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Abstrat

The aim of the paper is to relate Bell's notion of loal ausality to the Causal Markov Condition.

To this end, �rst a framework, alled loal physial theory, will be introdued integrating spatiotem-

poral and probabilisti entities and the notions of loal ausality and Markovity will be de�ned.

Then, illustrated in a simple stohasti model, it will be shown how a disrete loal physial theory

transforms into a Bayesian network and how the Causal Markov Condition arises as a speial ase of

Bell's loal ausality and Markovity.
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1 Introdution

Loal ausality is a onept introdued into the foundations of quantum theory by John Stewart Bell. A

physial theory is said to be loally ausal if, �xing its past, any event happening in a given spaetime

region will be probabilistially independent of any other event loalized in a spatially separated region.

Causal Markov Condition is the entral notion of the theory of Bayesian networks. Here events are

represented both as random variables in a probability spae and also as verties in a ausal graph. A

set of events is said to satisfy the Causal Markov Condition relative to the graph, if, onditioned on its

ausal parents, any event will be probabilistially independent of any of its ausal non-desendants.

The similarity between the logial shema of both priniples is onspiuous even at �rst blush: if events

are loalized in the spaetime/ausal graph in a ertain way, then they are to satisfy ertain probabilisti

independenies. In this paper I will argue that this intuition is orret: Bell's loal ausality, read in an

appropriate way, is a Causal Markov Condition. Causal Markov Condition relates random variables to

ausal strutures, loal ausality relates them to a net of spaetime regions. We will show that the ausal

graph generated by the net struture of a loal physial theory transforms the theory into a Bayesian

network and yields the Causal Markov Condition as a kind of omposition of Bell's loal ausality plus

a similar sreening-o� ondition, alled Markovity.

To treat physial events both as probabilisti and also as spatiotemporal/ausal entities in a uni�ed

framework and to be able to infer from spatiotemporal/ausal relations to probabilisti independenies

one needs to have a ommon oneptual shema integrating both spatiotemporal/ausal and probabilisti

onepts. This formalism is thoroughly worked out in the theory of Bayesian networks. Here Causal

Markov Condition is funtioning as a 'bridge law' onneting the ausal and the probabilisti side of the

theory. In the foundations of quantum physis, however, loal ausality is used in a muh more intuitive

way. Here one simply �reads o�� probabilisti independenies from the spatiotemporal loalization of the

events in question. Hene our �rst task is to introdue a mathematially well-de�ned and physially well-

motivated framework whih treats probabilisti and spatiotemporal entities in a ommon mathematial

formalism. We will all suh a theory a loal physial theory. We will borrow a lot from the most

elaborate physial theory o�ering suh a general framework, namely algebrai quantum �eld theory
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(AQFT). Having suh a framework integrating spatiotemporal and probabilisti aspets, we will be able

to provide a lear-ut formulation of Bell's notion of loal ausality.

To relate Bell's loal ausality to the Causal Markov Condition, we will introdue a simple stohasti

loal lassial theory on a disretized two dimensional spaetime. This toy theory will display all the

features previously de�ned in an abstrat way, and provide us a useful tool to study the properties of

loal ausality in a more manageable way, and to trae its onnetions to the Causal Markov Condition.

In the paper we will proeed as follows. In Setion 2 we make a historial detour and take a loser

look at Bell's di�erent de�nitions of loal ausality. In Setion 3 we introdue the onept of a loal

physial theory and give a preise mathematial de�nition of Bell's notion of loal ausality together with

Markovity within this framework. In Setion 4 our stohasti loal lassial theory will be introdued.

In Setion 5 we de�ne the Causal Markov Condition and show how a loal physial theory gives rise to a

Bayesian network and how loal ausality plus Markovity go over to the Causal Markov Condition. We

will onlude in Setion 6.

There is a huge literature available relating the Causal Markov Condition to the EPR senario and

to the Bell inequalities. The standard way to derive the Bell inequalities is to start with Reihenbah's

Common Cause Priniple together with some loality onditions. Sine Reihenbah's Common Cause

Priniple is a speial ase of the Causal Markov Condition, many authors start the derivation diretly

from this latter. Glymour (2006) shows that the EPR ase has no ausal explanation ompatible with the

Causal Markov Condition. Suárez and Iniaki (2011) systematially apply the Causal Markov Condition to

the EPR senario and make a onnetion to the robustness ondition, a probabilisti ausality ondition

thoroughly disussed in the early 1990's. On the other hand, Hausman and Woodward (1999) argue

that the Causal Markov Condition is inappliable to the EPR senario sine the non-separability of the

quantum state renders interventions, a neessary riterion for appliability, unavailable. As a reply to their

laim see Suárez (2013). Hofer-Szabó, Rédei and Szabó (2013) onnet the Causal Markov Condition

both to the so-alled ommon-ommon-ausal and also to the separate-ommon-ausal explanation of

the EPR ase. They show that hidden loality, an assumption of the standard derivation of the Bell

inequalities, an be justi�ed by the Causal Markov Condition only in ase of ommon ommon auses

but not in ase of separate ommon auses.

Despite the rih literature on the topi I am unaware of any work relating the Causal Markov Condition

diretly to Bell's notion of loal ausality. This paper intends to �ll this gap.

2 Bell's three de�nitions of loal ausality

Loal ausality is the idea that ausal proesses propagate though spae ontinuously and with veloity

less than the speed of light. John Stewart Bell formulates this intuition in a 1988 interview as follows:

�[Loal ausality℄ is the idea that what you do has onsequenes only nearby, and that any

onsequenes at a distant plae will be weaker and will arrive there only after the time per-

mitted by the veloity of light. Loality is the idea that onsequenes propagate ontinuously,

that they don't leap over distanes.� (Mann and Crease, 1988)

Bell has returned to this intuitive idea of loal ausality from time to time and provided a more and

more elaborate formulation of it. First he addressed the notion of loal ausality in his �The theory of

loal beables� delivered at the Sixth GIFT Seminar in 1975; later in a footnote added to his 1986 paper

�EPR orrelations and EPW distributions� intending to lean up the �rst version; and �nally in the most

elaborate form in his �La nouvelle uisine� posthumously published in 1990. Below I will overview the

di�erent versions brie�y ommenting on eah of them.

