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Abstract. Jim Weatherall has suggested that the hole argument
of Earman and Norton (1987) is based on a misleading use of
mathematics. I argue on the contrary that Weatherall demands
an implausible restriction on how mathematics is used. The hole
argument, on the other hand, is in no new danger at all.

1. Introduction

Jim Weatherall has argued that interpreters of general relativity may
disregard Einstein’s hole argument as presented by Earman and Nor-
ton (1987). He begins with the following innocuous observation: when
we say two descriptions of the world are equivalent, we generally mean
that they share some relevant structure. Moreover, the relevant struc-
ture for many mathematical descriptions is natural and obvious. For
example, the category of sets is characterised by membership relations,
which are preserved by functions1. So, functions provide a natural
standard of set equivalence. The category of groups is characterised by
binary operations, which are preserved by group homomorphisms2. So,
group homomorphisms provide a natural notion of group equivalence.
Weatherall quite correctly observes that when considering questions of
equivalence, it is important not to conflate or otherwise mix up which
structures we take to be relevant.

Fine. But Weatherall goes on to suggest that, for any legitimate3

mathematical representation, isomorphic mathematical structures al-
ways represent the same physical situation. Here I beg to differ. When

Date: December 14, 2014. Email: b.w.roberts@lse.ac.uk.
1That is, functions have the property that a ∈ A only if f(a) ∈ f(A).
2Namely, if (R, ·) and (S, ◦) are groups, then ϕ : R → S is a homomorphism iff

ϕ(a · b) = ϕ(a) ◦ ϕ(b).
3I use ‘legitimate’ to stand in for the many positive terms that Weatherall uses

to describe representations satisfying his rule, including ‘adequate,’ ‘attentive,’
‘default,’ ‘mathematically natural,’ ‘philosophically satisfying,’ ‘reasonable,’ and
‘standard.’
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one is concerned with facts about the real world, it is the world that ul-
timately adjudicates whether two mathematical descriptions are equiv-
alent. This especially relevant for spacetime realism4 about the space-
time manifold. Realism brings with it its own notion of equivalence,
namely whether two unobservable descriptions represent the same real-
world situations. One may balk at the realist concept of equivalence,
claim that it is uninteresting, or otherwise to discuss it. But Weather-
all’s radical restriction on mathematical representation is no reason to
ignore it, and it is no reason to disregard the hole argument.

2. Warming up

2.1. Rotations of a vector. Weatherall begins with a warm-up ex-
ample that deals with abstract integers. Before reviewing it, let me
suggest some further warming up that makes use of a more concrete
structure, the rotations of the vector v ∈ R2 shown in Figure 1.

v

Rθv

Figure 1.

We all understand what it means to rotate this figure. No mathe-
matics is needed for that; we can just pick up the page and turn it.
But suppose we also wish to describe these rotations in mathematical
language. Writing v in Cartesian coordinates, we can define a group
of rotations using the set of matrices {Rθ : θ ∈ [0, 2π)} under the
operation of matrix multiplication, where,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Each Rθ rotates the vector v counterclockwise through the angle θ, and
satisfies RθRθ′ = Rθ+θ′ . The identity is given by the matrix R0 = I,
since IRθ = RθI = Rθ for all rotations Rθ. Thus we have a group
(Rθ, ·) that allows us to model and describe the rotations of the concrete
physical arrow above.

4By ‘realism’ I will mean the view that some unobservable proposition of a scien-
tific theory is approximately true, approximately refers, or some similar variation;
Kukla (1998) has helpfully coralled many species of realism.
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However, there are many ways to instantiate a rotation group. Let
me define a new binary operation ‘∗’ on the same matrices by the
relation

Rθ ∗Rθ′ := Rθ+θ′−π.

The identity element for the new group (Rθ, ∗) is not the identity
matrix, but rather Rπ, since Rπ ∗ Rθ = Rθ ∗ Rπ = Rθ for all rotations
Rθ.

