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Abstract
A physical theory is called locally causal if any correlation between spacelike separated events is
screened-off by local beables completely specifying an appropriately chosen region in the past of the
events. In this paper I will define local causality in a clear-cut framework, called local physical theory
which integrates both probabilistic and spatiotemporal entities. Then I will argue that, contrary to
the claim of Seevinck and Uffink (2011), complete specification does not stand in contradiction to the
free variable (no-conspiracy) assumption.
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1 Introduction

Local causality is the idea that causal processes propagate though space continuously and with velocity
less than the speed of light. John Stewart Bell formulates this intuition in a 1988 interview as follows:

“[Local causality] is the idea that what you do has consequences only nearby, and that any
consequences at a distant place will be weaker and will arrive there only after the time
permitted by the velocity of light. Locality [= local causality] is the idea that consequences
propagate continuously, that they don’t leap over distances.” (Mann and Crease, 1988)

Bell has returned to this intuitive idea of local causality from time to time and provided a more and
more elaborate formulation of it. First he addressed the notion of local causality in his “The theory of
local beables” delivered at the Sixth GIFT Seminar in 1975; later in a footnote added to his 1986 paper
“EPR correlations and EPW distributions” intending to clean up the first version; and finally in the most
elaborate form in his “La nouvelle cuisine” posthumously published in 1990. In this latter paper local
causality obtains the following formulation:!

“A theory will be said to be locally causal if the probabilities attached to values of local beables
in a space-time region V4 are unaltered by specification of values of local beables in a space-
like separated region Vg, when what happens in the backward light cone of Vy is already
sufficiently specified, for example by a full specification of local beables in a space-time region
Ve (Bell, 1990/2004, p. 239-240)

We reproduce the figure Bell is attaching to his formulation in Fig. 1. (The captation is Bell’s original.)
Some brief remarks concerning Bell’s terminology are in place here (for a detailed analysis see (Norsen
2009, 2011)):

(i) The term “beable” in the quote is Bell’s own neologism and is contrasted to the term “observable”
used in quantum theory. “The beables of the theory are those entities in it which are, at least
tentatively, to be taken seriously, as corresponding to something real” (Bell, 1990/2004, p. 234).
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Figure 1: Full specification of what happens in Vi makes events in Vp irrelevant for predictions about
V4 in a locally causal theory.

(ii) Beables are to be local: “Local beables are those which are definitely associated with particular
space-time regions. The electric and magnetic fields of classical electromagnetism, E(¢,z) and
B(t,x) are again examples.” (p. 234).

(iii) Local beables in region Vi are to be “fully specified” in order to block causal influences arriving at
V4 from the common past of V4 and V3.

This latter point is of central importance and is also stressed by Bell:?

“It is important that region Vi completely shields off from V4 the overlap of the backward
light cones of V4 and Vp. And it is important that events in Vi be specified completely.
Otherwise the traces in region Vg of causes of events in V4 could well supplement whatever
else was being used for calculating probabilities about V4. The hypothesis is that any such
information about Vg becomes redundant when V¢ is specified completely.” (Bell, 1990,/2004,
p. 240)

In a recent paper Michael Seevinck and Jos Uffink (2011) have questioned the necessary role of complete
specification in the definition of local causality and recommended sufficient specification instead. They
argue that complete specification is too strong: it contradicts to the so-called no-conspiracy (free variable)
condition which requires that the common cause of the correlation be probabilistically independent of
the choice of the measurement settings.

I do not see this contradiction and my aim in this paper is to articulate my point. I will proceed as
follows. The logical schema of Bell’s definition of local causality is the following: if events are localized
in the spacetime in such-and-such a way, then these events are to satisfy such-and-such probabilistic
independencies. This schema is highly intuitive and easily applicable in the physical praxis, however, in
order to account for these inferences from spatiotemporal to probabilistic relations in a mathematically
transparent way, one needs to have a framework integrating both spatiotemporal and also probabilistic
entities. Only after having such a common framework can one define Bell’s notion of local causality in a
clear-cut way. Thus, in Section 2 first this framework, called local physical theory, will be introduced and
then Bell’s notion of local causality will be formulated within this framework. In Section 3 the relation
of local causality to the Bell inequalities will be explicated. The main section is Section 4; here it will be
argued that there is no tension between complete specification and no-conspiracy. I conclude in Section
5.

