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Abstract

Mechanisms are usually viewed as inherently hierarchical, with lower lev-
els of a mechanism influencing, and decomposing, its higher-level be-
haviour. In order to adequately draw quantitative predictions from a model
of a mechanism, the model needs to capture this hierarchical aspect. The
recursive Bayesian network (RBN) formalism was put forward as a means
to model mechanistic hierarchies (Casini et al., 2011) by decomposing
variables. The proposal was recently criticized by Gebharter (2014) and
Gebharter and Kaiser (2014), who instead propose to decompose arrows.
In this paper, I defend the RBN account from the criticism and argue that
it offers a better representation of mechanistic hierarchies than the rival
account.

Introduction
Mechanisms are usually viewed as inherently hierarchical, with lower levels of
a mechanism influencing, and decomposing, its higher-level behaviour. In order
to adequately draw quantitative predictions from a model of a mechanism, the
model needs to capture this hierarchical aspect. The recursive Bayesian network
(RBN) formalism was put forward as a means to model mechanistic hierarchies
(Casini et al., 2011). The formalism is an extension of the Bayesian network
(BN) formalism, already used to model same-level causal relations probabilisti-
cally (Pearl, 2000). In RBNs, higher-level variables decompose into lower-level
causal BNs.

This proposal was recently criticized by Gebharter (2014) and Gebharter and
Kaiser (2014), on two main grounds: descriptive adequacy—it is unclear when
the formalism is applicable to real mechanisms—and conceptual adequacy—
RBNs do not allow one to draw interlevel inferences for explanation and inter-
vention. To overcome these alleged limitations, Gebharter (2014) and Gebharter
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and Kaiser (2014) have made the alternative proposal that decomposition in-
volves arrows rather than variables. In particular, Gebharter (2014) proposes
an alternative formalism, also extending the BN formalism, namely multilevel
causal models (MLCMs). Instead, Gebharter and Kaiser (2014) make an infor-
mal proposal, which as we shall see, does not coincide with MLCMs.

Decomposing variables and decomposing arrows are two very natural op-
tions for representing mechanistic hierarchies, if one’s starting point is already
a probabilistic interpretation of causality. In this paper, I argue that the former
option is superior to the latter. I proceed as follows. In §1 I present and illustrate
RBNs and MLCMs. In §2 I argue against decomposing arrows. MLCMs lead
to counterintuitive notions of mechanistic decomposition and mechanistic expla-
nation; and Gebharter and Kaiser (2014)’s informal proposal goes only halfway
towards a solution. Finally, in §3 I defend RBNs from the criticism. RBNs do
allow interlevel causal explanation, via the uncoupling of interlevel causal re-
lations into a constitutional step and a causal step. RBNs also allow reasoning
about interlevel interventions; believing otherwise depends on either wrongly as-
suming that changes cannot transmit along the constitutional downward-directed
arrows, or on demanding that the RBN formalism represent intervention vari-
ables, which the formalism is not meant to represent.

1 The two formalisms
Both RBNs and MLCMs are extensions of the BN formalism. A BN consists
of a finite set V = {V1, . . . ,Vn} of variables, each of which takes finitely many
possible values, together with a directed acyclic graph (DAG) whose nodes are
the variables in V , and the probability distribution P(Vi|Pari) of each variable Vi

conditional on its parents Pari in the DAG. Here is an example:
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DAG and probability function are linked by the Markov Condition (MC):

MC. For any Vi ∈ V = {V1, . . . ,Vn}, Vi ⊥⊥ NDi | Pari.

In words, each variable is probabilistically independent of its non-descendants,
conditional on its parents. The above figure implies for instance that V4 is in-
dependent of V1 and V5 conditional on V2 and V3. In the BN jargon, V2 and V3

‘screen off’ V4 from V1 and V5. A BN determines a joint probability distribution
over its nodes via P(v1 · · · vn) =

∏n
i=1 P(vi|pari) where vi is an assignment Vi = x
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of a value to Vi and pari is the assignment of values to its parents induced by the
assignment v = v1 · · · vn.

In a causally-interpreted BN, the arrows in the DAG are interpreted as direct
causal relations and the network can be used to infer the effects of interventions
as well as to make probabilistic predictions (Pearl, 2000). In this case, MC is
called the Causal Markov Condition (CMC).

1.1 Recursive Bayesian networks
RBNs represent hierarchies by decomposing variables (Casini et al., 2011). One
of the motivations behind this choice is that scientists often talk of properties at
different levels that stand in a constitutive relation with one another.1 Another
motivation—which was only implicit in (Casini et al., 2011)—is that decom-
posing variables has the additional advantage of making ‘interlevel causation’
intelligible, by uncoupling (problematic) cases of interlevel downward or up-
ward causation into two (less-problematic) steps, a constitutional, across-level
step and a causal, same-level step (Craver and Bechtel, 2007). RBNs make this
idea formally precise, thereby adding an additional justification to it.

