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Abstract

According to influential accounts of scientific method, e.g., critical rationalism,
scientific knowledge grows by repeatedly testing our best hypotheses. But despite
the popularity of hypothesis tests in statistical inference and science in general,
their philosophical foundations remain shaky. In particular, the interpretation
of non-significant results—those that do not refute the tested hypothesis—poses
a major philosophical challenge. To what extent do they corroborate the tested
hypothesis or provide a reason to accept it?

Karl R. Popper sought for measures of corroboration that could adequately
answer this question. According to Popper, corroboration is different from
probability-raising, and grounded in the predictive success and testability of a
hypothesis. As such, corroboration becomes an indicator of the scientific value
of a hypothesis and guides our practical preferences over hypotheses which have
been subjected to severe tests.

This paper proves two impossibility results for corroboration measures that are
specified along the above lines. The generality of these results shows that Popper’s
qualitative characterization of corroboration must be misguided. I explore what a
more promising, and scientifically useful concept of corroboration could look like.
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1 Introduction. Motivating the concept of corroboration

According to influential accounts of scientific method, scientific knowledge grows by

repeatedly testing our best hypotheses (e.g., Popper 1934/2002; Mayo 1996). Nowa-

days, hypothesis tests have acquired a predominant role in scientific reasoning and

are a crucial part of publication requirements. The most frequent form of scientific

inference is the null hypothesis significance test (NHST): it tests a precise hypothesis h0—

the “null” or default hypothesis—against an unspecific alternative h1. In the most

common form of NHST, the null hypothesis posits a precise value for a real-valued

parameter θ (h0 : θ = θ0), while the alternative (h1 : θ 6= θ0) is a disjunction of uncount-

ably many precise hypotheses (e.g., Neyman and Pearson 1933; Fisher 1956). The null

denotes an absent or negligible effect (e.g., a new medical drug is not better than a

placebo treatment) whereas the alternative stands for a sizeable effect. NHST are ap-

plied across all domains of science, but are especially prominent in psychology and

medicine.

Despite their popularity in scientific inference, the philosophical foundations of

NHST are shaky at best. NHST are used for quantifying evidence that the data accu-

mulate against the null hypothesis. When this level of evidence is high enough, i.e.,

greater than a prespecified significance threshold, the null hypothesis is rejected. How-

ever, there is barely any methodological guidance on how to interpret a non-significant

result, that is, a result where we fail to reject the null hypothesis. Statistics textbooks

(e.g., Chase and Brown 2000; Wasserman 2004) restrict themselves to a purely negative

interpretation: failure to reject the null means failure to demonstrate a statistically sig-

nificant phenomenon. This does not address a crucial question in scientific reasoning:

Do the results corroborate the null hypothesis? Should we prefer the null hypothesis to

the alternative hypotheses and preliminarily accept it? Whenever the null hypothesis is

of substantial scientific interest (e.g., independence of two variables in a causal model),

such judgments are urgently required.

Explicating degree of corroboration is thus central for a sound interpretation of

NHST. How should we explicate it? Karl R. Popper is one of the very few philosophers

engaging in this business. He proposes the following characterization:

By the degree of corroboration of a theory I mean a concise report eval-

uating the state (at a certain time t) of the critical discussion of a theory,

with respect to the way it solves its problems; its degree of testability; the

severity of tests it has undergone; and the way it has stood up to these tests.
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Corroboration (or degree of corroboration) is thus an evaluating report of

past performance. Like preference, it is essentially comparative. (Popper

1979, 18, my emphasis. See also Popper 1934/2002, 248.)

In Popper’s view, corroboration judgments positively appraise the performance of

the null hypothesis in a severe test, rather than just stating the failure to find signif-

icant evidence against it. Notably, high degrees of corroboration need not guide us

to the truth (Popper 1979, 21). Instead, the function of corroboration is comparative
and pragmatic: it guides our practical preferences over competing hypotheses, e.g., the

choice of the hypothesis on which we base the next experiment (cf. Popper 1934/2002,

416). This is exactly what most statistically working scientists are after when testing a

complex set of hypotheses.

Explicating degree of corroboration might thus help to elucidate the value of hy-

pothesis tests in science. Because of the well-known shortcomings of NHST and their

practical misuse, it has been suggested that the entire business of hypothesis testing

should be abandoned and be replaced by an estimation-centered perspective (Schmidt

and al. 1997; Cumming 2015). Sound corroboration judgments may help to respond

to this challenge and lead to more nuanced interpretations of hypothesis tests. Espe-

cially in classical testing problems like model selection, inference about causal nets,

or decisions whether or not to publish a scientific finding, a reliable measure of de-

gree of corroboration may improve scientific reasoning. More generally, a measure of

degree of corroboration might revive a critical rationalist epistemology of science, by

showing how hypothesis tests increase scientific knowledge (e.g., Rowbottom 2011).