2But, to be fair, see (Bell 1980/2004, p. 106), (Bell 1980/2004, p. 152) and the above (Bell 1990/2004, p. 234) for Bell’s
hesitation on the issue.
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2 Bell’s local causality in a local physical theory

In developing the notion of a local physical theory one is lead by the following intuitions. A local physical
theory is to describe “beables,” let them be classical or nonclassical; it is to account for the logical
combination of these events; these events should be capable of bearing a probabilistic interpretation;
the theory is to provide some way to localize these event in the spacetime, and is also to provide some
physically well-motivated principles guiding the association of spacetime regions to physical events; the
theory is to guarantee that the symmetries of the spacetime are in tune with the symmetries of the
events. (For the details see (Hofer-Szabo and Vecsernyés, 2015 a,b).) All these preliminary intuitions are
captured in the following definition (Haag, 1992):

Definition 1. A Pi-covariant local physical theory is a net { A(V),V € K} associating algebras of events
to spacetime regions which satisfies isotony, microcausality and covariance defined as follows:

1. Isotony. Let M be a globally hyperbolic spacetime and let K be a covering collection of bounded,
globally hyperbolic subspacetime regions of M such that (X, C) is a directed poset under inclusion
C. The net of local observables is given by the isotone map K 3 V — A(V) to unital C*-algebras,
that is V3 C V4 implies that A(V7) is a unital C*-subalgebra of A(V2). The quasilocal algebra A is
defined to be the inductive limit C*-algebra of the net {A(V),V € K} of local C*-algebras.

2. Microcausality (also called as Einstein causality) is the requirement that A(V')'NA D A(V),V € K,
where primes denote spacelike complement and algebra commutant, respectively.

3. Spacetime covariance. Let Px be the subgroup of the group P of geometric symmetries of M
leaving the collection K invariant. A group homomorphism a: Px — Aut A is given such that the
automorphisms «y, g € Px of A act covariantly on the observable net: oy (A(V)) = A(g-V),V € K.

If the quasilocal algebra A of the local physical theory is commutative, we speak about a local classical
theory, if it is noncommutative, we speak about a local quantum theory. For local classical theories
microcausality fulfills trivially.

A state ¢ in alocal physical theory is defined as a normalized positive linear functional on the quasilocal
observable algebra A. The corresponding GNS representation m4: A — B(Hg) converts the net of C*-
algebras into a net of C*-subalgebras of B(#,). Closing these subalgebras in the weak topology one
arrives at a net of local von Neumann observable algebras: N (V) := 7 (A(V))”,V € K. Von Neumann
algebras are generated by their projections, which are called quantum events since they can be interpreted
as 0-1-valued observables. The net {NV(V'),V € K} of local von Neumann algebras given above also obeys
isotony, microcausality, and Px-covariance, hence we can also refer to a net {N(V),V € K} of local von
Neumann algebras as a local physical theory.

Now, a local physical theory is locally causal in Bell’s sense if any correlation between spatially separated
events is screened off by “local beables” which are localized in a “shielding-off” region and which “com-
pletely specify” that region. How to translate Bell’s terms of “local beable” and “complete specification”
into the language of a local physical theory?

In a classical field theory beables are characterized by sets of field configurations. Taking the equiv-
alence classes of those field configurations which have the same field values on a given spacetime region
one can generate local (cylindrical) o-algebras. Translating o-algebras into the language of abelian von
Neumann algebras one can represent Bell’s notion of “local beables” in the framework of local physical
theories. In a more general way, one can also use the term “local beables” both for abelian and non-abelian
local von Neumann algebras, hence treating local classical and quantum theories on an equal footing.
Translating “local beables” simply as “elements of a local algebra” naturally brings with it the translation
of the term “a complete specification of beables” as “an atomic event of a local algebra” (Henson, 2013).
To be sure, here it is assumed that the local algebras of the net are atomic, which is typically not the case,



for example, in Poincaré covariant algebraic quantum field theory. (For the relation between o-algebras
and von Neumann algebras and for a more general definition of local causality see (Hofer-Szabd and
Vecsernyés, 2015 a,b).) With these notions in hand now one can formulate Bell’s notion of local causality
in a local physical theory as follows:

Definition 2. A local physical theory represented by a net {N(V),V € K} of von Neumann algebras is
called locally causal (in Bell’s sense), if for any pair A € N (V4) and B € N (V) of projections supported
in spacelike separated regions V4, Vg € K and for every locally normal and faithful state ¢ establishing
a correlation ¢(AB) # ¢(A)p(B) between A and B, and for any spacetime region V¢ such that

(i) Ve C J-(Va),
(ii) V4 C Vclv/,
(ili) J_(Va)NJ-(VB)N (J+(Vo)\ Vo) =0,
(see Fig. 2) and for any atomic event Cj of A(Ve) (k € K), the following holds:

/e /N

Figure 2: A region Vi satisfying Requirements (i)-(iii).

P(CkABCk) _ ¢(CrACk) ¢(Cx BCk) (1)
?(Cr) #(Cr) #(Cr)

Remarks:

1. A locally normal state is a normal state on the local von Neumann algebras. A locally faithful state
¢ means that any projection A € P(N(V)) in the local von Neumann algebra N (V') has nonzero
expectation value. In case of local classical theories a locally faithful state ¢ determines uniquely a
locally nonzero probability measure p by p(A) := ¢(A), A € P(M(V)). By means of this (1) can be
written in the following ’symmetric’ form:

p(AB|Cy) = p(A|Cy)p(B|Cr) (2)
which further is equivalent to the ’asymmetric’ screening-off condition:
p(A|BCy) = p(A[Cy) (3)
sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

2. The role of Requirement (iii) in the definition is to ensure that “V¢ shields off from V4 the overlap
of the backward light cones of V4 and Vg”. A spacetime region above Vo in the common past of
the correlating events (see Fig. 3) namely may contain stochastic events which could establish a
correlation between A and B in a classical stochastic theory (Norsen, 2011; Seevinck and Uffink
2011). Requirement (iii) is somewhat weaker than Bell’s original localization (see Fig. 1) which can
be formulated as:
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Figure 3: A region V¢ for which Requirement (iii) does not hold.

(iv) J- (VA) NJ_(Ve)NVe = 0

The difference is that Requirement (iii) does, but Requirement (iv) does not allow for region V¢
to penetrate into the ’top part’ of the common past. However, both requirements coincide, if Vg
’shrinks down’ to a Cauchy surface. In local classical theories it suffices to use Requirement (iii).

Finally, note that the question whether a given local classical or quantum theory is locally causal is a
highly nontrivial question depending on such factors as the atomicity of the local algebras, the fulfilment
of the so-called local primitive causality,® or whether there exists a causal dynamics in the theory, etc.
(For the details see again (Hofer-Szabé and Vecsernyés, 2015 a,b).)

Next I turn to the relation of Bell’s local causality to the Bell inequalities.

3 Local causality and the Bell inequalities

From this section on we restrict ourselves to local classical theories since beables are standardly taken
to be classical entities. Consider a local classical theory represented by a net {N(V),V € K} of local
abelian von Neumann algebras. Suppose that Bell’s local causality holds in this theory. Let V4 and Vp
be two spatially separated regions in M, and Vi a third region (see Fig. 4) such that

Figure 4: Localization of regions V4, Vp and V.

Vo € J_(VaUVp) (4)
(VaUVg) Cc VY (5)
J_(Va)ynJ_(Ve) N (J4 (Vo) \ Ve) =0 (6)

3For any globally hyperbolic bounded subspacetime regions V € K, A(V") = A(V).



Divide Ve into six regions V&, V&, VM, VA VE and VZE, for example as depicted in Fig. 5. Here
the superscripts L, M and R stand for ’left’, 'middle’ and ’right’, representing those parts of Vi which
fall into region J_(V4) \ J-(Vp), J-(V4) N J_(Vp) and J_(Vg) \ J_(Va), respectively. Now, let the

Ve

C|_ VC'L CWC, VCR VC,R

Figure 5: Dividing up region V¢.

various events be localized in these regions as follows. Let A; and B; be measurement outcomes and a;,
b; measurement choices localized in the appropriate regions: A;,a; € A(Va), Bj,b; € A(Vg). (See Fig.
6.) Let, furthermore, CF, C/%, CM, C/M, Clt, C/F be atomic events (minimal projections) in A(VE),

Bj
b;
G G GiCN Cp | CY

Figure 6: Localization of the various events.

