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Abstrat

A physial theory is alled loally ausal if any orrelation between spaelike separated events is

sreened-o� by loal beables ompletely speifying an appropriately hosen region in the past of the

events. In this paper I will de�ne loal ausality in a lear-ut framework, alled loal physial theory

whih integrates both probabilisti and spatiotemporal entities. Then I will argue that, ontrary to

the laim of Seevink and U�nk (2011), omplete spei�ation does not stand in ontradition to the

free variable (no-onspiray) assumption.
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1 Introdution

Loal ausality is the idea that ausal proesses propagate though spae ontinuously and with veloity

less than the speed of light. John Stewart Bell formulates this intuition in a 1988 interview as follows:

�[Loal ausality℄ is the idea that what you do has onsequenes only nearby, and that any

onsequenes at a distant plae will be weaker and will arrive there only after the time

permitted by the veloity of light. Loality [= loal ausality℄ is the idea that onsequenes

propagate ontinuously, that they don't leap over distanes.� (Mann and Crease, 1988)

Bell has returned to this intuitive idea of loal ausality from time to time and provided a more and

more elaborate formulation of it. First he addressed the notion of loal ausality in his �The theory of

loal beables� delivered at the Sixth GIFT Seminar in 1975; later in a footnote added to his 1986 paper

�EPR orrelations and EPW distributions� intending to lean up the �rst version; and �nally in the most

elaborate form in his �La nouvelle uisine� posthumously published in 1990. In this latter paper loal

ausality obtains the following formulation:

1

�A theory will be said to be loally ausal if the probabilities attahed to values of loal beables

in a spae-time region VA are unaltered by spei�ation of values of loal beables in a spae-

like separated region VB, when what happens in the bakward light one of VA is already

su�iently spei�ed, for example by a full spei�ation of loal beables in a spae-time region

VC .� (Bell, 1990/2004, p. 239-240)

We reprodue the �gure Bell is attahing to his formulation in Fig. 1. (The aptation is Bell's original.)

Some brief remarks onerning Bell's terminology are in plae here (for a detailed analysis see (Norsen

2009, 2011)):

(i) The term �beable� in the quote is Bell's own neologism and is ontrasted to the term �observable�

used in quantum theory. �The beables of the theory are those entities in it whih are, at least

tentatively, to be taken seriously, as orresponding to something real� (Bell, 1990/2004, p. 234).
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For the sake of onformity with the rest of the paper I slightly hanged Bell's notation and �gure.
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Figure 1: Full spei�ation of what happens in VC makes events in VB irrelevant for preditions about

VA in a loally ausal theory.

(ii) Beables are to be loal: �Loal beables are those whih are de�nitely assoiated with partiular

spae-time regions. The eletri and magneti �elds of lassial eletromagnetism, E(t, x) and

B(t, x) are again examples.� (p. 234).

(iii) Loal beables in region VC are to be �fully spei�ed� in order to blok ausal in�uenes arriving at

VA from the ommon past of VA and VB.

This latter point is of entral importane and is also stressed by Bell:

2

�It is important that region VC ompletely shields o� from VA the overlap of the bakward

light ones of VA and VB. And it is important that events in VC be spei�ed ompletely.

Otherwise the traes in region VB of auses of events in VA ould well supplement whatever

else was being used for alulating probabilities about VA. The hypothesis is that any suh

information about VB beomes redundant when VC is spei�ed ompletely.� (Bell, 1990/2004,

p. 240)

In a reent paper Mihael Seevink and Jos U�nk (2011) have questioned the neessary role of omplete

spei�ation in the de�nition of loal ausality and reommended su�ient spei�ation instead. They

argue that omplete spei�ation is too strong: it ontradits to the so-alled no-onspiray (free variable)

ondition whih requires that the ommon ause of the orrelation be probabilistially independent of

the hoie of the measurement settings.

I do not see this ontradition and my aim in this paper is to artiulate my point. I will proeed as

follows. The logial shema of Bell's de�nition of loal ausality is the following: if events are loalized

in the spaetime in suh-and-suh a way, then these events are to satisfy suh-and-suh probabilisti

independenies. This shema is highly intuitive and easily appliable in the physial praxis, however, in

order to aount for these inferenes from spatiotemporal to probabilisti relations in a mathematially

transparent way, one needs to have a framework integrating both spatiotemporal and also probabilisti

entities. Only after having suh a ommon framework an one de�ne Bell's notion of loal ausality in a

lear-ut way. Thus, in Setion 2 �rst this framework, alled loal physial theory, will be introdued and

then Bell's notion of loal ausality will be formulated within this framework. In Setion 3 the relation

of loal ausality to the Bell inequalities will be expliated. The main setion is Setion 4; here it will be

argued that there is no tension between omplete spei�ation and no-onspiray. I onlude in Setion

5.