In that context, it is notable that neither philosophers nor statisticians have found an

adequate explication of degree of corroboration, and that past efforts have been met

with devastating criticism (Díez 2011; Rowbottom 2013).

This situation prompts the question of what has been going wrong with the con-

cept of corroboration. My paper answers this question by claiming that the standard

formal framework for explicating degree of corroboration does not square well with

the task of that concept in scientific reasoning. I will defend this claim by means of

two mathematical impossibility results. Broadly speaking, I demonstrate the impossi-

bility of any probabilistic measure of corroboration that is based on both the testability

of the hypothesis, and its statistical relevance for the observed evidence. These are,

however, the principal virtues that Popper and his successors wanted to capture in a

measure of corroboration.
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Based on the results of our analysis, we conclude that it is necessary to develop a

different framework for explicating degree of corroboration. This will be less Poppe-

rian than the original proposals, but closer to actual scientific reasoning. In particular,

we hypothesize that an adequate explication of degree of corroboration should be sen-

sitive to the way the alternative hypotheses are partitioned in a scientific inference

problem. Spelling out this proposal in detail will be left to future work, though.

The paper is structured as follows. Section 2 briefly presents Popper’s character-

ization of an adequate measure of degree of corroboration. Section 3 is the core if

the paper: it develops plausible adequacy criteria for degree of corroboration in a sta-

tistical relevance framework and demonstrates that no measure of corroboration can

satisfy them all. The final Section 4 discusses our findings and explores ways out of

the dilemma created by the impossibility results.

2 Popper’s Measure of Degree of Corroboration

Popper’s first writings on degree of corroboration, in Chapter 10 of “The Logic of

Scientific Discovery” (1934/2002), do not engage in a quantitative explication. Appar-

ently, this task is deferred to a scientist’s common sense. However, this move makes

the entire concept of corroboration vulnerable to the charge of subjectivism: without

a quantitative criterion, it is not clear which corroboration judgments are sound and

which aren’t (Good 1968, 136). Especially if we aim at gaining objective knowledge from

hypothesis tests, we need a precise explication of degree of corroboration.

Popper faces this challenge in a couple of BJPS articles (Popper 1954, 1957, 1958)

that form, together with a short introduction, appendix ix of “The Logic of Scientific

Discovery”. In these articles, Popper develops and defends a measure of degree of

corroboration. Popper argues that this measure cannot be a probability in the sense of

Carnap (1950), i.e., the plausibility of the tested theory (or hypothesis) conditional on

the observed evidence:

[. . . ] the probability of a statement [. . . ] simply does not express an ap-

praisal of the severity of the tests a theory has passed, of the manner in

which it has passed these tests. (Popper 1934/2002, 411)

In particular, logical content and informativity contribute to the testability of a theory,

and therefore also to its degree of corroboration:
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The main reason for this is that the content of a theory—which is the same

as its improbability—determines its testability and corroborability. (ibid., orig-

inal emphasis)

Instead of co-varying with probability, corroboration should be sensitive to the logical

content of a theory. Here we see a major difference to Bayesian measures of eviden-

tial support. A reason could be that corroboration is also supposed our judgments of

acceptance, where it is often required that good theories be informative (see the dis-

cussions in Hempel 1960; Levi 1963; Huber 2005, 2008). Indeed, Popper confirms that

scientific theory assessment pursues both goals at once:

Science does not aim, primarily, at high probabilities. It aims at a high in-
formative content, well backed by experience. But a hypothesis may be very

probable simply because it tells us nothing, or little. (Popper 1934/2002,

416, original emphasis)

Such a characterization of corroboration is attractive because it would amalgamate

two crucial cognitive values in theory assessment: high informative content and em-

pirical support. Also in NHST, both values play a role since a precise hypothesis (the

null) is tested against a continuum of alternatives. However, this paper shows that

such a tradeoff is unattainable if further reasonable assumptions are made.

Let us now have a look at how Popper characterizes degree of corroboration. Tran-

scribed to modern notation, Popper assumes that evidence e and hypothesis h are

among the closed sentences L of a first-order language L. A corroboration measure

is then described by a function c : L2 ×P → R, where P is the set of probability

measures on the σ-algebra generated by L. This function assigns a real-valued degree

of corroboration c(h, e) to any pair of sentences in L, together with a probability mea-

sure p(·). This measure may be interpreted as a function of the logical structure of L,

but also as objective chance or degree of belief—our discussion is independent of this

point. For the sake of simplicity, we will omit reference to background assumptions

and assume that they are implicit in the probability function p(·).
Then a set of adequacy criteria is specified.

