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Abstract:   
Reference models of the earth’s interior play an important role in the acquisition of 
knowledge about the earth’s interior and the earth as a whole.  Such models are used 
as a sort of standard reference against which data are compared.  I argue that the use 
of reference models merits more attention than it has gotten so far in the literature on 
models, for it is an example of a method of doing science that has a long and 
significant history, and a study of reference models could increase our understanding 
of this methodology. 
 
 
1.  Introduction 

 Reference models of the earth’s interior play an important role in the 

acquisition of knowledge about the earth’s interior and the earth as a whole.  Such 

models are used as a sort of standard reference against which data are compared.  

Deviations between the observations one would expect if the reference model were an 

accurate representation of the earth, and actual observations, are used to make 

inferences about the earth’s interior.  Perhaps the most widely used such model in 

geophysics, the Preliminary Reference Earth Model or PREM2 (Dziewonski and 

Anderson 1981), was completed in 1981, and it has been utilized for the construction 

of many other models through the end of the century (Ritzwoller and Lavely 1995).   

There is a recent, growing literature focusing on the use of models in science 

(e.g. Morgan and Morrison 1999, Wimsatt 2007, Weisberg 2013).  The use of models 

in a manner similar to the way in which reference models are used in geophysics is 

described by Wimsatt (2007), but he mentions these uses merely in passing in his 
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discussion of neutral models in biology.  Weisberg (2013) has a much more 

comprehensive and systematic account of models and their uses in science, but he 

does not specifically mention a use of models in the manner I will describe in this 

paper.  I will argue that the use of reference models merits more attention than it has 

gotten so far in the literature on models, for it is an example of a method of doing 

science that has a long and significant history, one which has recently been described 

by Smith (2002) and Harper (2011) as “turning theory into evidence”, and a study of 

reference models could increase our understanding of this methodology.   

The aim of this paper is to contribute to the literature on models by first 

locating reference models relative to the general taxonomy of models described by 

Weisberg, and comparing them to the use of neutral models in biology as described 

by Wimsatt.  I will then examine some possible desiderata for the construction of 

reference models, and then end the paper with some considerations about the 

connection between reference models and “turning theory into evidence”.   

 

2.  Models and Idealization 

I will start with Weisberg’s picture of models because it is the most ambitious 

recent attempt to give a comprehensive account of models and their use in science, 

and it appears likely itself to become a standard reference on models for philosophers 

of science.  From the standpoint of Weisberg’s picture, Earth reference models would 

best be construed as target-directed models that utilize Galilean idealization 

(Weisberg 2013, 74-112).  Target-directed models are models for which the modeler 

has a specific target in mind.  For earth reference models, the target is clearly the 

interior of the earth.  In Weisberg’s picture of models, there are three different ways 

in which models can be idealized: Galilean idealization, minimalist idealization, and 



multiple-models idealization.  Galilean idealization involves the simplification of 

models with the aim of making them more mathematically tractable.  Minimalist 

idealization involves the construction of models that include only difference-making 

factors that are necessary for a phenomenon, with the aim of constructing an 

explanation of a given phenomenon.  Multiple-models idealization involves building 

multiple incompatible models of a single phenomenon, usually in the study of highly 

complex phenomena.    

As we shall see, earth reference models involve Galilean idealization, so I 

want to examine this notion in more depth.  Weisberg’s discussion of Galilean 

idealization (2013, 99) depends heavily on the description given in McMullin (1985).  

Typically, there is some phenomenon of interest, but it is too complicated to model 

faithfully, so an initial simplified model is created.  Then, this simplified model is 

used to improve our understanding of the phenomenon, and the simplified model is 

gradually made more realistic in a process that McMullin calls “de-idealization”.  

Weisberg takes the whole purpose of Galilean idealization to be to deal with 

intractability, and thus “advances in computational power and mathematical 

techniques should lead the Galilean idealizer to de-idealize” (99).   