Mechanistic hierarchy is interpreted via the notion of ‘recursive decomposi-
tion’ of variables. An RBN is a BN defined over a finite set V of variables whose
values may themselves be RBNs. A variable is called a network variable if one
or more of its possible values is an RBN and a simple variable otherwise. A
standard BN is an RBN whose variables are all simple. An RBN x that occurs
as the value of a network variable in RBN y is said to be at a lower level than
y; variables in y are the direct superiors of variables in x while variables in the
same network are peers.2 If an RBN contains no infinite descending chains—
i.e., if each descending chain of networks terminates in a standard BN—then it
is well-founded. Only well-founded RBNs are considered here.

1 Famously, Craver (2007) has proposed a criterion for identifying constitutive relations,
namely the ‘mutual manipulability’ of higher- and lower-level properties that stand in the rela-
tion. Casini et al. (2011) refer to Craver’s intuition to further motivate RBNs. Arguments against
the compatibility between Craver (2007)’s account of constitution and interventionism (Wood-
ward, 2003), on which Craver’s account is based, have been offered by Leuridan (2012) and
Baumgartner and Gebharter (2014). Two remarks are in order. First: in the light of Gebharter
and Kaiser (2014, 3.5.3)’s own endorsement of Craver (2007)’s interpretation of constitution,
these arguments may be negatively relevant to both RBNs and Gebharter and Kaiser (2014)’s
proposal. Although this issue is certainly worth considering, I do not discuss it further here.
I should however point out that RBNs do not define constitution. They only characterize it,
probabilistically—and not even in interventionist terms (cf. fn. 4). Interventions are only used
to reason about interlevel causation. Second: Gebharter (2014)’s MLCM formalism does not in-
terpret hierarchy in terms of constitution—let alone constitution in one specific sense. It is thus
immune to this critique. However, instead of being an advantage, this threatens to undermine
MLCMs’ ability to represent mechanistic hierarchies (see §2).

2A variable can have several superiors. If a variable appears more than once in an RBN,
the network should not imply incompatible things about it. Consistency is discussed in detail in
(Williamson, 2005, §§10.4–10.5).
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Consider a toy RBN on V = {C, S }, where C represents whether some tissue
in an organism is cancerous, taking the possible values 1 and 0, while S is sur-
vival after 5 years, taking the possible values yes and no. The corresponding BN
is:

����
C -����

S

P(C), P(S |C)

Figure 1.1.1

Suppose S is a simple variable but C is a network variable, with each of its two
values denoting a lower-level (standard) BN that represents a state of the mecha-
nism for cancer. I will ignore many of the factors, such as DNA damage response
mechanisms, also responsible for cancer, and only focus on the unregulated cell
growth that results from mutations in factors that control cell division, usually
labelled ‘growth factor’, in short GF. When C is assigned value 1 we have a
network c1 representing a functioning control mechanism, with a probabilistic
dependence (and a causal connection) between growth factor G and cell division
D.
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Pc1(G), Pc1(D|G)

Figure 1.1.2

On the other hand, when C is assigned value 0 we have a network c0 representing
a malfunction of the growth mechanism, with no dependence (and no causal
connection) between G and D.
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D

Pc0(G), Pc0(D)

Figure 1.1.3

Since these two lower-level networks are standard BNs, the RBN is well-founded
and fully described by the three networks.3

3Note that, as this example shows, an RBN may be used to represent several states of one
and the same mechanism—in this case, the RBN represents a functioning state as well as a
malfunctioning state. However, it need not be so used—it is also possible to build an RBN that
represents just one mechanism state by having the network variable take a unique possible value.
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If an RBN is to be used to model a mechanism, it is natural to interpret the
arrows at the various levels of the RBN as signifying causal connections. Just
as standard causally-interpreted BNs are subject to the CMC, a similar condition
applies to causally-interpreted RBNs, called the Recursive Causal Markov Con-
dition (RMC). Let us indicate with NIDi the set of non-inferiors-or-descendants
of Vi and with DSupi the set of direct superiors of Vi. Then, RCMC says that

RCMC. For any Vi ∈ V = {V1, . . . ,Vn}, Vi ⊥⊥ NIDi | DSupi ∪ Pari.

In words, each variable in the RBN is independent of those variables that are
neither its effects (i.e., descendants) nor its inferiors, conditional on its direct
causes (i.e., parents) and its direct superiors. RCMC adds to CMC the condition
that variables at different levels also stand in relations that fulfil a MC, namely
variables at any level are probabilistically independent of non-inferiors or peers
given their direct superiors. Intuitively, if one knows the value of C, knowledge
of the value of constituent variables G or D doesn’t add anything to one’s ability
to infer to, say, the causes of C (here, none) or to the effects of C (here, S ). Since
the screening off that holds in virtue of RMC depends on constitutional rather
than causal facts, not all dependencies identified by the RCMC can be causally
interpreted.