There is an isomorphism from (Rθ, ∗) to (Rθ, ·) given by ρ(Rθ) =
Rθ−π. We thus have two isomorphic groups defined on the same under-
lying set of rotation matrices. Does this imply that both are equally
correct ways to describe the physical rotations of the vector? Or that
the matrices I and Rπ are equally correct representatives of the iden-
tity rotation? Of course not: the first description (with the standard
identity element I) is clearly correct, and the second description is not.
We can say why this is without referring to any special mathemati-
cal objects: we began with a good non-mathematical understanding
of what it means to rotate the vector v, and the second group fails to
adequately capture that understanding.

Surprisingly, Weatherall’s dictum prohibits us from making any such
judgement in this language, because the two descriptions of the physical
rotations are given by isomorphic mathematical models. According
to Weatherall, ‘isomorphic mathematical models in physics should be
taken to have the same representational capacities’ (Weatherall 2014,
p.4). Thus one must seemingly conclude that both descriptions are
equally good models of the physical rotations. This is absurd. When
representing the world in terms of groups, as with many mathematical
structures, there may be reasons external to the formalism that lead
us to distinguish between isomorphic models. To prohibit any such
distinction would be an implausible restriction on how mathematics is
used.

One might be tempted to try to save Weatherall’s dictum by adding
more mathematical structure. For example, instead of describing the
rotations of the arrow using the group G = (Rθ, ·), one could describe
them using a matrix representation, which is a pair (G, ρ) with ρ : G→
GL a homomorphism from G into the ‘General Linear’ group GL of
2x2 matrices over the real numbers. The first group G = (Rθ, ·) can
be given a matrix representation using the identity mapping ι : Rθ →
Rθ. The second group G∗ = (Rθ, ∗) requires instead the mapping
ρ(Rθ) = Rθ−π. We may now observe that as matrix representations of
the abstract rotation group SO(2), the structures (G, ι) and (G∗, ρ) are
the same. They both take the group identity to the matrix identity I.
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They both take the order-2 group element to Rπ. And so on. On this
more elaborate description of rotations, we have just one representation
of the rotation group, and the previous difficulty does not arise.

I do not deny that a matrix representation theory provides one way
to describe physical rotations. But I see no sense in which this helps
Weatherall’s restriction on representation hold water. At the risk of
stating the obvious: the meaning of the mathematically-precise phrase
‘matrix representation’ should not be conflated with the common lan-
guage use of ‘representation’ to mean a model or description of a phys-
ical situation. Weatherall requires a restriction on the latter in pre-
suming that isomorphic models must represent the same situation. My
response in this section is that, on the contrary, factors outside the
formalism may determine that two isomorphic groups represent do not
describe the same situation. This is an example of the general point
I would like to argue for: when mathematical structures represent a
physical situation, it is the physical situation itself that must ultimately
determine what is equivalent and what is not.

2.2. Weatherall’s groups of integers. A similar analysis is available
in Weatherall’s own warm-up exercise. Here we consider two more
abstract structures, the groups of integers, (Z,+) and (Z, +̃). The
binary operation ‘+’ of the first group is normal arithmetic addition,
so that 3 + 5 = 8, etc. The binary operation ‘+̃’ of the second group
is arithmetic addition followed by subtraction of 1, so that in general
n +̃m = n+m− 1, and in particular 3 +̃ 5 = 7, etc.

Weatherall asks whether there is an ambiguity with regard to which
number is the identity in the group of integers. The identity element
of the first group (Z,+) is 0, since 0 + n = n + 0 = 0 for all n ∈ Z.
The identity of the second group (Z, +̃) is 1, since 1 +̃ n = n +̃ 1 = n
for all n ∈ Z. He concludes, quite correctly, that there is no ambiguity
when ‘the identity’ is interpreted as either the group identity or the set
element 0. If ‘identity’ means ‘group identity,’ then the term is only
meaningful relative to a chosen group. So, 0 is the identity for (Z,+)
and 1 is the identity for (Z, +̃). On the other hand, if one means ‘the
set element n’ where (say) n = 0, then again there is no ambiguity in
specifying this object. Thus, each concept of identity conferred by the
formalism provides an unambiguous way to represent the numbers.

