, for every token c : A + B

we have either a token of type IdA+B(c, inl(a)) for some a : A or a token of type
IdA+B(c, inr(b)) for some b : B. More formally:

∏
c:A+B

(∑
a:A

IdA+B(c, inl(a)) +
∑
b:B

IdA+B(c, inr(b))

)

Not only can we express these statements entirely formally within the language of
HoTT, we can also prove them [1, Chapter 1]. We call these uniqueness principles
for the respective types.

A special case of this is the uniqueness principle for the Unit type 1 defined in
Section 2.2. In this case we want to say that there is just a single token of 1,
namely ∗ : 1. However, since the language of HoTT cannot talk about the absence
of tokens we must express this by saying that there is just one token up to identity
in 1. We can state this as ∏

i:1

Id1(∗, i)

i.e. ‘any token i of 1 is equal to ∗ : 1’.

These formal statements capture more precisely the sense in which the token con-
structors for a type give us all the tokens of that type. In the light of this, we see
that there are two subtly distinct ways to understand this claim. The first way
to interpret it is that literally every token of the type is the output of one of the
token constructors. But this is not exactly what the formal statements above say.
Rather, the statements say that the token constructors give us every token of the
type up to identity. That is, we cannot say that every token of a type is the output
of one of the constructors, but rather that every token is equal to the output of one
of the constructors, where the equality is witnessed by a token of the appropriate
identity type. This subtle distinction is important in the case of the identity type
itself and furthermore the uniqueness principle for identity types does not say that
every identification is equal to the output of the token constructor. The fact that
there may be other identifications is part of the novelty and power of HoTT.

18

DRAFT: 00:25, Friday 24th October, 2014 Section 6.2

6.2 The uniqueness principle for identity types

As explained above, the only token constructor for identity types is refl which
appears to indicate that the only tokens of identity types that we could have are
the trivial self-identifications of the form reflx for each x : A. However, in light
of the above discussion, we should say instead that the constructor refl doesn’t
give us all the identifications, but rather all the identifications up to identity in
the appropriate type.

To make this statement precise, we must formalise it in the language of HoTT. The
most obvious way to do this, modelled on the formal statements of the previous
section, would be to say ‘for all identifications p there is a token x such that p is
equal to reflx (in some appropriate type that has both p and reflx as tokens)’.
But when we come to ask which type they are both found in we see that this
can’t be right, since p is a token of IdA(a, b) and reflx is a token of IdA(x, x), and
each token belongs to exactly one type. We therefore need to find a type in which
suitable counterparts of p and reflx can be found together.

Recall from Section 3 that given any a : A we can define the based identity type∑
x:A IdA(a, x), whose tokens are pairs (b, p) consisting of a token of A and an identi-

fication between that token and the given fixed token a. In particular, this type has
the token (a, refla). In based identity types we can therefore find (counterparts
to) arbitrary identifications alongside (counterparts to) trivial self-identifications.
For brevity, we write

∑
x:A IdA(a, x) as Ea.

We can therefore formalise a modified version of the above statement, saying that
the counterparts to p and refla are equal in Ea. We express this formally by saying
that the following type ∏

(b,p):Ea

IdEa((a, refla), (b, p))

is inhabited. This is the uniqueness principle for identity types. It doesn’t say
that the only token of

∑
x:A IdA(a, x) is (a, refla), as we might have expected from

our first understanding of the token constructor for identity types. Rather, it says
that this is the only token up to identity in

∑
x:A IdA(a, x).

As another way of understanding this, recall from Section 2 that we can read
dependent pair types

∑
b:B P(b) in two different ways: as an existentially quantified

proposition, and as a subtype consisting of the tokens of B that satisfy the predicate
P (where each such token is accompanied by a certificate to that fact). On this
understanding, the based identity type Ea is the collection of tokens of A satisfying
the ‘equal to a’ predicate. Näıvely we would say that the only token of A that is
equal to a is a itself, and so we would expect Ea to have just a single token. The

19

DRAFT: 00:25, Friday 24th October, 2014 Section 6.3

type above corresponds to exactly this proposition. Just as in the case of the Unit
type in Section 6.1 above, we have a distinguished token (a, refla) that belongs
to this type, and a uniqueness principle that says that all tokens are equal to this
one. Thus the type Ea does indeed have just one token, up to identity.23

6.3 The substitution of equals for equals

The principle of substitution salva veritate, according to which if s and t are iden-
tical then one can be substituted for the other in any statement while saving the
truth of that statement, is a fundamental part of our pre-mathematical under-
standing of identity, and any formalisation of identity must respect it. In HoTT
this principle states that if there is an identification between s and t then any-
thing that is true of one is true of the other. In HoTT, ‘something being true of s’
corresponds to the existence of a token of type P(s) for some predicate P. Hence
we can state the principle as follows: for any type B, any predicate P on B, and
any s : B and t : B, there is a function of type

IdB(s, t)× P(t)→ P(s) (1)

That is, given an identification of s with t and a certificate to a proposition about
t, we can produce a certificate to the corresponding proposition about s.24

From this we can derive other principles. Recall from Section 3.1.1 that for any
t : B we can define a predicate IdB[t] that says of any x : B that it is equal to t

(that is, given an x it returns the identity type IdB(t, x)). Using this predicate in
Equation 1 gives a function

IdB(s, t)× IdB(t, t)→ IdB(t, s)

Since we always have the token reflt : IdB(t, t) that can be given as the second
argument to this function, we derive the symmetry of identity:

IdB(s, t)→ IdB(t, s)

23 Alternatively, we could interpret Ea as the singleton of a – i.e. the subtype of A consisting
of all tokens of A that are identical with a – which should naturally have just one token up to
identity. Yet another way of thinking about this, via the homotopy interpretation, is that Ea is
the homotopy fibre of the identity at a, or the path space at a. The uniqueness principle then says
that this is contractible (Contractibility of Ea is proved in the HoTT Book [1, Lemma 3.11.8],
but the proof uses path induction.) However, neither of these interpretations is suitable for our
purposes, of course, since the first depends on ideas from set theory while the second relies on
the homotopy interpretation.

