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1 Introduction: Physical Quantities

1.1 The Problem of Quantity

Physical quantities—like mass, charge, volume, and length—are commonly rep-

resented in science and in everyday practice by mathematical entities, like numbers

and vectors. For instance, we use real number and a unit to represent the deter-

minate magnitudes of mass (like 2kg, 7.5kg, πg, etc.). These representations are

appropriate because they faithfully represent the physical world as being a certain

way, as exhibiting certain structural features. Specifically they represent what we

might describe as these physical quantities being structured in a certain way.

There has been a long standing problem in explaining exactly what this phys-

ical structure consists in. The difficulty lies in giving an account of quantitative

structure without either (1) making ineliminable appeal to abstract Platonic math-

ematical entities themselves (which seem ill suited to explain their own adequacy as

representational tools) or (2) positing primitive, irreducible metric structure at the

fundamental level (for instance, a distinct and primitive ‘n times as long as’ relation

for every real n).1 Call this the problem of quantity.

1I won’t motivate these added constraints here. I take it that the motivations for the latter
constraint are transparent. An uncountable infinity of distinct primitive posits is the sort of thing
that should be avoided wherever possible. Field (1984) makes the best case for the former constraint.
I’ll just point out that even the most red-blooded Platonist ought to be suspicious of the idea that
the numbers 6 and 10 are somehow involved in the ultimate explanation of, e.g., why this 6kg ball
ricocheted at this particular speed and angle when it collided with this 10kg one.
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I examine the ways physical quantities constrain the structure of their worldly

instances, specifically the mereology of the physical entities which instantiate them.

In this paper, I identify a phenomena which I call “proper extensiveness”. Of the

physical quantities which do put constraints on mereology, including those one might

classify as “additive”, only a proper sub-class qualify as properly extensive.

In what follows, I will provide motivations for positing such a phenomena, and

argue that proper extensiveness cannot be dependent on dynamics. In the second half

of the paper, I make the case for taking proper extensiveness to be metaphysically

fundamental (at least relative to most of our other physical ontology), by showing

that doing so allows us to construct an elegant and attractive solution to the problem

of quantity (though only as it applies to quantities which are properly extensive).

Here’s the plan for the paper: The rest of this section contains a primer on

quantitative structure and establishes some terminology. The argument that we

need to posit proper extensiveness is made in sections 2 and 3. Section 2 introduces

a puzzle about explaining the reliable success of paradigm physical measurements.

The worry is that no explanation that essentially appeals to dynamics can account for

the success of synchronic length measurements, like those involving pairs of aligned

rods. The best explanation for this success, I argue, requires a pre-dynamical but

modally robust connection between quantitative structure and mereology.

Section 3 outlines two candidate connections, one commonly known as “addi-

tivity” and the other a previously unrecognized phenomena which I dub “proper

extensiveness”. I show that only proper extensiveness is sufficient to underwrite the

explanation of the length measurement presented in section 2. Also, taking length to

be properly extensive better accords with our modal intuitions involving the quantity.

The final section offers a sketch of an application of the distinction to the prob-

lem of quantity. I describe a solution to the problem of quantity only available to

properly extensive quantities, as I understand them. I discuss the implications such

a result would have on our understanding of the nature and significance of proper

extensiveness.
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1.2 Quantitative Structure

Every physical quantity is associated with a class of determinate magnitudes or

values, each member of which is a (non-quantitative) property or relation itself. So

when a particle possesses mass, charge, or length, it always instantiates one particular

magnitude of that quantity – like 2.5kg, 7C or 2πm.2 These magnitudes exhibit, or

the objects which instantiate them, exhibit “quantitative structure” just in case they

are related to one another by certain “structural relations”.

We can represent these relations as between magnitudes and between the in-

stances of magnitudes. Some of them are metrical—we say “this pumpkin is over 8.7

times as massive as that gourd” when talking about objects and “1.5m is ten times

as much as 15cm” when talking about magnitudes. Other structure is sub-metrical.

Let me introduce two relations which handily express the sub-metrical structure we

intuitively apply to one-dimensional unsigned scalar quantities,3 i.e. things like mass,

length, and volume (and unlike charge, velocity, and spin).

We say “this pumpkin is less massive than that table” and “22m3 is less than

22.1m3”, when talking about the ordering on (in these cases) massive objects and

determinate magnitudes of volume, respectively.

Let ‘≺’ denote a two-place relation symbolizing the intuitive “less than” relation

over the magnitudes, Qi, of some quantity, Q. Intuitively Qa ≺ Qb when Qa is “lesser

than” Qb. When an object, x, instantiates a mass magnitude that bears ≺ to the

magnitude instantiated by another object y, we say that x is less massive than y.