2

But, to be fair, see (Bell 1980/2004, p. 106), (Bell 1980/2004, p. 152) and the above (Bell 1990/2004, p. 234) for Bell's

hesitation on the issue.
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2 Bell's loal ausality in a loal physial theory

In developing the notion of a loal physial theory one is lead by the following intuitions. A loal physial

theory is to desribe �beables,� let them be lassial or nonlassial; it is to aount for the logial

ombination of these events; these events should be apable of bearing a probabilisti interpretation;

the theory is to provide some way to loalize these event in the spaetime, and is also to provide some

physially well-motivated priniples guiding the assoiation of spaetime regions to physial events; the

theory is to guarantee that the symmetries of the spaetime are in tune with the symmetries of the

events. (For the details see (Hofer-Szabó and Vesernyés, 2015 a,b).) All these preliminary intuitions are

aptured in the following de�nition (Haag, 1992):

De�nition 1. A PK-ovariant loal physial theory is a net {A(V ), V ∈ K} assoiating algebras of events
to spaetime regions whih satis�es isotony, miroausality and ovariane de�ned as follows:

1. Isotony. Let M be a globally hyperboli spaetime and let K be a overing olletion of bounded,

globally hyperboli subspaetime regions of M suh that (K,⊆) is a direted poset under inlusion

⊆. The net of loal observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasiloal algebra A is

de�ned to be the indutive limit C∗
-algebra of the net {A(V ), V ∈ K} of loal C∗

-algebras.

2. Miroausality (also alled as Einstein ausality) is the requirement that A(V ′)′∩A ⊇ A(V ), V ∈ K,
where primes denote spaelike omplement and algebra ommutant, respetively.

3. Spaetime ovariane. Let PK be the subgroup of the group P of geometri symmetries of M
leaving the olletion K invariant. A group homomorphism α : PK → AutA is given suh that the

automorphisms αg, g ∈ PK of A at ovariantly on the observable net: αg(A(V )) = A(g ·V ), V ∈ K.

If the quasiloal algebra A of the loal physial theory is ommutative, we speak about a loal lassial

theory, if it is nonommutative, we speak about a loal quantum theory. For loal lassial theories

miroausality ful�lls trivially.

A state φ in a loal physial theory is de�ned as a normalized positive linear funtional on the quasiloal

observable algebra A. The orresponding GNS representation πφ : A → B(Hφ) onverts the net of C∗
-

algebras into a net of C∗
-subalgebras of B(Hφ). Closing these subalgebras in the weak topology one

arrives at a net of loal von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Von Neumann

algebras are generated by their projetions, whih are alled quantum events sine they an be interpreted

as 0-1�valued observables. The net {N (V ), V ∈ K} of loal von Neumann algebras given above also obeys

isotony, miroausality, and PK-ovariane, hene we an also refer to a net {N (V ), V ∈ K} of loal von

Neumann algebras as a loal physial theory.

Now, a loal physial theory is loally ausal in Bell's sense if any orrelation between spatially separated

events is sreened o� by �loal beables� whih are loalized in a �shielding-o�� region and whih �om-

pletely speify� that region. How to translate Bell's terms of �loal beable� and �omplete spei�ation�

into the language of a loal physial theory?

In a lassial �eld theory beables are haraterized by sets of �eld on�gurations. Taking the equiv-

alene lasses of those �eld on�gurations whih have the same �eld values on a given spaetime region

one an generate loal (ylindrial) σ-algebras. Translating σ-algebras into the language of abelian von

Neumann algebras one an represent Bell's notion of �loal beables� in the framework of loal physial

theories. In a more general way, one an also use the term �loal beables� both for abelian and non-abelian

loal von Neumann algebras, hene treating loal lassial and quantum theories on an equal footing.

Translating �loal beables� simply as �elements of a loal algebra� naturally brings with it the translation

of the term �a omplete spei�ation of beables� as �an atomi event of a loal algebra� (Henson, 2013).

