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Abstra
t

A physi
al theory is 
alled lo
ally 
ausal if any 
orrelation between spa
elike separated events is

s
reened-o� by lo
al beables 
ompletely spe
ifying an appropriately 
hosen region in the past of the

events. In this paper I will de�ne lo
al 
ausality in a 
lear-
ut framework, 
alled lo
al physi
al theory

whi
h integrates both probabilisti
 and spatiotemporal entities. Then I will argue that, 
ontrary to

the 
laim of Seevin
k and U�nk (2011), 
omplete spe
i�
ation does not stand in 
ontradi
tion to the

free variable (no-
onspira
y) assumption.
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1 Introdu
tion

Lo
al 
ausality is the idea that 
ausal pro
esses propagate though spa
e 
ontinuously and with velo
ity

less than the speed of light. John Stewart Bell formulates this intuition in a 1988 interview as follows:

�[Lo
al 
ausality℄ is the idea that what you do has 
onsequen
es only nearby, and that any


onsequen
es at a distant pla
e will be weaker and will arrive there only after the time

permitted by the velo
ity of light. Lo
ality [= lo
al 
ausality℄ is the idea that 
onsequen
es

propagate 
ontinuously, that they don't leap over distan
es.� (Mann and Crease, 1988)

Bell has returned to this intuitive idea of lo
al 
ausality from time to time and provided a more and

more elaborate formulation of it. First he addressed the notion of lo
al 
ausality in his �The theory of

lo
al beables� delivered at the Sixth GIFT Seminar in 1975; later in a footnote added to his 1986 paper

�EPR 
orrelations and EPW distributions� intending to 
lean up the �rst version; and �nally in the most

elaborate form in his �La nouvelle 
uisine� posthumously published in 1990. In this latter paper lo
al


ausality obtains the following formulation:

1

�A theory will be said to be lo
ally 
ausal if the probabilities atta
hed to values of lo
al beables

in a spa
e-time region VA are unaltered by spe
i�
ation of values of lo
al beables in a spa
e-

like separated region VB, when what happens in the ba
kward light 
one of VA is already

su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables in a spa
e-time region

VC .� (Bell, 1990/2004, p. 239-240)

We reprodu
e the �gure Bell is atta
hing to his formulation in Fig. 1. (The 
aptation is Bell's original.)

Some brief remarks 
on
erning Bell's terminology are in pla
e here (for a detailed analysis see (Norsen

2009, 2011)):

(i) The term �beable� in the quote is Bell's own neologism and is 
ontrasted to the term �observable�

used in quantum theory. �The beables of the theory are those entities in it whi
h are, at least

tentatively, to be taken seriously, as 
orresponding to something real� (Bell, 1990/2004, p. 234).
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For the sake of 
onformity with the rest of the paper I slightly 
hanged Bell's notation and �gure.
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Figure 1: Full spe
i�
ation of what happens in VC makes events in VB irrelevant for predi
tions about

VA in a lo
ally 
ausal theory.

(ii) Beables are to be lo
al: �Lo
al beables are those whi
h are de�nitely asso
iated with parti
ular

spa
e-time regions. The ele
tri
 and magneti
 �elds of 
lassi
al ele
tromagnetism, E(t, x) and

B(t, x) are again examples.� (p. 234).

(iii) Lo
al beables in region VC are to be �fully spe
i�ed� in order to blo
k 
ausal in�uen
es arriving at

VA from the 
ommon past of VA and VB.

This latter point is of 
entral importan
e and is also stressed by Bell:

2

�It is important that region VC 
ompletely shields o� from VA the overlap of the ba
kward

light 
ones of VA and VB. And it is important that events in VC be spe
i�ed 
ompletely.

Otherwise the tra
es in region VB of 
auses of events in VA 
ould well supplement whatever

else was being used for 
al
ulating probabilities about VA. The hypothesis is that any su
h

information about VB be
omes redundant when VC is spe
i�ed 
ompletely.� (Bell, 1990/2004,

p. 240)

In a re
ent paper Mi
hael Seevin
k and Jos U�nk (2011) have questioned the ne
essary role of 
omplete

spe
i�
ation in the de�nition of lo
al 
ausality and re
ommended su�
ient spe
i�
ation instead. They

argue that 
omplete spe
i�
ation is too strong: it 
ontradi
ts to the so-
alled no-
onspira
y (free variable)


ondition whi
h requires that the 
ommon 
ause of the 
orrelation be probabilisti
ally independent of

the 
hoi
e of the measurement settings.

