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Abstract

Why do systems prepared in a non-equilibrium state approach, and eventu-
ally reach, equilibrium? An important contemporary version of the Boltz-
mannian approach to statistical mechanics answers this question by an ap-
peal to the notion of typicality. The problem with this approach is that
it comes in different versions, which are, however, not recognised as such,
much less clearly distinguished, and we often find different arguments pur-
sued side by side. The aim of this paper is to disentangle different versions
of typicality-based explanations of thermodynamic behaviour and evaluate
their respective success. My conclusion will be that the boldest version fails
for technical reasons, while more prudent versions leave unanswered essential
questions.
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1 Introduction

A gas that is confined to the left half of a container uniformly spreads over
the entire available space as soon as the confining wall is removed. Yet we
never observe the reverse process of a uniformly distributed gas suddenly
concentrating in the left half of the container. Such irreversible behaviour
is characteristic of many processes and is enshrined in the so-called Second
Law of thermodynamics, which, roughly, states that entropy cannot decrease
in isolated systems. Statistical mechanics (SM) aims to explain irreversible
behaviour in terms of the dynamical laws governing the individual molecules
of which the gas is made up. What is it about molecules and their motions
that leads them to spread out when the wall is removed? And crucially, what
accounts for the fact that the reverse process never happens?

An important answer to these questions was suggested by Boltzmann
(1877), and variants of it are currently regarded by many as the most promis-
ing option among the innumerable of approaches to statistical mechanics.
An important contemporary version of the Boltzmannian approach, origi-
nating in the work of Joel Lebowitz (1993a, 1993b), differs from traditional
approaches in that it explains irreversibility in terms of the notion of ‘typi-
cality’. Intuitively, something is typical if it happens in the ‘vast majority’
of cases: typical lottery tickets are blanks, typical olympic athletes are well
trained, and in a typical series of a thousand coin tosses the ratio of the
number of heads and the number of tails is approximately one. The leading
idea of a typicality-based approach to SM is to show that thermodynamic
behaviour is typical, that is, that the entropy in a system typically increases.

This approach has grown increasingly popular in recent years and has
been advocated by a number of authors (references will be given below).
The problem with understanding this approach is that it comes in differ-
ent versions, which are, however, not recognised as such, much less clearly
distinguished. We often find different arguments pursued side by side and
eventually we end up not having a clear picture of the claims being made.
The aim of this paper is to disentangle different versions of typicality-based
explanations of thermodynamic behaviour and evaluate their respective suc-
cess. My somewhat sober conclusion will be that the boldest version fails
for technical reasons (having to do with the mathematical structure of the
theory), while more prudent versions leave unanswered essential questions.

Before delving into the discussion, two disclaimers are in order. First, this
paper only deals with the role typicality plays in explaining the approach to
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equilibrium; what typicality has to offer in response to other problems in
SM, in particular to the question of how to reconcile the Gibbsian with the
Boltzmannian approach, needs to be discussed elsewhere. Second, typicality
has also been invoked in other contexts, for instance in Bohmian mechanics
(Dürr et al. 1992; Dürr 2001; Galvan 2006) and in quantum SM (Goldstein
et al. 2006). The use of typicality in these theories is beyond the scope of
this paper, which is concerned only with classical Boltzmannian SM.

2 Classical Boltzmannian SM

Consider a system consisting of n classical particles with three degrees of
freedom each. The state of this system is specified by a point x, also referred
to as the system’s microstate, in its 6n-dimensional phase space Γ, which
is endowed with the ‘standard’ Lebesgue measure µ

L
.1 The dynamics of

the system is governed by Hamilton’s equations, which define a measure
preserving flow φt on Γ, meaning that for all times t, φt : Γ → Γ is a one-to-
one mapping such that µ(R) = µ(φt(R)) for all regions R ⊆ Γ. The system’s
microstate time t0 (its ‘initial condition’), x(t0), evolves into x(t) = φt(x(t0))
at time t. In a Hamiltonian system energy is conserved and hence the motion
of the system is confined to the 6n− 1 dimensional energy hypersurface ΓE.
The measure µL can be restricted to ΓE, which induces a natural invariant
measure µ on ΓE.

To each macrostate Mi, i = 1, ...,m (where m is finite), of the system,
which is characterised by the values of macroscopic parameters such as vol-
ume, local pressure and local temperature, there corresponds a set of so-called
micro-regions ΓMi

consisting of all x ∈ Γ for which the macroscopic variables
assume the values characteristic for Mi. The ΓMi

together form a partition
of ΓE, meaning that they do not overlap and jointly cover Γ: ΓMi

∩ΓMj
= �

for all i 6= j and i, j = 1, ...,m, and ΓM1 ∪ ...∪ ΓMm = ΓE, where ‘∪’, ‘∩’ and
‘�’ denote set theoretic union, intersection and the empty set respectively.

The Boltzmann entropy of a macrostate Mi is defined as S
B
(Mi) :=

k
B

log[µ(ΓMi
)], where k

B
is the so-called Boltzmann constant. Given this, we

define the Boltzmann entropy of a system at time t, S
B
(t), as the entropy of

the system’s macrostate at t: S
B
(t) := S

B
(Mx(t)), where x(t) is the system’s

1For compact presentations of Boltzmann’s account see Goldstein (2001), Goldstein
and Lebowitz (2004), Lebowitz (1993a, 1993b, 1999).
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microstate at t and Mx(t) is the macrostate corresponding to x(t) (i.e. Mx(t)

is that Mi for which it is the case that x(t) ∈ ΓMi
at t).