We say “this stick is as long as that pencil and this highlighter put together” and

“12kg is the sum of 7kg and 5kg”, when talking about the summation or concate-

nation structure on (in these cases) lengthy objects and determinate magnitudes of

2It is sometimes said that quantities are determinables and their magnitudes their determinates,
but this is not universally accepted. Certainly the magnitudes of mass, say, are all and only the
determinates of the determinable property denoted by the predicate ‘has mass’ or ‘has a mass’, but
it’s not obvious that we should identify the quantity mass with this determinable property.

3By “one-dimensional scalar” quantity, I mean one which is intuitively gradated along only one
axis and which don’t involve any notion of direction. By an “unsigned” quantity I mean just those
which are not most faithfully divided into categories like “positive” and “negative”, where two
magnitudes might have the same “degree” but differ in “sign”. In what follows, I will drop these
descriptors, but my focus, for simplicity’s sake, will always be on quantities of this type.
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mass, respectively.

Let ‘⊕’ denote a three-place relation over the Qi’s which serves to map two

magnitudes to a third magnitude which is their “sum”. So when ⊕(Qa, Qb, Qc) we

say Qc is the “sum” of Qa and Qb, and we write Qa ⊕ Qb = Qc. When ⊕ obtains

between three length magnitudes instantiated by objects x, y, and z respectively, we

say that z is as long as x and y taken together.

I will say a bit more about metrical structure, since it is our target. We’ll say

the ratio of Qa to Qb is intuitively 4.767 to 1 when 4.767 : 1(Qa, Qb). Since we are

construing these only as relations between magnitudes and not between magnitudes

and numbers, every distinct ratio must correspond to a distinct 2-place relation.4

2 Quantities and the World

The primary way that we gain epistemic access to facts about quantities is by

performing measurements. However, measurements are interesting physical pro-

cesses/procedures5 in their own right, even putting aside their crucial epistemic role.

For our purposes, a “Q measurement” is a physical procedure performed on cer-

tain objects, a and b, (though there needn’t be just two) which instantiate magnitudes

of a particular quantity, Q. Measurements have a ready state, a specification of the

state of the measurement apparatus and of a and b relative to that apparatus, as

well as a set of possible (mutually incompatible) outcomes. Outcomes can include

things like different possible positions of a pointer, the relative positions of plates on

a balance scale, or a distribution of illuminated pixels on a readout screen.

A measurement’s ready state and the different possible outcomes should be dis-

tinguishable without appeal to quantitative features of or relations between a and b

4This is why doing away with mathematical entities but still positing irreducible metrical struc-
ture is an unacceptable solution to the problem of quantity. It requires making an unweildy (indeed,
infinite) number of distinct, primitive posits.

5I prefer the term ‘procedure’ to ‘process’, and will use the former in what follows. This is for
two reasons. First, the same procedure can have different outcomes. Second, processes take time,
while some measurement procedures are instantaneous (Section 2.2 gives an example). We could
think of procedures as event-types which can be tokened in a few importantly different ways, where
these differences amount to the different “possible outcomes” discussed below.
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(or their respective parts).6 That is, the ready state of a mass measurement should

not include the condition that a be more massive than b, and two possible distinct

outcomes of a length measurement cannot be distinguished only by whether or not

a and b bear the “same length as” relation to each other.

Let’s call a particular token measurement procedure, performed on a and b, suc-

cessful if the occurrence or non-occurrence of each possible outcome is reliably corre-

lated with the obtaining or non-obtaining of different quantitative relations between a

and b (or between the magnitudes of Q they instantiate). A successful such measure-

ment procedure produces a counterfactually robust correlation between its outcomes

and the quantitative facts—i.e. it renders true conditionals of the form “If a had

stood in RQ to b (at the time of our measurement), then outcome Oi would have

occurred”.

Such robust correlations, when they obtain, cry out for explanation. A great

many such explanations appeal to the role of Q in the dynamics evolving the ready

state into one or another possible outcome (I give an example of a mass measure-

ment with such an explanation in Case 1 below). However, certain paradigmatic

length measurements do not admit of explanation by such means, yet they still can

be robustly successful. Case 2 describes one such successful length measurement,

and offers an intuitive, non-dynamical explanation for its success. The rub is, this

explanation depends on a substantive connection – which isn’t mediated by dynam-

ics! – between length’s quantitative structure and the mereology of lengthy physical

entities.

2.1 Case 1: Weights on a scale

In the first case, we want to measure the ordering structure (i.e. to determine

which, if either, is more massive than the other) of a pair of massive objects, a and b.