Version 1. Bell's �rst de�nition of loal ausality reads as follows:

�Consider a theory in whih the assignment of values to some beables Λ implies, not neessarily
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a partiular value, but a probability distribution, for another beable A. Let p(A|Λ) denote1

the probability of a partiular value A given partiular values Λ. Let A be loalized in a

spae-time region A. Let B be a seond beable loalized in a seond region B separated from

A in a spaelike way. (Fig. 1.) Now my intuitive notion of loal ausality is that events in B

A B

Λ

Figure 1: Bell's �rst �gure illustrating loal ausality (1975).

should not be `auses' of events in A, and vie versa. But this does not mean that the two

sets of events should be unorrelated, for they ould have ommon auses in the overlap of

their bakward light ones. It is perfetly intelligible then that if Λ in (1) does not ontain

a omplete reord of events in that overlap, it an be usefully supplemented by information

from region B. So in general it is expeted that

p(A|Λ, B) 6= p(A|Λ) (1)

However, in the partiular ase that Λ ontains already a omplete spei�ation of beables in

the overlap of the light ones, supplementary information from region B ould reasonably be

expeted to be redundant.

Let C2 denote a spei�ation of all beables, of some theory, belonging to the overlap of the

bakward light ones of spaelike regions A and B. Let C1 be a spei�ation of some beables

A B

CC1 2

Figure 2: Bell's seond �gure illustrating loal ausality (1975).

from the remainder of the bakward light one of A, and B of some beables in the region B.

(See Fig. 2.) Then in a loally ausal theory

p(A|C1, C2, B) = p(A|C1, C2) (2)

1

For the sake of uniformity throughout the paper I slightly hanged Bell's denotation and �gures.
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whenever both probabilities are given by the theory.� (Bell, 1975/2004, p. 54)

First, let us omment brie�y on the terminology Bell is using in his �rst version of loal ausality.

The term �beable� has been introdued into the literature by Bell himself. It is intended to be opposed

to the term �observable� used in quantum theory and to refer to something that �really� exists. �The

word 'beable' will also be used to arry another distintion already in lassial theory between 'physial'

and 'non-physial' quantities. In Maxwell's eletromagneti theory, for example, the �elds E and H

are physial (beables, we will say) but potentials A and φ are non-physial.� (Bell, 1975/2004, p. 52)

Without the lari�ation of what the �beables� of a given theory really are, one annot even formulate

loal theory.

�Beables� are to be loal. �We will be partiularly onerned with loal beables, those whih (unlike for

example the total energy) an be assigned to some bounded spae-time region. For example, in Maxwell's

theory the beables loal to a given region are just the �elds E and H, in that region, and all funtionals

thereof.� (Bell, 1975/2004, p. 53)

Finally, the beables loalized in the region C1 are to provide a �ompletely spei�ation� of the region

in question. We will ome bak to this point later on.

Although the beables are to be loal, in his sreening-o� ondition (2) Bell takes into aount the whole

ausal past of the events in question. He does not assume some kind of Markovity rendering super�uous

the remote past regions below a ertain Cauhy surfae. The seond version of his formulation of loal

ausality an be regarded as a step towards this Markovian diretion.

Version 2.

�The notion of loal ausality presented in this referene [namely in (Bell, 1975/2004)℄ involves

omplete spei�ation of the beables in an in�nite spae-time region. The following oneption

is more attrative in this respet: In a loally-ausal theory, probabilities attahed to values

of loal beables in one spae-time region, when values are spei�ed for all loal beables in a

seond spae-time region fully obstruting the bakward light one of the �rst, are unaltered

by spei�ation of values of loal beables in a third region with spaelike separation from the

�rst two.� (Bell, 1986/2004, p. 200)

Bell's seond version is in a footnote; it is very suint and ontains no �gure. The new element is the

phrasing �spae-time region fully obstruting the bakward light one of the �rst�. This idea gets a more

preise exposition in Bell's third, �nal version of loal ausality.

Version 3.

�A theory will be said to be loally ausal if the probabilities attahed to values of loal

beables in a spae-time region A are unaltered by spei�ation of values of loal beables in a

spae-like separated region B, when what happens in the bakward light one of A is already

su�iently spei�ed, for example by a full spei�ation of loal beables in a spae-time region

C (Fig. 3).� (Bell, 1990/2004, p. 239-240)

The loalization of region C is of ruial importane. It is not enough that C ompletely uts aross the

ausal past of region A; it also has to �obstrut the bakward lightone of the �rst�. Bell expliitly stresses
this point: �It is important that region C ompletely shields o� from A the overlap of the bakward light

ones of A and B.� (Bell, 1990/2004, p. 240) This requirement will play a entral role in our investigation

on the relation of loal ausality to the Causal Markov Condition. We will ome bak to that having

de�ned loal ausality in the next Setion.

3 Loal ausality in loal physial theories

The framework integrating probabilisti and spatiotemporal entities an be de�ned as follows. (For the

details and motivations of the de�nition see (Hofer-Szabó and Vesernyés, 2015a,b).)

4



A B

C

Figure 3: Bell's �gure illustrating loal ausality (1990).

De�nition 1. A PK-ovariant loal physial theory is a net {A(V ), V ∈ K} assoiating algebras of events
to spaetime regions whih satis�es isotony, miroausality and ovariane de�ned as follows (Haag, 1992):

Isotony. Let M be a globally hyperboli spaetime and let K be a overing olletion of bounded,

globally hyperboli subspaetime regions of M suh that (K,⊆) is a direted poset under inlusion

⊆. The net of loal observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasiloal algebra A is

de�ned to be the indutive limit C∗
-algebra of the net {A(V ), V ∈ K} of loal C∗

-algebras.

Miroausality (also alled as Einstein ausality) is the requirement that A(V ′)′ ∩ A ⊇ A(V ), V ∈ K,
where primes denote spaelike omplement and algebra ommutant, respetively.

Spaetime ovariane. Let PK be the subgroup of the group P of geometri symmetries of M leaving

the olletion K invariant. A group homomorphism α : PK → AutA is given suh that the auto-

morphisms αg, g ∈ PK of A at ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.

If the quasiloal algebra A of the loal physial theory is ommutative, we speak about a loal lassial

theory ; if it is nonommutative, we speak about a loal quantum theory. For loal lassial theories

miroausality ful�lls trivially.

A state φ in a loal physial theory is de�ned as a normalized positive linear funtional on the quasiloal

observable algebra A. The orresponding GNS representation πφ : A → B(Hφ) onverts the net of C∗
-

algebras into a net of C∗
-subalgebras of B(Hφ). Closing these subalgebras in the weak topology one

arrives at a net of loal von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Von Neumann

algebras are generated by their projetions representing quantum events. The net {N (V ), V ∈ K} of

loal von Neumann algebras also obeys isotony, miroausality, and PK-ovariane, hene one an also

refer to a net {N (V ), V ∈ K} of loal von Neumann algebras as a loal physial theory.

