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Abstra
t

The aim of the paper is to relate Bell's notion of lo
al 
ausality to the Causal Markov Condition.

To this end, �rst a framework, 
alled lo
al physi
al theory, will be introdu
ed integrating spatiotem-

poral and probabilisti
 entities and the notions of lo
al 
ausality and Markovity will be de�ned.

Then, illustrated in a simple sto
hasti
 model, it will be shown how a dis
rete lo
al physi
al theory

transforms into a Bayesian network and how the Causal Markov Condition arises as a spe
ial 
ase of

Bell's lo
al 
ausality and Markovity.
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1 Introdu
tion

Lo
al 
ausality is a 
on
ept introdu
ed into the foundations of quantum theory by John Stewart Bell. A

physi
al theory is said to be lo
ally 
ausal if, �xing its past, any event happening in a given spa
etime

region will be probabilisti
ally independent of any other event lo
alized in a spatially separated region.

Causal Markov Condition is the 
entral notion of the theory of Bayesian networks. Here events are

represented both as random variables in a probability spa
e and also as verti
es in a 
ausal graph. A

set of events is said to satisfy the Causal Markov Condition relative to the graph, if, 
onditioned on its


ausal parents, any event will be probabilisti
ally independent of any of its 
ausal non-des
endants.

The similarity between the logi
al s
hema of both prin
iples is 
onspi
uous even at �rst blush: if events

are lo
alized in the spa
etime/
ausal graph in a 
ertain way, then they are to satisfy 
ertain probabilisti


independen
ies. In this paper I will argue that this intuition is 
orre
t: Bell's lo
al 
ausality, read in an

appropriate way, is a Causal Markov Condition. Causal Markov Condition relates random variables to


ausal stru
tures, lo
al 
ausality relates them to a net of spa
etime regions. We will show that the 
ausal

graph generated by the net stru
ture of a lo
al physi
al theory transforms the theory into a Bayesian

network and yields the Causal Markov Condition as a kind of 
omposition of Bell's lo
al 
ausality plus

a similar s
reening-o� 
ondition, 
alled Markovity.

To treat physi
al events both as probabilisti
 and also as spatiotemporal/
ausal entities in a uni�ed

framework and to be able to infer from spatiotemporal/
ausal relations to probabilisti
 independen
ies

one needs to have a 
ommon 
on
eptual s
hema integrating both spatiotemporal/
ausal and probabilisti



on
epts. This formalism is thoroughly worked out in the theory of Bayesian networks. Here Causal

Markov Condition is fun
tioning as a 'bridge law' 
onne
ting the 
ausal and the probabilisti
 side of the

theory. In the foundations of quantum physi
s, however, lo
al 
ausality is used in a mu
h more intuitive

way. Here one simply �reads o�� probabilisti
 independen
ies from the spatiotemporal lo
alization of the

events in question. Hen
e our �rst task is to introdu
e a mathemati
ally well-de�ned and physi
ally well-

motivated framework whi
h treats probabilisti
 and spatiotemporal entities in a 
ommon mathemati
al

formalism. We will 
all su
h a theory a lo
al physi
al theory. We will borrow a lot from the most

elaborate physi
al theory o�ering su
h a general framework, namely algebrai
 quantum �eld theory
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(AQFT). Having su
h a framework integrating spatiotemporal and probabilisti
 aspe
ts, we will be able

to provide a 
lear-
ut formulation of Bell's notion of lo
al 
ausality.

To relate Bell's lo
al 
ausality to the Causal Markov Condition, we will introdu
e a simple sto
hasti


lo
al 
lassi
al theory on a dis
retized two dimensional spa
etime. This toy theory will display all the

features previously de�ned in an abstra
t way, and provide us a useful tool to study the properties of

lo
al 
ausality in a more manageable way, and to tra
e its 
onne
tions to the Causal Markov Condition.

In the paper we will pro
eed as follows. In Se
tion 2 we make a histori
al detour and take a 
loser

look at Bell's di�erent de�nitions of lo
al 
ausality. In Se
tion 3 we introdu
e the 
on
ept of a lo
al

physi
al theory and give a pre
ise mathemati
al de�nition of Bell's notion of lo
al 
ausality together with

Markovity within this framework. In Se
tion 4 our sto
hasti
 lo
al 
lassi
al theory will be introdu
ed.

In Se
tion 5 we de�ne the Causal Markov Condition and show how a lo
al physi
al theory gives rise to a

Bayesian network and how lo
al 
ausality plus Markovity go over to the Causal Markov Condition. We

will 
on
lude in Se
tion 6.

There is a huge literature available relating the Causal Markov Condition to the EPR s
enario and

to the Bell inequalities. The standard way to derive the Bell inequalities is to start with Rei
henba
h's

Common Cause Prin
iple together with some lo
ality 
onditions. Sin
e Rei
henba
h's Common Cause

Prin
iple is a spe
ial 
ase of the Causal Markov Condition, many authors start the derivation dire
tly

from this latter. Glymour (2006) shows that the EPR 
ase has no 
ausal explanation 
ompatible with the

Causal Markov Condition. Suárez and Iniaki (2011) systemati
ally apply the Causal Markov Condition to

the EPR s
enario and make a 
onne
tion to the robustness 
ondition, a probabilisti
 
ausality 
ondition

thoroughly dis
ussed in the early 1990's. On the other hand, Hausman and Woodward (1999) argue

that the Causal Markov Condition is inappli
able to the EPR s
enario sin
e the non-separability of the

quantum state renders interventions, a ne
essary 
riterion for appli
ability, unavailable. As a reply to their


laim see Suárez (2013). Hofer-Szabó, Rédei and Szabó (2013) 
onne
t the Causal Markov Condition

both to the so-
alled 
ommon-
ommon-
ausal and also to the separate-
ommon-
ausal explanation of

the EPR 
ase. They show that hidden lo
ality, an assumption of the standard derivation of the Bell

inequalities, 
an be justi�ed by the Causal Markov Condition only in 
ase of 
ommon 
ommon 
auses

but not in 
ase of separate 
ommon 
auses.

Despite the ri
h literature on the topi
 I am unaware of any work relating the Causal Markov Condition

dire
tly to Bell's notion of lo
al 
ausality. This paper intends to �ll this gap.

2 Bell's three de�nitions of lo
al 
ausality

Lo
al 
ausality is the idea that 
ausal pro
esses propagate though spa
e 
ontinuously and with velo
ity

less than the speed of light. John Stewart Bell formulates this intuition in a 1988 interview as follows:

�[Lo
al 
ausality℄ is the idea that what you do has 
onsequen
es only nearby, and that any


onsequen
es at a distant pla
e will be weaker and will arrive there only after the time per-

mitted by the velo
ity of light. Lo
ality is the idea that 
onsequen
es propagate 
ontinuously,

that they don't leap over distan
es.� (Mann and Crease, 1988)

Bell has returned to this intuitive idea of lo
al 
ausality from time to time and provided a more and

more elaborate formulation of it. First he addressed the notion of lo
al 
ausality in his �The theory of

lo
al beables� delivered at the Sixth GIFT Seminar in 1975; later in a footnote added to his 1986 paper

�EPR 
orrelations and EPW distributions� intending to 
lean up the �rst version; and �nally in the most

elaborate form in his �La nouvelle 
uisine� posthumously published in 1990. Below I will overview the

di�erent versions brie�y 
ommenting on ea
h of them.