6Indeed, I require that the outcomes of a given measurement procedure must be distinguished
wholly non-quantitatively (i.e. not by the obtaining or non-obtaining of any quantitative fact,
magnitude, or relation). If I was only concerned with the epistemic role of measurement, this last
requirement would be needlessly strong. This requirement screens off measurements whose success
is really only revelatory of their relationships with and impact on other quantities, and not the
non-quantitative world directly.
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To do this, we set up a balance scale, with two plates suspended from opposite ends

of a bar. The bar is balanced at its center on a rigid, vertical stand. The ready state

for the scale is with the bar parallel to the ground and weights a and b positioned on

opposing plates. We perform the measurement by releasing the plates and waiting

a moment or two. The possible outcomes are: a’s plate is lower than b’s plate, b’s

plate is lower than a’s plate, or the bar is parallel to the ground.7

Suppose we run this measurement and get the first outcome—a’s plate is lower.

Suppose further that a is more massive than b, and that if a had been less massive

than (just as massive as) b, the second (third) outcome would have obtained. That

is, we have performed a successful length measurement on a and b. In this particular

case, what explains our measurement’s success?

Here the explanation should be clear. Mass’s quantitative structure plays a cer-

tain role in the dynamical laws of motion and gravitation. Specifically, objects which

are more massive experience a greater force pulling them towards the earth. After

we set the scale up in its ready state,8 the weights on the scale are impressed by

gravitational forces, as dictated by the physical laws. The downward forces on the

plates will unbalance a properly calibrated balance scale just in case the objects dif-

fer in mass, with the more massive object being pulled more forcefully. Thus the

dynamical laws come together with the quantitative facts and the physical makeup

of the scale to bring about one of the three outcomes in a way which is reliably

correlated with the “less massive than” relation.

Call a measurement procedure of this sort a dynamical measurement. Dynamical

measurements are successful in virtue of the dynamics governing the evolution from

the ready state to the resulting outcome. While there are other ways the dynamics

7One might worry that “lower” is a quantitative notion. However, it is not a matter of any
quantitative relations between a and b and, in particular, is not a fact about a and b’s masses. Even
so, this quantitativeness is easy to get rid of, if we complicate our measuring device a bit. Many
balance scales have a needle, perpendicular to the horizontal bar, attached at its center. The point
of this needle is exactly above the vertical stand when the bar is parallel to the ground, and can
either end up still upright or leaning to the left or the right of the vertical stand after.

8It turns out that there’s some freedom in which ready state you pick. Even if the scale doesn’t
start with the bar perfectly parallel to the ground, the dynamics on the system will bring it to the
right outcome as long as we wait a sufficiently long time.
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can be involved in our general measurement practices—e.g. in us perceiving which

outcome obtains, or in me building a balance scale—a measurement only counts as

dynamical when the dynamics play an essential role in the measurement’s success.9

2.2 Case 2: Aligning Rods

We want to measure the ordering structure for a pair of lengthy objects, in this

case straight rigid rods. To do this, we arrange the rods so that they are parallel

and lay them side-by-side. We then align them at one endpoint—i.e. while keeping

them parallel, positioning one endpoint of rod a such that it is immediately adjacent

to the endpoint on the same side of rod b. This is the ready state. There are three

possible outcomes, as before: rod a extends past rod b, rod b extends past rod a,

or neither rod extends past the other (Where “extending past”, for these rods, just

means one rod having a part which isn’t adjacent10 to any part of the other rod).

We observe which of the rods, if either, extends past the other, and conclude that

that rod is longer.

Suppose we perform this measurement and get the second outcome—rod b extends

past rod a. Let’s also suppose that this measurement is successful. I.e. that b is, in

fact, longer than a, and that if b hadn’t been longer than a, then b would not have

extended past a (etc.). What explains the success of this measurement procedure?

In this case, we cannot appeal to length’s role in the dynamics to explain the suc-

cess of our length measurement. There are, of course, dynamical laws that involve

spatial quantities like length, but this measurement has no temporal component. The

procedure’s ready state – a and b laid flush against each other and aligned at one

endpoint – is simultaneous with the procedure’s outcome – b’s extending past a. Of

9Classical mass, it turns out, only admits of dynamical measurement. While there are many
mass measurement procedures, including various kinds of scales, as well as “collision tests” where
massive objects are knocked against each other to see which resists displacement to a greater degree,
they all involve an appeal to the dynamics of the measuring system as it evolves from the ready
state to one of the resulting outcomes.

10We can make the notion of extending past even clearer by doing away with adjacency. For a
and b arranged as described in the text, a extends past b just in case there exists a plane orthogonal
to a and b which intersects a part of a and no part of b.
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course, the dynamics will play a role in our observing the outcome after the mea-

surement, and it will play a role in our positioning the rods before the measurement,

but the dynamics plays no role in evolving the system from the ready state to the

particular outcome. This means that the success of this measurement, and the re-

liable correlation between its non-quantitative outcome and the quantitative facts,

does not depend on the dynamics of length or any other quantity.