Why von Neumann algebras?

Classial �eld theories are haraterized by their sets of �eld on�gurations. Taking the equivalene

lasses of those �eld on�gurations whih have the same �eld values on a given spaetime region one

an generate loal (ylindrial) σ-algebras. One an translate σ-algebras into the language of abelian

von Neumann algebras and then generalize this framework also for non-abelian von Neumann algebras.

We ome bak to the details of this proedure in the next setion when we introdue our stohasti

loal lassial theory. Thus, we translate Bell's term �loal beables� into the language of loal physial

theories simply as �elements of a loal von Neumann algebra�. Now, how to translate the term �a omplete

spei�ation of beables�? We are of the opinion that the natural translation of this term is simply �an

atomi event of a loal von Neumann algebra� (Henson, 2013). Here it is assumed that the loal algebras

of the net are atomi, whih is not the ase, for example, in Poinaré ovariant algebrai quantum �eld
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theory. (For a more general de�nition of loal ausality see (Hofer-Szabó and Vesernyés, 2015a).) With

these notions in hand now one an formulate Bell's notion of loal ausality in a loal physial theory as

follows:

De�nition 2. A loal physial theory represented by a net {N (V ), V ∈ K} of von Neumann algebras

is alled loally ausal, if for any pair A ∈ N (VA) and B ∈ N (VB) of projetions supported in spaelike

separated regions VA, VB ∈ K and for every loally normal and faithful state φ establishing a orrelation

φ(AB) 6= φ(A)φ(B) between A and B, and for any spaetime region VC suh that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′
C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅,

(see Fig. 4) and for any atomi event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 4: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(3)

In ase of loal lassial theories a loally faithful state φ determines uniquely a loally nonzero

probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means of this (3) an be written both in the

symmetri form

p(AB|Ck) = p(A|Ck)p(B|Ck) (4)

and also in the equivalent asymmetri form

p(A|BCk) = p(A|Ck) (5)

featuring in Bell's �rst version of loal ausality.

Now, the loalization of region VC by Requirements (i)-(iii) is a bit more liberal than that required in

Bell's seond version. Although VC �ompletely shields o�� region VA from the ommon past of VA and

VB , it is not spaelike separated from VB (as is, for example, region VC in Fig. 3). But why not to be

more liberal? Why Requirement (iii) is needed at all? Why does a region VC suh as the one depited in

Fig. 5 not su�e? The brief answer to this question is that the region above VC (lighter shaded in Fig. 5)

an ontain stohasti events whih, though ompletely spei�ed by the region VC , still, being stohasti,

ould establish a orrelation between A and B in a lassial stohasti theory (Norsen, 2011; Seevink

and U�nk 2011; Hofer-Szabó 2015). Indeed, exatly this will be the ase in our model introdued in

the next setion.

In order to relate Bell's loal ausality to the Causal Markov Condition we need to introdue a sreening-

o� ondition similar to loal ausality, namely Markovity:
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VA B

C

V

V

Figure 5: A region VC for whih Requirement (iii) does not hold.

De�nition 3. A loal physial theory represented by a net {N (V ), V ∈ K} of von Neumann algebras is

alled Markov, if for any pair A ∈ N (VA) and B ∈ N (VB) of projetions supported in regions VA, VB ∈ K
with VB ⊂ I−(VA) and for every loally normal and loally faithful state φ establishing a orrelation

φ(AB) 6= φ(A)φ(B) between A and B, and for any spaetime region VC suh that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′
C ,

(iii') VB ⊂ J−(VC),

(see Fig. 6) and for any atomi event Ck of A(VC) (k ∈ K) (3) holds.

A

C

VB

V

V

Figure 6: A region VC satisfying Requirements (i)-(iii') of Markovity.

The relation between loal ausality and Markovity is straightforward. In both ases events loalized

in region VA and VB, respetively are sreened-o� by the atomi events in region VC . If VA and VB

are spaelike separated and VC is loalized aording to Requirements (i)-(iii), then (3) expresses loal

ausality. If VA and VB are timelike separated and VC is loalized aording to Requirements (i)-(iii'),

then (3) expresses Markovity. As we will see later Causal Markov Condition will be a speial ase of the

omposition of loal ausality and Markovity.

4 A simple stohasti loal lassial theory

In this setion we will develop a simple stohasti loal lassial theory. Before introduing it in a full-

�edged form, let us sketh it in brief. The spaetime of the theory will be a 1+1 dimensional disretized
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Minkowski spaetime overed by minimal double ones. (See Fig. 7.) The �eld on�gurations of the
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Figure 7: A simple stohasti loal lassial theory.

theory are given by mappings assigning a + or a − to eah minimal double one. The dynamis of the

theory is generated by the following transition probabilities : The value + or − in a given minimal double

one is probabilistially �xed by the produt of the values in the three minimal double ones adjaent to

it from below, irrespetively of the value in other minimal double ones, like earlier or spatially separated

ones. The probabilisti dependene is this: If the produt of the values in the three adjaent minimal

double ones is +, then the value in the upper minimal double one will be + with probability p and −
with probability 1− p; if the produt is −, the value will be − with probability p and + with probability

1 − p. The proess is deterministi, if p ∈ {0, 1} and stohasti, if p ∈ (0, 1). Now, let us see the theory

in a more detailed way.

Consider a disretized version of the two dimensional Minkowski spaetime M2
whih is omposed

of minimal double ones Vm(t, i) of unit diameter with their enter in (t, i) for t, i ∈ Z or t, i ∈ Z+ 1/2.
The set {V m(t, i), i ∈ 1

2Z} of suh minimal double ones with t = 0,−1/2 de�nes a `thikened' Cauhy

surfae in this spaetime, denoted by S0. For double ones sitting on S0 we will drop the time oordinate

and simply write Vm
i . (See Fig. 8.)

A double one V (t, i; s, j) is de�ned to be the smallest double one ontaining both V m(t, i) and

V m(s, j), that is generated by them: V (t, i; s, j) := V m(t, i) ∨ V m(s, j). The direted poset of suh

double ones is denoted by Km
and the direted poset of double ones generated by minimal double

ones stiked to the Cauhy surfae S0 is denoted by Km
0 . Obviously, Km

0 will be left invariant by integer

spae translations and Km
will be left invariant by integer spae and time translations. By shifting the

time oordinates of the minimal double ones by t one an similarly de�ne the Cauhy surfae St and

the net Km
t .