The idea now is that the behaviour of S
B
(t) mirror the behaviour of the

thermodynamic entropy S
TD

; that is, it should increase with time t and reach
its maximum at equilibrium. Explaining why and how this happens is the
central question the Boltzmann approach needs to answer.2

Explaining why entropy increases makes sense only if it is far below its
equilibrium value to begin with. That this is the case is the subject matter
of the so-called past hypothesis, the postulate that the system starts off in
a low entropy macro-condition, the ‘past state’. Depending on one’s stance
on reductionism one either takes, with the grand majority of Boltzmannians,
the past state to be the Big Bang and the system under investigation to be
the entire universe, or, in keeping with the spirit of laboratory physics, one
regards states brought about in experimental set-ups (such as the gas being
confined to the left half of the container) as the past state and takes the
relevant system to be the gas in the box. How this issue is resolved is an
important question in its own right, but it is inconsequential for my discussion
of typicality.3 All that is assumed in what follows is that the system under
investigation (whatever it is) be governed by classical Hamiltonian mechanics,
isolated from its environment and come into being in a low entropy state. For
this reason I adopt a neutral language and from now talk about ‘systems’,
rather than ’the universe’, and the ‘past state’, rather than the ‘Big Bang’.

Let Mp and Meq be the past and the equilibrium macrostate, and ΓMp

and ΓMeq the respective micro regions (for ease of notation later on I assume,
without loss of generality, that macrostates are labelled such that Mp = M1

and Meq = Mm). The explanandum then is this: given that the system’s
macrostate at t0 is Mp (i.e. given that the system’s microstate x(t0) lies
within ΓMp at t0), why does the Boltzmann entropy increase as time unfolds
and why does the system eventually reach equilibrium (i.e. why does the
system’s microstate x(t) eventually wind up in ΓMeq)?

The standard Boltzmannian response is to introduce a probability mea-
sure over the Mi and to argue that these probabilities come out such that

2This ‘mirroring’ need not be perfect and occasional deviations of the Boltzmann en-
tropy from its thermodynamic counterpart are no cause for concern (Callender 1999; 2001).

3If one takes the past state to be the state at the beginning of the universe, there is the
further question of whether or not one needs to explain why the world came into being in
such a special state. For opposite views on that matter see the contributions of Callender
and Price to Hitchcock (2004).
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the system is, in one way or another, overwhelmingly likely to evolve in such
a way that entropy increases and it eventually reaches Meq (see Frigg (2008,
Sec. 2) for a discussion of this approach). The main problem with this re-
sponse is that at some point it inevitably has to invoke ergodicity, a notion
which is notoriously beset with problems (Earman & Rédei 1996). Typicality
approaches promise to eschew such commitments and provide an explanation
of the approach to equilibrium free of unmanageable notions like ergodicity.

3 Typicality and the Approach to Equilib-

rium

Consider an element e of a set Σ. Typicality is a relational property of
e, which e posses with respect to Σ, a property P and a measure ν, often
referred to as ‘tyicality measure’.4 Roughly speaking, e is typical if most
members of Σ have property P and e is one of them. More precisely, let Π
be the subset of Σ consisting of all elements that have property P . Then the
element e is typical iff e ∈ Π and ν

Σ
(Π) := ν(Π)/ν(Σ) ≥ 1 − ε, where ε is

a finite but small positive real number; ν
Σ
( · ) is referred to as the ‘measure

conditional on Σ’, or simply ‘conditional measure’.5 Derivatively, one can
then refer to Π as the ‘typical set (with respect to Σ and ν)’ and to those
elements that possess property P (i.e. the members of Π) as ‘typical elements
(with respect to Σ, P , and ν)’. Conversely, an element e is atypical iff it
belongs to the complement of Π, Ω := Σ \ Π, in which case we refer to Ω as
the ‘atypical set’ and to its members as ‘atypical elements’. For instance the
number π is typical with respect to the interval [0, 1], the property ‘not being
specifiable by a finite number of digits’ and the usual Lebesgue measure on
the real numbers because it is a theorem of number theory that the set of all

4Tyicality measures often are, but need not be, probability measures (Zangh̀ı 2005,
188).

5This definition of typicality is adapted from Dürr (1998, Sec. 2), Lavis (2005, 258),
Zangh̀ı (2005, 185), and Volchan (2007, 805). Strictly speaking one should refer to this
notion as ‘ε-typicality’ because the definition depends on the choice of ε and elements that
are typical with respect to one choice of ε need not be typical with respect to another.
However, nothing in what follows depends on a particular choice of ε and so there is no
need to make this dependence explicit. Furthermore, there is an alternative definition of
typicality which is stricter than the one adopted here in that it requires ν(Π)/ν(Σ) = 1.
This definition is unsuitable in the present context because it classifies as atypical certain
elements that, from a physics point of view, clearly are typical.
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numbers that have this property has measure one. Similarly, numbers in the
interval [1/2, 1/2 + ε/2] are atypical in [0, 1] because [0, 1] \ [1/2, 1/2 + ε/2]
has Lebesgue measure greater than 1− ε.

The element of interest in SM is a microstate x. Different approaches
to SM disagree about the choice of the set Σ and about the selection of a
relevant property P ; they all agree that the typicality measure is the Lebesgue
measure µ (I discuss this assumption in the next section). In this section I
show that typicality is used in (at least) three different ways to explain why
a system like a gas approaches equilibrium and argue that none of them is
successful.