Indeed, this length measurement could occur and be successful at a world gov-

erned by no dynamical laws, which exists only for one moment, as long as, at that

moment, the rods a and b are situated in the right way.11

If not the dynamics, what can explains the success of a length measurement of

this sort? This measurement procedure is so transparently legitimate that it’s un-

clear what mechanism could be underlying the correlation. The notion of extending

beyond is so close to our conception of being longer (or instantiating a length mag-

nitude bearing ≺ to the other) that it’s hard to see the gap at all, let alone identify

what’s bridging it. It’s not especially difficult to come up with an intuitively satis-

fying explanation of this case. The trouble is giving an account of what length must

be like such that this explanation applies.

11There’s a bit of nuance here that we should address. The issue isn’t merely that the ready
state and result state are simultaneous, though this is important. The issue is that the connection
between them isn’t dynamical. For instance, we could construct a mass measurement which could
be performed instantaneously, but it would still depend on the dynamics. In 2.1, I pointed out that,
in the case of a balance scale, we have some freedom in where we set the angle of the balance bar
suspending the two plates, as long as we wait long enough for the system to enter equilibrium.
What makes the outcome of such a measurement important is that it represents an equilibrium

state of the system. The state evolves to equilibrium and then stays in that state. Since there’s
some freedom as to the angle of the bar, we could start with our bar in exactly the right position
such that the system is already in an equilibrium state when we let it go! In this case, there is a
certain sense in which the ready state and the outcome are simultaneous.
However, the fact that the two states are simultaneous doesn’t mean the success of the measure-

ment isn’t dependent on mass’s role in the dynamics. What gave that outcome its status was that
it’s an equilibrium state, but being at equilibrium is a dynamical feature. It’s a matter of what the
dynamics governing that system would do to such a system if it were left alone and given a chance
to evolve. So even if there were a world that existed only for an instant and contained a balance
scale in exactly the right position, it would only count as a successful mass measurement if there
were dynamics “governing” (or that would govern) that short-lived system, and the system was in
equilibrium according to those dynamics. A short-lived world without any dynamical laws at all
could not support such a measurement.
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Here’s what I think is going on in this case:

b extends past a. So while there’s a part of b that is perfectly aligned with a, but

there’s also a remainder—i.e. another part of b that has no part that’s adjacent

to any part of a. Call the first part x and the second part, the remainder, y. The

existence of such parts doesn’t yet establish that b is longer than a. For that we need

two bridge principles connecting the mereology and the quantitative facts.

(1) If two rods are laid side by side such that neither extends past either endpoint

of the other, then they are as long as each other.

(2) A rod must be longer than any of its proper “rod segments”.12

(1) establishes that a is as long as x. (2) establishes that b is longer than x. Together

they establish that, in situations like our length measurement, above, b is longer than

a. While premise (1) is of central importance to the practice of measuring length by

laying rods side-by-side, I will not be discussing it much here.13

12Premise (2) is expressed in terms of rules of thumb for measuring rigid rods, and makes use
of the notion of a “rod segment”. This is not ideal, but it’s important to recognize that the
more natural sounding principle: “a rod must be longer than any of its proper parts” has some
unfortunate exceptions. In particular, a three meter rod could be cut “lengthwise”, so to speak,
and thus divide into two three meter parts. Alternatively, it also has proper parts that, intuitively,
have no length at all, but are just a few spatially disconnected pieces of rod. The notion of “rod
segment” is meant to rule out cases like these.
If the reader is still worried that a rod could be as long as one of its “rod segments”, perhaps

because the rod segment is just the segment of the rod minus some lengthless slice at one endpoint,
we can add premise (3):

(3) If a rod can be partitioned into two “rod segments”, it is longer than each of them.

What premise (3) relies on is the idea that an infinitely thin slice off the endpoint of a rod is not a
“rod segment” (even if its complement is). Once we move beyond this example and do away with
talk of rods in favor of talk of spatiotemporal paths, we can avoid all the ambiguity involved in the
notion of a rod segment.

13Premise (1) is likely an approximation of a principle that has its source in Euclid,
with his Common Notion 4: “Things which coincide with one another are equal to one
another.”[Euclid (trans. Heath, 1908)]. Since material bodies can’t interpenetrate, the closest to
coinciding we can come, practically, is alignment without remainder, i.e. being laid side by side
with neither extending beyond the other. There’s much more to be said about the spatial structure
of the world such that this approximation works, to the extent it does, but that’s outside the scope
of this paper.
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2.3 The puzzle of non-dynamical measurement

This is a patently non-dynamical explanation. The outcome (b extending past a)

and the quantitative facts (b being longer than a) are correlated, according to this

explanation, not because of length’s role in the dynamics but because of certain con-

straints on the mereology of lengthy objects (i.e. on the possible lengths of objects

given their mereological structure and relations, and the possible mereological struc-

ture of objects given their lengths and length relations.). This connection between

quantitative structure and mereology shows up at two points in the explanation:

The first is obvious. Premise (2) establishes that a rod bears a certain quantitative

relation (longer than) to every member of a certain special sub-class of its parts.