Version 1. Bell's �rst de�nition of lo
al 
ausality reads as follows:

�Consider a theory in whi
h the assignment of values to some beables Λ implies, not ne
essarily
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a parti
ular value, but a probability distribution, for another beable A. Let p(A|Λ) denote1

the probability of a parti
ular value A given parti
ular values Λ. Let A be lo
alized in a

spa
e-time region A. Let B be a se
ond beable lo
alized in a se
ond region B separated from

A in a spa
elike way. (Fig. 1.) Now my intuitive notion of lo
al 
ausality is that events in B

A B

Λ

Figure 1: Bell's �rst �gure illustrating lo
al 
ausality (1975).

should not be `
auses' of events in A, and vi
e versa. But this does not mean that the two

sets of events should be un
orrelated, for they 
ould have 
ommon 
auses in the overlap of

their ba
kward light 
ones. It is perfe
tly intelligible then that if Λ in (1) does not 
ontain

a 
omplete re
ord of events in that overlap, it 
an be usefully supplemented by information

from region B. So in general it is expe
ted that

p(A|Λ, B) 6= p(A|Λ) (1)

However, in the parti
ular 
ase that Λ 
ontains already a 
omplete spe
i�
ation of beables in

the overlap of the light 
ones, supplementary information from region B 
ould reasonably be

expe
ted to be redundant.

Let C2 denote a spe
i�
ation of all beables, of some theory, belonging to the overlap of the

ba
kward light 
ones of spa
elike regions A and B. Let C1 be a spe
i�
ation of some beables

A B

CC1 2

Figure 2: Bell's se
ond �gure illustrating lo
al 
ausality (1975).

from the remainder of the ba
kward light 
one of A, and B of some beables in the region B.

(See Fig. 2.) Then in a lo
ally 
ausal theory

p(A|C1, C2, B) = p(A|C1, C2) (2)

1

For the sake of uniformity throughout the paper I slightly 
hanged Bell's denotation and �gures.
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whenever both probabilities are given by the theory.� (Bell, 1975/2004, p. 54)

First, let us 
omment brie�y on the terminology Bell is using in his �rst version of lo
al 
ausality.

The term �beable� has been introdu
ed into the literature by Bell himself. It is intended to be opposed

to the term �observable� used in quantum theory and to refer to something that �really� exists. �The

word 'beable' will also be used to 
arry another distin
tion already in 
lassi
al theory between 'physi
al'

and 'non-physi
al' quantities. In Maxwell's ele
tromagneti
 theory, for example, the �elds E and H

are physi
al (beables, we will say) but potentials A and φ are non-physi
al.� (Bell, 1975/2004, p. 52)

Without the 
lari�
ation of what the �beables� of a given theory really are, one 
annot even formulate

lo
al theory.

�Beables� are to be lo
al. �We will be parti
ularly 
on
erned with lo
al beables, those whi
h (unlike for

example the total energy) 
an be assigned to some bounded spa
e-time region. For example, in Maxwell's

theory the beables lo
al to a given region are just the �elds E and H, in that region, and all fun
tionals

thereof.� (Bell, 1975/2004, p. 53)

Finally, the beables lo
alized in the region C1 are to provide a �
ompletely spe
i�
ation� of the region

in question. We will 
ome ba
k to this point later on.

Although the beables are to be lo
al, in his s
reening-o� 
ondition (2) Bell takes into a

ount the whole


ausal past of the events in question. He does not assume some kind of Markovity rendering super�uous

the remote past regions below a 
ertain Cau
hy surfa
e. The se
ond version of his formulation of lo
al


ausality 
an be regarded as a step towards this Markovian dire
tion.

Version 2.

�The notion of lo
al 
ausality presented in this referen
e [namely in (Bell, 1975/2004)℄ involves


omplete spe
i�
ation of the beables in an in�nite spa
e-time region. The following 
on
eption

is more attra
tive in this respe
t: In a lo
ally-
ausal theory, probabilities atta
hed to values

of lo
al beables in one spa
e-time region, when values are spe
i�ed for all lo
al beables in a

se
ond spa
e-time region fully obstru
ting the ba
kward light 
one of the �rst, are unaltered

by spe
i�
ation of values of lo
al beables in a third region with spa
elike separation from the

�rst two.� (Bell, 1986/2004, p. 200)

Bell's se
ond version is in a footnote; it is very su

in
t and 
ontains no �gure. The new element is the

phrasing �spa
e-time region fully obstru
ting the ba
kward light 
one of the �rst�. This idea gets a more

pre
ise exposition in Bell's third, �nal version of lo
al 
ausality.

Version 3.

�A theory will be said to be lo
ally 
ausal if the probabilities atta
hed to values of lo
al

beables in a spa
e-time region A are unaltered by spe
i�
ation of values of lo
al beables in a

spa
e-like separated region B, when what happens in the ba
kward light 
one of A is already

su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables in a spa
e-time region

C (Fig. 3).� (Bell, 1990/2004, p. 239-240)

The lo
alization of region C is of 
ru
ial importan
e. It is not enough that C 
ompletely 
uts a
ross the


ausal past of region A; it also has to �obstru
t the ba
kward light
one of the �rst�. Bell expli
itly stresses
this point: �It is important that region C 
ompletely shields o� from A the overlap of the ba
kward light


ones of A and B.� (Bell, 1990/2004, p. 240) This requirement will play a 
entral role in our investigation

on the relation of lo
al 
ausality to the Causal Markov Condition. We will 
ome ba
k to that having

de�ned lo
al 
ausality in the next Se
tion.

3 Lo
al 
ausality in lo
al physi
al theories

The framework integrating probabilisti
 and spatiotemporal entities 
an be de�ned as follows. (For the

details and motivations of the de�nition see (Hofer-Szabó and Ve
sernyés, 2015a,b).)
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A B

C

Figure 3: Bell's �gure illustrating lo
al 
ausality (1990).

De�nition 1. A PK-
ovariant lo
al physi
al theory is a net {A(V ), V ∈ K} asso
iating algebras of events
to spa
etime regions whi
h satis�es isotony, mi
ro
ausality and 
ovarian
e de�ned as follows (Haag, 1992):

Isotony. Let M be a globally hyperboli
 spa
etime and let K be a 
overing 
olle
tion of bounded,

globally hyperboli
 subspa
etime regions of M su
h that (K,⊆) is a dire
ted poset under in
lusion

⊆. The net of lo
al observables is given by the isotone map K ∋ V 7→ A(V ) to unital C∗
-algebras,

that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The quasilo
al algebra A is

de�ned to be the indu
tive limit C∗
-algebra of the net {A(V ), V ∈ K} of lo
al C∗

-algebras.

Mi
ro
ausality (also 
alled as Einstein 
ausality) is the requirement that A(V ′)′ ∩ A ⊇ A(V ), V ∈ K,
where primes denote spa
elike 
omplement and algebra 
ommutant, respe
tively.