Before discussing these approaches an important technical result needs
to be stated. Under certain circumstances (I come back to these in Section
4) it is the case that ΓMeq is the largest of all ΓMi

(relative to the Lebesgue
measure µ); in fact, for large n it is vastly larger than the area of all other
regions (Ehrenfest & Ehrenfest 1912, 30). Numerical considerations show
that the ratio µ(ΓMeq)/µ(ΓMi

), where Mi is a ‘standard’ non-equilibrium
macrostate (e.g. one of the kind in which the gas is confined to the left half
of the container), is of the magnitude of 10n (Goldstein 2001, 43; Penrose
1989, 403). For want of a better term I refer to this matter of fact as the
‘dominance of the equilibrium macrostate’.

This dominance is then often glossed as implying (or being equivalent to
the fact) that for large n, ΓE is almost entirely taken up by equilibrium mi-
crostates; in other words, it is glossed as the fact that equilibrium microstates
are typical with respect to ΓE and the Lebesgue measure µ (Bricmont 1995,
146; Goldstein 2001, 43; Zangh̀ı 2005, 191, 196). As we shall see in Section
4, gloss is not generally true. However, for the sake of argument I assume
throughout this section that we are dealing only with systems for which this
gloss is correct.

Account 1. A first account of why systems behave thermodynamically is
suggested by Goldstein (2001) and explains this fact in terms of the domi-
nance of the equilibrium macrostate:

‘[ΓE] consists almost entirely of phase points in the equilibrium
macrostate [ΓMeq ], with ridiculously few exceptions whose total-

ity has volume of order 10−1020
relative to that of [ΓE]. For a

non-equilibrium phase point [x] of energy E, the Hamiltonian dy-
namics governing the motion [x(t)] would have to be ridiculously
special to avoid reasonably quickly carrying [x(t)] into [ΓMeq ] and

7



keeping it there for an extremely long time – unless, of course,
[x] itself were ridiculously special.’ (Goldstein 2001, 43-44)6

Some pages further down he summarises his view as follows:

‘Suppose a system, e.g. a gas in a box, is in a state of low entropy
at some time. Why should its entropy tend to be larger at a later
time? The reason is basically that states of large entropy cor-
respond to regions in phase space of enormously greater volume
than those of lower entropy.’ (Goldstein 2001, 49).

These passages allow for two readings. On the first – and more obvious –
reading, Goldstein suggests that a system approaches equilibrium simply be-
cause the overwhelming majority of states in ΓE are equilibrium microstates;
in other words, it approaches equilibrium simply because equilibrium mi-
crostates are typical and non-equilibrium microstates are atypical (with re-
spect to ΓE and µ). This also seems to be Zangh̀ı’s view when he writes
that

‘reaching the equilibrium distribution in the course of the tem-
poral evolution of a system is inevitable due to the fact that the
overwhelming majority of microstates in the phase space have
this distribution; a fact often not understood by the critics of
Boltzmann [...]’ (Zangh̀ı 2005, 196; my translation)

This point of view contrasts with one that explains the approach to equi-
librium by appeal to specific dynamical properties such as ergodicity or mix-
ing. Goldstein dismisses the view that either of these properties could play
any role in the foundation of SM as ‘thoroughly misguided’ (2001, 45):7

‘Boltzmann’s key insight was that, given the energy of a system,
the overwhelming majority of its phase points on the correspond-
ing energy surface are equilibrium points, all of which look macro-
scopically more or less the same. This means that the value of any

6Square brackets indicate that Goldstein’s notation has been replaced by the notion
used in this paper. I will use this convention throughout.

7Albert takes a similar stance and dismisses approaches to the foundations of SM that
appeal to ergodicity as ‘sheer madness’ (2000, 70) and ergodic theory as an enterprise
that has ‘produced beautiful mathematics’ but is ultimately, if we are interested in the
foundation of SM, ‘nothing more nor less [...] than a waste of time’ (ibid.).
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thermodynamic quantity is, to all intents and purposes, constant
on the energy surface, and averaging over the energy surface will
thus reproduce that constant value, regardless of whether or not
the system is ergodic.’ (Goldstein 2001, 45)

This criticism is not specific to ergodicity and could just as well be lev-
elled against any other dynamical property that a system could posses. This
suggests that dynamical considerations are regarded as irrelevant for an ex-
planation of the approach to equilibrium and a system eventually reaches
equilibrium just because equilibrium conditions are typical.

This is not so. In general there is no reason to assume that points in an
atypical set have to evolve into a typical set; typical states do not per se ‘at-
tract’ atypical states. Uffink (2007, 979-980) provides the following example.
Consider a trajectory x(t), i.e. the set {x(t) = φt(x(t0)) | t ∈ [t0,∞)}, a set
of measure zero in ΓE. Its complement, the set ΓE \x(t) of points not laying
on x(t), has measure one. Hence the points on x(t) are atypical while the
ones not on x(t) are typical (with respect to ΓE, µ, and the property ‘being
on x(t)’). But from this we cannot conclude that a point on x(t) eventually
has to move away from x(t) and end up in Γ \ x(t); in fact the uniqueness
theorem for solutions tells us that it does not (for a discussion of uniqueness
theorems see Arnold (2006)). The moral is that non-equilibrium states do
not evolve into equilibrium states simply because there are overwhelmingly
more of the latter than of the former, i.e. because the former are atypical
and the latter are typical. It does not somehow lie in the ‘nature’ of atypical
states to evolve into typical ones.

One might reply that this example does not fit the mould because the
claim is not that any typical set is such that trajectories having atypical
initial conditions eventually wind up in the typical set; the claim rather is
that this is a special feature of the set that is typical with respect to the
property of being an equilibrium state.