The second involves premise (1), though in a more nuanced way: The explanation

of the success of a length measurement of a given pair of rods, a and b, such that b

extends past a, was presented as fully general. That is, for any rod shorter than b,

which is measured against it in this way, b must have a proper part that’s perfectly

aligned with that rod. By (1) this implies that b has a proper part that’s as long as

that rod, for any such rod shorter than b! Here this explanation (& specifically its

generality) puts substantial constraints on the parts of b and the lengths those parts

can have.

Before we go any further, we will have to replace this talk of rods with something

more rigorous. (1) and (2) are approximately true, as is this assumption about the

generality of the explanation. However, though the success of the measurement of

the rods a and b can be roughly explained by appeal to these principles, we don’t

need to tether our explanation to the nature of something as derivative and clunky as

the notion of a concrete, straight, macroscopic material rod, and the “rod segments”

which make it up. Indeed, if we want to give a truly rigorous and completely general

explanation, we will need to give it in terms of the fundamental entities and properties

in the vicinity.

Let’s say that length is, fundamentally, a property of one-dimensional, open (i.e.

non-looped) paths through spacetime. To the extent that a concrete material rod

can be said to have length, it has its length derivatively, in virtue of occupying
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a region containing certain (properly oriented) spatiotemporal paths of such-and-

such a length. We should be able to recapture an explanation in terms of rods by

appealing to the properties of the regions they occupy. For the remainder of this

paper, however, I’ll be concerned only with the more general and rigorous principles

concerning spatiotemporal paths.

We can capture the significance of premise (2) and of the generality assumption in

one principle (By “object of length Ln” I’m only referring to things like substantival

paths, and not to anything which has its length derivatively):

(2′) For all objects x of length Ln, and for all lengths Lm ̸= Ln, x has a proper part
of length Lm iff Lm ≺ Ln.

(2′) puts very strong constraints on the sorts of parts lengthy objects can have,

and on the possible lengths those parts can have. Analogously to (2), (2′) implies

that a given path is as long or longer than all of its lengthy parts. Analogously to

the assumption about generality, (2′) implies that a given path of length Ln must

have a lengthy proper part corresponding to every length property bearing ≺ to Ln.

The only explanation for the reliable success of synchronic length measurement

on offer requires a principle like (2′). But neither the physical details of the measure-

ment procedure, nor the dynamical laws governing the system, are responsible for

conditions like (2′). If this explanation is a good one, then, our theory of quantities

like length should be able to account for the truth of (2′) in the relevant situations.

To do this, we will have to consider how certain quantities constrain the mereology

of their instances. In the next section, I argue that the way quantities are stan-

dardly assumed to put constraints on that mereology is insufficient to underwrite

this explanation, and I propose an alternative.

3 Constraining the World

In this section, I consider two ways a quantity might put constraints on the

mereological structure of its instances. The first is commonly called “additivity”,

while the second is a hitherto undiscussed phenomena, which I have dubbed “proper
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extensiveness” (though I will argue that it better captures some of our modal intu-

itions concerning certain physical quantities). I will show that additivity, properly

understood, cannot explain the success of instantaneous length measurements, while

proper extensiveness can.

3.1 Additivity

An additive quantity, roughly, is one for which composite objects “inherit” their

Q-value (what magnitude of Q they instantiate) from the Q-values of their parts (if

they have any). For instance, mass and length are both additive quantities. 2kg and

3kg stand in ‘⊕’ relation to 5kg (2kg⊕3kg = 5kg). Since mass is additive, composites

of massive objects “inherit” their masses from their parts; so the mereological sum

of a non-overlapping14 pair of objects weighing 2kg and 3kg must weigh 5kg.15 The

inheritance analogy is a powerful one, as it indicates both the strength and – we

shall see – the limitations of this connection.

Put more formally, an additive quantity necessarily satisfies the following con-

ditionals. They hold for any magnitudes, Qi (of the same additive quantity), that

satisfy the antecedent. The mereological relations used are these: ‘O(x, y)’ for over-

lap, ‘(x, y)C(z)’ for a three-place composition relation, with the third relatum being

the fusion of the first two, and ‘P (x, y)’ for parthood.

Additive ≺: (Qm ≺ Qn) → ∀x∀y((Qn(x) ∧Qm(y)) → ¬P (x, y))

Additive ⊕: (Qm ⊕ Qn = Qr) → ∀x∀y∀z((Qm(x) ∧ ¬O(x, y) ∧ (x, y)C(z)) →
(Qr(z) ↔ Qn(y)))

14If we’re being really strict about it, the parts may either have no overlap or have only “negligible
overlap”. What counts as negligible overlap depends on the structure and mereology of the quantity
in question. For instance, often negligible overlap might just be overlap which instantiates the “zero
magnitude”, like 0m or 0kg or 0cm3. However, if one’s metaphysics of the relevant quantity does
not include a zero magnitude ([Balashov, 1999] takes issue with the very idea of a zero magnitude,
albeit for reasons I’m not especially sympathetic to) the notion of negligible overlap must be got
at in a different way.