Spa
etime 
ovarian
e. Let PK be the subgroup of the group P of geometri
 symmetries of M leaving

the 
olle
tion K invariant. A group homomorphism α : PK → AutA is given su
h that the auto-

morphisms αg, g ∈ PK of A a
t 
ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.

If the quasilo
al algebra A of the lo
al physi
al theory is 
ommutative, we speak about a lo
al 
lassi
al

theory ; if it is non
ommutative, we speak about a lo
al quantum theory. For lo
al 
lassi
al theories

mi
ro
ausality ful�lls trivially.

A state φ in a lo
al physi
al theory is de�ned as a normalized positive linear fun
tional on the quasilo
al

observable algebra A. The 
orresponding GNS representation πφ : A → B(Hφ) 
onverts the net of C∗
-

algebras into a net of C∗
-subalgebras of B(Hφ). Closing these subalgebras in the weak topology one

arrives at a net of lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Von Neumann

algebras are generated by their proje
tions representing quantum events. The net {N (V ), V ∈ K} of

lo
al von Neumann algebras also obeys isotony, mi
ro
ausality, and PK-
ovarian
e, hen
e one 
an also

refer to a net {N (V ), V ∈ K} of lo
al von Neumann algebras as a lo
al physi
al theory.

Why von Neumann algebras?

Classi
al �eld theories are 
hara
terized by their sets of �eld 
on�gurations. Taking the equivalen
e


lasses of those �eld 
on�gurations whi
h have the same �eld values on a given spa
etime region one


an generate lo
al (
ylindri
al) σ-algebras. One 
an translate σ-algebras into the language of abelian

von Neumann algebras and then generalize this framework also for non-abelian von Neumann algebras.

We 
ome ba
k to the details of this pro
edure in the next se
tion when we introdu
e our sto
hasti


lo
al 
lassi
al theory. Thus, we translate Bell's term �lo
al beables� into the language of lo
al physi
al

theories simply as �elements of a lo
al von Neumann algebra�. Now, how to translate the term �a 
omplete

spe
i�
ation of beables�? We are of the opinion that the natural translation of this term is simply �an

atomi
 event of a lo
al von Neumann algebra� (Henson, 2013). Here it is assumed that the lo
al algebras

of the net are atomi
, whi
h is not the 
ase, for example, in Poin
aré 
ovariant algebrai
 quantum �eld
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theory. (For a more general de�nition of lo
al 
ausality see (Hofer-Szabó and Ve
sernyés, 2015a).) With

these notions in hand now one 
an formulate Bell's notion of lo
al 
ausality in a lo
al physi
al theory as

follows:

De�nition 2. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von Neumann algebras

is 
alled lo
ally 
ausal, if for any pair A ∈ N (VA) and B ∈ N (VB) of proje
tions supported in spa
elike

separated regions VA, VB ∈ K and for every lo
ally normal and faithful state φ establishing a 
orrelation

φ(AB) 6= φ(A)φ(B) between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′
C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC

)

= ∅,

(see Fig. 4) and for any atomi
 event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 4: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=

φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(3)

In 
ase of lo
al 
lassi
al theories a lo
ally faithful state φ determines uniquely a lo
ally nonzero

probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means of this (3) 
an be written both in the

symmetri
 form

p(AB|Ck) = p(A|Ck)p(B|Ck) (4)

and also in the equivalent asymmetri
 form

p(A|BCk) = p(A|Ck) (5)

featuring in Bell's �rst version of lo
al 
ausality.

Now, the lo
alization of region VC by Requirements (i)-(iii) is a bit more liberal than that required in

Bell's se
ond version. Although VC �
ompletely shields o�� region VA from the 
ommon past of VA and

VB , it is not spa
elike separated from VB (as is, for example, region VC in Fig. 3). But why not to be

more liberal? Why Requirement (iii) is needed at all? Why does a region VC su
h as the one depi
ted in

Fig. 5 not su�
e? The brief answer to this question is that the region above VC (lighter shaded in Fig. 5)


an 
ontain sto
hasti
 events whi
h, though 
ompletely spe
i�ed by the region VC , still, being sto
hasti
,


ould establish a 
orrelation between A and B in a 
lassi
al sto
hasti
 theory (Norsen, 2011; Seevin
k

and U�nk 2011; Hofer-Szabó 2015
). Indeed, exa
tly this will be the 
ase in our model introdu
ed in

the next se
tion.

In order to relate Bell's lo
al 
ausality to the Causal Markov Condition we need to introdu
e a s
reening-

o� 
ondition similar to lo
al 
ausality, namely Markovity:
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VA B

C

V

V

Figure 5: A region VC for whi
h Requirement (iii) does not hold.

De�nition 3. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von Neumann algebras is


alled Markov, if for any pair A ∈ N (VA) and B ∈ N (VB) of proje
tions supported in regions VA, VB ∈ K
with VB ⊂ I−(VA) and for every lo
ally normal and lo
ally faithful state φ establishing a 
orrelation

φ(AB) 6= φ(A)φ(B) between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),

(ii) VA ⊂ V ′′
C ,

(iii') VB ⊂ J−(VC),

(see Fig. 6) and for any atomi
 event Ck of A(VC) (k ∈ K) (3) holds.

A

C

VB

V

V

Figure 6: A region VC satisfying Requirements (i)-(iii') of Markovity.

The relation between lo
al 
ausality and Markovity is straightforward. In both 
ases events lo
alized

in region VA and VB, respe
tively are s
reened-o� by the atomi
 events in region VC . If VA and VB

are spa
elike separated and VC is lo
alized a

ording to Requirements (i)-(iii), then (3) expresses lo
al


ausality. If VA and VB are timelike separated and VC is lo
alized a

ording to Requirements (i)-(iii'),

then (3) expresses Markovity. As we will see later Causal Markov Condition will be a spe
ial 
ase of the


omposition of lo
al 
ausality and Markovity.

4 A simple sto
hasti
 lo
al 
lassi
al theory

In this se
tion we will develop a simple sto
hasti
 lo
al 
lassi
al theory. Before introdu
ing it in a full-

�edged form, let us sket
h it in brief. The spa
etime of the theory will be a 1+1 dimensional dis
retized

7



Minkowski spa
etime 
overed by minimal double 
ones. (See Fig. 7.) The �eld 
on�gurations of the

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

+
+

−
−

++
+

+
+

−
+

−
−

−
−

−

Figure 7: A simple sto
hasti
 lo
al 
lassi
al theory.

theory are given by mappings assigning a + or a − to ea
h minimal double 
one. The dynami
s of the

theory is generated by the following transition probabilities : The value + or − in a given minimal double


one is probabilisti
ally �xed by the produ
t of the values in the three minimal double 
ones adja
ent to

it from below, irrespe
tively of the value in other minimal double 
ones, like earlier or spatially separated

ones. The probabilisti
 dependen
e is this: If the produ
t of the values in the three adja
ent minimal

double 
ones is +, then the value in the upper minimal double 
one will be + with probability p and −
with probability 1− p; if the produ
t is −, the value will be − with probability p and + with probability

1 − p. The pro
ess is deterministi
, if p ∈ {0, 1} and sto
hasti
, if p ∈ (0, 1). Now, let us see the theory

in a more detailed way.