But why should this be so? Equilibrium is defined solely in terms of
macroscopic quantities and without any reference to the system’s dynamics.
Why, then, should it be the case that the micro-dynamics is such that it
carries atypical points into the typical set? The fact that the there are many
more typical than atypical points does not in any way imply that the latter
have to evolve towards the former. In other words, if a system is in an
atypical microstate (which it is by the Past Hypothesis), it does not evolve
into an equilibrium microstate just because the latter are typical. Whether
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or not this happens depends on the dynamics of the system, and whether the
dynamics is of the right kind is a question that cannot be answered by appeal
to measure-theoretic arguments about the system’s macrostate structure.

Account 2. If a given non-equilibrium microstate eventually evolves into
an equilibrium microstate this happens due to the dynamics of the system,
which is determined by equations of motion and the system’s Hamiltonian.
Hence an account that disregards dynamical consideration and tries to ex-
plain the approach to equilibrium solely by appeal to considerations having
to do with the measures of macrostates is doomed to failure. So the question
remains: what dynamical conditions does the system have to satisfy for it to
approach equilibrium? On the second reading of the first of the above quo-
tations, Goldstein offers at least the beginning of an answer to exactly this
question when he restricts his claim that systems reach equilibrium quickly
to a dynamics that is not ‘ridiculously special’ and to initial conditions that
are not ‘ridiculously special’ either. This clearly is a condition on the dy-
namics of the system, albeit not a very informative one because Goldstein
does not tell us what he means by ‘ridiculously special’. The only indica-
tion of what non-ridiculously-specialness could consist in is contained in the
following remark:

‘The dynamics of the system prefers a given equilibrium point
neither more nor less than it prefers any other given phase point,
even a specific far-from equilibrium phase point, corresponding
say to the leftmost snapshot.’ (Goldstein 2001, 42)

Stripped of its anthropomorphisms, this passage might be read as saying
that sooner or later x(t) visits every point in ΓE, which is just Boltzmann’s
original definition of ergodicity (see Sklar 1993, 160). However, as is well
known, there are no trajectories that satisfy this condition (in phase spaces
of more than one dimension). An obvious way to fix the problem would be
to substitute the modern definition of ergodicity (roughly that the system’s
state visits every subset of finite measure at some point and spends an amount
of time in it that is proportional to the subset’s volume) for Boltzmann’s.
However, given Goldstein’s polemic against ergodicity this can hardly be the
dynamical condition that he envisages.

So the crucial question is still unanswered: what are the properties of
the dynamics of a system that exhibits the right kind of entropy increasing
behaviour? Surprisingly, this question has hardly attracted any attention so
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far; in fact, I am aware of only two proposed answers. The first is due to
Bricmont, who tentatively puts forward the suggestion

‘that some form of mixing is important for the approach to equi-
librium to take place (after all, for the harmonic oscillator we have
neither approach to equilibrium nor any form of mixing), but only
in some kind of reduced phase space (R2 here [i.e. in the exam-
ple of a system of N uncoupled anharmonic oscillators of identi-
cal mass]), determined by the macroscopic variables.’ (Bricmont
2001, 16)

Bricmont himself is clear that this is only a ‘suggestion’ that he does ‘not
know how to formulate precisely’ (ibid.), and that it is still an open question
whether, and if so how, this suggestion can be generalised to yield a general
condition that would do the work that ergodicity (with respect to the entire
phase space) was supposed to in the orthodox approach to SM.

The second suggestion departs from Lavis’ (2008, Sec. 2) observation that
the Kac ring model, which, as is well known, behaves theormodynamically
while failing to be ergodic (see also Bricmont 2001, 10-14), in fact has an
ergodic decomposition. This suggests that having such a decomposition plays
a part in explaining the approach to equilibrium. Again, the difficulty is that
this observation is made in the context of a particular example and it is not
at present clear whether, and if so how, it could be generalised to yield a
general necessary condition for the approach to equilibrium to take place.

These two suggestions point in the right direction. The question is
whether they can be given a precise and general formulation, and whether
it is possible to show that realistic systems actually obey one of them. A
further question concerns the relation between these (and potential other)
conditions. Is one a special case of the other? If not, do they belong to a
family of conditions that have certain important features in common? These
are important questions that should be addressed in the future.

Account 3. An altogether different line of argument can be found in
Lebowitz (1993a, 1993b, 1999) and Lebowitz & Goldstein (2004) and (pos-
sibly) Zangh̀ı (2005, Sec. 2.4.4) The difference lies in the fact that what I
refer to as Account 3 focusses on the internal structure of the micro-regions
ΓMi

rather than the entire phase space. The core of this view is captured in
the following quotation:
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‘By “typicality” we mean that for any [ΓMi
] [...] the relative

volume of the set of microstates [x] in [ΓMi
] for which the second

law is violated [...] goes to zero rapidly (exponentially) in the
number of atoms and molecules in the system.’ (Goldstein &
Lebowitz 2004, 57)8

This definition contains different elements that need to be distinguished for
the discussion to follow. Let us begin by introducing some notation. Γ

(++)
Mi

is the subset of ΓMi
containing all those x that lie on trajectories that come

into ΓMi
from a macrostate of higher entropy and that leave ΓMi

entering

into a macrostate of higher entropy; Γ
(+−)
Mi

, Γ
(−+)
Mi

and Γ
(−−)
Mi

are defined
accordingly. These four subsets form a partition of ΓMi

.9 Furthermore,

Γ
(+)
Mi

:= Γ
(++)
Mi

∪ Γ
(−+)
Mi

and Γ
(−)
Mi

:= Γ
(+−)
Mi

∪ Γ
(−−)
Mi

are the subsets of ΓMi
that

have a higher and lower future entropy respectively.