I c(h, e) >/=/< 0 if and only if p(e|h) >/=/< p(e|¬h).

This is a classical statistical relevance condition: e corroborates h just in case e is more

expected under h than under ¬h. This condition is also in line with Popper’s remark

that corroboration is, like preference, essentially contrastive (Popper 1979, 18).
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II −1 = c(h,¬h) ≤ c(h, e) ≤ c(h, h) ≤ 1.

III c(h, h) = 1− p(h).

IV If e |= h then c(h, e) = 1− p(h).

V If e |= ¬h then c(h, e) = −1.

These conditions determine under which conditions the measure of corroboration

takes its extremal values. Minimal degree of corroboration is obtained if the evi-

dence refutes the hypothesis (V). Conversely, the most corroborating piece of evidence

e is a verification of h. In that case, degree of corroboration is equal to the improba-
bility of h (II, III, IV), which is supposed to express the informativity, testability and

logical content of h.1 See Popper (1934/2002, 268–269), Popper (1963, 385–387), Row-

bottom (2013, 741–744), and the above discussion. Assigning a corroboration bonus

to highly informative and testable hypotheses also fits well into a critical rationalist

picture about goals and method of science.

VI c(h, e) ≥ 0 increases with the power of h to explain e.

VII If p(h) = p(h′), then c(h, e) > c(h′, e′) if and only if p(h|e) > p(h′|e′).

These conditions reiterate the statistical relevance rationale from condition I, and make

it more precise. Regarding condition VI, Popper (1934/2002, 416) defines explanatory

power according to the formula E(e, h) = (p(e|h) − p(e))/(p(e|h) + p(e)), another

measure of the statistical relevance between e and h. But the details need not bother

us here. Condition VII states that corroboration essentially co-varies with posterior

probability whenever two hypotheses are equiprobable at first. In that case, posterior

probability is a good indicator of statistical relevance.

VIII If h |= e, then

a) c(h, e) ≥ 0;

b) c(h, e) is an increasing function of 1− p(e);

c) c(h, e) is an increasing function of p(h).

IX If ¬h is consistent and ¬h |= e, then

1This is especially plausible in Carnap’s logical interpretation of probability, which Popper adopts
for p(h). But it also makes sense for a subjective Bayesian interpretation.
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a) c(h, e) ≤ 0;

b) c(h, e) is an increasing function of p(e);

c) c(h, e) is an increasing function of p(h).

Condition VIII demands that corroboration gained from a successful deductive pre-

diction co-vary with the informativity of the evidence and the prior probability of

the hypothesis. Condition IX mirrors this requirement for the case ¬h |= e. These

conditions can be motivated from the idea that if h |= e, then corroboration should

not automatically transfer to hypotheses h ∧ h′ that contain an “irrelevant conjunct” h′

which has not yet been tested. See the next section for more detailed discussion of this

point.

Popper then proposes the corroboration measure cP(h, e) which satisfies all of his

constraints:

cP(h, e) =
p(e|h)− p(e)

p(e|h) + p(e)− p(e|h) p(h)
. (1)

But we can easily see that an essential motivation behind a measure of degree of

corroboration is not satisfied. cP(h, e) is an increasing function of p(h) for all values

of p(e|h) and p(e). Hence, the informativity of the tested hypothesis never contributes

to its degree of corroboration. This violates Popper’s informal characterization of the

concept and does not square well with the practice of NHST. The only exception is

the case p(h|e) = 1, as expressed in IV, but then we are arguably not in need of a

measure of corroboration: h has been proved conclusively.2 We shall now see that this

problem does not dissolve when moving from Popper’s proposal to a broader class of

corroboration meaures.

3 The Impossibility Results

Popper’s nine adequacy conditions are quite specific requirements and too strong for

the purpose of a general analysis. We will therefore weaken them and retain only such

adequacy conditions that we consider indispensable for an analysis of corroboration.

We then show two impossibility results for corroboration measures that (i) are built

on the notion of statistical relevance between e and h; and (ii) preserve the intuition

that corroboration should not co-vary with prior probability, but also be sensitive to

the informativity (and testability) of the tested hypothesis.
2See Díez (2011) for a more detailed analysis of why Popper’s own explication is at odds with the

general tenets of critical rationalism.
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I would like to begin with a condition which is mainly representational in nature

and has proved its mettle in formal epistemology (cf. Schupbach and Sprenger 2011;

Crupi 2014):

Formality There exists a function f : [0, 1]3 → R such that for all e, h ∈ L and p(·) ∈ P,

c(h, e) = f (p(e|h), p(e), p(h)).