I do not see this 
ontradi
tion and my aim in this paper is to arti
ulate my point. I will pro
eed as

follows. The logi
al s
hema of Bell's de�nition of lo
al 
ausality is the following: if events are lo
alized

in the spa
etime in su
h-and-su
h a way, then these events are to satisfy su
h-and-su
h probabilisti


independen
ies. This s
hema is highly intuitive and easily appli
able in the physi
al praxis, however, in

order to a

ount for these inferen
es from spatiotemporal to probabilisti
 relations in a mathemati
ally

transparent way, one needs to have a framework integrating both spatiotemporal and also probabilisti


entities. Only after having su
h a 
ommon framework 
an one de�ne Bell's notion of lo
al 
ausality in a


lear-
ut way. Thus, in Se
tion 2 �rst this framework, 
alled lo
al physi
al theory, will be introdu
ed and

then Bell's notion of lo
al 
ausality will be formulated within this framework. In Se
tion 3 the relation

of lo
al 
ausality to the Bell inequalities will be expli
ated. The main se
tion is Se
tion 4; here it will be

argued that there is no tension between 
omplete spe
i�
ation and no-
onspira
y. I 
on
lude in Se
tion

5.

2

But, to be fair, see (Bell 1980/2004, p. 106), (Bell 1980/2004, p. 152) and the above (Bell 1990/2004, p. 234) for Bell's

hesitation on the issue.
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2 Bell's lo
al 
ausality in a lo
al physi
al theory

In developing the notion of a lo
al physi
al theory one is lead by the following intuitions. A lo
al physi
al

theory is to des
ribe �beables,� let them be 
lassi
al or non
lassi
al; it is to a

ount for the logi
al


ombination of these events; these events should be 
apable of bearing a probabilisti
 interpretation;

the theory is to provide some way to lo
alize these event in the spa
etime, and is also to provide some

physi
ally well-motivated prin
iples guiding the asso
iation of spa
etime regions to physi
al events; the

theory is to guarantee that the symmetries of the spa
etime are in tune with the symmetries of the

events. (For the details see (Hofer-Szabó and Ve
sernyés, 2015 a,b).) All these preliminary intuitions are


aptured in the following de�nition (Haag, 1992):

De�nition 1. A PK-
ovariant lo
al physi
al theory is a net {A(V ), V ∈ K} asso
iating algebras of events
to spa
etime regions whi
h satis�es isotony, mi
ro
ausality and 
ovarian
e de�ned as follows:

1. Isotony. Let M be a globally hyperboli
 spa
etime and let K be a 
overing 
olle
tion of bounded,

globally hyperboli
 subspa
etime regions of M su
h that (K,⊆) is a dire
ted poset under in
lusion

⊆. The net of lo
al observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasilo
al algebra A is

de�ned to be the indu
tive limit C∗
-algebra of the net {A(V ), V ∈ K} of lo
al C∗

-algebras.

2. Mi
ro
ausality (also 
alled as Einstein 
ausality) is the requirement that A(V ′)′∩A ⊇ A(V ), V ∈ K,
where primes denote spa
elike 
omplement and algebra 
ommutant, respe
tively.

3. Spa
etime 
ovarian
e. Let PK be the subgroup of the group P of geometri
 symmetries of M
leaving the 
olle
tion K invariant. A group homomorphism α : PK → AutA is given su
h that the

automorphisms αg, g ∈ PK of A a
t 
ovariantly on the observable net: αg(A(V )) = A(g ·V ), V ∈ K.

If the quasilo
al algebra A of the lo
al physi
al theory is 
ommutative, we speak about a lo
al 
lassi
al

theory, if it is non
ommutative, we speak about a lo
al quantum theory. For lo
al 
lassi
al theories

mi
ro
ausality ful�lls trivially.

A state φ in a lo
al physi
al theory is de�ned as a normalized positive linear fun
tional on the quasilo
al

observable algebra A. The 
orresponding GNS representation πφ : A → B(Hφ) 
onverts the net of C∗
-

algebras into a net of C∗
-subalgebras of B(Hφ). Closing these subalgebras in the weak topology one

arrives at a net of lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Von Neumann

algebras are generated by their proje
tions, whi
h are 
alled quantum events sin
e they 
an be interpreted

as 0-1�valued observables. The net {N (V ), V ∈ K} of lo
al von Neumann algebras given above also obeys

isotony, mi
ro
ausality, and PK-
ovarian
e, hen
e we 
an also refer to a net {N (V ), V ∈ K} of lo
al von

Neumann algebras as a lo
al physi
al theory.

Now, a lo
al physi
al theory is lo
ally 
ausal in Bell's sense if any 
orrelation between spatially separated

events is s
reened o� by �lo
al beables� whi
h are lo
alized in a �shielding-o�� region and whi
h �
om-

pletely spe
ify� that region. How to translate Bell's terms of �lo
al beable� and �
omplete spe
i�
ation�

into the language of a lo
al physi
al theory?