Weisberg does not give very detailed examples of this process of de-

idealization, but McMullin does.3  The most detailed example he gives is the Bohr 

model of the hydrogen atom (McMullin 1985, 260-261).  The Bohr model, in which 

the electron is in a circular orbit around the proton, could be used to predict the 

energy levels of the electron, which could then be compared to spectroscopic 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 McMullin makes distinctions of his own regarding idealization, such as that between 
formal and material idealization.  The Bohr model of the atom is given as an example 
of formal idealization.  McMullin’s distinctions might well cross-cut Weisberg’s 
distinctions, and I do not want to complicate the picture here, so I will refrain from 
any discussion of McMullin’s distinctions.   



observations of hydrogen.  More specifically, a theoretical value for the Rydberg 

constant could be calculated, which could then be compared to empirical 

measurements of this constant.  McMullin says that at least three idealizations were 

being made here: the neutron is at rest, the orbit of the electron is circular, and 

relativistic effects are left out.  Later on, successive corrections were made to the 

model which, McMullin claims, resulted in a closer fit between the model and reality.  

McMullin describes this process as one where the model “serves as the basis for a 

continuing research program”, one in which the model starts off as a tractable model 

that has significant departures from reality, and this model is gradually filled in with 

more and more details.   

Here, I want to ask exactly how the initial model serves as a basis for this 

research program.  There are two significantly different ways in which it could do 

that.  The first way is for the model simply to provide a sort of skeleton upon which 

further and further new details are added.  These details might come about through 

new observations, or through the development of new mathematical or computational 

techniques that overcome the intractability problems that led to the development of 

the initial simplified model, allowing such details to be filled in, where previously 

they could not.  The second way is for the model itself to be used directly to produce 

the new observations from which the further details can be added.  I will call the first 

kind of process passive de-idealization, while I will call the second kind active de-

idealization.  We will see that earth reference models are used for active de-

idealization.   

Exactly how does active de-idealization work?  Although Wimsatt (2007) 

does not use my terminology, he describes an example of active de-idealization.  One 

of the major points that Wimsatt makes is that false models can be used in many 



different ways to learn true facts about complicated systems.  He gives a list of twelve 

ways in which false models can be used to search for better models.  I want to focus 

here on the first five such functions he gives for false models:   

 
1. An oversimplified model may act as a starting point in a series of models 

of increasing complexity and realism.   
2. A known incorrect but otherwise suggestive model may undercut the too 

ready acceptance of a preferred hypothesis by suggesting new alternative 
lines for the explanation of the phenomena.   

3. An incorrect model may suggest new predictive tests or new refinements 
of an established model, or highlight specific features of it as particularly 
important.   

4. An incomplete model may be used as a template, which captures larger or 
otherwise more obvious effects that can then be “factored out” to detect 
phenomena that would otherwise be masked or be too small to be seen.   

5. A model that is incomplete may be used as a template for estimating the 
magnitudes of parameters that are not included in the model.   

(Wimsatt 2007, 104) 
 

The first function is, of course, mentioned by both Weisberg and McMullin.  It is a 

statement of the idea of Galilean idealization and the process of gradual de-

idealization.  In functions 2 and 3, a false model is used as a heuristic—it suggests 

“new alternative lines for the explanation of phenomena”, or “new predictive tests or 

new refinements”.  I want to focus particularly on functions 4 and 5.  When used for 

these functions, Wimsatt says that the false model is used as a “template” that is used 

to either factor out larger effects in order to capture effects that are too small to be 

seen, or for estimating parameters that are not themselves included in the model.   

The discussion in Wimsatt (2007) involves a detailed study of the linear 

linkage model developed by Thomas Hunt Morgan in the early twentieth century.  

Wimsatt gives several examples of cases where deviations from the predictions of the 

linear linkage model were used to postulate causal factors that were not being taken 

into account in the model.  This use of the model would fall under function 4 

(Wimsatt 2007, 106-111).  He also discusses a case where deviations from the 



predictions of another model, the Haldane mapping function, is used to estimate the 

value of a parameter that is not contained in the model itself (Wimsatt 2007, 120).   

 I want to emphasize again that functions 4 and 5 for models as described by 

Wimsatt is active, not passive, de-idealization.  The false model is used directly to 

produce evidence that can then be used to extract information about the system or 

phenomenon of interest.  It is not being used merely as a heuristic—rather, the model 

itself is used to produce the observations.  Wimsatt provides a very good example of 

these uses of false models, but one might get the impression that the way in which 

models are used here is relatively rare in science.  This impression, however, is 

mistaken—there are at least some sciences where this is the primary way in which 

progress is made.  Most of our knowledge of the interior of the earth, for example, is 

the result of the application of this method.   