A(VE), AVAD), AVAE), A(VE) and A(VE), respectively, where the indices 4,7, k... are taken from
appropriate index sets. Now, the difference between the primed and the unprimed events in V¢ is that the
primed events probabilistically depend on the the measurement choices a; and b;, whereas the unprimed
events are probabilistically completely independent of them:

p(aib;CECMCEY = p(a;)p(b;)p(CH)p(CYp(CE) (7)
p(aib;CLCY) = p(ai)p(b)p(CF)p(CH) (8)

. 9)

p(aib;C) = p(ai)p(b;)p(CL) (10)

Let us call these conditions no-conspiracy conditions.

To sum up, here we assume that any of the left, middle and right region of Vi, respectively can be
decomposed into two subregions such that each of these subregions contains exclusively either events
‘influencing’ the measurement choices or events being independent of them. Obviously, only this latter
class of events can be regarded as the common cause of the correlation between the measurement out-
comes; the former events are playing a role in fixing the measurement settings. As we will see later, this



assumption of the decomposability of Vi into siz regions is too tolerant if our aim is to derive the Bell
inequalities. It will turn out that there are only five regions, the middle region can contain only unprimed
events.

Now, local causality of local physical theory represented by a net {N(V),V € K} implies (among
others) the following conditional independencies:

p(Azaz|B]b]C£C{LC%C;MC§C;R

p(B by CECILCN CIM CRCLE

plailb;Ci CFC O G

p(b;|Cr GOl CIM GO

p(Aiai|CLCECM My

= p(BjbjlCpL e Cler)
(

(

= plailCe ORI M)

)
)
)
) p(b;|CR O CRC)

which together with the complete independence of the events CF, C/L, CM CIM Cf and C('IR:

pCrciteyoMelie = p(Chp(CipCrp(CM)p(Clp(CF) (15)
p(CECFelaM ey = p(Chp(Clp(CDp(ClMp(Cl) (16)

. (17)

p(CrCT) = p(CHp(CT) (18)

yield the following screening-off or factorization conditions:

p(AiBjla;ib;CL i eyl CM Ol = p(AilaiCECrFCh O p(B; byl CMCleiR)  (19)
P(AiB;laib;CECH CIM O = p(AilaiCl G CIM)p(By b, Col Y CFY) (20)
p(AiBj |aibjOZ/LO7]7\’L40;LMO(/1R) = p(Ai|aiOz/LOnAfcéM)p(Bj |berAr§IszMOz/1R) (21)
p(AiBjlaib;Cy CMY = p(AilaiCy CIM)p(B; b, ChfCrM) (22)

(For the proof see Appendix A.) These equations show that not only the atomic events CfC{*CM C;M CECLE
localized in the entire Vo screen off the conditional correlation

p(AiBjlaib;)  # p(Ailai)p(B;|b;) (23)

but one can freely sum up for any of the primed and unprimed events both in the left and the right region
without vitiating the screening-off. In other words, the non-atomic (coarse-grained) events Cif C)I C/M CE,
clEel oMot and G CM, respectively localized in appropriate subregions of Ve will all be screener-
offs for the correlation (23).* That one can freely sum up for both the primed and the unprimed events is
a consequence of the fact that in the derivation of (19)-(22) no-conspiracy (7)-(10) does not play a role.

However, for events localized in the middle region one cannot sum up! As a consequence, one cannot
get rid of the primed terms C/M in equations (19)-(22). So for example it will not be generally true that

p(AiBjlaib;Ch) = p(Ala;Ch)p(Bj[b;Ch) (24)

(See Appendix B.) However, if we cannot get rid of the primed terms C’*, we will not be able to derive
the Bell inequalities since in the derivation we need to use no-conspiracy (7)-(10) which holds only for
the unprimed terms. (See Appendix C.)

This shows that our decomposition of region V¢ into siz regions was too liberal. We have to make
one step back and restrict our previous schema to the one depicted in Fig. 7. Outside the common past
of the correlating events one can have both primed and unprimed events that is events influencing the
measurement choices and events being independent of them. However, within the common past there can

4Note again that the term ’common cause’ is used only for those screener-offs which are composed of unprimed events.
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Figure 7: The most general scenario from which the Bell inequalities can be derived.

be only events which are probabilistically independent of the measurement choices. Within this schema
the Bell inequalities can be derived.