15For ease of presentation, I assume mereological universalism. Certain complications would arise
if we were to drop this assumption. However, none of the substantive points of the paper depends
on it. I also assume that none of the massive objects discussed are spinning.
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In the case of mass,Additive ≺ says that no massive object can have a part which

is more massive than it. Additive ⊕ says that the fusion of any two non-overlapping

objects has the “sum” of their respective mass magnitudes as its mass, providing

they instantiate mass magnitudes at all. These conditionals (on the assumption that

⊕ is commutative) fully specify the mereological significance of additivity. These

conditionals are modally16 robust: Suppose pumpkin is a 5kg object composed out

of non-overlapping parts body and stem. If we consider a counterfactual scenario in

which the only difference is that stem is 2kgs heavier (than it actually is), we readily

(often automatically) infer that at this world pumpkin is 2kgs heavier as well. Indeed,

its difficult to conceive of a world where only stem, but neither body nor pumpkin,

changes its mass.

3.2 Additivity and Measurement

The reason additivity cannot explain the success of synchronic length measure-

ment is well illustrated by the “inheritance” analogy. Additivity says that an object’s

mass is determined by the masses of its parts. However, Additive ⊕ and Additive

≺ are entirely silent on whether a given massive object has parts (massive or oth-

erwise). This means that length’s additivity cannot itself account for the truth of

(2′).

Since Additive ≺ and Additive ⊕ never imply that a given object must have

parts of some kind, they’re consistent with a pair of objects, a and b, instantiating

magnitudes, Qa and Qb, (of some additive quantity) where Qa ≺ Qb yet both a

and b are mereological simples. There’s nothing obviously wrong with admitting of

such a possibility for mass. On the ordinary understanding of most particle theo-

ries, elementary particles are assumed to be mereologically simple, and there is no

prohibition on different elementary particles ever possessing different masses! How-

16The nature of this modal robustness, i.e. the degree of necessity possessed by the conditionals
Additive ⊕ and Additive ≺, is not entirely clear, and may differ from quantity to quantity. For
instance, on some understandings of classical mass, on which it is identical to inertia, the truth of
Additive ⊕ and Additive ≺ for mass might be grounded in the nature of mass’s dynamical role.
If so, then these conditionals may well be merely nomologically necessary, when it comes to mass,
rather than metaphysically necessary.
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ever, the analogous possibility for lengthy entities is flatly inconsistent with (2′).17

Moreover, such a possibility also seems to get the modality of fundamentally lengthy

entities (like spacetime paths or trajectories) intuitively wrong (I go more in depth

into this issue in particular in the next section).

Mere additivity cannot explain the reliable and general success of synchronic

length measurement.

3.3 Proper Extensiveness

I’m going to introduce a phenomena called “proper extensiveness”. My contention

is that certain physical quantities are properly extensive—length, volume, and tem-

poral duration among them—and that properly extensive quantities, by their nature,

put stronger constraints on the mereological structure of the world than merely ad-

ditive quantities do. Specifically, these constraints are sufficient to entail (2′) for

length and thereby support the intuitive explanation offered in the previous section

for the success of synchronic length measurement.

Physical quantities can be grouped into the additive and the non-additive (some-

times called “intensive”) quantities, and the class of additive quantities can be further

divided into the merely additive quantities and the properly extensive quantities. As

such, properly extensive quantities satisfy Additive ≺ and Additive ⊕:

Additive ≺: (Qm ≺ Qn) → ∀x∀y((Qn(x) ∧Qm(y)) → ¬P (x, y))

Additive ⊕: (Qm ⊕ Qn = Qr) → ∀x∀y∀z((Qm(x) ∧ ¬O(x, y) ∧ (x, y)C(z)) →
(Qr(z) ↔ Qn(y)))

2m and 3m stand in ⊕ to 5m (i.e. 2m ⊕ 3m = 5m). Length is additive, so the

fusion of two non-overlapping objects of length 2m and 3m laid end-to-end (in the

right way) will be 5m long. If length were merely additive, that would be the end of

the story. Because length (we are supposing) is also properly extensive, we can say

17To see this, realize that it’s also consistent with the dictates of additivity that there be two
lengthy objects, a and b, of lengths, 2m and 5m respectively, where b has no proper part as long as
a (that is, 2m long) because b is a mereological simple.
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more—e.g., since 2m⊕ 3m = 5m, any 5m path must admit of a partition into a 2m

part and a 3m part. We’ll understand a partition of o as a class of non-overlapping

objects whose fusion is o. That is, properly extensive quantities also necessarily

satisfy:18

Extensive ≺: (Qm ≺ Qn) ⇒ ∀x(Qn(x) → ∃y(y ̸= x ∧Qm(y) ∧ P (y, x)))