The microstate x ∈ ΓMi
has the property ‘being entropy increasing’ (‘I’

for short) iff it lies on a trajectory that moves into a microstate of higher

entropy when leaving ΓMi
. Hence, x has property I iff x ∈ Γ

(+)
Mi

. Entropy

increasing states are typical in ΓMi
iff µi(Γ

(+)
Mi

) ≥ 1 − ε, where µi( · ) :=
µ( · )/µ(ΓMi

) is the Lebesgue measure relative to ΓMi
.

A system possesses the property of being ‘globally entropy increasing’
(‘GI’ for short) iff entropy increasing states are typical in every ΓMi

ex-
cept the equilibrium macrostate itself (because, trivially, once the system has
reached equilibrium entropy cannot further increase). Goldstein & Lebowitz’s
explication of typicality (quoted above) amounts to saying that the system is
GI. This can be seen as follows. In technical terms, Goldstein & Lebowitz’s
condition is limn→∞ µi(Γ

(−)
Mi

) = 0 for all i. Since the Γ
(++)
Mi

, etc., form a parti-

tion of ΓMi
, this is equivalent to limn→∞ µi(Γ

(+)
Mi

) = 1 for all macrostates Mi

except the equilibrium macrostate. If we now assume (reasonably) that for

n ' 1023 we are already ‘close’ to the limit it follows that µi(Γ
(+)
Mi

) ≥ 1 − ε
for some small but finite ε.

8Explications of typicality very similar to this one can be found in Lebowitz (1993b,
7-8; 1999, 348).

9I neglect the possibility that there maybe x that come from or move into microstates
of the same entropy. These cases could be accounted for by introducing the subsets Γ(0+)

Mi
,

etc., and rephrasing the argument accordingly. One can easily see that this would not
alter the conclusions that I reach and I therefore neglect them in the interest of ease of
discussion and notion.
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We now face two questions. First, under what circumstances is it the
case that a system is GI? Second, assuming we have a satisfactory answer
to the first question, do we then have a good explanation for why the system
approaches equilibrium? I discuss these questions in turn.

Goldstein & Lebowitz offer the following answer to the question of when
a system is GI:

‘Boltzmann then argued that given this disparity in sizes of differ-
ent M ’s [i.e. the above-mentioned dominance of the equilibrium
macrostate], the time evolved [Mx(t)] will be such that [µ(Mx(t))]
and thus [SB(t)] will typically increase in accord with the law.’
(2004, 57)

They do not reference the work of Boltzmann they have in mind and so we
have to work with their paraphrase of what they take to be Boltzmann’s view.
The argument seems to be that if it is the case that the ratio µ(ΓMeq)/µ(ΓMi

),
where Mi is a ‘standard’ non-equilibrium macrostate, is large (i.e. is of the
magnitude of 10n), then the system is GI.

This is incorrect. Dominance of the equilibrium macrostate and being
GI are compatible with each other, but the latter does not follow from the
former. From the fact that ΓE as a whole is almost entirely filled with
equilibrium microstates and that therefore the measure of ΓMeq is 10n times
the one of other macro-regions, it just does not follow that within every macro
region Γ

(+)
Mi

is typical. In fact, the dominance of the equilibrium macrostate is

compatible, in principle, with it being the case that µi(Γ
(+)
Mi

) � µi(Γ
(−)
Mi

) for
many low entropy macrostates Mi, in which case the system would fail to be
GI. And the point is not one about there being the possibility of one or two
macrostates behaving strangely and the system being ‘a little bit non-GI’;
it could be the case equilibrium microstates are typical with respect to ΓE

as a whole, while entropy increasing behaviour is atypical in all low entropy
macrostates.

That Account 3 fails is no surprise; whether or not a system is GI depends
both on its dynamics and the construction of the macrostates and so it would
be something of a miracle if one could prove systems to be GI without even
mentioning either of the two.

Given that we do not have a general argument for the claim that relevant
systems are GI, the best we can do is look at examples. And here the evidence
is mixed. One can show that the Kac ring model is GI (Lavis 2005, 259).
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However, GI seems to fail in other examples. Numerical considerations show
that entropy increasing microstates are not typical within the low entropy
macrostates of the baker’s gas (as David Lavis pointed out to me in personal
communication). So GI is not a trivial condition and there is a substantial
question under which circumstances it holds.

There are also problems as regards the second question. To begin with,
even if a system were GI it could still be the case that an approach to
equilibrium would not take place. The problem is the following. Assume that
the system is in macrostate Mi at time t1 and evolves into a macrostate Mj

of higher entropy at time t2 (without passing through any other macrostates
in-between). Furthermore assume that in both Mi and Mj entropy increasing
microstates are typical. By construction, all states that evolve into Mj from

Mi have to be either in Γ
(−+)
Mj

or in Γ
(−−)
Mj

. In which one of these a particular
x ∈ Mi ends up is determined by the dynamics of the system, and it is
possible that under certain dynamical laws most x ∈ Mi end up moving into
Γ

(−−)
Mj

. In this case most trajectories that are compatible with the system’s
actual past history move towards macrostate of lower entropy after t2, despite
the fact that Γ

(+)
Mj

is typical in ΓMj
.

So we need to add the further constraint that the dynamics of the system
is such that for all (or at least most) contiguous macrostates Mi and Mj,
where Mi has lower entropy than Mj, it be the case that the overwhelming

majority of microstates in Γ
(+)
Mi

move into Γ
(−+)
Mj

. What condition could assure
that this is the case? A possible answer to this question (or, rather, part of an
answer) might be that the system has to show Goldilocks mixing (Earman
2006, 406). Although Earman discusses Goldilocks mixing in a different
context and does not suggest that it is a solution to the current problem, it
might at least be worth considering whether Goldilocks mixing, probably in
conjunction with other conditions, proves useful in solving the problem at
hand.