In a 
lassi
al �eld theory beables are 
hara
terized by sets of �eld 
on�gurations. Taking the equiv-

alen
e 
lasses of those �eld 
on�gurations whi
h have the same �eld values on a given spa
etime region

one 
an generate lo
al (
ylindri
al) σ-algebras. Translating σ-algebras into the language of abelian von

Neumann algebras one 
an represent Bell's notion of �lo
al beables� in the framework of lo
al physi
al

theories. In a more general way, one 
an also use the term �lo
al beables� both for abelian and non-abelian

lo
al von Neumann algebras, hen
e treating lo
al 
lassi
al and quantum theories on an equal footing.

Translating �lo
al beables� simply as �elements of a lo
al algebra� naturally brings with it the translation

of the term �a 
omplete spe
i�
ation of beables� as �an atomi
 event of a lo
al algebra� (Henson, 2013).

To be sure, here it is assumed that the lo
al algebras of the net are atomi
, whi
h is typi
ally not the 
ase,
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for example, in Poin
aré 
ovariant algebrai
 quantum �eld theory. (For the relation between σ-algebras

and von Neumann algebras and for a more general de�nition of lo
al 
ausality see (Hofer-Szabó and

Ve
sernyés, 2015 a,b).) With these notions in hand now one 
an formulate Bell's notion of lo
al 
ausality

in a lo
al physi
al theory as follows:

De�nition 2. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von Neumann algebras is


alled lo
ally 
ausal (in Bell's sense), if for any pair A ∈ N (VA) and B ∈ N (VB) of proje
tions supported
in spa
elike separated regions VA, VB ∈ K and for every lo
ally normal and faithful state φ establishing

a 
orrelation φ(AB) 6= φ(A)φ(B) between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′

C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅,

(see Fig. 2) and for any atomi
 event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 2: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(1)

Remarks:

1. A lo
ally normal state is a normal state on the lo
al von Neumann algebras. A lo
ally faithful state

φ means that any proje
tion A ∈ P(N (V )) in the lo
al von Neumann algebra N (V ) has nonzero
expe
tation value. In 
ase of lo
al 
lassi
al theories a lo
ally faithful state φ determines uniquely a

lo
ally nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means of this (1) 
an be

written in the following 'symmetri
' form:

p(AB|Ck) = p(A|Ck)p(B|Ck) (2)

whi
h further is equivalent to the 'asymmetri
' s
reening-o� 
ondition:

p(A|BCk) = p(A|Ck) (3)

sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

2. The role of Requirement (iii) in the de�nition is to ensure that �VC shields o� from VA the overlap

of the ba
kward light 
ones of VA and VB�. A spa
etime region above VC in the 
ommon past of

the 
orrelating events (see Fig. 3) namely may 
ontain sto
hasti
 events whi
h 
ould establish a


orrelation between A and B in a 
lassi
al sto
hasti
 theory (Norsen, 2011; Seevin
k and U�nk

2011). Requirement (iii) is somewhat weaker than Bell's original lo
alization (see Fig. 1) whi
h 
an

be formulated as:
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VA B

C

V

V

Figure 3: A region VC for whi
h Requirement (iii) does not hold.

(iv) J−(VA) ∩ J−(VB) ∩ VC = ∅

The di�eren
e is that Requirement (iii) does, but Requirement (iv) does not allow for region VC

to penetrate into the 'top part' of the 
ommon past. However, both requirements 
oin
ide, if VC

'shrinks down' to a Cau
hy surfa
e. In lo
al 
lassi
al theories it su�
es to use Requirement (iii).

Finally, note that the question whether a given lo
al 
lassi
al or quantum theory is lo
ally 
ausal is a

highly nontrivial question depending on su
h fa
tors as the atomi
ity of the lo
al algebras, the ful�lment

of the so-
alled lo
al primitive 
ausality,

3

or whether there exists a 
ausal dynami
s in the theory, et
.

(For the details see again (Hofer-Szabó and Ve
sernyés, 2015 a,b).)

Next I turn to the relation of Bell's lo
al 
ausality to the Bell inequalities.

3 Lo
al 
ausality and the Bell inequalities

From this se
tion on we restri
t ourselves to lo
al 
lassi
al theories sin
e beables are standardly taken

to be 
lassi
al entities. Consider a lo
al 
lassi
al theory represented by a net {N (V ), V ∈ K} of lo
al

abelian von Neumann algebras. Suppose that Bell's lo
al 
ausality holds in this theory. Let VA and VB

be two spatially separated regions in M, and VC a third region (see Fig. 4) su
h that

V VA B

VC

Figure 4: Lo
alization of regions VA, VB and VC .