All this is perfectly agreeable. But the set theory and group theory
are not the only tools available for distinguishing numbers. One partic-
ularly relevant alternative arises when one presumes a certain kind of
realism about numbers (more commonly known as a platonism). For
the platonist, a number like (say) zero may have a mind-independent
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existence, which provides the definitive criterion for whether or not a
given object n can serve as its representative. The (platonist) realist
standard of equivalence is reality, not group or set structure.

I do not wish to advocate mathematical platonism. The point I am
making is that if one is a realist about some objects, then that realism
provides an independent sense in which two such objects are or or not
the same. For the realist about numbers there is a well-defined question
of whether the identity of the group (Z,+) or the identity of the group
(Z, +̃) corresponds to the ‘mind-independent’ number 0. Some may
not like the question, but the point is that it is a meaningful question,
and it is the kind of question that comes up when one takes a formalism
to be describing mind-independent reality. The fact that there is no
ambiguity about the group identity of each is irrelevant.

Let me point out an alternative argument using Weatherall’s exam-
ple, which I think better sets the stage for the hole argument5. It is an
argument against the plausibility of realism about the integers, which
runs as follows.

(1) Suppose for reductio that the integers Z have a mind-independent
existence, and as a matter of mind-independent fact form a
group isomorphic to (Z,+), and with additive identity 0.

(2) Define the groups of integers (Z,+) and (Z, +̃) as above, with
additive identities 0 and 1, respectively.

(3) Observe that the group theoretic structure of these groups alone
does not determine which (if either) of 0 or 1 is the true iden-
tity. Thus, realism about integers violates the principle (which
someone might call ‘Group Equivalence’6) that every group iso-
morphism relates equivalent metaphysical states of affairs.

(4) This failure may be too high a price to pay for a metaphysical
view about numbers. Thus, realism about integers is implausi-
ble.

This argument is a much closer analogue of the hole argument. Of
course, the final step here is questionable; I do not think the failure of
‘Group Equivalence’ is a convincing refutation of realism about num-
bers. But the analogous failure in the hole argument is much more dra-
matic, corresponding to a radical failure of a certain kind of Laplacian

5This argument is akin to a classic argument of Benacerraf (1965), and related
ones discussed by (Kitcher 1984, Ch.6) and Shapiro (2000, Ch.10).

6As the name suggests, Group Equivalence is akin to Leibniz Equivalence in the
discussion of the Hole Argument.
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determinism. That is a somewhat more interesting argument against
realism7. So, let me now turn to that argument.

3. The hole argument

What Weatherall calls the ‘mathematical argument’ appearing in the
hole argument has the exact same character as the warm-up examples
above. We begin with a spacetime (M, gab). Following Earman and
Norton (1987) we construct a new spacetime (M, g̃ab) that is related to
the first by a non-trivial isometry. In particular, the new spacetime is
constructed so as to be the identity function outside the open region
O ⊂M (the ‘hole’), and non-identical inside the region. And so, if one
is a realist about the bare spacetime points (a view that Earman and
Norton dub manifold substantivalism), then one might ask: isn’t there
an ambiguity as to which is the factual value of the metric at a given
spacetime point, g or g̃?

If so, then this is a very serious ambiguity indeed. For it means that
general relativity does not determine all the facts in the ‘hole’ region O
on the basis of facts outside that region, and thus appears to allow for
rampant indeterminim, which goes well beyond the usual difficulties
with the Cauchy problem in General Relativity8. This, Norton and
Earman famously argued, may be a high price to pay for a metaphysical
view like substantivalism.

Weatherall answers that the problem lies not with manifold sub-
stantivalism, but with an illegitimate use of mathematics to repre-
sent the physical world. General relativity represents the world using
Lorentzian manifolds. As Lorentzian manifolds, (M, gab) and (M, g̃ab)
are isomorphic. Weatherall’s dictum now states that ‘the fact that
such an isometry exists provides the only sense in which the two space-
times are empirically equivalent’ (Weatherall 2014, p.11). Therefore,
the two spacetimes should be considered equivalent from any interpre-
tive perspective as well, manifold-substantivalism included. Since the
formalism of general relativity suggests no further way to distinguish
these models, Weatherall concludes that ‘[o]ne way or the other, the
Hole Argument seems to be blocked’ (Weatherall 2014, p.13).