Notice that, while some authors treat CMC as a necessary truth, others argue
against its universal validity (see, e.g., Williamson, 2005). Here a similar stance
is adopted with respect to RCMC. RCMC is a modelling assumptions in need of
testing or justification, rather than as a necessary truth. From this, it follows that
whether or not the formalism allows one to adequately represent a mechanism
is an empirical matter, rather than a matter of stipulation. For instance, whether
or not C adequately screens off S from G and D depends, among other things,
on the assumption that G and D affect S only via C. If this is not true, because
S or G participate in other mechanisms for S , RCMC is violated. Recovering
RCMC would then require including other network variables that cause S , and
that decompose into, among other variables, G and/or D.

Inference in RBNs proceeds via a formal device called a flattening. LetV =

{V1, . . . ,Vm} (m≥n) be the set of variables of an RBN closed under the inferiority
relation: i.e., V contains the variables in V , their direct inferiors, their direct
inferiors, and so on. Let N = {V j1 , . . . ,V jk} ⊆ V be the network variables inV.
For each assignment n = v j1 , . . . , v jk of values to the network variables we can
construct a standard BN, the flattening of the RBN with respect to n, denoted by
n↓, by taking as nodes the simple variables inV plus the assignments v j1 , . . . , v jk
to the network variables, and including an arrow from one variable to another
if the former is a parent or direct superior of the latter in the original RBN.
The conditional probability distributions are constrained by those in the original
RBN—in the RBN where V ji is the direct superior of Vi, P(Vi|Pari ∪ DSupi) =

Pv ji
(Vi|Pari). Notice that MC holds in the flattening because the RCMC holds
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in the RBN. Only, since the arrows in the flattening that link variables to their
direct inferiors are constitutional, CMC is not satisfied.4

The flattenings suffice to determine a joint distribution over the variables in
V via P(v1 · · · vm) =

∏m
i=1 P(vi|paridsupi) where the probabilities on the right-

hand side are determined by a flattening induced by v1 · · · vm.5 In the cancer
example, for assignment c1 of network variable C we have the flattening c↓1:
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Figure 1.1.4

with probability distributions P(c1) = 1 and P(S |c1) determined by the top level
of the RBN, and with P(d1|g1c1) = Pc1(d1|g1) determined by the lower level
(similarly for g0 and d0). The flattening with respect to assignment c0 is c↓0:
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Figure 1.1.5

Again, P(d1|c0) = Pc0(d1) etc. In each case the required conditional distributions
are determined by the distributions given in the original RBN.

Having determined a joint distribution, the causally-interpreted RBN may, in
just the same way as can a standard causal BN, be used to draw quantitative in-
ferences for explanation and intervention, inferences that may involve variables
at the same level as well as—so we claimed in (Casini et al., 2011, §2)—across
levels.

4 It should now be clear that the role of RCMC—and of RBNs more generally (see fn. 1)—is
not to define constitutional relations. With respect to the flattening, the choice of calling some
arrows ‘causal’ and other arrows ‘constitutional’ is not dictated by MC. Any use of RCMC to
find out what does (not) constitute what presupposes a prior distinction between the variables
at the different levels. Yet, given the distinction between the levels, RCMC does characterize
constitutional relations in terms of certain probabilistic dependencies and independencies.

5Pv jl
(Vi | Pari) may be obtained from observed frequencies in a dataset. Instead, P(Vi |

PariDSupi) can be obtained in either of two main ways. Either one determines the correspond-
ing observed frequencies from the original dataset, or one selects from all functions that sat-
isfy the probabilistic constraints imposed by the RBN the function Q with maximum entropy
(Williamson, 2010), and sets P(Vi | PariDSupi) = Q(Vi | PariDSupi).

6



1.2 Multilevel causal models
According to Gebharter (2014), RBNs fail to allow interlevel causal inferences,
due to the lack of an explicit representation of interlevel causal arrows, over
which causal influence propagates. These objections, I maintain, are based on
the (mis)interpretation of RBNs. I postpone this discussion to §3.

Gebharter’s proposed formalism purports to remedy these alleged deficien-
cies by decomposing causal arrows rather than variables. More precisely, mech-
anistic hierarchy has for him to do with ‘marginalizing out’ variables when mov-
ing from a lower-level graph to a higher-level graph.