VC ⊂ J−(VA ∪ VB) (4)

(VA ∪ VB) ⊂ V ′′

C (5)

J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅ (6)

3

For any globally hyperboli
 bounded subspa
etime regions V ∈ K, A(V ′′) = A(V ).
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Divide VC into six regions V L
C , V L

C′ , V M
C , V M

C′ , V R
C and V R

C′ , for example as depi
ted in Fig. 5. Here

the supers
ripts L,M and R stand for 'left', 'middle' and 'right', representing those parts of VC whi
h

fall into region J−(VA) \ J−(VB), J−(VA) ∩ J−(VB) and J−(VB) \ J−(VA), respe
tively. Now, let the

V VA B

V VVV VC’ C’ C’CVC C ML RL M R

Figure 5: Dividing up region VC .

various events be lo
alized in these regions as follows. Let Ai and Bj be measurement out
omes and ai,

bj measurement 
hoi
es lo
alized in the appropriate regions: Ai, ai ∈ A(VA), Bj , bj ∈ A(VB). (See Fig.

6.) Let, furthermore, CL
k , C

′L
l , CM

m , C′M
n , CR

p , C
′R
q be atomi
 events (minimal proje
tions) in A(V L

C ),

A B
a b

C C’ C C’C’
L MM RR

C
L

i

i

j

j

k l m n p q

Figure 6: Lo
alization of the various events.

A(V L
C′ ), A(V M

C ), A(V M
C′ ), A(V R

C ) and A(V R
C′), respe
tively, where the indi
es i, j, k . . . are taken from

appropriate index sets. Now, the di�eren
e between the primed and the unprimed events in VC is that the

primed events probabilisti
ally depend on the the measurement 
hoi
es ai and bj , whereas the unprimed

events are probabilisti
ally 
ompletely independent of them:

p(aibjC
L
l C

M
m CR

p ) = p(ai)p(bj)p(C
L
l )p(C

M
m )p(CR

p ) (7)

p(aibjC
L
l C

M
m ) = p(ai)p(bj)p(C

L
l )p(C

M
m ) (8)

. . . (9)

p(aibjC
R
p ) = p(ai)p(bj)p(C

R
p ) (10)

Let us 
all these 
onditions no-
onspira
y 
onditions.

To sum up, here we assume that any of the left, middle and right region of VC , respe
tively 
an be

de
omposed into two subregions su
h that ea
h of these subregions 
ontains ex
lusively either events

'in�uen
ing' the measurement 
hoi
es or events being independent of them. Obviously, only this latter


lass of events 
an be regarded as the 
ommon 
ause of the 
orrelation between the measurement out-


omes; the former events are playing a role in �xing the measurement settings. As we will see later, this
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assumption of the de
omposability of VC into six regions is too tolerant if our aim is to derive the Bell

inequalities. It will turn out that there are only �ve regions, the middle region 
an 
ontain only unprimed

events.

Now, lo
al 
ausality of lo
al physi
al theory represented by a net {N (V ), V ∈ K} implies (among

others) the following 
onditional independen
ies:

p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(Aiai|C

L
k C

′L
l CM

m C′M
n ) (11)

p(Bjbj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(Bjbj|C

M
m C′M

n CR
p C′R

q ) (12)

p(ai|bjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(ai|C

L
k C

′L
l CM

m C′M
n ) (13)

p(bj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(bj|C

M
m C′M

n CR
p C′R

q ) (14)

whi
h together with the 
omplete independen
e of the events CL
k , C

′L
l , CM

m , C′M
n , CR

p and C′R
q :

p(CL
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(CL

k )p(C
′L
l )p(CM

m )p(C′M
n )p(CR

p )p(C′R
q ) (15)

p(CL
k C

′L
l CM

m C′M
n CR

p ) = p(CL
k )p(C

′L
l )p(CM

m )p(C′M
n )p(CR

p ) (16)

. . . (17)

p(CR
p C′R

q ) = p(CR
p )p(C′R

q ) (18)

yield the following s
reening-o� or fa
torization 
onditions :

p(AiBj |aibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(Ai|aiC

L
k C

′L
l CM

m C′M
n )p(Bj |bjC

M
m C′M

n CR
p C′R

q ) (19)

p(AiBj |aibjC
L
k C

M
m C′M

n CR
p ) = p(Ai|aiC

L
k C

M
m C′M

n )p(Bj |bjC
M
m C′M

n CR
p ) (20)

p(AiBj |aibjC
′L
l CM

m C′M
n C′R

q ) = p(Ai|aiC
′L
l CM

m C′M
n )p(Bj |bjC

M
m C′M

n C′R
q ) (21)

p(AiBj |aibjC
M
m C′M

n ) = p(Ai|aiC
M
m C′M

n )p(Bj |bjC
M
m C′M

n ) (22)

(For the proof see Appendix A.) These equations show that not only the atomi
 eventsCL
k C

′L
l CM

m C′M
n CR

p C′R
q

lo
alized in the entire VC s
reen o� the 
onditional 
orrelation

p(AiBj |aibj) 6= p(Ai|ai)p(Bj |bj) (23)

but one 
an freely sum up for any of the primed and unprimed events both in the left and the right region

without vitiating the s
reening-o�. In other words, the non-atomi
 (
oarse-grained) events CL
k C

M
m C′M

n CR
p ,

C′L
l CM

m C′M
n C′R

q and CM
m C′M

n , respe
tively lo
alized in appropriate subregions of VC will all be s
reener-

o�s for the 
orrelation (23).