To be sure, here it is assumed that the loal algebras of the net are atomi, whih is typially not the ase,
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for example, in Poinaré ovariant algebrai quantum �eld theory. (For the relation between σ-algebras

and von Neumann algebras and for a more general de�nition of loal ausality see (Hofer-Szabó and

Vesernyés, 2015 a,b).) With these notions in hand now one an formulate Bell's notion of loal ausality

in a loal physial theory as follows:

De�nition 2. A loal physial theory represented by a net {N (V ), V ∈ K} of von Neumann algebras is

alled loally ausal (in Bell's sense), if for any pair A ∈ N (VA) and B ∈ N (VB) of projetions supported
in spaelike separated regions VA, VB ∈ K and for every loally normal and faithful state φ establishing

a orrelation φ(AB) 6= φ(A)φ(B) between A and B, and for any spaetime region VC suh that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′

C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅,

(see Fig. 2) and for any atomi event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 2: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(1)

Remarks:

1. A loally normal state is a normal state on the loal von Neumann algebras. A loally faithful state

φ means that any projetion A ∈ P(N (V )) in the loal von Neumann algebra N (V ) has nonzero
expetation value. In ase of loal lassial theories a loally faithful state φ determines uniquely a

loally nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means of this (1) an be

written in the following 'symmetri' form:

p(AB|Ck) = p(A|Ck)p(B|Ck) (2)

whih further is equivalent to the 'asymmetri' sreening-o� ondition:

p(A|BCk) = p(A|Ck) (3)

sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

2. The role of Requirement (iii) in the de�nition is to ensure that �VC shields o� from VA the overlap

of the bakward light ones of VA and VB�. A spaetime region above VC in the ommon past of

the orrelating events (see Fig. 3) namely may ontain stohasti events whih ould establish a

orrelation between A and B in a lassial stohasti theory (Norsen, 2011; Seevink and U�nk

2011). Requirement (iii) is somewhat weaker than Bell's original loalization (see Fig. 1) whih an

be formulated as:
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VA B

C

V

V

Figure 3: A region VC for whih Requirement (iii) does not hold.

(iv) J−(VA) ∩ J−(VB) ∩ VC = ∅

The di�erene is that Requirement (iii) does, but Requirement (iv) does not allow for region VC

to penetrate into the 'top part' of the ommon past. However, both requirements oinide, if VC

'shrinks down' to a Cauhy surfae. In loal lassial theories it su�es to use Requirement (iii).

Finally, note that the question whether a given loal lassial or quantum theory is loally ausal is a

highly nontrivial question depending on suh fators as the atomiity of the loal algebras, the ful�lment

of the so-alled loal primitive ausality,

3

or whether there exists a ausal dynamis in the theory, et.

(For the details see again (Hofer-Szabó and Vesernyés, 2015 a,b).)

Next I turn to the relation of Bell's loal ausality to the Bell inequalities.

3 Loal ausality and the Bell inequalities

From this setion on we restrit ourselves to loal lassial theories sine beables are standardly taken

to be lassial entities. Consider a loal lassial theory represented by a net {N (V ), V ∈ K} of loal

abelian von Neumann algebras. Suppose that Bell's loal ausality holds in this theory. Let VA and VB

be two spatially separated regions in M, and VC a third region (see Fig. 4) suh that

V VA B

VC

Figure 4: Loalization of regions VA, VB and VC .

VC ⊂ J−(VA ∪ VB) (4)

(VA ∪ VB) ⊂ V ′′

C (5)

J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅ (6)

3

For any globally hyperboli bounded subspaetime regions V ∈ K, A(V ′′) = A(V ).
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Divide VC into six regions V L
C , V L

C′ , V M
C , V M

C′ , V R
C and V R

C′ , for example as depited in Fig. 5. Here

the supersripts L,M and R stand for 'left', 'middle' and 'right', representing those parts of VC whih

fall into region J−(VA) \ J−(VB), J−(VA) ∩ J−(VB) and J−(VB) \ J−(VA), respetively. Now, let the

V VA B

V VVV VC’ C’ C’CVC C ML RL M R

Figure 5: Dividing up region VC .

various events be loalized in these regions as follows. Let Ai and Bj be measurement outomes and ai,

bj measurement hoies loalized in the appropriate regions: Ai, ai ∈ A(VA), Bj , bj ∈ A(VB). (See Fig.