Let Sm
denote the set of minimal double ones of M2

and let Z2 be the multipliative group of the

integers {1,−1}. De�ne the set C of on�gurations of the theory as: C := {c : Sm → Z2}. The maximal

σ-algebra of lassial events (C,P(C)) is given by the power set P(C) of the set of on�gurations. But

one an also obtain a narrower σ-algebra in tune with the net struture Km
. This is done by taking the

equivalene lasses of those on�gurations whih have the same �eld values on a given region in Km
. The

sets CV of loal equivalene lasses (the `ylindrial subsets' of C onentrated on V ) are obtained by the

equivalene relation: c ∼V c′ if c|V = c′|V . Clearly, CV ontains 2|V |
elements, where |V | is the number of

minimal double ones in V . One an get the power set P(CV ) of CV by de�ning the following map ZV

for V ∈ Km
:

ZV : P(C) → P(C), C 7→ {c′ ∈ C |∃c ∈ C : c|V = c′|V } (6)
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Figure 8: Two dimensional disrete Minkowski spaetime with a `thikened' Cauhy surfae.

For a given V ∈ Km
the image sets of ZV de�ne a unital σ-subalgebraΣ(V ) of P(C), whih is isomorphi to

the power set P(CV ) of CV . By ranging over V ∈ Km
one obtains an isotone net struture {(C,Σ(V )), V ∈

Km}. The 2|V |
dimensional abelian loal von Neumann algebraN (V ) orresponding to the loal σ-algebra

Σ(V ) is spanned by the orthogonal set of minimal projetions P c
V , c ∈ CV orresponding to harateristi

funtions χc
V : C → C whih are 1 on the ylindrial subset c ∈ CV of C and 0 otherwise. Clearly,

{N (V ), V ∈ Km} is an isotone net of �nite dimensional abelian von Neumann algebras, hene it de�nes

a loal lassial theory.

The quasiloal C∗
-algebra A is given by the indutive limit of the loal von Neumann algebras

N (V ), V ∈ Km
, and similarly the unital C∗

-subalgebras A0 of A is given by the indutive limit of

the loal von Neumann algebras N (V ), V ∈ Km
0 . Now, a stohasti theory an be regarded as a state

extension proedure from the subalgebra A0 (or from any At) to the quasiloal algebra A by means of

so-alled transition probabilities. This is done in the following way.

Let V (t+ 1
2 ) be a �nite set of minimal double ones on the time slie t+ 1

2 . De�ne the nearest past of

V (t+ 1
2 ) as follows: Pt(V (t+ 1

2 )) ≡ St∩(St\J−(V (t+ 1
2 )))

′
. Spei�ally, the nearest past Pt(V

m(t+ 1
2 , i))

of the minimal double one V m(t+ 1
2 , i) ontains the three minimal double ones adjaent to V m(t+ 1

2 , i)
from below, namely V m(t, i − 1

2 ), V
m(t − 1

2 , i) and Vm(t, i + 1
2 ). For a given on�guration c ∈ C de�ne

the generating transition probabilities from the equivalene lass cPt(V m(t+ 1
2
,i)) to the equivalene lass

cV m(t+ 1
2
,i) as follows:

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) :=

{

p, if c(t+ 1
2 , i) = c(t, i− 1

2 )c(t−
1
2 , i)c(t, i+

1
2 )

1− p, if c(t+ 1
2 , i) = −c(t, i− 1

2 )c(t−
1
2 , i)c(t, i+

1
2 )

(7)

where c(t, i) is short for c(V m(t, i)), the value of the on�guration c at the minimal double one V m(t, i).
Assuming that the generating transition probabilities are independent with respet to spaelike sepa-

ration, one an de�ne the transition probabilities from the Cauhy surfae St to the time slie t + 1
2

as:

p(cV (t+ 1
2
)|cPt(V (t+ 1

2
))) :=

∏

V m(t+ 1
2
,i)∈V (t+ 1

2
)

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) (8)

Intuitively, these transition probabilities do the following: The value + or − in a given minimal double

one is probabilistially �xed purely by the produt of the values in the three minimal double ones adja-

ent to it from below. (See again Fig. 7.) Negatively speaking, they do not depend on the value of other

9



minimal double ones, like earlier or spatially separated ones. As we will see, these two independenies

are losely onneted to Markovity and loal ausality, respetively. If the produt is +, then the value

is + with probability p and − with probability 1− p; if the produt is −, the value is − with probability

p and + with probability 1− p.
Finally, let U(t) be a �nite set of minimal double ones on the Cauhy surfae St. We de�ne the state

on the equivalene lass cV (t+ 1
2
) ∩ cU(t) as follows:

φ(cV (t+ 1
2
) ∩ cU(t)) := p(cV (t+ 1

2
)|cPt(V (t+ 1

2
)))φ(cPt(V (t+ 1

2
)) ∩ cU(t)) (9)

Thus, starting from φ0 on A0 one an reursively de�ne the state φ on the whole A. (For the Cauhy

surfaes below S0 we use Bayes theorem for the extension.)

To simplify things, introdue the following denotation. Let i+ and i− denote three di�erent things at the

same time: the two ylindrial subsets of CV m

i
onentrated on the minimal double one V m

i on the Cauhy

surfae S0; the two orresponding harateristi funtions; and also the two orresponding orthogonal

projetions in N (V m
i ). If we are not speifying whih of the two sets/harateristi funtions/projetions

we are speaking about, we simply write i. The nth forward and bakward spae translates of i will be
denoted by (i+ n) and (i− n), respetively (n ∈ 1

2N); the tth forward and bakward time translates will

be denoted by it and i−t, respetively (t ∈ N).

Let, furthermore,

i · (i +
1

2
) . . . (j −

1

2
) · j

denote the produt of a sequene of projetions loalized on the Cauhy surfae S0 between minimal

double ones Vm
i and Vm

j , and let pi...j denote the probability thereof in state φ. Sine we will deal only
with projetions of abelian von Neumann algebras, from now on instead of φ we simply write p. Finally,
we will express the ondition

c(t+
1

2
, i) = c(t, i −

1

2
)c(t−

1

2
, i)c(t, i+

1

2
)

in (7) by the Dira delta symbol

δc(t+ 1
2
,i),c(t,i− 1

2
)c(t− 1

2
,i)c(t,i+ 1

2
)

or in the short form

δi1,(i− 1
2
)i(i+ 1

2
)

Now, let A = it and B = js be two projetions loalized in the minimal double ones V m(t, i) and
V m(s, j), respetively, with i < j. Suppose that V m(t, i) and V m(s, j) are spatially separated, that is

|j − i| > |s − t|. To alulate the probability of A, B and AB, we need a little geometry. (See Fig. 9.)