This condition relates degree of corroboration depends to the joint probability distri-

bution of e and h. The three arguments of f determine that distribution in all non-

degenerate cases, and they are the same quantities that figure in Popper’s measure of

corroboration cP. This makes comparisons easier. In practice, Formality means that

two scientists who agree about all relevant probabilities will make the same corrobo-

ration judgments.

Now let’s move to the substantial conditions. A natural condition for degree of

corroboration is the following, familiar constraint:

Weak Law of Likelihood (WLL) For mutually exclusive hypotheses h1, h2 ∈ L, e ∈ L

and p(·) ∈ P, if

p(e|h1) ≥ p(e|h2) and p(e|¬h1) ≤ p(e|¬h2) (2)

with one inequality being strict, then c(h1, e) > c(h2, e).

The WLL has been defended as capturing a “core message of Bayes’ Theorem” (Joyce

2008): if h1 predicts e better than h2, and ¬h2 predicts e better than ¬h1, then e fa-

vors h1 over h2. Since WLL is phrased in terms of predictive performance, it is even

more compelling for corroboration than for evidential support. After all, p(e| ± h1)

and p(e| ± h2) measure how well h1 and h2 have stood up to a test with outcome e.

The version given here is in one sense weaker and in one sense stronger than Joyce’s

original formulation: it is stronger because only one inequality has to be strict (see also

Brössel 2013: 395–396); it is weaker because the WLL has been restricted to mutually

exclusive hypotheses, where our intuitions tend to be more reliable.

Another condition deals with irrelevant evidence:

Screened-Off Evidence Let e1, e2, h ∈ L and p ∈ P. If e2 is probabilistically indepen-

dent of e1, h, and e1 ∧ h and p(e2) > 0. Then c(h, e1) = c(h, e1 ∧ e2).
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This condition prominently figures in several explications of evidential support and ex-

planatory power (e.g., Kemeny and Oppenheim 1952; Schupbach and Sprenger 2011).

But it is also very sensible with respect to degree of corroboration. In an experiment

where h has been tested and (relevant) evidence e1 has been observed, completely

irrelevant extra evidence (e2 ⊥⊥ e1, h, e1 ∧ h) should not change the evaluation of the

results. Imagine, for example, that a scientist tests the hypothesis that a high pitch

facilitates voice recognition. As her university is interested in improving the planning

of lab experiments, the scientist also collects data on when participants drop in, which

days of the week are busy, which ones are quiet, etc. Plausibly, these data satisfy the

independence conditions of Screened-Off Evidence. But equally plausibly, they do

not influence the degree of corroboration of the hypothesis under investigation.

The next adequacy condition is motivated by the problem of irrelevant conjunctions

(e.g., Fitelson 2002; Hawthorne and Fitelson 2004). Assume that a hypothesis h, such

as General Theory of Relativity (GTR), logically implies a phenomenon e, such as the

perihelion shift of Mercury. This observation corroborates GTR: logical implication is

a special case of statistical relevance.

However, once we add an utterly irrelevant proposition h′ = “the chicken came

before the egg” to the hypothesis, it seems that e corroborates h ∧ h′—the conjunction
of GTR and the chicken-egg hypothesis—not more than h, if at all. After all, h′ was in

no way tested by the observations we made. It has no record of past performance to

which we could appeal. This motivates the following constraint:

Irrelevant Conjunctions Assume the following conditions on h, h′, e ∈ L and p ∈ P

are satisfied:

[1] h and h′ are consistent and p(h ∧ h′) < p(h);

[2] p(e) ∈ (0, 1);

[3] h |= e;

[4] p(e|h′) = p(e).

Then it is always the case that c(h ∧ h′, e) ≤ c(h, e).

This requirement states that for any non-trivial hypothesis h′ that is consistent with

h ([1]) and irrelevant for e ([4]), h ∧ h′ is corroborated no more than h whenever h
non-trivially entails e ([2], [3]). Indeed, it would be strange if corroboration could be

increased “for free” by attaching irrelevant conjunctions. Plausibly, this requirement
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may be strengthened to a strict inequality, but for our purposes, the weaker formula-

tion is sufficient.

Interestingly, the preceding adequacy conditions can be derived from Popper’s

original adequacy conditions (all proofs are given in the appendix):

Theorem 1 The following statements are true:

• Popper’s condition VII implies Weak Law of Likelihood for the case of

equiprobable hypotheses.

• Popper’s condition VII implies Screened-Off Evidence.

• Popper’s condition VIIIc implies Irrelevant Conjunctions.