Furthermore there is the problem that most of the states that lie on trajec-
tories that move towards higher entropy macrostates also have a high entropy
past, i.e. behave un-thermodynamically.10 This can be seen as follows. By
assumption Γ

(+)
Mi

is typical, i.e. µ(Γ
(+)
Mi

) ≥ 1− ε, and hence µ(Γ
(−)
Mi

) < ε. Since

Γ
(−)
Mi

= Γ
(−−)
Mi

∪ Γ
(+−)
Mi

, we also have µ(Γ
(+−)
Mi

) < ε. The time reversal invari-

10A point to this effect was first made by Ehrenfest and Ehrenfest-Afanassjewa (1912,
32-34). However, their argument is based on an explicitly probabilistic model and so its
relevance to deterministic dynamical system is tenuous.
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ance of the Hamiltonian dynamics implies µ(Γ
(−+)
Mi

) = µ(Γ
(+−)
Mi

) and therefore

µ(Γ
(−+)
Mi

) < ε. With Γ
(+)
Mi

) = Γ
(−+)
Mi

∪Γ
(++)
Mi

we obtain µ(Γ
(++)
Mi

) ≥ 1−2ε. Hence

the typicality of Γ
(+)
Mi

is hardly relevant to thermodynamic behaviour because

the overwhelming majority of states in Γ
(+)
Mi

do not exhibit the desired be-

haviour (i.e. they belong to Γ
(++)
Mi

and hence have a high entropy past).

Remedy can be found in Albert (2000, Ch. 4), who suggests solving the
problem by conditionalising on the past hypothesis (Albert does not put his
argument in terms of typicality and uses probability language instead; what
I am presenting here is an adaptation of his point to the present context).
In technical terms that means that rather than pondering the question of
whether microstates with high entropy future are typical with respect to the
entire set ΓMi

we should require that this be the case with respect to ΓMi
∩

φt(ΓMp). The question now is whether states which evolve into macrostates
of higher entropy are typical within that set.

And now we are back to the above problem, namely that this question
cannot be answered without taking the dynamics of the system into account.
There is nothing, in principle, to rule out that all states that satisfy this
condition evolve into Γ

(−−)
Mj

once they leave ΓMi
, in which case the system’s

entropy decreases once the states move from ΓMj
into the next macrostate.

Albert (2000, 67, 81-85, 94-96) suggest ruling out that this happens by requir-
ing that microstates that lead to un-thermodynamic behaviour are scattered
in tiny clusters all over ΓMi

. This is an interesting suggestion, but, again,
there are neither a priori reasons nor plausibility arguments to suggest that
this generally is the case in relevant systems. Whether or not this ‘scattering
condition’ holds depends on the details of the dynamics and the construc-
tion of the macrostates, and merely asserting that the condition does hold is
simply begging the question.

4 Further Qualms

There are five further problems for an approach to SM based on the notion
of typicality: the justification of the Lebesgue measure as the relevant typ-
icality measure, that the equilibrium macrostate may not be typical, that
in interacting systems the largest macrostate may not be the equilibrium
macrostate, the reliance on measures in general, and objections to the ex-
planatory power of typicality even where it can be had. I will discuss each
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of these in turn.

First. Typicality judgements in all three accounts I have distinguished
are made relative to the Lebesgue measure µ. How can this be justified?
Dürr (1998, Sec. 3) emphasises that the crucial criterion for the choice of a
typicality measure is invariance over time. What is typical at some time t
also has to be typical at some earlier or later time t′. In the context of SM this
means that the typicality measure has to be invariant under the dynamics
of the system (given by the flow φt). As we have seen in the Section 2, the
Lebesgue measure satisfies this criterion and therefore seems to be a natural
choice.

Things are more involved, however. As Zangh̀ı (2005, 189) points out, the
Lebesgue measure µ may not be the only invariant measure in a particular
system. For any specific Hamiltonian (equivalently for any specific φt) there
could also be invariant measures other than the Lebesgue measure whose
explicit form depends on the details of the dynamics. Zangh̀ı then points
out that what makes the Lebesgue measure special is the fact that it is the
only generical invariant measure, meaning that it is the only measure that is
invariant under all Hamiltonian flows.

It is not clear, however, that this fact is relevant for the problem at hand.
Each system is governed by one, and only one, Hamiltonian and it is therefore
not clear why the fact that the Lebesgue measure is the only measure that is
invariant under all Hamiltonians is relevant for typicality judgements in this
system. If it happens that there is a measure µ′ which is invariant under the
dynamics of the system under investigation and which is non-equivalent to
the Lebesgue measure, why should we not make typicality judgments about
this system with respect to µ′? This question is particularly pressing for those
– like most Boltzmannians – who take the relevant system to be the universe
as a whole and the past state the Big Bang. There is only one universe and
there is only one Hamiltonian flow in this universe. What reason could there
be to prefer µ to µ′ to make typicality judgements in this universe?

There is no obvious answer to this question. But maybe none is needed.
A similar issue arises in the case of the Galton board. Maudlin (2007) points
out that atypical initial conditions in that have measure zero and hence
typicality judgments remain unaltered under a change of measures as long
as the alternative measure µ′ is absolutely continuous with the Lebesgue
measure µ.11 So there is actually no need to worry about the question of

11A measure µ′ is absolutely continuous with µ iff for any measurable region A ⊆ ΓE :
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picking the ‘right’ measure because under all choices the same sets come out
as typical, which is all we need.