Consider a dis
retized version of the two dimensional Minkowski spa
etime M2
whi
h is 
omposed

of minimal double 
ones Vm(t, i) of unit diameter with their 
enter in (t, i) for t, i ∈ Z or t, i ∈ Z+ 1/2.
The set {V m(t, i), i ∈ 1

2Z} of su
h minimal double 
ones with t = 0,−1/2 de�nes a `thi
kened' Cau
hy

surfa
e in this spa
etime, denoted by S0. For double 
ones sitting on S0 we will drop the time 
oordinate

and simply write Vm
i . (See Fig. 8.)

A double 
one V (t, i; s, j) is de�ned to be the smallest double 
one 
ontaining both V m(t, i) and

V m(s, j), that is generated by them: V (t, i; s, j) := V m(t, i) ∨ V m(s, j). The dire
ted poset of su
h

double 
ones is denoted by Km
and the dire
ted poset of double 
ones generated by minimal double


ones sti
ked to the Cau
hy surfa
e S0 is denoted by Km
0 . Obviously, Km

0 will be left invariant by integer

spa
e translations and Km
will be left invariant by integer spa
e and time translations. By shifting the

time 
oordinates of the minimal double 
ones by t one 
an similarly de�ne the Cau
hy surfa
e St and

the net Km
t .

Let Sm
denote the set of minimal double 
ones of M2

and let Z2 be the multipli
ative group of the

integers {1,−1}. De�ne the set C of 
on�gurations of the theory as: C := {c : Sm → Z2}. The maximal

σ-algebra of 
lassi
al events (C,P(C)) is given by the power set P(C) of the set of 
on�gurations. But

one 
an also obtain a narrower σ-algebra in tune with the net stru
ture Km
. This is done by taking the

equivalen
e 
lasses of those 
on�gurations whi
h have the same �eld values on a given region in Km
. The

sets CV of lo
al equivalen
e 
lasses (the `
ylindri
al subsets' of C 
on
entrated on V ) are obtained by the

equivalen
e relation: c ∼V c′ if c|V = c′|V . Clearly, CV 
ontains 2|V |
elements, where |V | is the number of

minimal double 
ones in V . One 
an get the power set P(CV ) of CV by de�ning the following map ZV

for V ∈ Km
:

ZV : P(C) → P(C), C 7→ {c′ ∈ C |∃c ∈ C : c|V = c′|V } (6)
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Figure 8: Two dimensional dis
rete Minkowski spa
etime with a `thi
kened' Cau
hy surfa
e.

For a given V ∈ Km
the image sets of ZV de�ne a unital σ-subalgebraΣ(V ) of P(C), whi
h is isomorphi
 to

the power set P(CV ) of CV . By ranging over V ∈ Km
one obtains an isotone net stru
ture {(C,Σ(V )), V ∈

Km}. The 2|V |
dimensional abelian lo
al von Neumann algebraN (V ) 
orresponding to the lo
al σ-algebra

Σ(V ) is spanned by the orthogonal set of minimal proje
tions P c
V , c ∈ CV 
orresponding to 
hara
teristi


fun
tions χc
V : C → C whi
h are 1 on the 
ylindri
al subset c ∈ CV of C and 0 otherwise. Clearly,

{N (V ), V ∈ Km} is an isotone net of �nite dimensional abelian von Neumann algebras, hen
e it de�nes

a lo
al 
lassi
al theory.

The quasilo
al C∗
-algebra A is given by the indu
tive limit of the lo
al von Neumann algebras

N (V ), V ∈ Km
, and similarly the unital C∗

-subalgebras A0 of A is given by the indu
tive limit of

the lo
al von Neumann algebras N (V ), V ∈ Km
0 . Now, a sto
hasti
 theory 
an be regarded as a state

extension pro
edure from the subalgebra A0 (or from any At) to the quasilo
al algebra A by means of

so-
alled transition probabilities. This is done in the following way.

Let V (t+ 1
2 ) be a �nite set of minimal double 
ones on the time sli
e t+ 1

2 . De�ne the nearest past of

V (t+ 1
2 ) as follows: Pt(V (t+ 1

2 )) ≡ St∩(St\J−(V (t+ 1
2 )))

′
. Spe
i�
ally, the nearest past Pt(V

m(t+ 1
2 , i))

of the minimal double 
one V m(t+ 1
2 , i) 
ontains the three minimal double 
ones adja
ent to V m(t+ 1

2 , i)
from below, namely V m(t, i − 1

2 ), V
m(t − 1

2 , i) and Vm(t, i + 1
2 ). For a given 
on�guration c ∈ C de�ne

the generating transition probabilities from the equivalen
e 
lass cPt(V m(t+ 1
2
,i)) to the equivalen
e 
lass

cV m(t+ 1
2
,i) as follows:

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) :=

{

p, if c(t+ 1
2 , i) = c(t, i− 1

2 )c(t−
1
2 , i)c(t, i+

1
2 )

1− p, if c(t+ 1
2 , i) = −c(t, i− 1

2 )c(t−
1
2 , i)c(t, i+

1
2 )

(7)

where c(t, i) is short for c(V m(t, i)), the value of the 
on�guration c at the minimal double 
one V m(t, i).
Assuming that the generating transition probabilities are independent with respe
t to spa
elike sepa-

ration, one 
an de�ne the transition probabilities from the Cau
hy surfa
e St to the time sli
e t + 1
2

as:

p(cV (t+ 1
2
)|cPt(V (t+ 1

2
))) :=

∏

V m(t+ 1
2
,i)∈V (t+ 1

2
)

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) (8)

Intuitively, these transition probabilities do the following: The value + or − in a given minimal double


one is probabilisti
ally �xed purely by the produ
t of the values in the three minimal double 
ones adja-


ent to it from below. (See again Fig. 7.) Negatively speaking, they do not depend on the value of other

9



minimal double 
ones, like earlier or spatially separated ones. As we will see, these two independen
ies

are 
losely 
onne
ted to Markovity and lo
al 
ausality, respe
tively. If the produ
t is +, then the value

is + with probability p and − with probability 1− p; if the produ
t is −, the value is − with probability

p and + with probability 1− p.
Finally, let U(t) be a �nite set of minimal double 
ones on the Cau
hy surfa
e St. We de�ne the state

on the equivalen
e 
lass cV (t+ 1
2
) ∩ cU(t) as follows:

φ(cV (t+ 1
2
) ∩ cU(t)) := p(cV (t+ 1

2
)|cPt(V (t+ 1

2
)))φ(cPt(V (t+ 1

2
)) ∩ cU(t)) (9)

Thus, starting from φ0 on A0 one 
an re
ursively de�ne the state φ on the whole A. (For the Cau
hy

surfa
es below S0 we use Bayes theorem for the extension.)

To simplify things, introdu
e the following denotation. Let i+ and i− denote three di�erent things at the

same time: the two 
ylindri
al subsets of CV m

i

on
entrated on the minimal double 
one V m

i on the Cau
hy

surfa
e S0; the two 
orresponding 
hara
teristi
 fun
tions; and also the two 
orresponding orthogonal

proje
tions in N (V m
i ). If we are not spe
ifying whi
h of the two sets/
hara
teristi
 fun
tions/proje
tions

we are speaking about, we simply write i. The nth forward and ba
kward spa
e translates of i will be
denoted by (i+ n) and (i− n), respe
tively (n ∈ 1

2N); the tth forward and ba
kward time translates will

be denoted by it and i−t, respe
tively (t ∈ N).