4

That one 
an freely sum up for both the primed and the unprimed events is

a 
onsequen
e of the fa
t that in the derivation of (19)-(22) no-
onspira
y (7)-(10) does not play a role.

However, for events lo
alized in the middle region one 
annot sum up! As a 
onsequen
e, one 
annot

get rid of the primed terms C′M
n in equations (19)-(22). So for example it will not be generally true that

p(AiBj |aibjC
M
m ) = p(Ai|aiC

M
m )p(Bj |bjC

M
m ) (24)

(See Appendix B.) However, if we 
annot get rid of the primed terms C′M
n , we will not be able to derive

the Bell inequalities sin
e in the derivation we need to use no-
onspira
y (7)-(10) whi
h holds only for

the unprimed terms. (See Appendix C.)

This shows that our de
omposition of region VC into six regions was too liberal. We have to make

one step ba
k and restri
t our previous s
hema to the one depi
ted in Fig. 7. Outside the 
ommon past

of the 
orrelating events one 
an have both primed and unprimed events that is events in�uen
ing the

measurement 
hoi
es and events being independent of them. However, within the 
ommon past there 
an

4

Note again that the term '
ommon 
ause' is used only for those s
reener-o�s whi
h are 
omposed of unprimed events.
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V VA B

V VVVC’ C’CC L RL RMCV

Figure 7: The most general s
enario from whi
h the Bell inequalities 
an be derived.

be only events whi
h are probabilisti
ally independent of the measurement 
hoi
es. Within this s
hema

the Bell inequalities 
an be derived.

To sum up, given a lo
ally 
ausal lo
al 
lassi
al theory represented by a net {N (V ), V ∈ K} with

regions lo
alized as in Fig. 7 and elements in the appropriate regions, 
omplete independen
e (15)-(18)

and no-
onspira
y (7)-(10) together imply the Bell inequalities.

4 Complete versus su�
ient spe
i�
ation

Now I turn to the question of '
omplete versus su�
ient spe
i�
ation' raised by Norsen (2009) and

unfolded by Seevin
k and U�nk (2011). In his illuminating paper, 
omparing the notion of '
ompleteness'

used in Bell's vs. Jarrett's writings, Norsen (2009) raised the following 
on
ern:

5

Sin
e �the past light


ones of [the measurement 
hoi
es℄ a and b overlap with the region 
ontaining C � and C by de�nition is

supposed to 
ontain a 
omplete spe
i�
ation of beables in this region . . . one wonders how a and b 
ould

possibly not be 
ausally in�uen
ed by C (in a lo
ally 
ausal theory)� (Norsen 2009, p. 283.) Seevin
k

and U�nk take Norsen's point and argue that 
omplete spe
i�
ation is too strong �when formalising the

notion of lo
al 
ausality. It is only needed that the spe
i�
ation is su�
iently spe
i�ed, in the relevant

sense� (p. 5); and then they go on to develop this relevant sense in terms of Fisher's statisti
al 
on
ept

of su�
ien
y.

The argument of Seevin
k and U�nk against 
omplete spe
i�
ation is put in the form of a dilemma:

�C 
annot be expe
ted to be a 
omplete spe
i�
ation of region VC be
ause one must allow

for the possibility of tra
es in region VC of the 
ausal past of both the settings [measurement


hoi
es℄, and given the independen
e of C and the settings, these tra
es 
annot be in
luded

in C.

An alternative understanding of this point is that one is here fa
ed with a dilemma. That

is, the following two assumptions 
annot both hold: (i) the free variables [no-
onspira
y℄ as-

sumption, and (ii) the assumption that C is 
ompletely spe
i�ed, i.e., 
ontains the des
ription

of all and every beable in region VC .� (Seevin
k and U�nk, 2011, p. 5)

In brief, the 
omplete spe
i�
ation of region VC 
ontradi
ts to the no-
onspira
y 
ondition sin
e if C


ompletely spe
i�es region VC , then it also spe
i�es the measurement 
hoi
es a and b, and hen
e C and

a, b 
annot be probabilisti
ally independent.

I see, however, no 
ontradi
tion between 
omplete spe
i�
ation and no-
onspira
y. I have a weaker

and a stronger 
laim supporting my point. I start with the weaker one. The upshot of this weaker 
laim

5

Again for the sake of 
onsisten
y I 
hanged the notation of both Norsen (2009) and Seevin
k and U�nk (2011).