To sum up, given a locally causal local classical theory represented by a net {N(V),V € K} with
regions localized as in Fig. 7 and elements in the appropriate regions, complete independence (15)-(18)
and no-conspiracy (7)-(10) together imply the Bell inequalities.

4 Complete versus sufficient specification

Now I turn to the question of ’complete versus sufficient specification’ raised by Norsen (2009) and
unfolded by Seevinck and Uffink (2011). In his illuminating paper, comparing the notion of ’completeness’
used in Bell’s vs. Jarrett’s writings, Norsen (2009) raised the following concern:® Since “the past light
cones of [the measurement choices| a and b overlap with the region containing C' — and C by definition is
supposed to contain a complete specification of beables in this region ...one wonders how a and b could
possibly not be causally influenced by C (in a locally causal theory)” (Norsen 2009, p. 283.) Seevinck
and Uffink take Norsen’s point and argue that complete specification is too strong “when formalising the
notion of local causality. It is only needed that the specification is sufficiently specified, in the relevant
sense” (p. 5); and then they go on to develop this relevant sense in terms of Fisher’s statistical concept
of sufficiency.

The argument of Seevinck and Uffink against complete specification is put in the form of a dilemma:

“C cannot be expected to be a complete specification of region Vi because one must allow
for the possibility of traces in region Vi of the causal past of both the settings [measurement
choices], and given the independence of C' and the settings, these traces cannot be included
in C.

An alternative understanding of this point is that one is here faced with a dilemma. That
is, the following two assumptions cannot both hold: (i) the free variables [no-conspiracy| as-
sumption, and (ii) the assumption that C is completely specified, i.e., contains the description
of all and every beable in region Vi.” (Seevinck and Uffink, 2011, p. 5)

In brief, the complete specification of region V¢ contradicts to the no-conspiracy condition since if C'
completely specifies region Vi, then it also specifies the measurement choices a and b, and hence C' and
a,b cannot be probabilistically independent.

I see, however, no contradiction between complete specification and no-conspiracy. I have a weaker
and a stronger claim supporting my point. I start with the weaker one. The upshot of this weaker claim

5 Again for the sake of consistency I changed the notation of both Norsen (2009) and Seevinck and Uffink (2011).



is that the events which satisfy complete specification need not be the same as the events which satisfy
no-conspiracy.

Complete specification of a spacetime region, as said before, is simply an atomic event in that region.
If our “candidate theory” represented by a net of local algebras is given, then to every bounded region V¢
there is an algebra A(V¢) associated; and if the algebra is atomic, the complete specifications that is the
atomic events of the region are also given. Consider region V¢ in Fig. 7. The event CLC/ECY CRCIE is
a complete specification in Vi, but the unprimed event C;C,,C}, and the primed event C] C;R separately
are not. These latter two play different theoretical roles: No-conspiracy holds for CC,,Cp, therefore it
is interpreted as a (possible) common cause of the conditional correlation (23). For C] C('IR no-conspiracy
does not hold (and a fortiori neither does for the complete specification CfC/*Ch CECIF). Thus C]C/F
has another interpretation: it allows “for the possibility of traces in region V¢ of the causal past of both
the settings.” This ’division of labor’ between the unprimed C%C,,,C, and the primed C| C('ZR, however, is
no worry: together they provide a complete specification of region V> and enable the derivation of the Bell
inequalities as long as the middle region, Vo N'V4 N Vp contains no primed term violating no-conspiracy.
In short, in order to derive the Bell inequalities from local causality, those events which completely specify
region Vo need not be the same events as those satisfying no-conspiracy.

But here is my stronger claim: they can. Namely, there is no contradiction between complete specifica-
tion and no-conspiracy even if we require them to hold for the same events. To see this, simply consider
the case when the subregions V% and V£ are empty, that is when Vi contains exclusively unprimed
elements (see Fig. 8). In this case the event CFC) C will both completely specify region Ve and sat-

Figure 8: No contradiction between complete specification and no-conspiracy.

isfy no-conspiracy. Consequently, the Bell inequalities will follow. More importantly, this independence
between the common causes and the measurement choices does not trivialize the theory, for example by
dissolving the conditional correlation (23) between the measurement outcomes.