Let us indicate a causal model as 〈V, E, P〉, where 〈V, E〉 is a DAG, defined
over a variable set V and a set of edges E among them, and P an associated prob-
ability distribution. Let X ↔ Y indicate that two variables X and Y are effects of
a latent common cause, i.e., a cause of X and Y not represented within the graph
of some variable set V . Also, let us indicate with P∗ ↑ V the ‘restriction’ of
the probability distribution P∗ to variable set V . The restriction of a lower-level
causal model 〈V∗, E∗, P∗〉 to a higher-level causal model 〈V, E, P〉 is so defined
(2014, 147):

Restriction. 〈V, E, P〉 is a restriction of 〈V∗, E∗, P∗〉 if and only if

a V ⊂ V∗, and

b P∗ ↑ V = P, and

c for all X,Y ∈ V:

c.1 if there is a directed path from X to Y in 〈V∗, E∗〉 and no vertex
on this path different from X and Y is in V , then X → Y is in
〈V, E〉, and

c.2 if X and Y are connected by a common cause path π in 〈V∗, E∗〉
or by a path π free of colliders containing a bidirected edge in
〈V∗, E∗〉, and no vertex on this path π different from X and Y is
in V , then X ↔ Y is in 〈V, E〉, and

d no path not implied by c is in 〈V, E〉.

That is, the lower-level structure 〈V∗, E∗, P∗〉 represents the mechanism for the
higher-level structure 〈V, E, P〉 iff 〈V, E, P〉 is the restriction of 〈V∗, E∗, P∗〉 uniquely
determined when V∗ is restricted to V . The restriction is such that all and only
the directed paths and common cause paths in 〈V∗, E∗〉 are preserved by 〈V, E〉,
and the probabilistic information of P∗ is consistent with P upon marginalizing
out variables in {V∗ \ V}.

A “multi-level causal model” (MLCM) is then so defined (2014, 148):

MLCM. 〈M1 = 〈V1, E1, P1〉, . . . ,Mn = 〈Vn, En, Pn〉〉 is a multi-level causal
model if and only if
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a M1, . . . ,Mn are causal models, and

b every Mi with 1 < i ≤ n is a restriction of M1, and

c M1 satisfies CMC.

That is, a MLCM is an ordered set of causal models 〈M1 = 〈V1, E1, P1〉, . . . ,Mn =

〈Vn, En, Pn〉〉, where the bottom-level, unrestricted causal model M1 satisfies
CMC. (Instead, higher-level models may or may not satisfy CMC.) Each causal
model in the MLCM, for Gebharter, represents a mechanism.

The information on the hierarchical relations among the nested mechanisms
in the MLCM is contained in a “level graph”, which is so defined (2014, 149):

Level graph. A graph G = 〈V, E〉 is called an MLCM 〈M1 = 〈V1, E1, P1〉, . . . ,
Mn = 〈Vn, En, Pn〉〉’s level graph if and only if

a V = {M1, . . . ,Mn}, and

b for all Mi = 〈Vi, Ei, Pi〉 and M j = 〈V j, E j, P j〉 in V: Mi → M j is in G
if and only if Vi ⊂ V j and there is no Mk = 〈Vk, Ek, Pk〉 in V such that
Vi ⊂ Vk ⊂ V j holds.

A level graph G = 〈V, E〉 is constructed from a MLCM by adding dashed (non-
causal) arrows between any two models Mi and M j, Mi → M j, if and only if Vi

is the largest proper subset of V j in MLCM, so that Mi is, so to say, the smallest
restriction of M j. Here is an example of level graph from (Gebharter, 2014, 150):

Figure 1.2.1

Notice that the ordering among graphs is not strict, so there may be pairs of
graphs (e.g.: M2 and M3; M4 and M3) that do not stand in a restriction relation.

Below is a more concrete illustration from (Gebharter, 2014, 151), the rep-
resentation of a water dispenser mechanism, on two levels,
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Figure 1.2.2

such that M1 contains the following direct causal relations: the room temperature
T activates (and is measured by) a sensor S ; S , together with the status of a
tempering button, B, cause the heater to be on or off, H; H in turn causes the
temperature of the water dispensed, W.6

2 Criticism of MLCMs
It is debatable whether hierarchies, as represented by the level graphs in figures
1.2.1 and 1.2.2, are mechanistic—whether they represent mechanistic decompo-
sitions, and grant mechanistic explanations.

First, it is not clear if MLCMs adequately represent mechanistic decomposi-
tions. High-level causal models in a MLCM, for instance models M2 in figure
1.2.1, are just more coarse-grain representations of one and the same mecha-
nism, viz. M1, such that some of the information in M1 is missing at the higher
level, as the term ‘restriction’ suggests. Is, for instance, T → S → H → W a
mechanistic decomposition of T → W, although entities and properties involved
are the same at both levels, and only some activities (or relations) are different?
Perhaps this counts as a different, equally legitimate, notion of decomposition,
call it decomposition∗. The question is: How intuitive is decomposition∗?