This shows that our adequacy conditions are motivated in the right way: they are

weaker versions of the criteria that Popper set up in “The Logic of Scientific Discov-

ery”. We can thus be confident that our formal analysis of corroboration is on target

and that our adequacy conditions do not track a different, incompatible concept.

However, unlike evidential support, corroboration contains an element of severe

testing: the hypothesis should run a risk of being falsified, and high informativity and

logical content contribute to this goal. Highly corroborated hypotheses are informative
propositions, well-backed by the evidence (cf. Popper’s quote on page 6 and conditions

III and IV). This motivates the following desideratum:

Weak Informativity Degree of corroboration c(h, e) does not generally increase with

the probability of h. That is, there are h, h′, e ∈ L and p ∈ P such that

(1) p(e|h) = p(e|h′) > p(e);

(2) 1/2 ≥ p(h) > p(h′);

(3) c(h, e) ≤ c(h′, e).

The intuition behind Weak Informativity can also be expressed as follows: corrobora-

tion does not, in the first place, assess the probability of a hypothesis; therefore c(h, e)
should not always increase with the probability of h. To this, the following condition—

Strong Informativity—adds that low probability/high logical content can in princi-

ple be corroboration-conducive. Note that the requirement 1/2 ≥ p(h), p(h′) is purely

technical and philosophically innocuous.

Strong Informativity The informativity/logical content of a proposition can increase

degree of corroboration, ceteris paribus. That is, there are h, h′, e ∈ L and p ∈ P

such that
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(1) p(e|h) = p(e|h′) > p(e);

(2) 1/2 ≥ p(h) > p(h′);

(3) c(h, e) ≤ c(h′, e).

To my mind, any account of corroboration that denies these properties has stripped it-

self of its distinctive features with respect to evidential support, or statistical relevance

more generally. At the very least, the Popperian characaterization of corroboration as

capturing both predictive success and testability would have to be abandoned, and

links with NHST would have to be loosened.

Now, we demonstrate that the listed adequacy conditions are incompatible with

each other. First, it is a consequence of Weak Law of Likelihood that corroboration

increases with the probability of a hypothesis. This clashes directly with Strong/Weak

Informativity:

Theorem 2 No measure of corroboration c(h, e) constructed according to Formality

can satisfy Weak Law of Likelihood and Weak/Strong Informativity at the

same time.

Since Formality is a purely representational condition, this result means that Weak Law

of Likelihood and Weak/Strong Informativity pull into different directions: the

first condition emphasizes the predictive performance of the tested hypothesis, the

second its logical strength. It is perhaps surprising that these two conditions are

already incompatible, since it is a popular tenet of critical rationalism that informative

hypotheses are also more valuable predictively.

Second, and even more surprisingly, Strong Informativity clashes with

Irrelevant Conjunctions and Screened-Off Evidence:

Theorem 3 No measure of corroboration c(h, e) constructed according to Formality

can satisfy Screened-Off Evidence, Irrelevant Conjunctions and Strong

Informativity at the same time.

Thus, the intuition behind Strong/Weak Informativity cannot be satisfied if other

plausible adequacy constraints on degree of corroboration are accepted. In particu-

lar, if a measure of corroboration is insensitive to irrelevant evidence and does not

reward adding irrelevant conjunctions, then it cannot give any bonus to informative

hypotheses. The less informative and testable a hypothesis is, the higher its degree of

corroboration, ceteris paribus.
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Finally, the result of Theorem 3 can be extended to Weak Informativity if we make

the assumption that irrelevant conjunctions dilute the degree of corroboration, rather

than not increasing it (proof omitted). See also the corresponding remark on p. 10, in

the motivation of Irrelevant Conjunctions.

Note that these results are meaningful even if somebody is not interested in the

project of explicating Popperian corroboration (e.g., because she is a radical subjective

Bayesian). Some of the above adequacy conditions have been proposed for measures

of evidential support or explanatory power; others could be potentially interesting

in these contexts. For instance, Brössel (2013) has recently discussed the condition

Logicality, which resembles our Strong/Weak Informativity. Hence, our results

also make sense in the framework of Bayesian Confirmation Theory, as indicating

the impossibility of probabilistic measures that caputre informativity and statistical

relevance at the same time.

All this does not yet show that explicating degree of corroboration is a futile project.

Rather, it reveals a fundamental and insoluble tension between the two main con-

tributing factors of corroboration that Popper identifies (see the quote on p. 6): sta-

tistical relevance and testability. Weak Law of Likelihood, Screened-Off Evidence

and Irrelevant Conjunctions all speak to the statistical relevance intuition, whereas

Strong/Weak Informativity rewards high logical content and testability. That it is

impossible to satisfy minimal subsets of these plausible conditions sheds doubts on

the prospects for explicating corroboration in a statistical relevance framework. How-

ever, before we prematurely draw pessimistic conclusions, let us revisit the available

options.