The next proposition illustrates this latter point.

Proposition 1. There exists a locally causal local classical theory with events A;,a;, € A(V4), Bj,b; €
A(Vp) in spatially separated regions V4 and Vg conditionally correlating in the sense of (23), and atomic
events C € A(VE), C) € A(VA) and CJt € A(VH), where Vo = V& U VAT UV satisfies requirements
(4)-(6), such that no-conspiracy (7)-(10), moreover complete independence (15)-(18) hold.

Proof. Let A;, a;, By, bj, C{, C) and C[! be events localized as in Fig. 8. Suppose that for the atomic
events CF, C)! and C}t completely specifying region Ve both complete independence

P(CE CRl G = p(Cr CRlp(CR) = p(Ci)p(CRl Cf) = p(CRlp(CR O = p(CE)p(CrlIp(CyY) - (25)

p

and also no-conspiracy

paib;C C ) = p(aib;)p(CR C O = -+ = p(ai)p(b)p(CE)p(ChDP(CH) (26)

p



hold for any combination of the indices. Let the net containing the events be locally causal; for example
let

p(AiBj|aibjOIfC%O§) = p(Ai|aiOIfOnAf)p(Bj|bjC%O§) = (pf51k51m)(pf51m51p) (27)

where " pl=%" y pf = 1. Now, the conditional probabilities are given as follows:

p(Aila;) = Y p(Aila;CECYp(CECH) = plp(C)p(CYY) (28)
k.m
p(Bjlb;) = > p(B;lb;Ca Cp(CH Ol = plip(C)p(CT) (29)
p(AiBjlaib;) = Zp p(A;iBjlaibCi: Cpl Clp(CC CF)
k,m,p
= Y p(AilaiCEC p(B; b, CH CEp(Chp(Cap(Cl)
ko,
= pfp;p(cf )p(C1)p(CF) (30)

Thus, there is a conditional correlation (23) between A; and B; whenever p(CM) #£0or 1. =

Consequently, there is no contradiction between complete specification and no-conspiracy even if both
are applied to the same events, namely the atomic events of the entire V. The measurement choices
can be free of the common causes even if the causal past of the region containing them is completely
specified. This independence does not abolish the conditional correlation between the measurement
outcomes: atomic events can be probabilistically irrelevant to the measurement choices and at the same
time relevant to the measurement outcomes. Moreover, the independence of the measurement choices of
the atomic events does not mean that the former are not ’determined’ (probabilistically) by the latter.
They are: the conditional probabilities p(a;b;|CFCa! C[) are set in a local physical theory, even if they
are equal to p(a;b;).

Thus, based on these two claims, I think, there is no need to replace ’complete specification’ in Bell’s
definition of local causality by ’sufficient specification’.

5 Conclusions

The main claims of this paper were the following:

(i) The definition of Bell’s notion of local causality presupposes a clear-cut framework in which proba-
bilistic and spatiotemporal entities can be related. This goal can be met by introducing the notion
of a local physical theory represented by an isotone net of algebras.

(ii) In a local classical theory the measurement outcomes, measurement choices and common cause can
be localized in the spacetime such that one can derive the Bell inequalities from local causality,
no-conspiracy and independence.

(iii) Contrary to the claim of Seevinck and Uffink, there is no need to weaken the requirement of complete
specification in the definition of local causality on the ground that it contradicts to no-conspiracy.

Acknowledgements. This work has been supported by the Hungarian Scientific Research Fund OTKA
K-100715.
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Appendix A