Second, it is not clear if MLCMs adequately represent mechanistic explana-
tions. One may concede that there is a legitimate sense in which one explains

6Gebharter contrasts the virtues of this MLCM with an RBN of the ‘same’ mechanism (2014,
142-3). However, this is somewhat misleading. Gebharter’s RBN is defined over a larger variable
set, which includes a network binary variable D, superior to S and H, caused by T and B, and
causing W. It is obvious that his RBN cannot represent the same mechanism as his MLCM.
On the assumption that the RBN is faithful, it should be possible to order the RBN’s flattening
(Gebharter, 2014, 144), call it M0, as prior with respect to M1—since M1’s variable set V1 is
{V0 \ D}. However, M1 is incompatible with the restriction of M0 obtained by marginalizing out
D, call this M1∗ . (M1∗ would contain S ↔ H, S ↔ W, H ↔ W and B→ S . Instead, M1 contains
S → H, H → W and B → H.) Thus, rather than one model being a correct representation and
the other being a wrong representation of one and the same mechanism, the two models represent
different mechanisms, and are thus are not directly comparable. In the following, I shall defend
RBNs with reference to the toy model introduced in §1.1.
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the relation between, say, the room temperature T and the water temperature W
by blowing up the process from the former to the latter and uncovering the me-
diating role of the sensor S and the heater H. However, this sort of explanation
is different from the equally legitimate explanation whereby one redescribes the
cancer mechanism C in figure 1.1.1 into more fine-grain terms, and uncovers the
role of damage G and response D. G and D have an obvious mechanistic role.
Instead, S and H seem to have an etiological role. Perhaps S and H still explain
mechanistically, according to some different notion of mechanistic explanation,
call it explanation∗. But just how intuitive is explanation∗?

The counterintuitive nature of decomposition∗ and explanation∗ is made more
explicit by a careful scrutiny of the level graph in figure 1.2.1. To begin with,
consider the ‘decompositions’ that correspond to restricting (i) V1 to V2, (ii) V1

to V3, and (iii) V3 to V5. In all such cases, instead of opening a black box (as is
common in mechanistic explanation), one ‘creates’ a box, and does not, strictly
speaking, decompose anything. Let us consider (i). Here the decomposition is
‘filling a blank’: the absence of probabilistic and causal dependencies among
variables is explained by direct causation, a hidden common cause structure, or
combinations thereof that involve new variables, too. The absence of probabilis-
tic and causal dependencies between X and Z in M2 is explained by the structure
X ↔ Y ← Z in M1 (more on this alleged case of ‘explanation’ below). Since
there is no arrow between X and Z in M2, and since mechanisms require causal
dependencies, what mechanism is X ↔ Y ← Z in M1 a decomposition of? Next,
consider cases (ii) and (iii). Here the decomposition is in fact ‘adding stuff’. For
instance, Z ↔ W in M5 is ‘decomposed’ into Y ← Z ↔ W in M3. But in what
sense is a lower-level mechanism that includes an isolated effect not included in
the higher level a decomposition of the higher level mechanism?

Relatedly, to some of the represented restrictions do not seem to correspond
‘explanations’ either. Consider the restriction of M4 to M5. Here, the common
cause structure Z ↔ W is ‘explained’ by the absence of probabilistic or causal
dependence between Z and a new variable X, which is apparently disconnected
from whatever mechanism is responsible for Z ↔ W. An even more striking case
of lack of explanation is the ‘decomposition’ of X and Z in M2 into X ↔ Y ← Z
in M1. A first and more obvious issue, which is clearly non-intentional, is that the
presence of a bidirected arrow in M1 violates condition c of a MLCM, namely
that M1 satisfies CMC.7 Still, even if condition c is satisfied, the more general
problem remains that, if decompositions are to explain, this sort of decomposi-
tion should not be allowed at any level. Intuitively, hidden common cause struc-
tures such as X ↔ Y are just that, hidden, and thus non-explanatory. They add a
mystery rather than remove it. A—drastic—solution that immediately comes to
mind is to forbid bidirected arrows at any level. This would entail, however, that
restrictions that marginalize out common causes are disallowed, too, which is

7Gebharter himself emphasizes that “the graph of a causal model that contains bidirected
arrows no longer determines the Markov factorization [...].” (2014, 146, fn. 8).
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undesirable because—if one buys into the MLCM framework—the correspond-
ing decompositions would seem (more) explanatory. One may of course impose
further conditions that distinguish good from bad restrictions. However, it is not
obvious how one should proceed in a non ad hoc way, in the absence of clear
intuitions on the explanatory value of bidirected causal arrows.

The above reasons lead to scepticism about the formalism’s capacity to rep-
resent mechanistic decompositions and explanations. Such worries are in part,
but not fully, mitigated by the (orthogonal) suggestion in (Gebharter and Kaiser,
2014) that levels be ontologically distinct and the requirement that hierarchical
relations are (partly) defined by constitutional part-whole relations.