6.) Let, furthermore, CL
k , C

′L
l , CM

m , C′M
n , CR

p , C
′R
q be atomi events (minimal projetions) in A(V L

C ),

A B
a b

C C’ C C’C’
L MM RR

C
L

i

i

j

j

k l m n p q

Figure 6: Loalization of the various events.

A(V L
C′ ), A(V M

C ), A(V M
C′ ), A(V R

C ) and A(V R
C′), respetively, where the indies i, j, k . . . are taken from

appropriate index sets. Now, the di�erene between the primed and the unprimed events in VC is that the

primed events probabilistially depend on the the measurement hoies ai and bj , whereas the unprimed

events are probabilistially ompletely independent of them:

p(aibjC
L
l C

M
m CR

p ) = p(ai)p(bj)p(C
L
l )p(C

M
m )p(CR

p ) (7)

p(aibjC
L
l C

M
m ) = p(ai)p(bj)p(C

L
l )p(C

M
m ) (8)

. . . (9)

p(aibjC
R
p ) = p(ai)p(bj)p(C

R
p ) (10)

Let us all these onditions no-onspiray onditions.

To sum up, here we assume that any of the left, middle and right region of VC , respetively an be

deomposed into two subregions suh that eah of these subregions ontains exlusively either events

'in�uening' the measurement hoies or events being independent of them. Obviously, only this latter

lass of events an be regarded as the ommon ause of the orrelation between the measurement out-

omes; the former events are playing a role in �xing the measurement settings. As we will see later, this
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assumption of the deomposability of VC into six regions is too tolerant if our aim is to derive the Bell

inequalities. It will turn out that there are only �ve regions, the middle region an ontain only unprimed

events.

Now, loal ausality of loal physial theory represented by a net {N (V ), V ∈ K} implies (among

others) the following onditional independenies:

p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(Aiai|C

L
k C

′L
l CM

m C′M
n ) (11)

p(Bjbj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(Bjbj|C

M
m C′M

n CR
p C′R

q ) (12)

p(ai|bjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(ai|C

L
k C

′L
l CM

m C′M
n ) (13)

p(bj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(bj|C

M
m C′M

n CR
p C′R

q ) (14)

whih together with the omplete independene of the events CL
k , C

′L
l , CM

m , C′M
n , CR

p and C′R
q :

p(CL
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(CL

k )p(C
′L
l )p(CM

m )p(C′M
n )p(CR

p )p(C′R
q ) (15)

p(CL
k C

′L
l CM

m C′M
n CR

p ) = p(CL
k )p(C

′L
l )p(CM

m )p(C′M
n )p(CR

p ) (16)

. . . (17)

p(CR
p C′R

q ) = p(CR
p )p(C′R

q ) (18)

yield the following sreening-o� or fatorization onditions :

p(AiBj |aibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q ) = p(Ai|aiC

L
k C

′L
l CM

m C′M
n )p(Bj |bjC

M
m C′M

n CR
p C′R

q ) (19)

p(AiBj |aibjC
L
k C

M
m C′M

n CR
p ) = p(Ai|aiC

L
k C

M
m C′M

n )p(Bj |bjC
M
m C′M

n CR
p ) (20)

p(AiBj |aibjC
′L
l CM

m C′M
n C′R

q ) = p(Ai|aiC
′L
l CM

m C′M
n )p(Bj |bjC

M
m C′M

n C′R
q ) (21)

p(AiBj |aibjC
M
m C′M

n ) = p(Ai|aiC
M
m C′M

n )p(Bj |bjC
M
m C′M

n ) (22)

(For the proof see Appendix A.) These equations show that not only the atomi eventsCL
k C

′L
l CM

m C′M
n CR

p C′R
q

loalized in the entire VC sreen o� the onditional orrelation

p(AiBj |aibj) 6= p(Ai|ai)p(Bj |bj) (23)

but one an freely sum up for any of the primed and unprimed events both in the left and the right region

without vitiating the sreening-o�. In other words, the non-atomi (oarse-grained) events CL
k C

M
m C′M

n CR
p ,

C′L
l CM

m C′M
n C′R

q and CM
m C′M

n , respetively loalized in appropriate subregions of VC will all be sreener-

o�s for the orrelation (23).