Let, furthermore,

i · (i +
1

2
) . . . (j −

1

2
) · j

denote the produ
t of a sequen
e of proje
tions lo
alized on the Cau
hy surfa
e S0 between minimal

double 
ones Vm
i and Vm

j , and let pi...j denote the probability thereof in state φ. Sin
e we will deal only
with proje
tions of abelian von Neumann algebras, from now on instead of φ we simply write p. Finally,
we will express the 
ondition

c(t+
1

2
, i) = c(t, i −

1

2
)c(t−

1

2
, i)c(t, i+

1

2
)

in (7) by the Dira
 delta symbol

δc(t+ 1
2
,i),c(t,i− 1

2
)c(t− 1

2
,i)c(t,i+ 1

2
)

or in the short form

δi1,(i− 1
2
)i(i+ 1

2
)

Now, let A = it and B = js be two proje
tions lo
alized in the minimal double 
ones V m(t, i) and
V m(s, j), respe
tively, with i < j. Suppose that V m(t, i) and V m(s, j) are spatially separated, that is

|j − i| > |s − t|. To 
al
ulate the probability of A, B and AB, we need a little geometry. (See Fig. 9.)

Consider the minimal double 
one V m(u, k) (striped horizontally) at the 'top of the 
ommon past' of

regions V m(t, i) and V m(s, j). The 
oordinates of V m(u, k) are the following:

u =
1

2
(t+ s+ i− j) k =

1

2
(i+ j + t− s) (10)

Consider now the Cau
hy surfa
e S⌈u⌉ �tting V m(u, k), where the 
eiling fun
tion ⌈·⌉ in the subs
ript

is just to round up the u 
oordinates if half integers. Let the number of minimal double 
ones in the


ausal past of V m(t, i) above S0 (in
luding Vm(t, i) but not in
luding double 
ones on S0) be denoted

by n, and the number of minimal double 
ones in the 
ausal past of Vm(t, i) above S⌈u⌉ (again in
luding

V m(t, i) but not in
luding double 
ones on S⌈u⌉) by n′
. Similarly, the number of minimal double 
ones

in the 
ausal past of V m(s, j) above S0 and S⌈u⌉ be denoted by m and m′
, respe
tively. Finally, denote

the number of minimal double 
ones in the 
ausal past of V m(u, k) above S0 by l. The numbers n, n′
,

10
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Figure 9: A little geometry.

m′
, m and l are the following fun
tions of i, j, t and s:

n =

{

−t+ 4
∑t

x=1 x, if i ∈ N

t+ 4
∑t

x=1(x− 1), if i ∈ 1
2N

(11)

n′ =

{

−t+ 4
∑t

x=⌈u⌉ x, if i ∈ N

t+ 4
∑t

x=⌈u⌉(x− 1), if i ∈ 1
2N

(12)

m =

{

−s+ 4
∑s

x=1 x, if j ∈ N

s+ 4
∑s

x=1(x− 1), if j ∈ 1
2N

(13)

m′ =

{

−s+ 4
∑s

x=⌈u⌉ x, if j ∈ N

s+ 4
∑s

x=⌈u⌉(x− 1), if j ∈ 1
2N

(14)

l =

{

−⌈u⌉+ 4
∑⌈u⌉

x=1 x, if k ∈ N

⌈u⌉+ 4
∑⌈u⌉

x=1(x− 1), if k ∈ 1
2N

(15)

In Fig. ??, for example, n = m = 3, n′ = m′ = 21 and l = 6. With these numbers one 
an also 
al
ulate

the number r of minimal double 
ones between S⌈u⌉ and S0 (in
luding double 
ones on S⌈u⌉ but not on

S0):

r = n− n′ +m−m′ − l (16)

whi
h is 30 in Fig. 9. Now, using the above numbers (11)-(16) the probability of A, B and AB will be

11



the following:

p(A) =
∑

(i−t−{i+ 1
2
}),...,(i+t+{i+ 1

2
})

[

qnδit,(i−t+{i})...(i+t−{i})

+(1− qn)δ−it,(i−t+{i})...(i+t−{i})

]

p(i−t−{i+ 1
2
})...(i+t+{i+ 1

2
}) (17)

p(B) =
∑

(j−s−{j+ 1
2
}),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(j−s−{j+ 1
2
})...(j+s+{j+ 1

2
}) (18)

p(AB) =
∑

(i−t+{i}),...,(j+s−{j})

[

qn′qm′qr δit,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+qn′(1− qm′)qr δit,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

+(1− qn′)qm′qr δ−it,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+(1− qn′)(1 − qm′)qr δ−it,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

]

×p(i−t−{i+ 1
2
})...(j+s+{j+ 1

2
}) (19)

where the fra
tional part fun
tion {·} in the subs
ript is again to treat integer and half integer 
oordinates

together, and qx (x = n, n′,m,m′, r) is the even part of the binomial expression:

qx := px +

(

x

2

)

px−2(1 − p)2 +

(

x

4

)

px−4(1− p)4 + . . . (20)

Obviously, in the general 
ase:

p(AB) 6= p(A)p(B) (21)

so there is a superluminal 
orrelation between A and B.

Example 1. As an example, let A = i+1 and B = j+1 , where j = i + 2 ∈ N + 1
2 . (See Fig. 10.) Let the
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Figure 10: Superluminally 
orrelating events i+1 and j+1 .
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'prior' probabilities p(i−1)...(j+1) on S0 be �xed as follows:

p+++++++++ =
1

2
(22)

p+++++++−+ =
1

4
(23)

p+−+++++++ =
1

4
(24)

and all the other 
ombinations be 0. Then the probability of A, B and AB is the following:

p(A) =
∑

(i−1),...,(i+1)

[

p δi+
1
,(i− 1

2
)i(i+ 1

2
) + (1 − p)δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)

]

p(i−1)...(i+1) =
1

2

(

1

2
+ p

)

(25)

p(B) =
∑

(j−1),...,(j+1)

[

p δj+
1
,(j− 1

2
)j(j+ 1

2
) + (1 − p)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(j−1)...(j+1) =
1

2

(

1

2
+ p

)

(26)

p(AB) =
∑

(i−1),...,(j+1)

[

p2 δi+
1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + p(1− p)δi+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

+(1− p)p δ−i
+

1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + (1− p)2δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(i−1)...(j+1)

=
1

2
p (27)

thus A and B are 
orrelating whenever p 6= 1
2 .

Example 2. In the se
ond example, let A = i+2 and B = j+2 , where again j = i + 2 ∈ N + 1
2 . (See Fig.