Consider the minimal double one V m(u, k) (striped horizontally) at the 'top of the ommon past' of

regions V m(t, i) and V m(s, j). The oordinates of V m(u, k) are the following:

u =
1

2
(t+ s+ i− j) k =

1

2
(i+ j + t− s) (10)

Consider now the Cauhy surfae S⌈u⌉ �tting V m(u, k), where the eiling funtion ⌈·⌉ in the subsript

is just to round up the u oordinates if half integers. Let the number of minimal double ones in the

ausal past of V m(t, i) above S0 (inluding Vm(t, i) but not inluding double ones on S0) be denoted

by n, and the number of minimal double ones in the ausal past of Vm(t, i) above S⌈u⌉ (again inluding

V m(t, i) but not inluding double ones on S⌈u⌉) by n′
. Similarly, the number of minimal double ones

in the ausal past of V m(s, j) above S0 and S⌈u⌉ be denoted by m and m′
, respetively. Finally, denote

the number of minimal double ones in the ausal past of V m(u, k) above S0 by l. The numbers n, n′
,

10
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Figure 9: A little geometry.

m′
, m and l are the following funtions of i, j, t and s:

n =

{

−t+ 4
∑t

x=1 x, if i ∈ N

t+ 4
∑t

x=1(x− 1), if i ∈ 1
2N

(11)

n′ =

{

−t+ 4
∑t

x=⌈u⌉ x, if i ∈ N

t+ 4
∑t

x=⌈u⌉(x− 1), if i ∈ 1
2N

(12)

m =

{

−s+ 4
∑s

x=1 x, if j ∈ N

s+ 4
∑s

x=1(x− 1), if j ∈ 1
2N

(13)

m′ =

{

−s+ 4
∑s

x=⌈u⌉ x, if j ∈ N

s+ 4
∑s

x=⌈u⌉(x− 1), if j ∈ 1
2N

(14)

l =

{

−⌈u⌉+ 4
∑⌈u⌉

x=1 x, if k ∈ N

⌈u⌉+ 4
∑⌈u⌉

x=1(x− 1), if k ∈ 1
2N

(15)

In Fig. ??, for example, n = m = 3, n′ = m′ = 21 and l = 6. With these numbers one an also alulate

the number r of minimal double ones between S⌈u⌉ and S0 (inluding double ones on S⌈u⌉ but not on

S0):

r = n− n′ +m−m′ − l (16)

whih is 30 in Fig. 9. Now, using the above numbers (11)-(16) the probability of A, B and AB will be

11



the following:

p(A) =
∑

(i−t−{i+ 1
2
}),...,(i+t+{i+ 1

2
})

[

qnδit,(i−t+{i})...(i+t−{i})

+(1− qn)δ−it,(i−t+{i})...(i+t−{i})

]

p(i−t−{i+ 1
2
})...(i+t+{i+ 1

2
}) (17)

p(B) =
∑

(j−s−{j+ 1
2
}),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(j−s−{j+ 1
2
})...(j+s+{j+ 1

2
}) (18)

p(AB) =
∑

(i−t+{i}),...,(j+s−{j})

[

qn′qm′qr δit,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+qn′(1− qm′)qr δit,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

+(1− qn′)qm′qr δ−it,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+(1− qn′)(1 − qm′)qr δ−it,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

]

×p(i−t−{i+ 1
2
})...(j+s+{j+ 1

2
}) (19)

where the frational part funtion {·} in the subsript is again to treat integer and half integer oordinates

together, and qx (x = n, n′,m,m′, r) is the even part of the binomial expression:

qx := px +

(

x

2

)

px−2(1 − p)2 +

(

x

4

)

px−4(1− p)4 + . . . (20)

Obviously, in the general ase:

p(AB) 6= p(A)p(B) (21)

so there is a superluminal orrelation between A and B.

Example 1. As an example, let A = i+1 and B = j+1 , where j = i + 2 ∈ N + 1
2 . (See Fig. 10.) Let the
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�����
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ji+1i
i+1/2

i−1 j+1
i−1/2 j−1/2 j+1/2

+ +
11

ji

Figure 10: Superluminally orrelating events i+1 and j+1 .
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'prior' probabilities p(i−1)...(j+1) on S0 be �xed as follows:

p+++++++++ =
1

2
(22)

p+++++++−+ =
1

4
(23)

p+−+++++++ =
1

4
(24)

and all the other ombinations be 0. Then the probability of A, B and AB is the following:

p(A) =
∑

(i−1),...,(i+1)

[

p δi+
1
,(i− 1

2
)i(i+ 1

2
) + (1 − p)δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)

]

p(i−1)...(i+1) =
1

2

(

1

2
+ p

)

(25)

p(B) =
∑

(j−1),...,(j+1)

[

p δj+
1
,(j− 1

2
)j(j+ 1

2
) + (1 − p)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(j−1)...(j+1) =
1

2

(

1

2
+ p

)

(26)

p(AB) =
∑

(i−1),...,(j+1)

[

p2 δi+
1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + p(1− p)δi+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

+(1− p)p δ−i
+

1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + (1− p)2δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(i−1)...(j+1)

=
1

2
p (27)

thus A and B are orrelating whenever p 6= 1
2 .

Example 2. In the seond example, let A = i+2 and B = j+2 , where again j = i + 2 ∈ N + 1
2 . (See Fig.

11.) With the 'prior' probabilities p(i−2)...(j+2):

����
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�����
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�����
�����
�����
�����

i−1/2 i+1/2 j−1/2i−3/2 j+3/2

ji−1 i+1

j+1/2

+ +

i−2 j+2j+1i

i j2 2

Figure 11: Superluminally orrelating events i+2 and j+2 .

p+++++++++++++ =
1

2
(28)

p+++++++++++−+ =
1

4
(29)

p+−+++++++++++ =
1

4
(30)
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(and the rest is 0) one obtains the probability of A, B and AB as:

p(A) =
∑

(i−2),...,(i+2)

[

q6 δi+
2
,(i− 3

2
)...(i+ 3

2
) + (1− q6)δ−i+

2
,(i− 3

2
)...(i+ 3

2
)

]

p(i−2)...(i+2)

=
1

2

(

1

2
+ q6

)

(31)

p(B) =
∑

(j−2),...,(j+2)

[

q6 δj+
2
,(j− 3

2
)...(j+ 3

2
) + (1− q6)δ−j+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(j−2)...(j+2)

=
1

2

(

1

2
+ q6

)

(32)

p(AB) =
∑

(i−2),...,(j+2)

[

p2q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+p (1− p) q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p) p q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p)2q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(i−2)...(j+2) =
1

2
pq9 (33)

thus A and B are orrelating whenever

1
4 (

1
2 + q6)

2 6= 1
2pq9 whih is the typial ase.