However, many features external to the formalism of general rela-
tivity may still determine whether the physical situations represented

7Nethertheless, it may be eschewed by one or more of the many creative re-
sponses to the hole argument. For example, Butterfield (1989) exhibits a sense of
determinism that can still be saved.

8John Earman charmingly calls the latter difficulties a ‘dirty open secret’ (Ear-
man 1995, §3.8).
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by (M, gab) and (M, g̃ab) are the same. Most importantly, the physical
world is what ultimately allows one to adjudicate physical equivalence,
just as the physical rotations allowed us to adjudicate the equivalence
of two rotation groups. To miss this possibility is to miss the whole
point of the substantivalism debate.

If substantivalism is true, then spacetime points are real. So, mani-
fold substantivalism implies that there is a matter of fact about what
the metrical value of a spacetime point is, or whether a star is passing
through that point, or any number of other properties that are left
undetermined by the hole transformation. For the substantivalist, it
is neither the set structure nor the metrical structure that determines
the identity of spacetime points, but rather states of affairs in the real
world.

Leibniz himself rejected substantivalism because it requires the in-
troduction of vague structures that go beyond the standard formalism
of physics. Weatherall is sympathetic with this point.

[T]he would-be substantivalist, in order to reply effec-
tively to the Hole Argument, needs to stipulate what
the additional structure might be and why we should
think it matters. And it is difficult to see how this could
be done in a mathematically natural or philosophically
satisfying way. (Weatherall 2014, p.21)

I agree that a good reason to reject manifold substantivalism is that it
is poorly defined and physically unmotivated. But I do not agree that
we should reject all representations which do not respect the standard
of equivalence conferred by general relativity.

4. The danger of a priori physics

Let me now point out another sense in which, as a matter of good
physical practice, empirical facts may bring us to distinguish between
isometric spacetimes. Of course, Manifold substantivalism may not
provide the sort of empirical facts that typically motivate such a dis-
tinction. But this is no reason to dismiss the physical practice in its
entirety.

Mathematical models generally provide incomplete descriptions of
the world. This includes models of spacetime that use the mathemat-
ical tools of classical general relativity: when we represent the world
using one spacetime or another, we generally recognise that it is just an
approximation of the truth. We should thus expect our understanding
of the empirical world to occasionally force us to adjust the mathemat-
ical structures appearing in our mathematical representations.
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Figure 2.

I−

I +

Weatherall’s proposal asks us to do just the opposite, by taking ‘legit-
imate’ (or ‘natural’ or ‘default’) representations in a chosen formalism
to force us to adjust our understanding of the empirical world:

For the purposes of the present paper, the form of guid-
ance I require is just this: the default sense of ‘same-
ness’ or ‘equivalence’ of mathematical models in physics
should be the sense of equivalence given by the math-
ematics used in formulating those models. (Weatherall
2014, p.3)

His position is that he ‘will not defend’ such constraints, preferring to
quietly presume them in order to analyse the hole argument.

This is a dangerous path, and one that can quickly lead to a priori
physics. The real world includes all sorts of structures that are not cap-
tured by the language of Lorentzian manifolds, whether they be quan-
tum fields, strings, loops, causal sets, or any number of other things.
Given this incompleteness of representation, it is strange to say that an
isometry must necessarily preserve all physical situations represented
by a Lorentzian manifold. Consider the Lorentzian manifold describ-
ing an evaporating black hole, depicted in the conformal diagram of
Figure 2. The evolution of a quantum field entering and leaving the
black hole can be described in different ways. For example, some have
taken it to be unitary, and some have taken it to be non-unitary evolu-
tion, even while adopting the same classical spacetime. But this should
not dissuade anyone from the practice of representing spacetime using
a Lorentzian manifold. One must simply recognise that isomorphic
Lorentzian manifolds (in this case, one and the same Lorentzian man-
ifold!) may still represent two completely different physical situations.
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In short: the world generically contains distinct situations that our
mathematical representations do not distinguish. One cannot simply
prohibit this, on pain of doing a priori physics. I am quite sure that
this is not Weatherall’s intention, but it is an apparent consequence of
his restriction on representation.