4

That one an freely sum up for both the primed and the unprimed events is

a onsequene of the fat that in the derivation of (19)-(22) no-onspiray (7)-(10) does not play a role.

However, for events loalized in the middle region one annot sum up! As a onsequene, one annot

get rid of the primed terms C′M
n in equations (19)-(22). So for example it will not be generally true that

p(AiBj |aibjC
M
m ) = p(Ai|aiC

M
m )p(Bj |bjC

M
m ) (24)

(See Appendix B.) However, if we annot get rid of the primed terms C′M
n , we will not be able to derive

the Bell inequalities sine in the derivation we need to use no-onspiray (7)-(10) whih holds only for

the unprimed terms. (See Appendix C.)

This shows that our deomposition of region VC into six regions was too liberal. We have to make

one step bak and restrit our previous shema to the one depited in Fig. 7. Outside the ommon past

of the orrelating events one an have both primed and unprimed events that is events in�uening the

measurement hoies and events being independent of them. However, within the ommon past there an

4

Note again that the term 'ommon ause' is used only for those sreener-o�s whih are omposed of unprimed events.
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V VA B

V VVVC’ C’CC L RL RMCV

Figure 7: The most general senario from whih the Bell inequalities an be derived.

be only events whih are probabilistially independent of the measurement hoies. Within this shema

the Bell inequalities an be derived.

To sum up, given a loally ausal loal lassial theory represented by a net {N (V ), V ∈ K} with

regions loalized as in Fig. 7 and elements in the appropriate regions, omplete independene (15)-(18)

and no-onspiray (7)-(10) together imply the Bell inequalities.

4 Complete versus su�ient spei�ation

Now I turn to the question of 'omplete versus su�ient spei�ation' raised by Norsen (2009) and

unfolded by Seevink and U�nk (2011). In his illuminating paper, omparing the notion of 'ompleteness'

used in Bell's vs. Jarrett's writings, Norsen (2009) raised the following onern:

5

Sine �the past light

ones of [the measurement hoies℄ a and b overlap with the region ontaining C � and C by de�nition is

supposed to ontain a omplete spei�ation of beables in this region . . . one wonders how a and b ould

possibly not be ausally in�uened by C (in a loally ausal theory)� (Norsen 2009, p. 283.) Seevink

and U�nk take Norsen's point and argue that omplete spei�ation is too strong �when formalising the

notion of loal ausality. It is only needed that the spei�ation is su�iently spei�ed, in the relevant

sense� (p. 5); and then they go on to develop this relevant sense in terms of Fisher's statistial onept

of su�ieny.

The argument of Seevink and U�nk against omplete spei�ation is put in the form of a dilemma:

�C annot be expeted to be a omplete spei�ation of region VC beause one must allow

for the possibility of traes in region VC of the ausal past of both the settings [measurement

hoies℄, and given the independene of C and the settings, these traes annot be inluded

in C.

An alternative understanding of this point is that one is here faed with a dilemma. That

is, the following two assumptions annot both hold: (i) the free variables [no-onspiray℄ as-

sumption, and (ii) the assumption that C is ompletely spei�ed, i.e., ontains the desription

of all and every beable in region VC .� (Seevink and U�nk, 2011, p. 5)

In brief, the omplete spei�ation of region VC ontradits to the no-onspiray ondition sine if C

ompletely spei�es region VC , then it also spei�es the measurement hoies a and b, and hene C and

a, b annot be probabilistially independent.

I see, however, no ontradition between omplete spei�ation and no-onspiray. I have a weaker

and a stronger laim supporting my point. I start with the weaker one. The upshot of this weaker laim

5

Again for the sake of onsisteny I hanged the notation of both Norsen (2009) and Seevink and U�nk (2011).
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is that the events whih satisfy omplete spei�ation need not be the same as the events whih satisfy

no-onspiray.

Complete spei�ation of a spaetime region, as said before, is simply an atomi event in that region.