8



is that the events whi
h satisfy 
omplete spe
i�
ation need not be the same as the events whi
h satisfy

no-
onspira
y.

Complete spe
i�
ation of a spa
etime region, as said before, is simply an atomi
 event in that region.

If our �
andidate theory� represented by a net of lo
al algebras is given, then to every bounded region VC

there is an algebra A(VC) asso
iated; and if the algebra is atomi
, the 
omplete spe
i�
ations that is the

atomi
 events of the region are also given. Consider region VC in Fig. 7. The event CL
k C

′L
l CM

m CR
p C′R

q is

a 
omplete spe
i�
ation in VC , but the unprimed event CkCmCp and the primed event C′

lC
′R
q separately

are not. These latter two play di�erent theoreti
al roles: No-
onspira
y holds for CkCmCp, therefore it

is interpreted as a (possible) 
ommon 
ause of the 
onditional 
orrelation (23). For C′

lC
′R
q no-
onspira
y

does not hold (and a fortiori neither does for the 
omplete spe
i�
ation CL
k C

′L
l CM

m CR
p C′R

q ). Thus C′

lC
′R
q

has another interpretation: it allows �for the possibility of tra
es in region VC of the 
ausal past of both

the settings.� This 'division of labor' between the unprimed CkCmCp and the primed C′

lC
′R
q , however, is

no worry: together they provide a 
omplete spe
i�
ation of region VC and enable the derivation of the Bell

inequalities as long as the middle region, VC ∩ VA ∩ VB 
ontains no primed term violating no-
onspira
y.

In short, in order to derive the Bell inequalities from lo
al 
ausality, those events whi
h 
ompletely spe
ify

region VC need not be the same events as those satisfying no-
onspira
y.

But here is my stronger 
laim: they 
an. Namely, there is no 
ontradi
tion between 
omplete spe
i�
a-

tion and no-
onspira
y even if we require them to hold for the same events. To see this, simply 
onsider

the 
ase when the subregions V L
C′ and V R

C′ are empty, that is when VC 
ontains ex
lusively unprimed

elements (see Fig. 8). In this 
ase the event CL
k C

M
m CR

p will both 
ompletely spe
ify region VC and sat-

A B
a b

i

i

j

j

p
R

Ck
L

C C
m

M

Figure 8: No 
ontradi
tion between 
omplete spe
i�
ation and no-
onspira
y.

isfy no-
onspira
y. Consequently, the Bell inequalities will follow. More importantly, this independen
e

between the 
ommon 
auses and the measurement 
hoi
es does not trivialize the theory, for example by

dissolving the 
onditional 
orrelation (23) between the measurement out
omes.

The next proposition illustrates this latter point.

Proposition 1. There exists a lo
ally 
ausal lo
al 
lassi
al theory with events Ai, ai ∈ A(VA), Bj , bj ∈
A(VB) in spatially separated regions VA and VB 
onditionally 
orrelating in the sense of (23), and atomi


events CL
k ∈ A(V L

C ), CM
m ∈ A(V M

C ) and CR
p ∈ A(V R

C ), where VC = V L
C ∪ V M

C ∪V R
C satis�es requirements

(4)-(6), su
h that no-
onspira
y (7)-(10), moreover 
omplete independen
e (15)-(18) hold.

Proof. Let Ai, ai, Bj , bj, C
L
k , C

M
m and CR

p be events lo
alized as in Fig. 8. Suppose that for the atomi


events CL
k , C

M
m and CR

p 
ompletely spe
ifying region VC both 
omplete independen
e

p(CL
k C

M
m CR

p ) = p(CL
k C

M
m )p(CR

p ) = p(CL
k )p(C

M
m CR

p ) = p(CM
m )p(CL

k C
R
p ) = p(CL

k )p(C
M
m )p(CR

p ) (25)

and also no-
onspira
y

p(aibjC
L
k C

M
m CR

p ) = p(aibj)p(C
L
k C

M
m CR

p ) = · · · = p(ai)p(bj)p(C
L
k )p(C

M
m )p(CR

p ) (26)

9



hold for any 
ombination of the indi
es. Let the net 
ontaining the events be lo
ally 
ausal; for example

let

p(AiBj |aibjC
L
k C

M
m CR

p ) = p(Ai|aiC
L
k C

M
m )p(Bj |bjC

M
m CR

p ) = (pLi δ1kδ1m)(pRj δ1mδ1p) (27)

where

∑

i p
L
i =

∑

j p
R
j = 1. Now, the 
onditional probabilities are given as follows:

p(Ai|ai) =
∑

k,m

p(Ai|aiC
L
k C

M
m )p(CL

k C
M
m ) = pLi p(C

L
1 )p(C

M
1 ) (28)

p(Bj |bj) =
∑

m,p

p(Bj |bjC
M
m CR

p )p(CM
m CR

p ) = pRj p(C
M
1 )p(CR

1 ) (29)

p(AiBj |aibj) =
∑

k,m,p

p(AiBj |aibjC
L
k C

M
m CR

p )p(CL
k C

M
m CR

p )