Extensive ⊕: (Qm ⊕ Qn = Qr) ⇒ ∀x(Qr(x) ↔ ∃y∃z(Qm(y) ∧ Qn(z) ∧ ¬O(y, z) ∧
(y, z)C(x)))

In the case of length,19 what Extensive ≺ says is that every spatial path of a

given length Ln, such that Lm ≺ Ln, has an interval (which is to say, a part which

is itself a path) of length Lm. Extensive ⊕ says a path can instantiate a length

magnitude La such that Lb⊕Lc = La, if and only if it has two non-overlapping parts

which respectively instantiate those magnitudes. This is a very powerful condition,

because it says that, given the quantitative facts, just instantiating a given length

magnitude, La, necessarily requires you to have parts with certian length properties

standing in certain mereological relations to one another.

Recall that, in order for our explanation of synchronic length measurement in

terms of the existence of a remainder to apply, our theory of length must entail that

the quantity satisfies:

18Additivity and proper extensiveness both involve principles which concern the quantitative
features of objects “put together in the right way”. For most quantities, like mass or volume, the
formula ‘¬O(x, y) ∧ (x, y)C(z)’ will accurately describe this condition. However, since only certain
kinds of objects can have length (namely, unbroken non-looping paths), the conditions for putting
two paths together “in the right way” are more stringent. It isn’t enough for path a and path b to
not overlap and to together compose object c. If a is the spatial path from my nose to my upper
lip, and b is the shortest path from the surface of the earth to the moon, then their fusion, c, isn’t
an unbroken path, and so doesn’t have length! The conditions for length would be something like
this: a and b are both intervals of path c, which is their mereological fusion, and a and b either
don’t overlap or have a lengthless overlap (either one with 0m length or without length, depending
on what we want to say about the lengths of unextended points). Since I am more concerned here
with the relationship between the second-order ≺ and parthood, I will set this issue aside

19Technically these conditionals, as stated, only directly apply to properly extensive quantities
like volume or surface area. They would need slight tweaking to accurately characterize a quantity
like length. How we sort out this wrinkle won’t, however, make a difference for our argument
concerning measurement.
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(2′) For all objects x of length Ln, and for all lengths Lm ̸= Ln, x has a proper part
of length Lm iff Lm ≺ Ln.

An account of length on which length is properly extensive does entail (2′). By

Extensive ≺, we get that if Lm ≺ Ln then x has a part of length Lm, and by

Additive ≺, we get that if x has a proper part of length Lm, then Lm must be

either = Ln or ≺ Ln (which, given the assumption that Lm ̸= Ln, implies that

Lm ≺ Ln.

3.4 The significance of Proper Extensiveness

The fact that proper extensiveness is necessary to explain the reliable success of a

paradigm measurement procedure is important because it indicates that (1) there is

good reason to take length to be properly extensive and (2) that the necessary con-

ditionals characterizing proper extensiveness must be independent of the operation

of the dynamical laws. Solving the puzzle of synchronic length measurement is less

an end in itself and more a means to introduce and motivate proper extensiveness.

In this section I will further examine this phenomena, and in the next outline a very

significant application.

Some of our central intuitions regarding physical quantities like length, volume,

and temporal duration—specifically those concerning how the mereological structure

of the world reflects the quantitative structure of the properties instantiated at it—

already suggest a tacit commitment to something like proper extensiveness for these

quantities.

One striking consequence of taking length to be properly extensive illustrates this

quite well. Suppose we discover a path through space that had a non-zero length,

Lu, but no proper sub-paths (i.e. no proper parts which are paths). According to

Extensive ≺, this implies that there are no length magnitudes ≺ Lu (except the

zero-magnitude, 0m, if there is such a thing)—meaning that the quantity, length, is

discrete (best represented by the natural numbers plus zero) and that Lu is its unit

length.

This result very closely accords with our intuitive expectations about what the
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physical world can tell us about quantities like length. We do not hear metaphysicians

raise concerns when physicists run together the possibility that there is a smallest

non-zero length (alternatively, that the quantity length is discrete) with the possi-

bility that there are shortest possible paths (alternatively, that space is discrete).

Indeed, many discussions of length readily use “shorter than” and “as long as a

proper sub-interval of” interchangeably. Similar points can be made for area, vol-

ume, and temporal duration. The pervasiveness of this line of thought disguises how

significant of a metaphysical commitment it amounts to, once we take it seriously.

The notion of proper extensiveness is how we should characterize this commitment.

It is important to stress again how these commitments simply do not hold sway for

merely additive quantities. Though mass’s status as merely additive is not entirely

uncontroversial, treating it that way is in accordance with an extremely common un-

derstanding of the quantity.20 On this understanding, there could very well be two

simples (objects without proper parts) with differing, non-zero, masses. When enter-

taining the epistemic possibility that, e.g., the electron is a point-particle (without

spatial extension and, it is presumed, mereologically simple), we don’t at all expect

every other elementary particle to therefore be exactly as massive as the electron!