In our approach one can generate a hierarchic causal model by re-
placing such a causal arrow [between two variables X and Y] by
another causal structure. This causal structure should be on a lower
ontological level than X and Y , it should contain at least one con-
stitutively relevant part of X and at least one of Y , and there should
be at least one causal path going from the former to the latter at the
micro- level. (Gebharter and Kaiser, 2014, §3.6)

In the paper, Gebharter and Kaiser focus on modelling this sort of hierarchi-
cal relation with reference to the inhibitory feedback mechanism for the regu-
lation of the biosynthesis of fatty acids in Brassica napus. The mechanism is
represented as follows (Gebharter and Kaiser, 2014, figure 3.11).

Figure 2

The product of a reaction pathway, in this case the 18:1-acyl carrier protein (P)
acts as a feedback signal, which inhibits an enzyme earlier in the pathway, in this
case the plastidic acetyl-CoA carboxylase (ACCase), whose operation promotes
the production of P itself via the transformation of the substrate acetyl-CoA (S ).
ACCase has two relevant properties: it is a (positive) cause of the concentration
of P (Eactive); and it is (in its P-bound state) an effect of the concentration of
P (EP−bound). EP−bound is in turn a (negative) cause of Eactive (because P-bound
ACCase becomes inactive) and so on and so forth, in a cycle. In addition, Eactive
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is also a negative cause on EP−bound, which is represented by a negative influ-
ence on S . Between the binding of P to E and the inactivation of E a lower-level
mechanism takes place, namely the conformational change of the substrate bind-
ing site. The binding B between functional groups of 18:1-acyl and the effector
interaction site of the enzyme causes an allosteric switch X, which in turn brings
about changes at sites S 2 and S 4 of the enzyme ACCase. This, then, prevents
the substrate from being able to bind to the enzyme.8

It is now demanded that the levels be ontologically distinct, partly by way
of decomposing properties, rather than just the relation EP−bound → Eactive, as
follows: B is a property of a part contained in the whole that has the property
EP−bound; and S 4 and S 2 are properties of parts contained in the whole that has
the property Eactive. Between parts and wholes there are relations of constitutive
rather than causal relevance, in the sense of Craver (2007): a change in a part
results in a change in the whole, and vice versa. More precisely, constitutive
relations are represented by dashed two-headed arrows that stand at either side of
the decomposition relation. As a result, decomposing arrows should apparently
explain both causally and constitutionally.

Gebharter and Kaiser require that a causal arrow X → Y is decomposed by a
lower-level causal structure only if it contains at least one constitutively relevant
part of X and at least one of Y , and there is at least one causal path going from the
former to the latter at the microlevel (2014). This eliminates two counterintuitive
features of MLCMs, namely that mechanistic decompositions may ‘fill blanks’
(there must be a higher-level relation to begin with) and ‘add stuff’ (there must
be at least one lower-level causal path). Still, two questions arise, related to the
interpretation of the dashed bidirected arrows.

First, is this interpretation of mechanistic hierarchy compatible with ML-
CMs? As Gebharter and Kaiser notice, “since the two-headed dashed arrows
in our hierarchic dynamic CM transport the influences of interventions in both
directions, CMC does not hold in such models”. Since M1 would contain bidi-
rected arrows, too, it would not satisfy CMC. This entails that the Brassica na-
pus mechanism cannot be represented by the MLCM formalism, as it currently
stands.9

8 To get a causal model, Gebharter and Kaiser propose that the causal graph in figure 1.2
be associated with a probability distribution over a variable set that unrolls the cycle, so as to
get a dynamic causal graph. This way of treating cycles is similar to the one adopted in the
RBN approach (Clarke et al., 2014), with the notable difference that MC is not satisfied here (see
below).

9Gebharter and Schurz (2014) are now extending MLCMs to account for causal cycles—in
analogy with how RBNs have been so extended (cf. fn. 8). In the modified MLCM formalism,
CMC need not be satisfied at the bottom level, and bidirected causal arrows that stand on cycles
can figure in it. There is an apparent problem with this move: since bidirected arrows may in
principle represent constitutional relations, too (see Brassica Napus), there seems to be nothing
that formally distinguishes cycles from hierarchies. This has to do with constitution coming with
no distinctive formal properties in MLCMs (see below).
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Second, does the causal model in (Gebharter and Kaiser, 2014, §3.5) of-
fer an adequate formal representation of a mechanistic hierarchy, alternative to
MCLMs? I think that a positive answer would require that constitutional rela-
tions be ascribed distinctive formal properties. Although constitutional relations
are characterized informally by part-whole relations, they don’t come with dis-
tinctive probabilistic features, as one would expect from a probabilistic repre-
sentation of mechanistic hierarchies. In contrast, RBNs do offer a probabilistic
characterization of constitution: properties at different levels that stand in a con-
stitutional relation relate to other properties as described by RCMC.