First we prove equation (22) from local causality (11)-(14) and the complete independence condition
(15)-(18):
A;B;a;b;CM M)
p(aib;CLICIM)
D kipg P(AiBjaib,CLClCH CIM CRCIT)
2 hipg Plaib; CLCIECRICIM CRCIR)
Zklpq p(AiBjaibj|C,fC'Z’LC’%C’,’lMCfC;R)p(CkLCl’LC%C,’ZMCfC'&R)
Zklpq p(aibj|C’,fC’[LC’%C;MCZ},%C{]R)p(C'kLCl’LC%C,’ZMC'fC[ZR)
Dkipg P(Aiai| Bib; C CiECRICTM CE I )p(B;b; |C CF CRf CIM GG )p(C G CRl CIM CRCEF)
Zklm p(ai|bjCkLCl’LC%C{lMCfC{IR)p(bj|CkLCZ'LC%CAMCZ?C&R)p(CkLCl’LC%C,’lMCfC[IR)
()=(14)  Dpipg PLAsai| Cp CIECRICIM)p(B;b;1C CM CRCE )p(Cr G Cl CRM G )
Zklpq pla;|CECIECM CIM)p bj|C’WI‘§[C',’ZMC'§C'[ZR)p(C’kLC’[LC’%C,’IMC;}C;R)
(15)-(18)  Dpipg P(Aias| CE O CRICIM ) p(B;b;| ORI CTM CRROM)p(CF CF O CIM)p(CRC)
D ipg PLai| CLCIHCRICIM)p(b;| ORI CIM CRCR)p(CL CE CRICIM)p(CRCR)
(ZMMAWM$OFQ%GNWcﬁcﬁc%cﬂﬁ)(Zmpﬁ%%W%Oﬂ%ﬁcfw«$Cﬁ>>
> Plai| CLCIFCHLCIM)p(C CIFCRLCTM ) 2 pq Pb;|CH CIM CRCECT)p(CCER)
S P(Aias| CECI ORI CIMp(CECICRICRM) (300 PB;|Col CLY CICMP(CICIT)  (p(Chl )
< > Pai| CL i CHCIM)p(ClL Gl O CIM) )( 2 pg PO ICHI CIM CRCEF)p(CFCE) ><p(C%C£M)>
(15)=(18) (ZM p(Aia;|CECECM ch)p(c,gc;Lcnf\gch)) (Z,,qp(ijj |G CM O p(C) C;MC§C;R))
> Plai| CLCIFCHCIM)p(CLCIFCICM) 2 g PO |CHI M CRCE)p(CRI CIM CRCYER)
(Zkl p(AiaiC'kLCl’LC%C;ZM)) (qu p(ijjC%C,'lMCfC{ZR) )
>k PlaiCE CIECH M) 2 g PO M CFCER)

(A CH O (p(BbCM CIM)
pa:CHCAT) )\ plo;CH CAT)

p(AiBjlaib;Cpl CM) = ol

| =~ =

—~

)—M&M@%WW@M#%@V) (31)

where the numbers over the equation signs refer to the equation used at that step.

The proof of (21), (20) and (19), respectively can be obtained from the above proof by simply omitting
certain summations. For (21) just omit summation for [ and r; for (20) omit summation for k£ and ¢; and
for (19) omit all four.
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Appendix B

Here we prove that (24) does not generally hold. The proof follows that in Appendix A, except that here
there is an extra summation also for n, which causes the trouble in the row below starting with a # sign:

p(AiBjaib;C)
p(aib;Ch)
Eklnpq p(AzB]azb]CkLCl'LCnAijlMCfC;R)
kapq p(a;b; CLC’LCMC’MCRC’R)
Ekmpq p(AiBjaib; |O LCMO’MORO’R) (C%O[LO%C;LMC;%C&R)
Zklnpq p(aib; |O,€LC{LC%O{1MO§O[IR) (C,CLO[LO%C;LMCZ?C{IR)
Zklnpq p(Aiai|BjbjC,CLC{LC%C,’ZMCfC{ZR)p(ijj |C,gc;Lc%c;Mcfch)p(c,gchC,,ﬂfc;lMcfch)
Zklnpq p(ai|bjC]£C[LC%C;IMCZ§C{1R)p(bj |C,€LCI’LC%C;ZMC§C{ZR)]9(C,5CZ’LC%C;MCZECQR)
(11)=(14) kapq p(Aia/i|C]£Ol/LC%O;lM)p(ijj |O%C;MCfOéR)p(C,fCl’LC,I‘,ffO,’lMOfO[IR)
Zklnpq p(aﬂC,fCl’LC}‘,;[O{lM)p(bj |O%C;LMCZ{%CéR)p(CkLC{LC%O;MOfO[IR)
(15)-(18) Zklnm p(Aiai|C£C{LC%C;LM)p(ijj |C%CZMC;§C¢IZR)P(CICLCI/LC%CQM)p(CECZZR)
D kinpa P@i|CLCIECRLCIM ) p(b; |CH CIM CRCFE)p(CECIECHCIM )p(CRECER)
S (S p(Aial CECECH CMp(CECECM CIM) 5, p(Bybs O CM CRCPp(CRCTR) )