It is not clear whether this strategy is available in SM. First, Maudlin’s
argument only applies to measures that are absolutely continuous with the
Lebesgue measure. So we would need an argument for the conclusion that
all invariant measures have this property. This may or may not be the case;
at any rate it is not a priori clear that this is so.12 Second, one would
have to show that it is indeed the case that all atypical sets have Lebesgue
measure zero. Again, this is not evidently so. Even in a simple system like
the Galton Board a host of drastic idealisations are needed to reach this
conclusion (for instance, one has to assume that the board is infinitely long
and that all the nails are perfectly symmetrical), which then still is only
supported by a plausibility argument and not a rigorous proof. It is not
clear that idealisations of this sort can be made of our universe, and even
if they can this may not yield the desired result because the dynamics of
our universe is much more complex than the one of the Galton Board and
hence it is at least a possibility that some sets of finite measure are atypical.
If this is the case and if there is an invariant measure µ′ (which could even
be absolutely continuous with µ), it might be the case that µ′ assigns high
weights to sets that come out small under µ, which would reverse typicality
judgements. Hence what is typical with respect to µ would come out to be
atypical with respect to µ′ and vice versa. There is no a priori reason to rule
out this possibility.

Second. A further difficulty concerns the dominance of the equilibrium
macrostate. As I have briefly mentioned above, from the fact that the equi-
librium macrostate is larger than any other macrostate one cannot infer that
it is typical. Lavis (2005, 255-258) points out that entropy levels can be
degenerate, meaning that there may be more than one macrostate for which
the Boltzmann entropy assumes a particular value. More precisely, consider
a particular macrostate Mj, construct the set {Mi|SB

(Mi) = S
B
(Mj), i =

1, ...,m} of all macrostates that have the same entropy as Mj, and let ωj

be the number of macrostates in this set; ωj is the degeneracy of the en-

if µ(A) = 0 then µ′(A) = 0. More colloquially, a measure µ′ is absolutely continuous with
another measure µ if it assigns measure zero to all sets that are assigned measure zero
by µ, while, possibly, assigning different values to the sets to which µ assigns non-zero
measure.

12Maybe an defence along the lines of Malement and Zabell (1980) would fit the bill,
but this would need to ba argued in detail.
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tropy value S
B
(Mj). The important point is that these degeneracies may

be large enough for it to be the case that the non-equilibrium macrostates
associated with a particular entropy value together take up a larger chunk of
the phase space than the equilibrium macrostate; that is, it may be the case
that ωj µ(ΓMj

) > µ(ΓMeq), for some non-equilibrium macrostate Mj. Lavis
shows that this is not only a theoretical possibility. He points out that it is
exactly what happens in the case of the baker’s gas (ibid.) and in the Kac
ring model (Lavis 2008, Sec. 2), in which the proportion of the phase space
occupied by the maximum entropy state even decreases as n becomes large.
Of course, real systems are neither baker’s gases nor Kac rings and so this
problem with degeneracies may not surface in more ‘realistic’ systems. How-
ever, whether or not this is the case depends on the details of the system and
one would have to show that in the systems of interest no such degeneracies
crop up.

Third. So far we have assumed that the equilibrium macrostate is the
largest of all macrostates (and the second problem concerns the question of
whether this state is typical in ΓE). Although this is usually stated as if it
were a general truism, it is proven only for an ideal gas, i.e. a system of non-
interacting particles. In broad outline, the reasoning, invented by Boltzmann
in 1877 and now usually referred to as the ‘combinatorial argument’, is as
follows (for an in-depth discussion see Uffink (2007, 974-983). Consider the
phase-space of one gas molecule; the state of the entire gas (consisting of n
molecules) is specified by n labeled points in this space. Now put a grid-like
partition on it with the border of the cells running in the directions of the
momentum and position axes. Every one of the n points comes to lie within
a particular cell of the partition. A specification of which point lies in which
cell is called an ‘arrangement’; a specification of how many points (no matter
which ones) are in each cell is a ‘distribution’. Boltzmann then considered
how many arrangements are compatible with each distribution and associated
the logarithm of this number, W , with the entropy of the system (this can
be shown to be equivalent to the definition of the Boltzmann entropy given
in Section 2). One can then prove that W is proportional to the Lebesgue
measure of the region of the n-particle phase space, ΓE, corresponding to the
distribution. By construction it follows that largest macrostate is associated
with the largest Boltzmann entropy, and this macrostate is then considered
the equilibrium macrostate.

However, we should not be mislead by the suggestive use of the word
‘entropy’; the argument so far is just a combinatorial exercise and its physical
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relevance yet needs to be shown. And this is where the crucial assumptions
enter. Suppose that the energy of a molecule only depends on the cell in
which it is (but not on where all the other molecules are) and that the total
energy of the system is the sum of these ‘individual’ energies. Under this
assumption (and the further assumption that the number of molecules in
each cell is far greater than one) one can prove that the velocity distribution
of those phase points that are in the maximum Boltzmann entropy region is
the Maxwell-Boltzmann equilibrium distribution. For this reason it is indeed
legitimate to associate equilibrium with maximum Boltzmann entropy.

The crucial assumption in this proof is that the entropy of a molecule
only depends on the cell in which it is, as this amounts to nothing less than
the assumption that there is no interaction between the molecules; in other
words, it amounts to assuming that the system is an ideal gas (Uffink 2007,
976). Hence, for systems that are not ideal gases there is at least a question
of whether their equilibrium macrostate can be associated with the largest
macrostate. And this is more than an academic point. Most systems, not
least the universe as a whole, are not ideal gases, not even approximately,
and it is not clear whether in such systems the equilibrium macrostate can
legitimately be associated with the largest macrostate (i.e. the one for which
the Boltzmann entropy is maximal).