If our �andidate theory� represented by a net of loal algebras is given, then to every bounded region VC

there is an algebra A(VC) assoiated; and if the algebra is atomi, the omplete spei�ations that is the

atomi events of the region are also given. Consider region VC in Fig. 7. The event CL
k C

′L
l CM

m CR
p C′R

q is

a omplete spei�ation in VC , but the unprimed event CkCmCp and the primed event C′

lC
′R
q separately

are not. These latter two play di�erent theoretial roles: No-onspiray holds for CkCmCp, therefore it

is interpreted as a (possible) ommon ause of the onditional orrelation (23). For C′

lC
′R
q no-onspiray

does not hold (and a fortiori neither does for the omplete spei�ation CL
k C

′L
l CM

m CR
p C′R

q ). Thus C′

lC
′R
q

has another interpretation: it allows �for the possibility of traes in region VC of the ausal past of both

the settings.� This 'division of labor' between the unprimed CkCmCp and the primed C′

lC
′R
q , however, is

no worry: together they provide a omplete spei�ation of region VC and enable the derivation of the Bell

inequalities as long as the middle region, VC ∩ VA ∩ VB ontains no primed term violating no-onspiray.

In short, in order to derive the Bell inequalities from loal ausality, those events whih ompletely speify

region VC need not be the same events as those satisfying no-onspiray.

But here is my stronger laim: they an. Namely, there is no ontradition between omplete spei�a-

tion and no-onspiray even if we require them to hold for the same events. To see this, simply onsider

the ase when the subregions V L
C′ and V R

C′ are empty, that is when VC ontains exlusively unprimed

elements (see Fig. 8). In this ase the event CL
k C

M
m CR

p will both ompletely speify region VC and sat-

A B
a b

i

i

j

j

p
R

Ck
L

C C
m

M

Figure 8: No ontradition between omplete spei�ation and no-onspiray.

isfy no-onspiray. Consequently, the Bell inequalities will follow. More importantly, this independene

between the ommon auses and the measurement hoies does not trivialize the theory, for example by

dissolving the onditional orrelation (23) between the measurement outomes.

The next proposition illustrates this latter point.

Proposition 1. There exists a loally ausal loal lassial theory with events Ai, ai ∈ A(VA), Bj , bj ∈
A(VB) in spatially separated regions VA and VB onditionally orrelating in the sense of (23), and atomi

events CL
k ∈ A(V L

C ), CM
m ∈ A(V M

C ) and CR
p ∈ A(V R

C ), where VC = V L
C ∪ V M

C ∪V R
C satis�es requirements

(4)-(6), suh that no-onspiray (7)-(10), moreover omplete independene (15)-(18) hold.

Proof. Let Ai, ai, Bj , bj, C
L
k , C

M
m and CR

p be events loalized as in Fig. 8. Suppose that for the atomi

events CL
k , C

M
m and CR

p ompletely speifying region VC both omplete independene

p(CL
k C

M
m CR

p ) = p(CL
k C

M
m )p(CR

p ) = p(CL
k )p(C

M
m CR

p ) = p(CM
m )p(CL

k C
R
p ) = p(CL

k )p(C
M
m )p(CR

p ) (25)

and also no-onspiray

p(aibjC
L
k C

M
m CR

p ) = p(aibj)p(C
L
k C

M
m CR

p ) = · · · = p(ai)p(bj)p(C
L
k )p(C

M
m )p(CR

p ) (26)

9



hold for any ombination of the indies. Let the net ontaining the events be loally ausal; for example

let

p(AiBj |aibjC
L
k C

M
m CR

p ) = p(Ai|aiC
L
k C

M
m )p(Bj |bjC

M
m CR

p ) = (pLi δ1kδ1m)(pRj δ1mδ1p) (27)

where

∑

i p
L
i =

∑

j p
R
j = 1. Now, the onditional probabilities are given as follows:

p(Ai|ai) =
∑

k,m

p(Ai|aiC
L
k C

M
m )p(CL

k C
M
m ) = pLi p(C

L
1 )p(C

M
1 ) (28)

p(Bj |bj) =
∑

m,p

p(Bj |bjC
M
m CR

p )p(CM
m CR

p ) = pRj p(C
M
1 )p(CR

1 ) (29)

p(AiBj |aibj) =
∑

k,m,p

p(AiBj |aibjC
L
k C

M
m CR

p )p(CL
k C

M
m CR

p )

=
∑

k,m,p

p(Ai|aiC
L
k C

M
m )p(Bj |bjC

M
m CR

p )p(CL
k )p(C

M
m )p(CR

p )

= pLi p
R
j p(C

L
1 )p(C

M
1 )p(CR

1 ) (30)

Thus, there is a onditional orrelation (23) between Ai and Bj whenever p(C
M
1 ) 6= 0 or 1.