 Perhaps one of the reasons that this method has not gotten the attention it 

deserves is that it raises some rather difficult issues with regard to justification.  There 

is, first of all, a circularity worry.  Suppose I create an initial model, and then I study 

the deviations from this model.  These deviations are then taken to be evidence for, 

say, causal factors that must be taken account in the model.  I then add these further 

causal factors, and improve the model.  Perhaps I then investigate further deviations 

from the predictions of this new model, and try to make further improvements to the 

model.  If, however, the wrong initial model was used, then the deviations might not 

reflect any real causal factors after all—they might turn out to have been illusory, in 

which case the research program would have been going down a “garden path”.4  So 

one thing you would want to be careful about is that if a false model is being used to 

create new observations, the model ought to be false in the right way—the deviations 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 This is George Smith’s term.  See Smith 2002.   



from the model ought to be ones which actually will tell us true things about the 

system, or at least point us in the right direction.  You would then expect that there 

might be some norms for models if they are being used in this way.  I will discuss 

such possible norms below.  I will now turn to a discussion of earth reference 

models—models that I believe are used in the way I have described.  

 

3.  Earth Reference Models 

The earth reference models that I have mentioned in this paper are idealized 

models of the mechanical properties of the earth’s interior.  If the interior of the earth 

is taken to be elastically isotropic, then the mechanical properties of each point in the 

earth’s interior can be characterized by three variables: density, and two parameters 

that express the elastic properties of the medium, usually incompressibility and 

rigidity.   If the earth is taken to be spherically symmetric, that is, mechanical 

properties of the earth are taken to depend only on the distance from the center of the 

earth, then the mechanical properties of the entire earth can be represented completely 

in terms of three functions of radius.  For such an idealized earth, expected travel 

times for various types of seismic waves can be calculated.  In the 1930’s, spherically 

symmetric models of the mechanical properties of the earth’s interior were 

determined by constructing idealized earth models and comparing expected travel 

times for such models with actual travel times of seismic waves.  There was a 

remarkable agreement between the earth models produced by the two main groups 

working on earth models at the time, one involving Harold Jeffreys and Keith Bullen, 

and the other involving Beno Gutenberg and Charles Richter (Bullen 1975).  The 

methods used here were hypothetico-deductive—that is, the models were postulated 



as hypotheses about the earth’s internal structure, and they were compared directly 

against observations of travel times.   

In the 1960’s, the fortuitous confluence of digital computing technology with 

a couple of the largest earthquakes ever recorded made possible the recording of 

normal modes of oscillation of the earth.  Normal mode frequencies can be calculated 

for an idealized, spherically symmetric earth, and models that incorporate normal 

mode frequency observations were built starting in the 1960’s.  Further, advances in 

computing allowed geophysicists to develop Monte Carlo methods in which earth 

models were generated randomly by computer and tested against observations (e.g., 

Press 1968).  Some of the models that agreed with observation were significantly 

different from the other models that had been postulated at the time, and these studies 

led to worries about the possibility of radically different models being consistent with 

observations.  Work by the geophysicists George Backus and Freeman Gilbert 

(Backus and Gilbert 1967, 1968, 1970), which tried to address this non-uniqueness 

problem, showed that limits could be put on the degree of non-uniqueness of earth 

models, but only under the assumption that the functions relating earth structure to 

observations of normal mode frequencies were linear, an assumption that was known 

to be false.     

According to the geophysicist Keith Bullen (1974), a committee was set up in 

1971 for the construction of a “Standard Earth Model”.  The reason given for the 

construction of this new model is that a large amount of new data had been collected 

since the Jeffreys-Bullen and Gutenberg-Richter models had been constructed, and 

individual geophysicists had been incorporating this new data in different ways.  This 

had led to a “great untidiness in the presentation of numerical seismological results”.  

In the mid-1970’s, several teams of geophysicists began to develop earth models with 



the goal of coming up with a standard reference model.  In 1981, this process 

culminated with the development of the Preliminary Reference Earth Model, which is 

still being used to this day, although there are now several other alternative models 

that are used as reference models as well.   