24 This principle is called ‘transport’ in the HoTT Book, but rather than taking it as a basic
principle it is derived from path induction [1, Lemma 2.3.1].

20

DRAFT: 00:25, Friday 24th October, 2014 Section 7.0

Similarly, for any u : B, if we use predicate IdB[u] in Equation 1 then we obtain a
function

IdB(s, t)× IdB(u, t)→ IdB(u, s)

from which, by applying symmetry, we derive the transitivity of identity:

IdB(s, t)× IdB(t, u)→ IdB(s, u)

The above two properties are just the usual features of identity. However, we can
also use substitution salva veritate, along with the uniqueness principle for identity
types, to derive based path induction.

Consider again the type Ea defined above which, recall, is an abbreviation for∑
x:A IdA(a, x), where a is an arbitrary token of A. Let P be any predicate on Ea,

and (b, p) be any token of Ea. Since Equation 1 holds for any two tokens, we have
a function

IdEa((b, p), (a, refla))× P(a, refla)→ P(b, p)

Recall that the uniqueness principle for identity types says that for every token
(b, p) : Ea the type IdEa((a, refla), (b, p)) is inhabited. Thus by symmetry of
identity so is IdEa((b, p), (a, refla)), and so this token can always be given as the
first argument to the above function. So for any predicate P on Ea and any token
(b, p) : Ea we have a function

P(a, refla)→ P(b, p)

This is precisely the inductive step in an inductive proof that P holds for all
tokens (b, p). Thus, if we want to prove that an arbitrary predicate P holds for all
identifications involving a : A, we only need to prove that it holds for the trivial
self-identification refla. This is exactly the statement of based path induction.

7 Summary and Conclusions

We began by distinguishing two notions of a foundation for mathematics. In this
paper we focus only on the question of whether HoTT can be a foundation in the
second, stronger sense. Although we have not elaborated in detail what is required
for a theory to be foundation in this sense,25 a necessary condition is that it be
autonomous, i.e. that its motivation and formulation not depend upon existing
advanced mathematics.

25 We take this issue up in more detail in another paper [10].

21

DRAFT: 00:25, Friday 24th October, 2014 Section 7.0

We have shown that much of HoTT can be developed without any such recourse
to advanced mathematics, and importantly without reference to the homotopy
interpretation that is used for the exposition in the HoTT Book. We described
how identity is treated in HoTT, including (based) path induction, the elimination
rule for the identity type. We described the standard argument given in the
HoTT Book for path induction, which depends upon the homotopy interpretation.
Finally, we have given an account of based path induction that makes no reference
to homotopy theory or any other advanced mathematical domains, depending only
upon the uniqueness principle for identity types and the principle of substitution
salva veritate which is a central defining characteristic of the notion of identity.

This argument demonstrates that based path induction can be justified on the
basis of pre-mathematical principles, and is therefore not an obstruction to HoTT’s
providing an autonomous foundation for mathematics.

References

[1] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

[2] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E.
Rose and J. C. Shepherdson, editors, Logic Colloquium ’73. Proceedings of the
Logic Colloquium, Bristol, July 1973, pages 73–118. 1974.

[3] Steve Awodey. Structuralism, Invariance, and Univalence.
http://www.andrew.cmu.edu/user/awodey/preprints/siu.pdf, 2014.

[4] John P. Mayberry. What is Required of a Foundation for Mathematics?
Philosophia Mathematica, 2(1):16–35, 1994.

[5] Øystein Linnebo and Richard Pettigrew. Category Theory as an Autonomous
Foundation. Philosophia Mathematica, 19(3):227–254, 2011.

[6] John P. Mayberry. The Foundations of Mathematics in the Theory of Sets.
Cambridge University Press, 2000.

[7] Authors. A Primer on Homotopy Type Theory. 2014.

[8] Steve Awodey and Michael Warren. Homotopy theoretic models of iden-
tity types. Mathematical Proceedings of the Cambridge Philosophical Society,
146(1), 2009.

22

http://homotopytypetheory.org/book

DRAFT: 00:25, Friday 24th October, 2014 Section 7.0

[9] Per Martin-Löf. On the Meanings of the Logical Constants and the Justifica-
tions of the Logical Laws. Nordic Journal of Philosophical Logic, 1(1):11–60,
1996.

[10] Authors. Does Homotopy Type Theory Provide a Foundation for Mathemat-
ics? 2014.

[11] Christine Paulin-Mohring. Inductive definitions in the system coq – rules
and properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes in Computer Science,
pages 328–345. Springer, 1993.

[12] Thierry Coquand. Equality and Dependent Type Theory. A talk given for
the 24th AILA meeting, Bologna, February 2011.

23

	Introduction
	An overview of HoTT (without homotopy or identity)
	Main features
	Logic and the rules for manipulating types

	Identity types and path induction
	Path induction and based path induction
	Based path induction
	Path induction

	What would a justification of path induction look like?
	Homotopy theory and the homotopy interpretation
	Understanding path induction without the homotopy interpretation
	Uniqueness principles for types
	The uniqueness principle for identity types
	The substitution of equals for equals

	Summary and Conclusions