4 Discussion

In this paper, we have first demonstrated the urgency of searching for an adequate

probabilistic measure of corroboration. This has been motivated by the lack of guid-

ance on the interpretation of non-significant results in statistical hypothesis tests

(NHST). We have then explored Popper’s idea that a measure of corroboration should

capture both the statistical relevance of evidence and hypothesis, and the testability

of the hypothesis. To this end, we have set up a set of plausible conditions that are

weaker than Popper’s original claims (Theorem 1).

However, it turns out that these criteria cannot be jointly satisfied. The pre-theoretic

concept of corroboration is overloaded with desiderata that point into different direc-
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tions and create insoluble tensions (Theorem 2 and 3). This leaves us with four options:

(i) to reject one of the (substantial) adequacy conditions; (ii) to split up degree of cor-

roboration into different sub-concepts, as it happened for evidential support; (iii) to

conclude that the explication of degree of corroboration is hopeless and not worthy of

further pursuit, and (iv) to blame the representational framework that has been used for

explicating degree of corroboration, and to look for explications in a different style.

Option (i) would come down to either giving up Weak Law of Likelihood,

Screened-Off Evidence, Irrelevant Conjunctions or Strong/Weak Informativity.

But each of these adequacy conditions for degree of corroboration has been carefully

motivated in the preceding section. Such a step would therefore appear arbitrary and

unsatisfactory.

Option (ii) amounts to endorsing pluralism for degree of corroboration. The model

case for this option are probabilistic analyses of evidential support: some measures,

like d(h, e) = p(h|e)− p(h) capture the boost in degree of belief in h provided by e, while

others, like l(h, e) = p(e|h)/p(e|¬h), aim at the discriminatory power of e with respect

to h and ¬h. However, it is not clear what similarly interesting subconcepts could look

like for degree of corroboration. Right now, this option does not appear to be viable.

Neither does the pessimistic option (iii) have much appeal, unless convincing rea-

sons are given why scientists can dispense with the concept of corroboration, and

hypothesis testing in general.

This leaves us with option (iv). Here two strategies are possible. One of them

endorses Bayes factors or another statistical relevance measure as measures of cor-

roboration, giving up the informativity intuition. This has the advantage of relating

corroboration to a bunch of statistical and philosophical literature (e.g., Fitelson 1999),

but it comes at the price of stripping the concept of its defining characteristics. It might

then become redundant with respect to evidential support.

Also, statistical relevance measures generally depend on p(e|¬h), either explicitly

(like the l-measure or Bayes factors) or via the calculation of p(e) and p(h|e). This

creates a variety of problems. Consider, for example, the case of a Binomial model

where we test the null hypothesis h0 : θ = 0.5 against the alternative h1 : θ 6= 0.5. If

the observed relative frequency of successes is close to 0.5, e.g., x̄ = 0.53, the degree

corroboration of the null hypothesis does not seem to depend on the likelihoods p(x̄|θ)
for very large and very small values of θ. But for statistical relevance measures, this

conclusion is inevitable since p(x|θ 6= θ0) =
∫ 1

0 p(θ)p(x|θ)dθ.

Therefore we might consider the second strategy: to abandon the entire statistical
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relevance framework. Perhaps it is neither necessary nor sufficient to base a corrob-

oration judgment on the joint probability distribution of h and e? As noted above,

statistical relevance measures of corroboration compare the merits of h with the merits

of ¬h, defined as the aggregate of alternatives to h. However, a comparison to such an

aggregate does not make much sense in many NHST contexts where we deal with a

multitude of distinct alternatives hi, i ∈ N. Perhaps corroboration judgments should

be made with respect to the best-performing alternative in the hypothesis space, and

not with respect to all possible alternatives.

This suggests that we might develop explications of degree of corroboration in

a framework with many distinct alternatives to the tested hypothesis h. As a conse-

quence, Formality would have to be dropped and degree of corroboration would

become partition-relative: testing h with alternative ¬h can lead to different cor-

roboration judgments than testing h with alternatives H = {h1, h2, . . . , hn} even if

¬h =
∧

1≤i≤n hi.3

The work of spelling out this approach in detail and providing axiomatic foun-

dations is left to future work. Note that this paper’s main result is negative and

constructive at the same time: it shows why there can be no measure of corroboration

that fits Popper’s informal description, or more generally, that amalgamates statistical

relevance with informativity and testability. At the same time, the paper motivates

why we have to expand our mathematical framework for explicating degree of corrob-

oration, and which type of explications could prove useful for science and philosophy

at the same time.