11.) With the 'prior' probabilities p(i−2)...(j+2):

����
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i j2 2

Figure 11: Superluminally 
orrelating events i+2 and j+2 .

p+++++++++++++ =
1

2
(28)

p+++++++++++−+ =
1

4
(29)

p+−+++++++++++ =
1

4
(30)
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(and the rest is 0) one obtains the probability of A, B and AB as:

p(A) =
∑

(i−2),...,(i+2)

[

q6 δi+
2
,(i− 3

2
)...(i+ 3

2
) + (1− q6)δ−i+

2
,(i− 3

2
)...(i+ 3

2
)

]

p(i−2)...(i+2)

=
1

2

(

1

2
+ q6

)

(31)

p(B) =
∑

(j−2),...,(j+2)

[

q6 δj+
2
,(j− 3

2
)...(j+ 3

2
) + (1− q6)δ−j+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(j−2)...(j+2)

=
1

2

(

1

2
+ q6

)

(32)

p(AB) =
∑

(i−2),...,(j+2)

[

p2q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+p (1− p) q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p) p q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p)2q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(i−2)...(j+2) =
1

2
pq9 (33)

thus A and B are 
orrelating whenever

1
4 (

1
2 + q6)

2 6= 1
2pq9 whi
h is the typi
al 
ase.

The di�eren
e between Example 1 and 2 is that in Example 1 there is no minimal double 
one above

S0 in the 
ommon past of A and B, whereas in Example 2 there is su
h a minimal double 
one, namely

V m(1, i+ 1).2 This di�eren
e will have 
ru
ial 
onsequen
es 
on
erning lo
al 
ausality to whi
h we turn

now.

First, we prove that the above lo
al 
lassi
al theory is lo
ally 
ausal. A
tually, we prove a little

less: lo
al 
ausality for a spe
i�
 
hoi
e of VA, VB and VC . (For a general proof see (Hofer-Szabó and

Ve
sernyés 2015a).) Let VA = V m(t, i) and VB = Vm(s, j) be two spatially separated minimal double


ones with i < j, and let VC be generated by the interse
tion of the 
ausal past of VA and a Cau
hy

surfa
e �shielding o�� VA from the 
ommon past of VA and VB . Any Cau
hy surfa
e Sv with ⌈u⌉ 6 v 6 t
will be su
h a �shielder-o�� Cau
hy surfa
e, where u is de�ned in (10). (For a �shielder-o�� Cau
hy

surfa
e see Fig. 9.) The region VC generated by this interse
tion will obviously satisfy Requirements

(i)-(iii) in De�nition 2 of lo
al 
ausality.

Now, we prove lo
al 
ausality with respe
t to these regions.

Proposition 1. The sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} is lo
ally 
ausal for any three

regions VA, VB and VC spe
i�ed above.

Proof. Let A = it and B = js be two proje
tions lo
alized in VA and VB , respe
tively, and 
orrelating

in the probability measure p. We are to show that for any atomi
 event

C =

(

i− t+ v − {i+
1

2
}

)

v

. . .

(

i+ t− v + {i+
1

2
}

)

v

of VC the following holds:

p(AB|C) = p(A|C)p(B|C) (34)

First, for the sake of 
onvenien
e, shift the Cau
hy surfa
e S0 up to Sv and denote the new time 
oor-

dinates by a prime: t′ := t− v and s′ := s− v. Similarly let q′n and q′m denote the appropriate number

2

See also our remark in the last paragraph of Se
tion 3.
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of minimal double 
ones with respe
t to the shifted Cau
hy surfa
e. With this notation the 
onditional

probabilities are the following:

p(A|C) =

[

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−i
t′
,(i−t′+{i})...(i+t′−{i})

]

(35)

p(B|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′mδj
s′
,(j−s′+{j})...(j+s′−{j})

+(1− q′m)δ−j
s′
,(j−s′+{j})...(j+s′−{j})

]

pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (36)

p(AB|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′nq
′
m δi

t′
,(i−t′+{i})...(i+t′−{i})δj

s′
,(j−s′+{j})...(j+s′−{j})

+q′n(1 − q′m) δi
t′
,(i−t′+{i})...(i+t′−{i})δ−j

s′
,(j−s′+{j})...(j+s′−{j})

+(1− q′n)q
′
m δ−i

t′
,(i−t′+{i})...(i+t′−{i})δj

s′
,(j−s′+{j})...(j+s′−{j})

+(1− q′n)(1− q′m) δ−i
t′
,(i−t′+{i})...(i+t′−{i})δ−j

s′
,(j−s′+{j})...(j+s′−{j})

]

×pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (37)

where pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) is a short for

p(i−t′−{i+ 1
2
}...(i+t′+{i+ 1

2
})(j−s′−{j+ 1

2
})...(j+s′+{j+ 1

2
})

From (35)-(37) the s
reening-o� (34) follows immediately.

One 
an see from the proof that if VC is a segment of Cau
hy surfa
e satisfying Requirements (i)-(iii)

in De�nition 2, that is a segment of Cau
hy surfa
e lo
ated at or above the top of the 
ommon 
ausal

past of the 
orrelating events A and B, then from (19) the qr terms will drop out leaving no 
orrelation

between the 
onditional probabilities. Note that VC need not ne
essarily be above the 
ommon past of

A and B, it 
an also interse
t with the top of it (see again Fig. 5). All is needed is that there is no region

above VC in the 
ommon past. Su
h a region, namely, 
an 
ontain sto
hasti
 events whi
h 
ould establish

a 
orrelation between A and B. Mathemati
ally this means that from (19) the qr terms would not drop

out and hen
e the 
orrelation would not be s
reened o� by the atomi
 events of VC . Requirement (iii) in

the de�nition of lo
al 
ausality is just to ex
lude this 
ase. The next proposition shows that Requirement

(iii) also is a ne
essary 
ondition in the lo
alization of VC .

Proposition 2. The lo
al 
lassi
al theory {N (V ), V ∈ Km} would not be lo
ally 
ausal if Requirement

(iii) was dropped from De�nition 2.

Proof. Consider Example 2 of the previous Se
tion that is let A = i+2 and B = (i + 2)+2 and the prior

probabilities those �xed in (28)-(30). Let C be the minimal proje
tion

(i − 2)+(i −
3

2
)+(i− 1)+(i−

1

2
)+i+(i+

1

2
)+(i+ 1)+(i +

3

2
)+(i+ 2)+

lo
alized in region VC . (See Fig. 12.) For the region VC Requirement (iii) does not hold sin
e there is a

minimal double 
one, Vm(1, i+1) (the one with horizontal stripes) above region VC in the 
ommon past

of VA and VB .

Using the identity

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

(i+
5

2
)(i+ 3)(i+

7

2
)(i + 4) = 1 (38)
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Figure 12: A region VC for whi
h Requirement (iii) does not hold.

it is easy to see that C does not s
reen o� the 
orrelation between A and B sin
e

p(A|C) = q6 (39)

p(B|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

B
∣

∣C(i+ 5
2 ), (i + 3), (i+ 7

2 ), (i + 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + q6) (40)

p(AB|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

AB
∣

∣C(i + 5
2 ), (i+ 3), (i+ 7

2 ), (i + 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + p)pq9 (41)

for any C of non-zero measure. But typi
ally

1

3
q6(1 + q6) 6=

1

3
(1 + p)pq9 (42)

sin
e the left and right hand side are of di�erent ordo in p.

Next we prove that the above lo
al 
lassi
al theory is also Markov. Again, we prove a little less: lo
al


ausality for a minimal double 
one VA = V m(t, i), another minimal double 
one VB = Vm(s, j) lying
in the 
ausal past of VA, and a third region VC generated by the interse
tion of the 
ausal past of VA

and a Cau
hy surfa
e �shielding o�� VA from VB . (See Fig. 13.) VC will obviously satisfy Requirements

(i)-(iii') in De�nition 3 of Markovity.