The di�erene between Example 1 and 2 is that in Example 1 there is no minimal double one above

S0 in the ommon past of A and B, whereas in Example 2 there is suh a minimal double one, namely

V m(1, i+ 1).2 This di�erene will have ruial onsequenes onerning loal ausality to whih we turn

now.

First, we prove that the above loal lassial theory is loally ausal. Atually, we prove a little

less: loal ausality for a spei� hoie of VA, VB and VC . (For a general proof see (Hofer-Szabó and

Vesernyés 2015a).) Let VA = V m(t, i) and VB = Vm(s, j) be two spatially separated minimal double

ones with i < j, and let VC be generated by the intersetion of the ausal past of VA and a Cauhy

surfae �shielding o�� VA from the ommon past of VA and VB . Any Cauhy surfae Sv with ⌈u⌉ 6 v 6 t
will be suh a �shielder-o�� Cauhy surfae, where u is de�ned in (10). (For a �shielder-o�� Cauhy

surfae see Fig. 9.) The region VC generated by this intersetion will obviously satisfy Requirements

(i)-(iii) in De�nition 2 of loal ausality.

Now, we prove loal ausality with respet to these regions.

Proposition 1. The stohasti loal lassial theory {N (V ), V ∈ Km} is loally ausal for any three

regions VA, VB and VC spei�ed above.

Proof. Let A = it and B = js be two projetions loalized in VA and VB , respetively, and orrelating

in the probability measure p. We are to show that for any atomi event

C =

(

i− t+ v − {i+
1

2
}

)

v

. . .

(

i+ t− v + {i+
1

2
}

)

v

of VC the following holds:

p(AB|C) = p(A|C)p(B|C) (34)

First, for the sake of onveniene, shift the Cauhy surfae S0 up to Sv and denote the new time oor-

dinates by a prime: t′ := t− v and s′ := s− v. Similarly let q′n and q′m denote the appropriate number

2

See also our remark in the last paragraph of Setion 3.
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of minimal double ones with respet to the shifted Cauhy surfae. With this notation the onditional

probabilities are the following:

p(A|C) =

[

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−i
t′
,(i−t′+{i})...(i+t′−{i})

]

(35)

p(B|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′mδj
s′
,(j−s′+{j})...(j+s′−{j})

+(1− q′m)δ−j
s′
,(j−s′+{j})...(j+s′−{j})

]

pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (36)

p(AB|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′nq
′
m δi

t′
,(i−t′+{i})...(i+t′−{i})δj

s′
,(j−s′+{j})...(j+s′−{j})

+q′n(1 − q′m) δi
t′
,(i−t′+{i})...(i+t′−{i})δ−j

s′
,(j−s′+{j})...(j+s′−{j})

+(1− q′n)q
′
m δ−i

t′
,(i−t′+{i})...(i+t′−{i})δj

s′
,(j−s′+{j})...(j+s′−{j})

+(1− q′n)(1− q′m) δ−i
t′
,(i−t′+{i})...(i+t′−{i})δ−j

s′
,(j−s′+{j})...(j+s′−{j})

]

×pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (37)

where pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) is a short for

p(i−t′−{i+ 1
2
}...(i+t′+{i+ 1

2
})(j−s′−{j+ 1

2
})...(j+s′+{j+ 1

2
})

From (35)-(37) the sreening-o� (34) follows immediately.

One an see from the proof that if VC is a segment of Cauhy surfae satisfying Requirements (i)-(iii)

in De�nition 2, that is a segment of Cauhy surfae loated at or above the top of the ommon ausal

past of the orrelating events A and B, then from (19) the qr terms will drop out leaving no orrelation

between the onditional probabilities. Note that VC need not neessarily be above the ommon past of

A and B, it an also interset with the top of it (see again Fig. 5). All is needed is that there is no region

above VC in the ommon past. Suh a region, namely, an ontain stohasti events whih ould establish

a orrelation between A and B. Mathematially this means that from (19) the qr terms would not drop

out and hene the orrelation would not be sreened o� by the atomi events of VC . Requirement (iii) in

the de�nition of loal ausality is just to exlude this ase. The next proposition shows that Requirement

(iii) also is a neessary ondition in the loalization of VC .

Proposition 2. The loal lassial theory {N (V ), V ∈ Km} would not be loally ausal if Requirement

(iii) was dropped from De�nition 2.

Proof. Consider Example 2 of the previous Setion that is let A = i+2 and B = (i + 2)+2 and the prior

probabilities those �xed in (28)-(30). Let C be the minimal projetion

(i − 2)+(i −
3

2
)+(i− 1)+(i−

1

2
)+i+(i+

1

2
)+(i+ 1)+(i +

3

2
)+(i+ 2)+

loalized in region VC . (See Fig. 12.) For the region VC Requirement (iii) does not hold sine there is a

minimal double one, Vm(1, i+1) (the one with horizontal stripes) above region VC in the ommon past

of VA and VB .

Using the identity

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

(i+
5

2
)(i+ 3)(i+

7

2
)(i + 4) = 1 (38)
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Figure 12: A region VC for whih Requirement (iii) does not hold.

it is easy to see that C does not sreen o� the orrelation between A and B sine

p(A|C) = q6 (39)

p(B|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

B
∣

∣C(i+ 5
2 ), (i + 3), (i+ 7

2 ), (i + 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + q6) (40)

p(AB|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

AB
∣

∣C(i + 5
2 ), (i+ 3), (i+ 7

2 ), (i + 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + p)pq9 (41)

for any C of non-zero measure. But typially

1

3
q6(1 + q6) 6=

1

3
(1 + p)pq9 (42)

sine the left and right hand side are of di�erent ordo in p.

Next we prove that the above loal lassial theory is also Markov. Again, we prove a little less: loal

ausality for a minimal double one VA = V m(t, i), another minimal double one VB = Vm(s, j) lying
in the ausal past of VA, and a third region VC generated by the intersetion of the ausal past of VA

and a Cauhy surfae �shielding o�� VA from VB . (See Fig. 13.) VC will obviously satisfy Requirements

(i)-(iii') in De�nition 3 of Markovity.