3Such an approach has been anticipated by I.J. Good (1960, 1968). However, Good opts for a vector-
valued measure of degree of corroboration, which is, for many reasons, unhelpful in scientific practice.
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A Proofs

Proof of Theorem 1: Assume p(h1) = p(h2). We distinguish two jointly exhaustive

cases in which WLL may apply:

Case 1: p(e|h1) > p(e|h2) Case 2: p(e|h1) = p(e|h2)

and p(e|¬h1) < p(e|¬h2).

For the first case, the proof is simple in virtue of the inequality

p(h1|e) = p(h1)
p(e|h1)

p(e)
> p(h2)

p(e|h2)

p(e)
= p(h2|e).

Then, VII guarantees that c(h1, e) > c(h2, e).
For the second case, let x := p(e|h1) = p(e|h2) and y := p(h1) = p(h2). We know

that

p(e|¬h1) =
1

1− p(h1)
[p(e|h2)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

=
1

1− y
(xy + p(e|¬h1¬h2)p(¬h1¬h2))

p(e|¬h2) =
1

1− p(h2)
[p(e|h1)p(h1) + p(e|¬h1¬h2)p(¬h1¬h2)]

=
1

1− y
(xy + p(e|¬h1¬h2)p(¬h1¬h2)).

Hence, p(e|¬h1) = p(e|¬h2). On the other hand, we have assumed that p(e|¬h1) <

p(e|¬h2). This shows that the second case can never occur and may be dismissed.

We now prove the second implication, that is, VII ⇒ Screened-Off Evidence. To

this end, we rewrite VII as

VII If p(h) = p(h′), then c(h, e) ≤ c(h′, e′) if and only if p(h|e) ≤ p(h′|e′).

By assuming h = h′, it is easy to see that VII implies

VII’ If p(h|e) = p(h|e′), then c(h, e) = c(h, e′).

The reason is simple: If p(h|e) = p(h|e′), then also p(h|e) ≤ p(h|e′) and the ‘⇐’

direction of VII implies c(h, e) ≤ c(h, e′), where h has been substituted for h′. Now we
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repeat the same trick with the premise p(h|e′) ≤ p(h|e) and we obtain c(h, e′) ≤ c(h, e).
Taking both inequalities together yields the conclusion c(h, e) = c(h, e′) and thereby

VII’.

Notice that under the conditions of Screened-Off Evidence, p(h|e1∧ e2) = p(h|e1).

This is so because

p(h|e1 ∧ e2) = p(h)
p(e1 ∧ e2|h)
p(e1 ∧ e2)

= p(h)
p(e1|h) p(e2)

p(e1) p(e2)
= p(h)

p(e1|h)
p(e1)

= p(h|e1).

Hence, we can apply VII’ to the case of Screened-Off Evidence, with e := e1 and

e′ := e1 ∧ e2. This implies

c(h, e1 ∧ e2) = c(h, e1),

completing the proof.

Finally, we have the implication VIIIc ⇒ Irrelevant Conjunctions. Let for

h, h′, e ∈ L and p ∈ P the conditions of Irrelevant Conjunctions ([1] to [4]) be

satisfied. Since h |= e, VIIIc implies that c(h, e) and c(h ∧ h′, e) are increasing functions

of the probability of the tested hypothesis (p(h) and p(h ∧ h′), respectively). But by

assumption, we have p(h ∧ h′) < p(h). Hence, it follows that c(h ∧ h′, e) < c(h, e). �

Proof of Theorem 2: By Weak Informativity, there are x > y and z > z′ with z + z′ <
1:

f (x, y, z) ≤ f (x, y, z′).

Choose a probability function p(·) such that p(h1) = z, p(h2) = z′, p(h1 ∧ h2) = 0,

p(e|h1) = p(e|h2) = x, p(e) = y. This is always possible because it was assumed that

z + z′ < 1. Then it is straightforward to show that

p(e|¬h1) =
1

1− p(h1)
[p(e|h2)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

=
1

1− p(h1)
[p(e|h1)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

p(e|¬h2) =
1

1− p(h2)
[p(e|h1)p(h1) + p(e|¬h1¬h2)p(¬h1¬h2)]
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because by assumption, p(e|h1) = p(e|h2). From this we can infer

p(e|¬h1)− p(e|¬h2)

=
p(e|h1) p(h2)

1− p(h1)
+

p(e|¬h1¬h2) p(¬h1¬h2)

1− p(h1)
− p(e|h1) p(h1)

1− p(h2)
− p(e|¬h1¬h2) p(¬h1¬h2)

1− p(h2)