Consequently, there is no ontradition between omplete spei�ation and no-onspiray even if both

are applied to the same events, namely the atomi events of the entire VC . The measurement hoies

an be free of the ommon auses even if the ausal past of the region ontaining them is ompletely

spei�ed. This independene does not abolish the onditional orrelation between the measurement

outomes: atomi events an be probabilistially irrelevant to the measurement hoies and at the same

time relevant to the measurement outomes. Moreover, the independene of the measurement hoies of

the atomi events does not mean that the former are not 'determined' (probabilistially) by the latter.

They are: the onditional probabilities p(aibj|CL
k C

M
m CR

p ) are set in a loal physial theory, even if they

are equal to p(aibj).
Thus, based on these two laims, I think, there is no need to replae 'omplete spei�ation' in Bell's

de�nition of loal ausality by 'su�ient spei�ation'.

5 Conlusions

The main laims of this paper were the following:

(i) The de�nition of Bell's notion of loal ausality presupposes a lear-ut framework in whih proba-

bilisti and spatiotemporal entities an be related. This goal an be met by introduing the notion

of a loal physial theory represented by an isotone net of algebras.

(ii) In a loal lassial theory the measurement outomes, measurement hoies and ommon ause an

be loalized in the spaetime suh that one an derive the Bell inequalities from loal ausality,

no-onspiray and independene.

(iii) Contrary to the laim of Seevink and U�nk, there is no need to weaken the requirement of omplete

spei�ation in the de�nition of loal ausality on the ground that it ontradits to no-onspiray.

Aknowledgements. This work has been supported by the Hungarian Sienti� Researh Fund OTKA

K-100715.
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Appendix A

First we prove equation (22) from loal ausality (11)-(14) and the omplete independene ondition

(15)-(18):

p(AiBj|aibjC
M
m C′M

n ) =
p(AiBjaibjC

M
m C′M

n )

p(aibjCM
m C′M

n )

=

∑

klpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klpq p(AiBjaibj |CL
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(aibj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(ai|bjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(11)−(14)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(15)−(18)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

∑

klpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
∑

pq p(bj |C
M
m C′M

n CR
p C′R

q CR
p )p(CR

p C′R
q )

)

=

(∑

kl p(Aiai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CR
p C′R

q )

)(

p(CM
m C′M

n )

p(CM
m C′M

n )

)

(15)−(18)
=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CM
m C′M

n CR
p C′R

q )
∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CM
m C′M

n CR
p C′R

q )

)

=

(∑

kl p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kl p(aiC
L
k C

′L
l CM

m C′M
n )

)(

∑

pq p(BjbjC
M
m C′M

n CR
p C′R

q )
∑

pq p(bjC
M
m C′M

n CR
p C′R

q )

)

=

(

p(AiaiC
M
m C′M

n )

p(aiCM
m C′M

n )

)(

p(BjbjC
M
m C′M

n )

p(bjCM
m C′M

n )

)

= p(Ai|aiC
M
m C′M

n )p(Bj |bjC
M
m C′M

n ) (31)

where the numbers over the equation signs refer to the equation used at that step.

The proof of (21), (20) and (19), respetively an be obtained from the above proof by simply omitting

ertain summations. For (21) just omit summation for l and r; for (20) omit summation for k and q; and

for (19) omit all four.
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Appendix B

Here we prove that (24) does not generally hold. The proof follows that in Appendix A, exept that here

there is an extra summation also for n, whih auses the trouble in the row below starting with a 6= sign:

p(AiBj|aibjC
M
m ) =

p(AiBjaibjC
M
m )

p(aibjCM
m )

=

∑

klnpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klnpq p(AiBjaibj |CL
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(aibj |C
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

=

∑

klnpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(ai|bjC
L
k C

′L
l CM

m C′M
n CR

p C′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(11)−(14)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

∑

klnpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C′R
q )

(15)−(18)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

∑

klnpq p(ai|C
L
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C′R
q )

=

∑

n

(

∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

∑

n

(

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

=

∑

n

(

∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

∑

n

(

∑

kl p(ai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(bj |C
M
m C′M

n CR
p C′R

q )p(CR
p C′R

q )
)

(

p(CM
m C′M

n )

p(CM
m C′M

n )

)