Proposition 3. The stohasti loal lassial theory {N (V ), V ∈ Km} is Markov for any three regions

VA, VB and VC spei�ed above.

Proof. Let A = it and B = js be two projetions loalized in VA and VB , respetively, and orrelating

in the probability measure p. We are to show that for any atomi event

C =

(

i− t+ v − {i+
1

2
}

)

v

. . .

(

i+ t− v + {i+
1

2
}

)

v
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Figure 13: The regions VA, VB and VC for whih Markovity holds.

of VC with s < v < t the following holds:

p(A|C) = p(A|CB) (43)

But it does, sine both sides of (43) are simply

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−i
t′
,(i−t′+{i})...(i+t′−{i})

where again t′ := t− v and q′n denotes the appropriate number of minimal double ones with respet to

the shifted Cauhy surfae.

5 Loal Causality, Causal Markov Condition and d-separation

Now, I onnet loal ausality and Markovity to the Causal Markov Condition used in the theory of

Bayesian networks (see (Pearl, 2000) and (Spirtes, Glymour and Sheines, 2000)). Consider a direted

ayli graph G and a set of random variables V on a lassial probability spae (Σ, p) suh that the

elements X,Y . . . of V are represented by the verties of G and the arrows X → Y on the graph represent

that X is ausally relevant for Y . For any X ∈ V let Par(X), the parents of X , be the set of verties that

have direted edges in X ; let Anc(X), the anestors of X , be the set of verties from whih a direted

paths is leading to X ; and �nally let Des(X), the desendants of X , be the set of verties that are

endpoints of a direted paths from X . The set V is said to satisfy the Causal Markov Condition relative

to the graph G if for any X ∈ V and any Y /∈ Des(X) the following is true:

p(X |Par(X) ∧ Y ) = p(X |Par(X)) (44)

In other words, onditioning on its parents the random variable X will be probabilistially independent

from any of its non-desendant. Non-desendants of X an be of two types: either anestors or non-

relatives (non-desendants and non-anestors). As we will see, being independent of anestors is related

to the Markovity, whereas being independent of non-relatives is related to loal ausality.

We say that the set V is faithful relative to the graph G if all probabilisti independenies between

the random variables of V are implied by the Causal Markov Condition. This impliation an neatly be

depited graphially by the so-alled d-separation riterion. Let P be a path in G. A variable C on P is

a ollider if there are arrows to C from both its neighbors on P . Now, let X , Y and Z be three disjoint
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sets of verties in G. X and Y are said to be d-onneted by Z in G i� there exists a path P between

some vertex in X and some vertex in Y suh that for every ollider C on P , either C or a desendant of

C is in Z, and no non-ollider on P is in Z. X and Y are said to be d-separated by Z in G i� they are

not d-onneted by Z in G. Spei�ally, the Causal Markov Condition entails that the variables X and

Y are probabilistially independent onditional upon the subset Z just in ase Z d-separates X and Y
in G.

Now, onsider the stohasti loal lassial theory {N (V ), V ∈ Km} introdued in the previous Se-

tion. A loal von Neumann algebra N (V ) of the theory gives rise to a graph G(V ) and a set of random

variables V(V ) on a lassial probability spae (Σ, p) in the following way. Consider a region V in Km

with the set {Vm} of minimal double ones ontained in V . Let the minimal double ones be the verties

of a ausal graph and draw an arrow to every minimal double one V m(t, i) from the three minimal

double ones adjaent to it from below, that is from V m(t− 1
2 , i−

1
2 ), V

m(t− 1, i) and V m(t− 1
2 , i+

1
2 ), if

all ontained in V . (See Fig. 14.) The set of verties and arrows will uniquely determine a ausal graph

Figure 14: The ausal graph G(V ) assoiated to V .

G(V ) assoiated to V .

As for the set of random variables V(V ), to eah minimal double one V m(t, i) in V assign simply

the two ylindrial subsets of CV (t,i), denoted by c+
V m(t,i) and c−

V m(t,i), or equivalently the projetions i+t
and i+t , respetively. Thus, the parents of a given random variable will be the projetions in the three

past timelike related adjaent minimal double ones, the desendants of a random variable will be the

projetions in the future timelike related minimal double ones, et. The pair

(

G(V ),V(V )
)

will form a

Bayesian network.

The translation manual between the voabulary of the theory of Bayesian networks and that of the

stohasti loal lassial theory {N (V ), V ∈ Km} is shown in the following table:

18



Theory of Bayesian networks Stohasti loal lassial theory

Bayesian network

(

G(V ),V(V )
)

Assoiated to every V ∈ Km

Causal graph G(V ) Loal von Neumann algebra N (V )
with V ∈ Km

Verties Minimal double ones in V
Arrows Pointing to future timelike related

adjaent minimal double ones

Random variables V(V ) Projetions loalized in the

minimal double ones ontained in V
Parents Projetions in past timelike related

adjaent minimal double ones

Anestors Projetions in past timelike related

minimal double ones

Desendants Projetions in future timelike related

minimal double ones

Causal Markov Condition Bell's loal ausality plus Markovity

The last line of the table ontains the entral point of our disussion, namely:

1. The Causal Markov Condition is a onsequene of Bell's loal ausality and Markovity when applied

to the parents of a random variable.

2. Bell's loal ausality/Markovity are onsequenes of the Causal Markov Condition, sine the set of

random variables loalized in a region satisfying Requirements (i)-(iii)/(iii') is d-separating.

We prove the �rst laim in the following proposition and illustrate the seond in the subsequent examples.

Proposition 4. Let {N (V ), V ∈ Km} be the stohasti loal lassial theory introdued above satisfying

loal ausality and Markovity. Then for any pair

(

G(V ),V(V )
)

assoiated to any V ∈ Km
the Causal

Markov Condition holds.