Let me emphasise that what I am defending in this section is the
possibility of distinguishing isometric spacetimes for the purpose of
making progress in physics. I am not interested in defending manifold
substantivalism, which may or may not serve any such noble purpose.
Semi-classical and quantum gravity may provide some interesting mo-
tivation for a distinction between two isometric spacetimes. So, it is
fair to ask that manifold substantivalism find some similarly compelling
motivation. It is also reasonable to demand that such distinctions find
their ultimate motivation in empirical facts, or that they avoid the
price of ‘radical local indeterminism’ identified by Earman and Norton
(1987). But it is not reasonable to throw out a perfectly good math-
ematical representation just because the world may make distinctions
that the mathematical formalism does not.

5. An alternative brand of quietism

There is gentler brand of quietism in the neighborhood of Weather-
all’s view that I think is worth clarifying. It is an attitude that I myself
adopt from time to time, and provides some guidance on how to re-
act to the Hole Argument. The main difference is that this view will
be presented as a mere attitude, as opposed to a rule on how we are
allowed to use mathematical representations. I know of no argument
that establishes the present perspective. Some simply take comfort
in the gentle, Buddhist-like perspective on realism that this attitude
provides.

The attitude begins by stating propositions that we have good evi-
dence to believe, in the normal language of science. For example, we
may all agree that the region near the galactic centre has the structure
of Kerr spacetime. But at this point, the attitude refuses all further
interpretive claims. Questions like ‘Is the manifold M is real?’ are
passed over silently. In their stead one adopts an attitude of quietism
as far as the propositions of realism about unobservables are concerned.

I take this to capture a sense of what Arthur Fine has called the
Natural Ontological Attitude (NOA), which he summarizes as the rec-
ommendation to ‘try to take science on its own terms, and try not to
read things into science’ (Fine 1986, p.149). This perspective can be
helpful, and indeed I often find myself joining its practitioners in the
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monastery for a little peace of mind. However, there is no use pretend-
ing that this view is established by any rigorous argument or rule, as
Fine is quick to point out:

It does not comprise a doctrine, nor does it set a philo-
sophical agenda. At most it orients us somewhat on
how to pursue problems of interest, promoting some is-
sues relative to others just because they more clearly
connect with science itself. Such a redirection is exactly
what we want and expect from an attitude, which is all
that NOA advertises itself as being. (Fine 1986, p.10).

The NOA attitude toward manifold substantivalism, I take it, is an
exercise in the discipline of silence.

However, the hole argument is not necessarily a case where this at-
titude is appropriate. The hole argument itself promotes a useful con-
nection between the realism debate and philosophy of science, in es-
tablishing a link between manifold substantivalism and indeterminism.
It has also promoted useful connections between the realism debate
and modern physics in helping to motivate a relationist perspective
on spacetime in quantum gravity9. Clearly, with too much quietism
you may miss out on all the fun. But a healthy dose of it may still
sometimes be helpful in the gentle form that I have described here.

6. Conclusion

Formal equivalence relations are only meaningful once a standard of
equivalence has been identified. But it would be a mistake to suggest
that the only equivalence relations are those provided by the standard
formalism of general relativity. The ultimate standard of equivalence is
the one conferred by the real world. And it is this standard that is at
issue in the hole argument, and any other debate concerning scientific
realism. The hole argument has not been ‘blocked’ by Weatherall’s
discussion, and previous commentators have not failed to ‘recognize the
mathematical significance of an isomorphism’(Weatherall 2014, p.13
fn.20). It simply concerns matters of realism that are precluded from
Weatherall’s discussion by fiat.

The danger in the radical restriction that Weatherall suggests is not
only that it forgoes any question of realism. Along the way, it forgoes
the practice of using mathematical representations that are incomplete.
Earman and Norton (1987) argued that as a metaphysical doctrine,
manifold substantivalism may come at too high a price. The price of

9For example, see Isham (1993), Belot and Earman (1999), and Rovelli (2004).
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Weatherall’s doctrine for applied mathematics, it appears, may be even
higher.
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