> (Ekl plas|CECIECM M

n

p(AiBjlaib;C)) =

PCECICH M) X, plby | CH CMCECFI(CEC))

)
> (zklpm ai| CECIECM CMp(CECIECM CIM) X2, p(Byby | CHL CIM CRCRp(CRCIR) ) (p@gc;y))

S (S plal CECECH M p(CECH Y CM) 5, plbs|CH CIMCRCRp(CRC)) PR )

- S i P(Aiai|[CECIECM CIMYp(CECECM CIM) Zn,,qp(ijj|C%C;MCfC;R)p(C%C;M)p(CfC;R))
S b aZ|CLC”LC'MC’M) (CECILCM Oy 5 e P05 |CH G CROTR) p( CM ) p(CRCTR)
(15)—(18) <Zkln p(Aja;|CECIECM CIMYp (CICLCZ’LCWI‘;[C;ZM)> <anqp(ijj|C%C;LMCZ?C;R)p(CkLCl’LC%CIlM)>

> in Pas| CECECRCIM)p(CECIH O CIM) > g PO | CHL CIM CRCF)p(CL CIFCRICIM)
i PAa CECECH O (g PBiiCH O CFCH)
Ekln aZOLcchMO/M) Enpq p(b; cMcM Cé%CéR)

sa;,CM .M
() (2 it

where again the numbers over the equation signs refer to the equation used at that step.

Appendix C
Here we prove why in the derivation of the Clauser-Horne inequality
—1 < p(AiBjlaib;) + p(AiBjr|aibjr) + p(Ai Bjlaib;) — p(Ay Bjrlaibjr) — p(Ailaib;) — p(Bjlaib;) < 0(33)

one should use (24) instead of (22). The standard derivation goes as follows:
It is a simple arithmetic fact that for any o, o/, 3, 5" € [0,1]:

~1<af+af +d'8-dB —a—-B<0 (34)
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Now let o, o/, 38, 8’ first be the conditional probabilities taken from (22):

a = p(AlaChcMy
o = p(AplayCM M)
8 = pBjlb;ChCM
B = p(BylbyChlCMy

Plugging (35)-(38) into (34) one obtains
-1< p(Ai|a”L'C'r]7\1407IlM)p(Bj|bjO7]7\140’;LM) + p(A’L'|aiC'r]7\fc7IlM)p(le |bj’Cr]\rijcfle)
+p(Aiai Co CIMYp(B;|b;CM CIMY — p(Airay CY CIMp(Bji by CM CIM)
—p(Aila;Cpl CMY) — p(By|b;CH M) <0
which using (22) transforms into
—1 < p(AiBjlaib,CMCM) + p(A; Bji|aiby CM CIM)
+p(Air Bjlaib;Chl CM) — p(Ay By laiby Ol CrM)
—p(Aila; CH CM) — p(B;|b;C M) < 0

(39)

(40)

Finally, multiplying the above inequality by p(CC’M) and summing up for the indices m, n one obtains

-1< Z {p(AiBﬂaibjC% C™MY 4 p(A;Bj/|a;ibj CM OIM)

+p(Av Bjlaib;Chl CiM) — p(Ay Byrlaiby C 1Y)

—p(Ai|a;CX O — p(By|b,CM My [p(CM My <o

which is equivalent to (33) only if
plaib;Crl O = plaiby)p(Crl G

were the case, which is not, since C/M is not independent of a; and b;.

Now, starting the whole reasoning again with conditional probabilities taken from (24):

a = p(Aia;CM)
o = p(AilairCL)
B = p(Bjlb;Ch)
8 = p(BylbyCp)

the derivation goes through since instead of (42) one is to use

p(aib;Cp) = plaib;)p(Ch)

(47)

which is one of the no-conspiracy conditions (7)-(10). Thus one can use (24) in the derivation of the

Clauser-Horne inequality but not (22).
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