Proof. First we prove Causal Markov Condition for non-relatives whih follows from the theory being

loally ausal. Let V ∈ Km
and let V m(t, i) and V m(s, j) be two minimal double ones in V suh that

i < j. Suppose that V m(t, i) and V m(s, j) are spatially separated (non-relatives), that is |j − i| > |s− t|.
Without loss of generality we also an assume that t = 1

2 and s > t, as depited in Fig. 15. We are
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Figure 15: Causal Markov Condition follows from Bell's loal ausality relative to the parents.

to show that the Causal Markov Condition (44) holds for X = i1 and Y = js in the Bayesian network

(

G(V ),V(V )
)

assoiated to V .
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First, observe the parents of the variable i1 are (i − 1
2 ), i and (i + 1

2 ). Thus, the Causal Markov

Condition (44) reads as follows:

p

(

i1

∣

∣

∣

∣

(i−
1

2
)i(i+

1

2
) js

)

= p

(

i1

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

(45)

or equivalently

p

(

i1js

∣

∣

∣

∣

(i−
1

2
)i(i +

1

2
)

)

= p

(

i1

∣

∣

∣

∣

(i−
1

2
)i(i +

1

2
)

)

p

(

js

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

(46)

Or in other words, the atomi events (i − 1
2 )i(i +

1
2 ) sreen o� the orrelation between i1 and js. But

(46) does hold, sine from (35)-(37) it follows that

p

(

i1

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

(47)

p

(

js

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

=
∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(48)

p

(

i1js

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

×

∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(49)

Next we prove Causal Markov Condition for anestors whih follows from the theory being Markov.

Let again V ∈ Km
and let V m(t, i) and V m(s, j) be two minimal double ones in V suh that V m(s, j) is

in the ausal past (is an anestor) of V m(t, i), that is |j − i| 6 |s− t|. Again, we an assume that t = 1
2

and s > t, as depited in Fig. 16. To prove (45) just observe that both sides equal to
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Figure 16: Causal Markov Condition follows from Markovity relative to the parents.

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)
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This ompletes the proof.

Thus, the Causal Markov Condition is a speial ase of Bell's loal ausality and Markovity in the

stohasti loal lassial theory {N (V ), V ∈ Km}, namely when VC is a speial spaetime region: the

union of the three parental minimal double ones, that is minimal double ones adjaent to a given

minimal double one from below. We stress again that Causal Markov Condition is a omposition of

two sreening-o� onditions: one for the anestors and the other for the non-relatives. The �rst is the

onsequene of Markovity, the seond is the onsequene of loal ausality.

Now, we go over to our inverse laim, namely that Bell's loal ausality/Markovity are onsequenes

of the Causal Markov Condition, sine the set of random variables loalized in a region VC satisfying

Requirements (i)-(iii)/(iii') is d-separating. Here we do not prove this laim generally, but only illustrate

the onnetion of Requirements (i)-(iii) in the de�nition of loal ausality to d-separation on our previous

two examples.

Example 1. Consider the smallest region V ∈ Km
in our Example 1 (in Setion 4) ontaining the

superluminally orrelating events i+1 and j+1 with j = i+2 ∈ N+ 1
2 and a region VC satisfying Requirements

(i)-(iii) in the de�nition of loal ausality. (See Fig. 17.)
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Figure 17: The smallest region ontaining the senario of Example 1.

Now, onsider the Bayesian network

(

G(V ),V(V )
)

assoiated to this V . The ausal graph of the

network is illustrated in Fig. 18. Let the variables be X = i1, Y = j1 and the subset Z be de�ned as:

i−1 i i+1

i j

j j+1

i−1/2 i+1/2 j−1/2 j+1/2

11

Figure 18: A d-separating senario.

Z :=

{

(i− 1), (i−
1

2
), i, (i+

1

2
), (i + 1)

}

In other words, Z ontains the random variables assoiated to the minimal double ones of VC .

Now, Z d-separates i1 and j1 in G(V ), sine for every path P onneting i1 and j1 in G(V ) there is
a non-ollider in Z, namely, (i + 1). Therefore, i1 and j1 are probabilistially independent onditional

upon any atomi event

(i − 1)±(i−
1

2
)±i±(i +

1

2
)±(i + 1)±

21



This fat is the Bayesian network analogon of the situation illustrated in Fig. 10 where VC is suh that

there is no minimal double one above VC in the intersetion of the ausal past of the orrelating events.

As said before, this is due to the fat that VC satis�es Requirement (iii) in the de�nition of loal ausality.

If Requirement (iii) does not ful�l, region VC turns into d-onneting, as is shown in the next example.

Example 2. Consider the smallest region V ∈ Km
in our Example 2 ontaining the superluminally

orrelating events i+2 and j+2 with j = i+2 ∈ N+ 1
2 and a region VC still in the ausal past of i+2 but not

satisfying Requirement (iii). (See Fig. 19.)
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Figure 19: The smallest region ontaining the senario of Example 2.

The ausal graph G of the network is illustrated in Fig. 20. Let the variables be X = i2, Y = j2 and

i j
2 2

ii−1 i+1 j j+1 j+2

i−3/2

i−2

i+1/2i−1/2 j−1/2 j+1/2 j+3/2

Figure 20: A d-onneting senario.

let

Z :=

{

(i −
3

2
), (i − 1), (i−

1

2
), i, (i+

1

2
), (i+ 1), (i+

3

2
) = (j −

1

2
)

}

again a subset ontaining the random variables assoiated to the minimal double ones within VC .

Now, Z does not d-separate i2 and j2 in G, sine the path

P :=

{

i2, (i +
1

2
)1, (i+ 1)1, (j −

1

2
)1, j2

}

(denoted by a broken line in Fig. 20) onneting i2 and j2 in G(V ) ontains only non-olliders whih are

outside Z. Therefore, the probabilisti independene of i1 and j1 onditional upon the atomi events

(i −
3

2
)±(i − 1)±(i−

1

2
)±i±(i +

1

2
)±(i + 1)±(i+

3

2
)±
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is not ensured by the Causal Markov Condition (and if the graph is faithful, it is even exluded). This

fat is the Bayesian network analogon of the situation illustrated in Fig. 11 where VC does not satisfy

Requirement (iii) in the de�nition of loal ausality.

These examples point in the same diretion: the Causal Markov Condition and the d-separation together

ensure that Bell's loal ausality will hold for the atomi projetions loalized in a region satisfying

Requirements (i)-(iii). Moreover, they also show that Requirements (iii) is a neessary ondition.

6 Conlusions

In the paper I was arguing, based on a simple stohasti loal lassial model, that Bell's loal ausality,

read in an appropriate way, is a Causal Markov Condition. I have not though provided a general proof.

This would amount to solve the following

Open problem. Let {N (V ), V ∈ K} be a disrete loal physial theory, disrete in the sense that every

V ∈ K ontains only a �nite number of elements of K and the loal von Neumann algebras N (V )
are �nite. Construt the Bayesian network

(

G(V ),V(V )
)

assoiated to a region V in K. Prove (or

falsify) that {N (V ), V ∈ K} is Markov and loally ausal in Bell's sense i�

(

G(V ),V(V )
)

ful�ls the

Causal Markov Condition for every V ∈ K.
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