However, that is precisely the sort of conclusion we should reach in the analogous

scenario for quantities like length and volume!

I’ve suggested that there exists a distinction in our intuitions about the modal

mereology of additive physical quantities. If this is right, it stands as strong evidence

in favor of a distinction between the additive quantities into the merely additive and

the properly extensive, as I draw it. The lack of acknowledgment or discussion of

this phenomena in the philosophical and physical literature means that (as of yet)

20The fact that mass is closely associated with a certain dynamical role is good evidence that
it’s not properly extensive, since we standardly think that the same dynamical role in gravitation
or inertia could be played equally well by a mereological complex or a simple. However, for all we
know it may turn out that mass more closely aligns with earlier notions of physical mass as the
“measure of matter”. If that is right, to say that a is less massive than b is to say that a has less
matter making it up than b. One way to draw out this understanding would be to treat mass as
properly extensive, and to expect its instances to obey the associated mereological constraints (i.e.
if b has more matter making it up than a does, then b should have a part which has exactly as
much matter making it up as a does).
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there are no suggestions on the table as to why some quantities are extensive, or

how this constraining of the mereology is supposed to work. For our purposes, it

suffices to say that some quantities are extensive and that they constrain mereology

in a modally robust way that is independent of the dynamical laws.

4 Conclusion: Applying Proper Extensiveness to

the Problem of Quantity

In the previous two sections I have argued in favor of positing a distinction

amongst the additive quantities into the merely additive and the properly extensive.

I have argued that this distintion better captures and explains the data, specifically

regarding simultaneous length measurement as well as our modal mereological intu-

itions about various physical quantities. I’d like to close by gesturing in the direction

of a significant potential application of this distinction. Specifically, I will give a

few reasons to believe that an elegant and principled solution to the problem of

quantity, as it applies to properly extensive quantities, is available if we take proper

extensiveness as fundamental

Many metaphysicians of quantity appeal to measurement theory in their answer

to the problem of quantity. Specifically, they attempt to reduce facts about metric

structure to facts about the world satisfying the right measurement-theoretic ax-

ioms.21 Measurement theory is a formal discipline which involves rationalizations,

formalizations and defenses of empirical measurement practices. The game of mea-

surement theory is to take a domain of material objects, which instantiate different

magnitudes of some quantity, Q, posit some axioms that these objects obey, and

then prove theorems which imply that Q can be faithfully represented, up to a point,

with a certain mathematical structure, e.g. the real numbers.22

Some of the axioms required to prove these theorems impose certain requirements

on the size and structure of the domain itself. They say that domains are well

21Field (1980) is the most famous account along these lines.
22Cf. [Krantz, et. al. 1971]
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populated (existence axiom), and that there’s ample variation in which magnitudes

of Q are instantiated therein (richness axiom). The satisfaction of such axioms is a

contingent matter. If there aren’t enough objects, or if they don’t instantiate enough

different magnitudes, these axioms fail to be satisfied.

But our account of the ground of metric structure ought not to be contingent on

the world being well-populated! This contingency problem has been acknowledged in

the literature, and various theorists have proposed ad hoc solutions to eliminate this

contingency. [Mundy, 1987] gives up on the domain of massive objects and instead

attempts to apply measurement theory to the domain of mass magnitudes, while

Arntzenius and Dorr in their (2013) avoid the contingency problem by positing well-

populated substantival physical spaces, and identifying the geometry of this space

with the relevant quantitative structure.

The unique advantage of properly extensive quantities is that any world where

such a quantity is instantiated must, by the conditions it places on the mereology of

its instances, be well populated and variegated, to a certain degree. Suppose that

Lx is a length magnitude, instantiated by a path, p. Extensive ≺ implies that p

will have at least as many proper parts as there are length magnitudes which bear ≺
to Lx. Similarly, Extensive ⊕ implies that p will admit of a partition into parts of

length Ly and Lz, for every such pair of length magnitudes such that Ly ⊕ Lz = Lx.

This suggests that a domain where a properly extensive quantity is instantiated,

and in which its instances satisfy the necessary constraints its proper extensiveness

puts on their mereology, may be of the right form to satisfy the relevant existence

and richness axioms. I think this can be shown, but there’s no room to do so here.

However, if it were true, it would allow for a uniquely elegant and principled solution

to the problem of quantity, as it applies to properly extensive quantities.

A result of this kind, if it can be done (and I think it can), is not just important

because it moves us closer to a satisfactory solution to the problem of quantity in

full generality. It also speaks to the metaphysical depth of the distinction between

properly extensive quantities and all other physical quantities, one which manifests

not just in the way these quantities relate to mereology, but also in the nature and

ground of their metric structure.
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