=
∑

k,m,p

p(Ai|aiC
L
k C

M
m )p(Bj |bjC

M
m CR

p )p(CL
k )p(C

M
m )p(CR

p )

= pLi p
R
j p(C

L
1 )p(C

M
1 )p(CR

1 ) (30)

Thus, there is a 
onditional 
orrelation (23) between Ai and Bj whenever p(C
M
1 ) 6= 0 or 1.

Consequently, there is no 
ontradi
tion between 
omplete spe
i�
ation and no-
onspira
y even if both

are applied to the same events, namely the atomi
 events of the entire VC . The measurement 
hoi
es


an be free of the 
ommon 
auses even if the 
ausal past of the region 
ontaining them is 
ompletely

spe
i�ed. This independen
e does not abolish the 
onditional 
orrelation between the measurement

out
omes: atomi
 events 
an be probabilisti
ally irrelevant to the measurement 
hoi
es and at the same

time relevant to the measurement out
omes. Moreover, the independen
e of the measurement 
hoi
es of

the atomi
 events does not mean that the former are not 'determined' (probabilisti
ally) by the latter.

They are: the 
onditional probabilities p(aibj|CL
k C

M
m CR

p ) are set in a lo
al physi
al theory, even if they

are equal to p(aibj).
Thus, based on these two 
laims, I think, there is no need to repla
e '
omplete spe
i�
ation' in Bell's

de�nition of lo
al 
ausality by 'su�
ient spe
i�
ation'.

5 Con
lusions

The main 
laims of this paper were the following:

(i) The de�nition of Bell's notion of lo
al 
ausality presupposes a 
lear-
ut framework in whi
h proba-

bilisti
 and spatiotemporal entities 
an be related. This goal 
an be met by introdu
ing the notion

of a lo
al physi
al theory represented by an isotone net of algebras.

(ii) In a lo
al 
lassi
al theory the measurement out
omes, measurement 
hoi
es and 
ommon 
ause 
an

be lo
alized in the spa
etime su
h that one 
an derive the Bell inequalities from lo
al 
ausality,

no-
onspira
y and independen
e.

(iii) Contrary to the 
laim of Seevin
k and U�nk, there is no need to weaken the requirement of 
omplete

spe
i�
ation in the de�nition of lo
al 
ausality on the ground that it 
ontradi
ts to no-
onspira
y.

A
knowledgements. This work has been supported by the Hungarian S
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 Resear
h Fund OTKA

K-100715.
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Appendix A

First we prove equation (22) from lo
al 
ausality (11)-(14) and the 
omplete independen
e 
ondition

(15)-(18):

p(AiBj|aibjC
M
m C′M

n ) =
p(AiBjaibjC

M
m C′M

n )

p(aibjCM
m C′M

n )

=

∑

klpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klpq p(AiBjaibj |CL
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(aibj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(ai|bjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(11)−(14)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(15)−(18)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

∑

klpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
∑

pq p(bj |C
M
m C′M

n CR
p C′R

q CR
p )p(CR

p C′R
q )

)

=

(∑

kl p(Aiai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CR
p C′R

q )

)(

p(CM
m C′M

n )

p(CM
m C′M

n )

)

(15)−(18)
=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CM
m C′M

n CR
p C′R

q )
∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CM
m C′M

n CR
p C′R

q )

)

=

(∑

kl p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kl p(aiC
L
k C

′L
l CM

m C′M
n )

)(

∑

pq p(BjbjC
M
m C′M

n CR
p C′R

q )
∑

pq p(bjC
M
m C′M

n CR
p C′R

q )

)

=

(

p(AiaiC
M
m C′M

n )

p(aiCM
m C′M

n )

)(

p(BjbjC
M
m C′M

n )

p(bjCM
m C′M

n )

)

= p(Ai|aiC
M
m C′M

n )p(Bj |bjC
M
m C′M

n ) (31)

where the numbers over the equation signs refer to the equation used at that step.