Earth reference models, such as PREM, are used in many ways, but what is 

most distinct about their use from an epistemological point of view is that they are 

best thought of in terms of functions 4 and 5 in the taxonomy of functions of idealized 

models described by Wimsatt.  They are used, that is, for detecting phenomena that 

would otherwise be masked or be too small to be seen, or for estimating magnitudes 

of parameters that are not included in the model.   

These two uses can be seen quite clearly in the way in which PREM has been 

used for the construction of three-dimensional models of the interior of the earth, that 

is, models that are no longer simply spherically symmetric, but express the 

mechanical properties of the earth’s interior in terms of three spatial variables.  Most 

of these models are based on observations of travel times of seismic waves.  They are 

not, however, constructed by simply constructing a model and comparing it with 

actual travel times of seismic waves.  The observations used are usually travel time 

residuals—that is, the deviations from the travel times predicted by a reference model 

such as PREM.  The three-dimensional model constructed is then a linear perturbation 

of a one-dimensional reference model, such as PREM (Ritzwoller and Lavely 1995).  

Thus, the deviations between the observations predicted by PREM and actual 

observations are being used to identify three-dimensional features of the earth which 

are not in PREM itself, and to measure parameters that represent mechanical 

properties of such additional features.   

  



4.  Possible Norms for Reference Models 

 I now want to think about possible norms that might govern the use of 

reference models, keeping in mind Wimsatt’s functions 4 and 5: detecting phenomena 

that would otherwise be masked or be too small to be seen, or for estimating 

magnitudes of parameters that are not included in the model.  Reference models are 

being used to produce new observations through an analysis of the deviations of 

actual observations and predicted observations of the model.  These observations are 

then used to eventually arrive at a better picture of the earth’s interior.  In order to be 

useful in this process, the models are idealized—that is, they are false, but they must 

be false in the right way.  What is “false in the right way”, though?  There are, I think, 

two primary norms.  First, they must be simple in such a way that they can be utilized 

easily in this process of producing further observations.  Second, they must somehow 

reflect the physical situation, in such a way that deviations between what they predict 

and actual observations actually have some kind of physical significance.   

 Here is an example of how the first norm played into the development of 

PREM.  In the mid-1970’s, there were several teams of geophysicists working on 

different earth models towards the development of the standard reference model.  One 

such model was a “parametrically simple earth model” (Dziewonski, Hales and 

Lapwood 1975).  This spherically symmetric model represented the mechanical 

properties of the interior of the earth in terms of a piecewise continuous function, 

where most of the pieces were low-order polynomials.  There is, of course, no reason 

to think that the mechanical properties of the earth are truly distributed in accordance 

with low-order polynomial functions.  There are, however, advantages to this kind of 

representation.  For example, the “travel times of body waves and their derivatives 

would always vary smoothly as a function of distance on a particular branch of a 



travel time curve.”  (Dziewonski, Lapwood, and Hales 1975, 12)  As I mentioned 

above, one-dimensional reference models are often used for the construction of three-

dimensional earth models using travel time residuals as observations.  A model in 

which the predicted travel times varied smoothly as a function of distance would be 

easier to compute residuals for.  This would not only be useful for the construction of 

three-dimensional models, but also for other investigations that require the use of 

travel time residuals, such as the location of seismic sources.  Ultimately, the 

representation of large sections of the interior of the earth in terms of low-order 

polynomials was adopted into PREM (Dziewonski and Anderson 1981) as well.   

 The other norm is, I think, more complicated.  Reference models must be 

false, but they must be false in a physically meaningful way.  Often, what this means 

is that reference models will not be the best fit model empirically.  One of the 

geophysicists involved in the construction of PREM, Adam Dziewonski, discusses 

this consideration in a later paper which considers the possibility of constructing a 

new reference model:   

 
A reference model, in a modern sense, is one which satisfies more than just 
one class of seismological or geophysical observations—like, for instance, 
travel times of body waves.  It should constitute a common basis of reference 
for all the different studies concerning the earth.  […]  This strategy seeks a 
model which has to be physically meaningful—as opposed to an empirical 
one, which could achieve good results at reproducing a narrow range of 
observations rather than explaining them.  (Morelli and Dziewonski 1993, 
179) 

 

What is meant here by “physically meaningful” is that deviations from what the 

model predicts and what actual observations show give us useful information about 

the interior of the earth.   