= p(e|h1)

[
p(h2)

1− p(h1)
− p(h1)

1− p(h2)

]
+ p(e|¬h1¬h2)(1− p(h1)− p(h2))

·
[

1
1− p(h1)

− 1
1− p(h2)

]

= p(e|h1)
p(h2)− p(h2)2 − p(h1) + p(h1)

2

(1− p(h1)) (1− p(h2))
+ p(e|¬h1¬h2)

· (1− p(h1)− p(h2))
p(h1)− p(h2)

(1− p(h1)) (1− p(h2))

= p(e|h1)
(p(h1)− p(h2)) · (p(h1) + p(h2)− 1)

(1− p(h1)) (1− p(h2))
+ p(e|¬h1¬h2)

· (1− p(h1)− p(h2))
p(h1)− p(h2)

(1− p(h1)) (1− p(h2))

=
(p(h1)− p(h2)) · (p(h1) + p(h2)− 1)

(1− p(h1)) (1− p(h2))
(p(e|h1)− p(e|¬h1¬h2)).

If we look at the signs of the involved factors, we notice first that p(h1) = z > z′ =
p(h2) and p(h1) + p(h2)− 1 = z + z′ − 1 < 0. Then we observe that h1 and h2 were

disjoint and that p(e|h1) and p(e|h2) are both greater than p(e), implying p(e|h1) >

p(e|¬h1¬h2). Taken together, we can then conclude

p(e|¬h1)− p(e|¬h2) < 0.

Hence, the conditions for applying Weak Law of Likelihood are satisfied:

f (x, y, z) = c(h1, e) > c(h2, e) = f (x, y, z′),

in contradiction with the inequality f (x, y, z) ≤ f (x, y, z′) that we got from Weak

Informativity. �
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Lemma 1 Any measure of corroboration c : L2 ×P → R that satisfies Screened-Off

Evidence and Formality also satisfies the equality

f (ax, ay, z) = f (x, y, z) (3)

for x > y > 0, z > 0 and 0 < a ≤ 1.

Proof of Lemma 1: For any x > y > 0, z > 0 and 0 < a ≤ 1, we can choose sentences

h, e1, e2 ∈ L and a probability function p(·) ∈ P such that

a := p(e2) p(e2h) = p(e2)p(h)

x := p(e1|h) p(e1 ∧ e2) = p(e2)p(e1)

y := p(e1) p(e1 ∧ e2|h) = p(e2)p(e1|h)

z := p(h).

Since our choice of p is not restricted, this is always possible. Now, the conditions

of Screened-Off Evidence are satisfied, and it follows that c(h, e1 ∧ e2) = c(h, e1). By

Formality, we can also derive the equalities

c(h, e1 ∧ e2) = f (p(e1 ∧ e2|h), p(e1 ∧ e2), p(h)) = f (p(e2)p(e1|h), p(e2)p(e1), p(h))

= f (ax, ay, z)

c(h, e1) = f (x, y, z).

Taking all these equalities together delivers the desired result:

f (ax, ay, z) = c(h, e1 ∧ e2) = c(h, e1) = f (x, y, z).

�

Proof of Theorem 3: Choose sentences h1, h2, e ∈ L and a probability function p(·) ∈
P such that the conditions of Strong Informativity are satisfied:

(1) p(e|h1) = p(e|h2) > p(e);

(2) 1/2 ≥ p(h1) > p(h2);
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(3) c(h1, e) < c(h2, e).

Writing x := p(e|h1) = p(e|h2), y := p(e), z = p(h) and z′ := p(h′), we then obtain

f (x, y, z) = c(h1, e) < c(h2, e) = f (x, y, z′). (4)

Since c(h, e) satisfies Formality and Screened-Off Evidence, by Lemma 1 it also

satisfies the equality

f (ax, ay, z) = f (x, y, z)

for x > y > 0, z > 0 and 0 < a ≤ 1. With a := x, we now obtain

f (1, y/x, z) = f (x, y, z) f (1, y/x, z′) = f (x, y, z′).

It then follows from inequality (4) and the above equalities that

f (1, y/x, z) < f (1, y/x, z′) (5)

for these specific values of x, y, z and z′.
We can now find sentences h, h′, e′ and a probability function p′(·) such that the

conditions of Irrelevant Conjunctions are satisfied, and moreover p′(h) = z, p′(h ∧
h′) = z′, p′(e′) = y/x. This implies c(h ∧ h′, e′) ≤ c(h, e′). By Formality, this also

implies

f (1, y/x, z) ≥ f (1, y/x, z′).

However, this inequality contradicts equation (5) that we have shown before. Hence,

the theorem is proven. �
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