In fact, it is a real option that this is not the case. Consider a system of
gravitating particles. These particles attract each other and hence have the
tendency to clump together. So if it happens that a large amount of these
are distributed evenly over a bounded space, then they will move together
and eventually form a lump. However, the volume corresponding to a lump
is much smaller than the one corresponding to the original spread out state,
and hence it seems that the system evolves from a high to a low entropy
state. This conclusion is usually blocked by pointing out that the loss in
volume in configuration space is compensated by a corresponding increase in
volume in momentum space, and as a result entropy does not decrease after
all. But whether this is true depends on the details of the system at hand.
There are situations in which this is not the case, for instance one in which
all particles end up moving around with almost the same velocity and hence
occupy only a small volume of momentum space. So one would need to argue
that the systems of interest are not of this kind.13

13See Callender (2008) for a further discussion of the problems that arise in connection
with gravity.
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Fourth. One of the main objections against approaches to SM that invoke
ergodicity is the so-called ‘measure zero problem’ (see van Lith (2001) for a
discussion). The results of ergodic theory come with the qualification ‘almost
everywhere’ – i.e. everywhere except, perhaps, for a set of measure zero –
which is commonly understood as suggesting that sets of measure zero can
be ignored because they are somehow ‘sparse’. This piece of common wisdom
has been criticised as untenable. Sets of measure zero need not be ‘small’
at all (e.g. the rational numbers have measure zero within the real numbers
and yet there are ‘many’ of them) and, as Sklar (1993, 182-188) points out,
a set of measure zero need not be (or even appear to be) negligible if sets are
compared with respect to properties other than their measures. For instance,
we can judge the ‘size’ of a set by its cardinality or Bair category rather than
by its measure which may lead to different conclusions about a set’s ‘size’.

This point has to do with the use of measures in general and is not specific
to ergodic theory. In fact, because typicality is determined with respect to a
measure, approaches to SM appealing to typical behaviour face a very sim-
ilar problem: sets of measure zero (like the rational numbers) are classified
as atypical and it is suggested that these can therefore be neglected. How-
ever, echoing Sklar’s point, sets that come out as atypical when compared to
other sets with respect to their measures may not come out as atypical when
compared with respect to some other property (such as their Bair category).
So we face the question of what conveys upon measures a privileged status
when it comes to judging typicality.

Fifth. The basic strategy of typicality-based approaches is to explain X
by pointing out that X is typical. For instance, when asked why a system
approaches equilibrium the proponent of Approach 2 answers that this is
because initial conditions that lie on trajectories that approach equilibrium
are typical in the set of all initial conditions. It is questionable whether
this answer is satisfactory, even if the desired behaviour in fact turns out to
be typical. The problem is, again, parallel to one that threatens the ergodic
approach. As Sklar (1973, 210-211) points out in his critique of this approach,
from the fact that an initial condition lies within a set of measure zero we
cannot infer that that this initial condition does not occur. Whether the
system has a particular initial condition is a factual question, and as such it
has to be settled by an appeal to matters of fact and not measures of sets;
to explain why the system exhibits entropy increasing behaviour we need an
argument for the conclusion that the system indeed started out in a typical
initial condition, but that these are of measure (close to) one does not give
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us such an argument.

But now the significance of typicality seems to have evaporated entirely.
All we need to explain a system’s actual behaviour is its actual initial condi-
tion is one which, under the dynamical law governing the system’s evolution,
evolves in a thermodynamic way. Whether or not this initial condition is also
typical is simply irrelevant. So typicality does not play a role in explaining
the behaviour of a particular system (like, for instance, our universe).

One could reply that the notion of explanation that underlies this criti-
cism is too metaphysical (in that it implicitly assumes that an explanation of
X has to show that X must happen under the given circumstances) and that
a different, less assuming, notion should be applied. An obvious candidate is
rational expectability. On this notion conception of explanation we explain
X by showing that it is rationally expectable that X occurs. This seems
to square well both with typicality, because if a behaviour is typical we are
surely rationally justified in believing that it occurs most of the time. This
also squares well with the intuition driving the (probabilistic version of) the
covering law account of scientific explanation, according to which we explain
X if we can show that X is very likely to occur.

But even if we are willing to set all the well-known problems of accounts of
this sort aside (see Salmon (1992) for survey), such an account would not sit
well with the general hostility towards epistemic approaches that permeates
this literature, in particular the flamboyant rejection of an epistemic interpre-
tation of probability (see for instance Albert (2000, 64), Loewer (2001, 611),
and Goldstein (2001, 48). But if we reject an epistemic notion of explanation,
it remains unclear how we can explain the behaviour of a particular system
(this universe) by appeal to typicality.

5 Conclusion

I have distinguished three different ways in which typicality is used to ex-
plain why systems approach equilibrium and argued that none of them is
successful. The first is false for mathematical reasons, while the latter two
prima facie provide a restatements of the problem rather than a solution
because they do not provide dynamical conditions. But even if these difficul-
ties can be solved, there are further conceptual problems. First, all accounts
attribute a special status to the Lebesgue measure, but the justifications of
this choice do not seem to be conclusive. Second, it is not clear whether
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the equilibrium macrostate is typical in ΓE. Third, typicality arguments are
usually put forward in the context of ideal gases, and there are serious ques-
tions about whether they can be carried to gravitating systems. Fourth, like
approaches based on ergodicity, typicality arguments dismiss sets of measure
zero as ‘negligible’. It is not clear, however, how this can be justified. Fi-
nally, it is questionable whether an appeal to what typically happens has
any explanatory force at all when it comes to explaining what happens in a
particular system.
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