Exactly what “physically meaningful” means could depend on the specific 

ways in which the reference model is being used.  For example, if the reference model 



is used in the construction of three-dimensional models of the earth, it would ideally 

correspond to the lowest order term in a spherical harmonic expansion of the normal 

modes of the earth.  Deviations from such a model would contain information about 

higher-order modes that would be indicative of finer three-dimensional structure.  

However, if a reference model is going to be used for many different purposes, a more 

general notion of “physically meaningful” might have to be used.  This is a 

complicated matter, on which further work needs to be done.  Here, however, I would 

like to point out the connections between the use of reference models and some recent 

work on scientific methodology.   

 

5.  Turning Data into Evidence 

 In this final section, I want to discuss connections between the way in which 

reference models are used in geophysics with some recent work on scientific 

inference by George Smith (2002)5 and William Harper (2011).  Both Smith and 

Harper have done extensive work on Newton, and they both emphasize the role of 

Newton’s Fourth Rule for Philosophizing in Newton’s methodology:   

 
In experimental philosophy, propositions gathered from phenomena by 
induction should be considered either exactly or very nearly true 
notwithstanding any contrary hypotheses, until yet other phenomena make 
such propositions either more exact or liable to exceptions.   
(Newton 1999, 796) 

 

The Fourth Rule of Reasoning says two things: that we should rule out hypotheses in 

favor of propositions that are gathered from phenomena, and that we should 

provisionally take such propositions to be either exactly or very nearly true. Smith 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 George Smith has, himself, written on earth models (Smith 2007), including PREM, 
although his focus is on the period in geophysics before the construction of PREM, 
and not on the uses of PREM and other reference models.   



(2002) argues that Newton’s methodology involves taking such propositions gathered 

from phenomena to be provisionally true so that deviations between what you would 

expect the phenomena to be like, given that the propositions are true, and what the 

phenomena are actually observed to be like, can be found.  These deviations are then 

taken to be new phenomena that require explanation.  Both Smith and Harper refer to 

this process as “turning data into evidence”.  They both reject a simple hypothetico-

deductive picture where there is a hypothesis, and this hypothesis is supported (or 

rejected) by data.  Instead, certain propositions are needed in order to extract 

phenomena from raw data—to “turn data into evidence”.6 

 The parallel with the use of reference models is obvious.  Reference models 

play the role of propositions gathered from phenomena.  Expected observations for 

these reference models are calculated as if the reference models were true, and then 

deviations between these expected observations and actual observations are either 

taken to be indicative of further causal factors, or these deviations are used to try to 

measure further parameters that are not captured in these models.  Reference models 

are being used, in other words, to turn data into evidence.  “Turning data into 

evidence” is another term for what I have been calling active de-idealization.   

  If this is, indeed, an accurate picture of a significant way in which science is 

done, then it might be useful to think about the norms that govern this methodology.  

If one of the aims of building models—or, more generally, theorizing—is to enable 

active de-idealization, then we might expect the norms that are required here to be 

different from those that would govern a more standard picture where models or 

theories are constructed without active de-idealization in mind.  For example, there 

might be a norm for simplicity that is driven less by notions about the connection 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 See Miyake 2013 for a more detailed discussion.   



between simplicity and truth, or by simple tractability considerations, and more by the 

fact that models that are simpler in certain ways can more easily be put to use in 

producing further observations.  There might also be a fairly complicated norm for 

“physical meaningfulness”—one that requires a model to yield deviations that would 

tell us something about a system or phenomenon of interest.   

 Now, one notable difference between Newton and earth modelers is that earth 

modelers already have fairly good ideas about what “physical meaningfulness” 

amounts to when building earth models, although they might not, by any means, have 

a complete picture.  On the other hand, the whole difficulty for Newton was coming 

up with a background theory that would allow him to differentiate between what is 

“physically meaningful” and what is not.  Thus, one might think that what I have to 

say here about reference models does not easily apply to the case of Newton.  On the 

contrary, however, I believe a detailed examination of the use of reference models 

could, itself, be a useful reference against which to compare the difficulties faced by 

Newton and others in various important episodes in the history of science.   
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