The proof of (21), (20) and (19), respe
tively 
an be obtained from the above proof by simply omitting


ertain summations. For (21) just omit summation for l and r; for (20) omit summation for k and q; and

for (19) omit all four.
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Appendix B

Here we prove that (24) does not generally hold. The proof follows that in Appendix A, ex
ept that here

there is an extra summation also for n, whi
h 
auses the trouble in the row below starting with a 6= sign:

p(AiBj|aibjC
M
m ) =

p(AiBjaibjC
M
m )

p(aibjCM
m )

=

∑

klnpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klnpq p(AiBjaibj |CL
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(aibj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klnpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(ai|bjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(11)−(14)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(15)−(18)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

∑

klnpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

=

∑

n

(

∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

∑

n

(

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

=

∑

n

(

∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

∑

n

(

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

(

p(CM
m C′M

n )

p(CM
m C′M

n )

)

6=

(∑

kln p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kln p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

npq p(Bjbj |C
M
m C′M

n CR
p C′R

q )p(CM
m C′M

n )p(CR
p C′R

q )
∑

npq p(bj |C
M
m C′M

n CR
p C′R

q )p(CM
m C′M

n )p(CR
p C′R

q )

)

(15)−(18)
=

(∑

kln p(Aiai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kln p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

npq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CL
k C

′L
l CM

m C′M
n )

∑

npq p(bj |C
M
m C′M

n CR
p C′R

q )p(CL
k C

′L
l CM

m C′M
n )

)

=

(∑

kln p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kln p(aiCL
k C

′L
l CM

m C′M
n )

)(

∑

npq p(BjbjC
M
m C′M

n CR
p C′R

q )
∑

npq p(bjC
M
m C′M

n CR
p C′R

q )

)

=

(

p(AiaiC
M
m )

p(aiCM
m )

)(

p(BjbjC
M
m )

p(bjCM
m )

)

= p(Ai|aiC
M
m )p(Bj |bjC

M
m ) (32)

where again the numbers over the equation signs refer to the equation used at that step.

Appendix C

Here we prove why in the derivation of the Clauser-Horne inequality

−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′)− p(Ai|aibj)− p(Bj |aibj) 6 0 (33)

one should use (24) instead of (22). The standard derivation goes as follows:

It is a simple arithmeti
 fa
t that for any α, α′, β, β′ ∈ [0, 1]:

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0 (34)
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Now let α, α′, β, β′
�rst be the 
onditional probabilities taken from (22):

α ≡ p(Ai|aiC
M
m C′M

n ) (35)

α′ ≡ p(Ai′ |ai′C
M
m C′M

n ) (36)

β ≡ p(Bj |bjC
M
m C′M

n ) (37)

β′ ≡ p(Bj′ |bj′C
M
m C′M

n ) (38)

Plugging (35)-(38) into (34) one obtains

−1 6 p(Ai|aiC
M
m C′M

n )p(Bj |bjC
M
m C′M

n ) + p(Ai|aiC
M
m C′M

n )p(Bj′ |bj′C
M
m C′M

n )

+p(Ai′ |ai′C
M
m C′M

n )p(Bj |bjC
M
m C′M

n )− p(Ai′ |ai′C
M
m C′M

n )p(Bj′ |bj′C
M
m C′M

n )

−p(Ai|aiC
M
m C′M

n )− p(Bj |bjC
M
m C′M

n ) 6 0 (39)

whi
h using (22) transforms into

−1 6 p(AiBj |aibjC
M
m C′M

n ) + p(AiBj′ |aibj′C
M
m C′M

n )

+p(Ai′Bj|ai′bjC
M
m C′M

n )− p(Ai′Bj′ |ai′bj′C
M
m C′M

n )

−p(Ai|aiC
M
m C′M

n )− p(Bj |bjC
M
m C′M

n ) 6 0 (40)

Finally, multiplying the above inequality by p(CM
m C′M

n ) and summing up for the indi
es m,n one obtains

−1 6
∑

mn

[

p(AiBj |aibjC
M
m C′M

n ) + p(AiBj′ |aibj′C
M
m C′M

n )

+p(Ai′Bj |ai′bjC
M
m C′M

n )− p(Ai′Bj′ |ai′bj′C
M
m C′M

n )

−p(Ai|aiC
M
m C′M

n )− p(Bj |bjC
M
m C′M

n )

]

p(CM
m C′M

n ) 6 0 (41)

whi
h is equivalent to (33) only if

p(aibjC
M
m C′M

n ) = p(aibj)p(C
M
m C′M

n ) (42)

were the 
ase, whi
h is not, sin
e C′M
n is not independent of ai and bj .

Now, starting the whole reasoning again with 
onditional probabilities taken from (24):

α ≡ p(Ai|aiC
M
m ) (43)

α′ ≡ p(Ai′ |ai′C
M
m ) (44)

β ≡ p(Bj |bjC
M
m ) (45)

β′ ≡ p(Bj′ |bj′C
M
m ) (46)

the derivation goes through sin
e instead of (42) one is to use

p(aibjC
M
m ) = p(aibj)p(C

M
m ) (47)

whi
h is one of the no-
onspira
y 
onditions (7)-(10). Thus one 
an use (24) in the derivation of the

Clauser-Horne inequality but not (22).
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