3 Defense of RBNs
Still, the shortcomings of MLCMs would be a small consolation for the RBN
advocate, if RBNs did not survive the objections raised by Gebharter (2014)
and Gebharter and Kaiser (2014). In this section I will consider, and try to
rebut, such objections one by one. RBNs interpret mechanistic hierarchy via the
operation of ‘recursive decomposition’, which in turn depends on RCMC. Two
kinds of objections are raised against RCMC. First, about empirical adequacy:
it is unclear when RCMC holds, so it is unclear if the formalism is applicable to
real mechanisms. Second, about conceptual adequacy: RCMC prevents RBNs
from being useful for interlevel reasoning for explanation and intervention. Let
us begin with the first objection:

it is neither obvious that RCMC holds in general, nor is it clear how
one could distinguish cases in which it holds from cases in which it
does not. (Gebharter and Kaiser, 2014, §3.5.3)

Agreed, RCMC may not hold in general. But Casini et al. (2011) don’t claim
that it does. When does it hold, then? What RCMC adds to CMC, which is
not called into question here, is RMC. RMC has to do with the (in)dependencies
among variables at different levels. In the cancer example, RMC depends on C
screening off G and D from S .

Gebharter and Kaiser then argue that the RBN approach would be unable to
adequately model the EP−bound → Eactive mechanistic decomposition:

it is not clear how the submechanism represented by EP−bound →

Eactive could be analyzed in Casini et al.’s (2011) approach. They
would need to add a network variable N between EP−bound → Eactive

(EP−bound → N → Eactive). But then and because there is no interme-
diate (macro-level) cause N between EP−bound and Eactive, it is unclear
what this network variable N should represent at the mechanism’s
macro-level. (Gebharter and Kaiser, 2014, §3.5.3)
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I do not dispute that there may be cases where it is hard or implausible to find
network variables that stand for lower-level causal structures. However, this is
an empirical problem, and not necessarily a problem with the formalism. RBNs
are meant to represent a natural decomposition strategy of functional properties
into structural properties. The structural properties may be then regarded as
functional with respect to other structural properties, and so on and so forth.
When does a network variable N exist? This depends on identifying properties
at different levels, which in turn depends on a meaningful distinction between
the levels.

I propose a few conditions for distinguishing between variables in a con-
stitutional relation.10 First, between the whole and its parts are mereological
relations, such that properties of the whole can be explained by their probabilis-
tic dependence on the structure of (causal relations among) its parts’ properties.
Second, properties at the different levels have different explanatory roles, such
that they typically enter into causal explanations involving different sets of prop-
erties. Third, there is a difference in epistemic conditions, such that the way one
observes, or intervenes on, a variable at some higher level does not coincide with
the the way one observes, and intervenes on, one of its constituting variables at
the lower level.11 When a distinction between variables informed by the above
conditions is possible, the distinction between the levels seems legitimate.12

A network variable N exists insofar as the lower-level BN is the decomposi-
tion of one functional property, which, according to the aforementioned criteria,
corresponds to a whole’s property that has its own explanatory role and epistemic
autonomy. These conditions seem satisfied by many descriptions of mechanisms
in science. For instance, tissues are made of cells. Scientists talk of the cancer-
ous state of a tissue as having an explanatory role with respect to survival. One
may observe the state of a tissue or change it, for instance by replacing the whole
tissue. One may use this knowledge to then infer to the probability of survival.
This does not require knowing, or (surgically) intervening on, the state of GF. 13

Finally, let us come to the objection that RBNs do not support interlevel
reasoning for explanation and for prediction of the results of interventions:

[Casini et al.’s] approach does (i) not allow for a graphical repre-
sentation of how a mechanism’s macro variables are causally con-
nected to the mechanism’s causal micro structure, which is essential
when it comes to causal explanation, and it (ii) leads to the fatal

10I don’t claim that the list is exhaustive or that each of the listed conditions is necessary.
11Baumgartner and Gebharter (2014) develop this intuition into a ‘fat-handedness’ criterion

for constitution. (Ironically, there an argument is proposed to defend an interpretation of mech-
anistic hierarchy based on decomposing variables rather than arrows.)

12The conditions only provide a useful heuristics. They do not belong to the RBN formalism.
Still, RBNs give a probabilistic characterization of constitution, thanks to RCMC (cf. fn. 4).

13For more realistic examples, see (Casini et al., 2011), (Clarke et al., 2014) and (Casini,
2014).
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consequence that a mechanism’s macro variables’ values cannot be
changed by any intervention on the mechanism’s micro structure
whatsoever [. . . ] (Gebharter, 2014, 139)

Explanation first. Since there are no arrows between variable at different
levels screened off by network variables, Gebharter claims that it is unclear over
which causal paths probabilistic influence propagates between such higher- and
lower-level variables (cf. 2014, 143-4). I reply that it is true, there are no such
arrows. But this is because, by assumption, screened off variables influence each
other, if at all, only via the network variables. So, when RCMC is satisfied, the
probabilistic influence propagates constitutionally (rather than causally) across
the dashed arrows in the flattenings, and causally across the same-level solid
arrows.