6=

(∑

kln p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kln p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

npq p(Bjbj |C
M
m C′M

n CR
p C′R

q )p(CM
m C′M

n )p(CR
p C′R

q )
∑

npq p(bj |C
M
m C′M

n CR
p C′R

q )p(CM
m C′M

n )p(CR
p C′R

q )

)

(15)−(18)
=

(∑

kln p(Aiai|C
L
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kln p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

npq p(Bjbj |CM
m C′M

n CR
p C′R

q )p(CL
k C

′L
l CM

m C′M
n )

∑

npq p(bj |C
M
m C′M

n CR
p C′R

q )p(CL
k C

′L
l CM

m C′M
n )

)

=

(∑

kln p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kln p(aiCL
k C

′L
l CM

m C′M
n )

)(

∑

npq p(BjbjC
M
m C′M

n CR
p C′R

q )
∑

npq p(bjC
M
m C′M

n CR
p C′R

q )

)

=

(

p(AiaiC
M
m )

p(aiCM
m )

)(

p(BjbjC
M
m )

p(bjCM
m )

)

= p(Ai|aiC
M
m )p(Bj |bjC

M
m ) (32)

where again the numbers over the equation signs refer to the equation used at that step.

Appendix C

Here we prove why in the derivation of the Clauser-Horne inequality

−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′)− p(Ai|aibj)− p(Bj |aibj) 6 0 (33)

one should use (24) instead of (22). The standard derivation goes as follows:

It is a simple arithmeti fat that for any α, α′, β, β′ ∈ [0, 1]:

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0 (34)
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Now let α, α′, β, β′
�rst be the onditional probabilities taken from (22):

α ≡ p(Ai|aiC
M
m C′M

n ) (35)

α′ ≡ p(Ai′ |ai′C
M
m C′M

n ) (36)

β ≡ p(Bj |bjC
M
m C′M

n ) (37)

β′ ≡ p(Bj′ |bj′C
M
m C′M

n ) (38)

Plugging (35)-(38) into (34) one obtains

−1 6 p(Ai|aiC
M
m C′M

n )p(Bj |bjC
M
m C′M

n ) + p(Ai|aiC
M
m C′M

n )p(Bj′ |bj′C
M
m C′M

n )

+p(Ai′ |ai′C
M
m C′M

n )p(Bj |bjC
M
m C′M

n )− p(Ai′ |ai′C
M
m C′M

n )p(Bj′ |bj′C
M
m C′M

n )

−p(Ai|aiC
M
m C′M

n )− p(Bj |bjC
M
m C′M

n ) 6 0 (39)

whih using (22) transforms into

−1 6 p(AiBj |aibjC
M
m C′M

n ) + p(AiBj′ |aibj′C
M
m C′M

n )

+p(Ai′Bj|ai′bjC
M
m C′M

n )− p(Ai′Bj′ |ai′bj′C
M
m C′M

n )

−p(Ai|aiC
M
m C′M

n )− p(Bj |bjC
M
m C′M

n ) 6 0 (40)

Finally, multiplying the above inequality by p(CM
m C′M

n ) and summing up for the indies m,n one obtains

−1 6
∑

mn

[

p(AiBj |aibjC
M
m C′M

n ) + p(AiBj′ |aibj′C
M
m C′M

n )

+p(Ai′Bj |ai′bjC
M
m C′M

n )− p(Ai′Bj′ |ai′bj′C
M
m C′M

n )

−p(Ai|aiC
M
m C′M

n )− p(Bj |bjC
M
m C′M

n )

]

p(CM
m C′M

n ) 6 0 (41)

whih is equivalent to (33) only if

p(aibjC
M
m C′M

n ) = p(aibj)p(C
M
m C′M

n ) (42)

were the ase, whih is not, sine C′M
n is not independent of ai and bj .

Now, starting the whole reasoning again with onditional probabilities taken from (24):

α ≡ p(Ai|aiC
M
m ) (43)

α′ ≡ p(Ai′ |ai′C
M
m ) (44)

β ≡ p(Bj |bjC
M
m ) (45)

β′ ≡ p(Bj′ |bj′C
M
m ) (46)

the derivation goes through sine instead of (42) one is to use

p(aibjC
M
m ) = p(aibj)p(C

M
m ) (47)

whih is one of the no-onspiray onditions (7)-(10). Thus one an use (24) in the derivation of the

Clauser-Horne inequality but not (22).
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