Proposition 3. The sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} is Markov for any three regions

VA, VB and VC spe
i�ed above.

Proof. Let A = it and B = js be two proje
tions lo
alized in VA and VB , respe
tively, and 
orrelating

in the probability measure p. We are to show that for any atomi
 event

C =

(

i− t+ v − {i+
1

2
}

)

v

. . .

(

i+ t− v + {i+
1

2
}

)

v

16



����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

A

C

B

V

V

V

Figure 13: The regions VA, VB and VC for whi
h Markovity holds.

of VC with s < v < t the following holds:

p(A|C) = p(A|CB) (43)

But it does, sin
e both sides of (43) are simply

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−i
t′
,(i−t′+{i})...(i+t′−{i})

where again t′ := t− v and q′n denotes the appropriate number of minimal double 
ones with respe
t to

the shifted Cau
hy surfa
e.

5 Lo
al Causality, Causal Markov Condition and d-separation

Now, I 
onne
t lo
al 
ausality and Markovity to the Causal Markov Condition used in the theory of

Bayesian networks (see (Pearl, 2000) and (Spirtes, Glymour and S
heines, 2000)). Consider a dire
ted

a
y
li
 graph G and a set of random variables V on a 
lassi
al probability spa
e (Σ, p) su
h that the

elements X,Y . . . of V are represented by the verti
es of G and the arrows X → Y on the graph represent

that X is 
ausally relevant for Y . For any X ∈ V let Par(X), the parents of X , be the set of verti
es that

have dire
ted edges in X ; let Anc(X), the an
estors of X , be the set of verti
es from whi
h a dire
ted

paths is leading to X ; and �nally let Des(X), the des
endants of X , be the set of verti
es that are

endpoints of a dire
ted paths from X . The set V is said to satisfy the Causal Markov Condition relative

to the graph G if for any X ∈ V and any Y /∈ Des(X) the following is true:

p(X |Par(X) ∧ Y ) = p(X |Par(X)) (44)

In other words, 
onditioning on its parents the random variable X will be probabilisti
ally independent

from any of its non-des
endant. Non-des
endants of X 
an be of two types: either an
estors or non-

relatives (non-des
endants and non-an
estors). As we will see, being independent of an
estors is related

to the Markovity, whereas being independent of non-relatives is related to lo
al 
ausality.

We say that the set V is faithful relative to the graph G if all probabilisti
 independen
ies between

the random variables of V are implied by the Causal Markov Condition. This impli
ation 
an neatly be

depi
ted graphi
ally by the so-
alled d-separation 
riterion. Let P be a path in G. A variable C on P is

a 
ollider if there are arrows to C from both its neighbors on P . Now, let X , Y and Z be three disjoint

17



sets of verti
es in G. X and Y are said to be d-
onne
ted by Z in G i� there exists a path P between

some vertex in X and some vertex in Y su
h that for every 
ollider C on P , either C or a des
endant of

C is in Z, and no non-
ollider on P is in Z. X and Y are said to be d-separated by Z in G i� they are

not d-
onne
ted by Z in G. Spe
i�
ally, the Causal Markov Condition entails that the variables X and

Y are probabilisti
ally independent 
onditional upon the subset Z just in 
ase Z d-separates X and Y
in G.

Now, 
onsider the sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} introdu
ed in the previous Se
-

tion. A lo
al von Neumann algebra N (V ) of the theory gives rise to a graph G(V ) and a set of random

variables V(V ) on a 
lassi
al probability spa
e (Σ, p) in the following way. Consider a region V in Km

with the set {Vm} of minimal double 
ones 
ontained in V . Let the minimal double 
ones be the verti
es

of a 
ausal graph and draw an arrow to every minimal double 
one V m(t, i) from the three minimal

double 
ones adja
ent to it from below, that is from V m(t− 1
2 , i−

1
2 ), V

m(t− 1, i) and V m(t− 1
2 , i+

1
2 ), if

all 
ontained in V . (See Fig. 14.) The set of verti
es and arrows will uniquely determine a 
ausal graph

Figure 14: The 
ausal graph G(V ) asso
iated to V .

G(V ) asso
iated to V .

As for the set of random variables V(V ), to ea
h minimal double 
one V m(t, i) in V assign simply

the two 
ylindri
al subsets of CV (t,i), denoted by c+
V m(t,i) and c−

V m(t,i), or equivalently the proje
tions i+t
and i+t , respe
tively. Thus, the parents of a given random variable will be the proje
tions in the three

past timelike related adja
ent minimal double 
ones, the des
endants of a random variable will be the

proje
tions in the future timelike related minimal double 
ones, et
. The pair

(

G(V ),V(V )
)

will form a

Bayesian network.

The translation manual between the vo
abulary of the theory of Bayesian networks and that of the

sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} is shown in the following table:

18



Theory of Bayesian networks Sto
hasti
 lo
al 
lassi
al theory

Bayesian network

(

G(V ),V(V )
)

Asso
iated to every V ∈ Km

Causal graph G(V ) Lo
al von Neumann algebra N (V )
with V ∈ Km

Verti
es Minimal double 
ones in V
Arrows Pointing to future timelike related

adja
ent minimal double 
ones

Random variables V(V ) Proje
tions lo
alized in the

minimal double 
ones 
ontained in V
Parents Proje
tions in past timelike related

adja
ent minimal double 
ones

An
estors Proje
tions in past timelike related

minimal double 
ones

Des
endants Proje
tions in future timelike related

minimal double 
ones

Causal Markov Condition Bell's lo
al 
ausality plus Markovity

The last line of the table 
ontains the 
entral point of our dis
ussion, namely:

1. The Causal Markov Condition is a 
onsequen
e of Bell's lo
al 
ausality and Markovity when applied

to the parents of a random variable.

2. Bell's lo
al 
ausality/Markovity are 
onsequen
es of the Causal Markov Condition, sin
e the set of

random variables lo
alized in a region satisfying Requirements (i)-(iii)/(iii') is d-separating.

We prove the �rst 
laim in the following proposition and illustrate the se
ond in the subsequent examples.

Proposition 4. Let {N (V ), V ∈ Km} be the sto
hasti
 lo
al 
lassi
al theory introdu
ed above satisfying

lo
al 
ausality and Markovity. Then for any pair

(

G(V ),V(V )
)

asso
iated to any V ∈ Km
the Causal

Markov Condition holds.