Let us now consider the second objection. With reference to the example in
figures 1.1.4 and 1.1.5, I claimed that one may, for instance, reason about the
result of a lower-level intervention on D on the probability of the higher-level
variable S . Given the observed value of P(s1), calculated as

P(s1) = P(c0)P(s1|c0) + P(c1)P(s1|c1),

one may ask: What is the effect of setting D = d1 on the probability of observing
S = s1? To answer, one calculates as follows. First, one removes the arrow
G → D from c1, so that both flattenings have the same structure below.

����
ci -

?

HH
HHHj

����
S

����
G ����

D

Figure 3.1

Then, one calculates P(s1||d1) = P(s1d1)/P(d1), where:

P(s1d1) = P(c0s1d1) + P(c1s1d1) = P(c0)P(s1|c0)Pc0(d1) + P(c1)P(s1|c1)Pc1(d1);

P(d1) = P(c0)Pc0(d1) + P(c1)Pc1(d1).

Gebharter objects that “according to the RBN approach, intervening on a
mechanism’s microvariables does not have any probabilistic influence on any
one of the macrovariables whatsoever” (2014, 145) because if one were to use
an intervention variable I to intervene on a lower-level variable, the intervention
“would—and this can directly be read off the BN’s associated graph’s topology
[...]—not have any probabilistic influence on any macrovariable at all” (ibid.).
In the cancer example: an intervention IR on R would not have any effect on S .
There is either one of the following problems with this objection.
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First, it is true that ci screens off D from S , and thus there is no D→ S causal
arrow. However, concluding that interventions on D can make no difference to S
would be wrong. The lack of causal connections in the flattening does not block
changes along constitutional arrows. It is important to stress that, although the
dashed arrows point downwards in the flattening, this is due to technical reasons
only, having to do with the condition for MC to hold across levels. Still, one
may use the downward-pointing arrows to reason—constitutionally—in both di-
rections. Here, changing D makes a constitutional difference to C, which makes
a causal difference to S . The overall difference is calculated with the RBN.

Second, there may be a more basic interpretive problem regarding how in-
terventions are represented in RBNs. True, RCMC says that S is independent
of any variable that is not an effect or an inferior (here, none), conditional on
its direct causes (here, C) and direct superiors (here, none). But notice that
RCMC is assumed to hold true of variables inV = {M, S ,G,D}, and not of such
an expanded V+ = {M, S ,G,D, ID}. The reason for this is not ad hoc. RBNs
are meant to represent decompositions of (properties of) wholes into (properties
of) their parts. They are not meant to represent parts that do not belong to any
whole—which is what ID is. The graph topology cannot represent such parts. As
a result, one cannot read off the graph topology that such interventions variables
have no effect. More generally, in an RBN, everything one gets at lower levels
must be the result of (recursively) decomposing the top level.

This should not be seen as a limitation, but as a means to achieve some
end. In the RBN formalism one cannot represent interventions as variables—
unless the variables describe properties of either the top level mechanism or of
submechanisms at some lower level, obtained by way of (recursive) decompo-
sitions. But this would mean that the intervention is not external to the mecha-
nism, contrary to the original intention. One can, instead, straightforwardly rep-
resent interventions as (new) values of either top-level variables or lower-level
variables into which network variables (recursively) decompose. The two ways
correspond to two well-known ways for representing interventions. Woodward
(2003)’interventionist semantics, which represents interventions as variables, is
an example of the former. Pearl (2000)’s do-calculus, which represents inter-
ventions as values of variables, is an an example of the latter. Although both
representations are legitimate, only the latter is suitable to the task for which
RBNs were developed, namely to represent mechanistic decompositions.

Conclusion
Decomposing variables and decomposing arrows are two very natural options
for representing mechanistic hierarchies by means of BNs. These two options
have been made precise by two formalisms, RBNs and MLCMs. I argued that
RBNs are better than MLCMs at analysing mechanistic hierarchies and inter-
preting the interlevel reasoning that depends on them. Still, one might think that
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the two formalisms are not in competition against one another. Perhaps RBNs
and MLCMs represent two different ways in which mechanistic decompositions
cab obtain? Since ‘marginalizing out’ and ‘recursively decomposing’ are very
different notions, I want to caution against interpreting the two formalisms as
two species of the same genus. Having said this, I do not exclude that there is a
sound way to formalize the intuition in (Gebharter and Kaiser, 2014), and thus
develop an alternative analysis of mechanistic hierarchy with respect to RBNs.
In that case, it would be interesting to see how this alternative relates to RBNs.
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