Proof. First we prove Causal Markov Condition for non-relatives whi
h follows from the theory being

lo
ally 
ausal. Let V ∈ Km
and let V m(t, i) and V m(s, j) be two minimal double 
ones in V su
h that

i < j. Suppose that V m(t, i) and V m(s, j) are spatially separated (non-relatives), that is |j − i| > |s− t|.
Without loss of generality we also 
an assume that t = 1

2 and s > t, as depi
ted in Fig. 15. We are
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Figure 15: Causal Markov Condition follows from Bell's lo
al 
ausality relative to the parents.

to show that the Causal Markov Condition (44) holds for X = i1 and Y = js in the Bayesian network

(

G(V ),V(V )
)

asso
iated to V .
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First, observe the parents of the variable i1 are (i − 1
2 ), i and (i + 1

2 ). Thus, the Causal Markov

Condition (44) reads as follows:

p

(

i1

∣

∣

∣

∣

(i−
1

2
)i(i+

1

2
) js

)

= p

(

i1

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

(45)

or equivalently

p

(

i1js

∣

∣

∣

∣

(i−
1

2
)i(i +

1

2
)

)

= p

(

i1

∣

∣

∣

∣

(i−
1

2
)i(i +

1

2
)

)

p

(

js

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

(46)

Or in other words, the atomi
 events (i − 1
2 )i(i +

1
2 ) s
reen o� the 
orrelation between i1 and js. But

(46) does hold, sin
e from (35)-(37) it follows that

p

(

i1

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

(47)

p

(

js

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

=
∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(48)

p

(

i1js

∣

∣

∣

∣

(i −
1

2
)i(i+

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

×

∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(49)

Next we prove Causal Markov Condition for an
estors whi
h follows from the theory being Markov.

Let again V ∈ Km
and let V m(t, i) and V m(s, j) be two minimal double 
ones in V su
h that V m(s, j) is

in the 
ausal past (is an an
estor) of V m(t, i), that is |j − i| 6 |s− t|. Again, we 
an assume that t = 1
2

and s > t, as depi
ted in Fig. 16. To prove (45) just observe that both sides equal to
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Figure 16: Causal Markov Condition follows from Markovity relative to the parents.

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)
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This 
ompletes the proof.

Thus, the Causal Markov Condition is a spe
ial 
ase of Bell's lo
al 
ausality and Markovity in the

sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km}, namely when VC is a spe
ial spa
etime region: the

union of the three parental minimal double 
ones, that is minimal double 
ones adja
ent to a given

minimal double 
one from below. We stress again that Causal Markov Condition is a 
omposition of

two s
reening-o� 
onditions: one for the an
estors and the other for the non-relatives. The �rst is the


onsequen
e of Markovity, the se
ond is the 
onsequen
e of lo
al 
ausality.

Now, we go over to our inverse 
laim, namely that Bell's lo
al 
ausality/Markovity are 
onsequen
es

of the Causal Markov Condition, sin
e the set of random variables lo
alized in a region VC satisfying

Requirements (i)-(iii)/(iii') is d-separating. Here we do not prove this 
laim generally, but only illustrate

the 
onne
tion of Requirements (i)-(iii) in the de�nition of lo
al 
ausality to d-separation on our previous

two examples.

Example 1. Consider the smallest region V ∈ Km
in our Example 1 (in Se
tion 4) 
ontaining the

superluminally 
orrelating events i+1 and j+1 with j = i+2 ∈ N+ 1
2 and a region VC satisfying Requirements

(i)-(iii) in the de�nition of lo
al 
ausality. (See Fig. 17.)
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Figure 17: The smallest region 
ontaining the s
enario of Example 1.

Now, 
onsider the Bayesian network

(

G(V ),V(V )
)

asso
iated to this V . The 
ausal graph of the

network is illustrated in Fig. 18. Let the variables be X = i1, Y = j1 and the subset Z be de�ned as:

i−1 i i+1

i j

j j+1

i−1/2 i+1/2 j−1/2 j+1/2

11

Figure 18: A d-separating s
enario.

Z :=

{

(i− 1), (i−
1

2
), i, (i+

1

2
), (i + 1)

}

In other words, Z 
ontains the random variables asso
iated to the minimal double 
ones of VC .

Now, Z d-separates i1 and j1 in G(V ), sin
e for every path P 
onne
ting i1 and j1 in G(V ) there is
a non-
ollider in Z, namely, (i + 1). Therefore, i1 and j1 are probabilisti
ally independent 
onditional

upon any atomi
 event

(i − 1)±(i−
1

2
)±i±(i +

1

2
)±(i + 1)±
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This fa
t is the Bayesian network analogon of the situation illustrated in Fig. 10 where VC is su
h that

there is no minimal double 
one above VC in the interse
tion of the 
ausal past of the 
orrelating events.

As said before, this is due to the fa
t that VC satis�es Requirement (iii) in the de�nition of lo
al 
ausality.

If Requirement (iii) does not ful�l, region VC turns into d-
onne
ting, as is shown in the next example.

Example 2. Consider the smallest region V ∈ Km
in our Example 2 
ontaining the superluminally


orrelating events i+2 and j+2 with j = i+2 ∈ N+ 1
2 and a region VC still in the 
ausal past of i+2 but not

satisfying Requirement (iii). (See Fig. 19.)
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Figure 19: The smallest region 
ontaining the s
enario of Example 2.

The 
ausal graph G of the network is illustrated in Fig. 20. Let the variables be X = i2, Y = j2 and

i j
2 2

ii−1 i+1 j j+1 j+2

i−3/2

i−2

i+1/2i−1/2 j−1/2 j+1/2 j+3/2

Figure 20: A d-
onne
ting s
enario.

let

Z :=

{

(i −
3

2
), (i − 1), (i−

1

2
), i, (i+

1

2
), (i+ 1), (i+

3

2
) = (j −

1

2
)

}

again a subset 
ontaining the random variables asso
iated to the minimal double 
ones within VC .

Now, Z does not d-separate i2 and j2 in G, sin
e the path

P :=

{

i2, (i +
1

2
)1, (i+ 1)1, (j −

1

2
)1, j2

}

(denoted by a broken line in Fig. 20) 
onne
ting i2 and j2 in G(V ) 
ontains only non-
olliders whi
h are

outside Z. Therefore, the probabilisti
 independen
e of i1 and j1 
onditional upon the atomi
 events

(i −
3

2
)±(i − 1)±(i−

1

2
)±i±(i +

1

2
)±(i + 1)±(i+

3

2
)±
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is not ensured by the Causal Markov Condition (and if the graph is faithful, it is even ex
luded). This

fa
t is the Bayesian network analogon of the situation illustrated in Fig. 11 where VC does not satisfy

Requirement (iii) in the de�nition of lo
al 
ausality.

These examples point in the same dire
tion: the Causal Markov Condition and the d-separation together

ensure that Bell's lo
al 
ausality will hold for the atomi
 proje
tions lo
alized in a region satisfying

Requirements (i)-(iii). Moreover, they also show that Requirements (iii) is a ne
essary 
ondition.

6 Con
lusions

In the paper I was arguing, based on a simple sto
hasti
 lo
al 
lassi
al model, that Bell's lo
al 
ausality,

read in an appropriate way, is a Causal Markov Condition. I have not though provided a general proof.

This would amount to solve the following

Open problem. Let {N (V ), V ∈ K} be a dis
rete lo
al physi
al theory, dis
rete in the sense that every

V ∈ K 
ontains only a �nite number of elements of K and the lo
al von Neumann algebras N (V )
are �nite. Constru
t the Bayesian network

(

G(V ),V(V )
)

asso
iated to a region V in K. Prove (or

falsify) that {N (V ), V ∈ K} is Markov and lo
ally 
ausal in Bell's sense i�

(

G(V ),V(V )
)

ful�ls the

Causal Markov Condition for every V ∈ K.
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