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1 Introduction

How can several individuals�opinions on some factual matters be aggregated into
uni�ed collective opinions? This question arises in many contexts. A panel of
climate experts may have to aggregate the panelists�con�icting opinions into a
compromise view, in order to deliver a report to the government. A jury may
have to arrive at a collective opinion on the facts of a case, despite disagreements
between the jurors, so that the court can reach a verdict. In Bayesian statistics, we
may wish to specify some all-things-considered prior probabilities by aggregating
the subjective prior probabilities of di¤erent statisticians. In meta-statistics, we
may wish to aggregate the probability estimates that di¤erent statistical studies
have produced for the same events. An individual agent may wish to combine his
or her own opinions with those of another, so as to resolve any peer disagreements.
Finally, in a purely intra-personal case, an agent may seek to reconcile di¤erent
�selves�by aggregating their con�icting opinions on the safety of mountaineering,
in order to decide whether to undertake a mountain hike and which equipment to
buy.

How should opinions be aggregated in each of these cases? Perhaps surpris-
ingly, this question has no obvious answer. Of course, if there is unanimity on
the facts in question, we can simply take the unanimous opinions as the collective
ones. But as soon as there are even mild disagreements, the aggregation problem
becomes non-trivial. The aim of this article is to review and assess some salient
proposed solutions.

Our focus will be on the aggregation of probabilistic opinions, which is often
called the problem of opinion pooling. For present purposes, the opinions take
the form of assignments of probabilities to some events or propositions of interest.
Suppose, for instance, our climate panel consists of three experts, who assign the
probabilities 0.3, 0.5, and 0.7 to the event that the global temperature will rise by
more than one degree Celsius in the next 20 years. One proposal is to compute
the linear average of these probabilities, so that the collective probability of the
event is 1

3
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0:7 = 0:5. Another proposal is to compute a weighted

linear average of the form w10:3 + w20:5 + w30:7, where w1, w2, and w3 are non-
negative weights whose sum-total is 1. Each expert�s weight could re�ect his or
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her competence, so that more competent experts have greater in�uence on the
collective opinions. If expert 1 is deemed more competent than experts 2 and 3,
then w1 may be closer to 1, while w2 and w3 may be closer to 0. (In the special
case of equal weights, we speak of an unweighted average.) A third proposal is to
compute a geometric, rather than linear, average of the individuals�probabilities,
which could also be weighted or unweighted. Generally, a pooling function, de�ned
formally below, is a function from individual to collective probability assignments.
Clearly, we can de�ne many di¤erent pooling functions; the linear, weighted linear,
and geometric functions are just illustrations.

Which pooling function is appropriate depends on the context and the intended
status of the collective opinions. At least three questions are relevant:

� Should the collective opinions represent a compromise or a consensus? In
the �rst case, each individual may keep his or her own personal opinions
and adopt the collective opinions only hypothetically when representing the
group or acting on behalf of it. In the second case, all individuals are sup-
posed to take on the collective opinions as their own, so that the aggregation
process can be viewed as a consensus formation process.

� Should the collective opinions be justi�ed on epistemic or procedural grounds?
In the �rst case, the pooling function should generate collective opinions that
are epistemically well-justi�ed: they should �re�ect the relevant evidence�or
�track the truth�, for example. In the second case, the collective opinions
should be a fair representation of the individual opinions. The contrast be-
tween the two approaches becomes apparent when di¤erent individuals have
di¤erent levels of competence, so that some individuals�opinions are more
reliable than others�. The epistemic approach then suggests that the collec-
tive opinions should depend primarily on the opinions of the more competent
individuals, while the procedural approach might require that all individuals
be given equal weight.

� Are the individuals�opinions based only on shared information or also on
private information? This, in turn, may depend on whether the group has
deliberated about the subject matter before opinions are aggregated. Group
deliberation may in�uence individual opinions as the individuals learn new
information and become aware of new aspects of the issue. It may help
remove interpersonal asymmetries in information and awareness.

As we will see, linear pooling (the weighted or unweighted linear averaging of
probabilities) can be justi�ed on procedural grounds but not on epistemic ones,
despite the possibility of giving greater weight to more competent individuals.
Epistemic considerations support two other pooling methods: geometric pooling
(the weighted or unweighted geometric averaging of probabilities), and multiplica-
tive pooling (where probabilities are multiplied rather than averaged). The choice
between geometric and multiplicative pooling, in turn, depends on whether the
individuals�opinions are based on shared information or on private information.
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After setting the stage in Sections 2 and 3, we discuss linear pooling in Sec-
tions 4 and 5, geometric pooling in Sections 6 and 7, and multiplicative pooling in
Sections 8 and 9. We give an axiomatic characterization of each class of pooling
functions and assess its plausibility. The characterizations are well-known in the
case of linear and geometric pooling, but �to the best of our knowledge �new in
the case of multiplicative pooling. In Section 10, we brie�y mention some further
approaches to opinion pooling: supra-Bayesian pooling (a radically Bayesian ap-
proach), the aggregation of imprecise or qualitative probabilities, the aggregation
of binary yes/no opinions, known as judgment aggregation, and some generalized
kinds of opinion aggregation.

There is a growing interdisciplinary literature on probabilistic opinion pooling;
some references are given below (for a classic review, see Genest and Zidek 1986).
While a complete review of the literature is beyond the scope of this article, we
aim to give a �avour of the variety of possible approaches. We will discuss what
we take to be the main arguments for and against the three central approaches we
are focusing on: linear, geometric, and multiplicative pooling. As we will argue,
these approaches promote di¤erent goals and rest on di¤erent assumptions.

2 The problem of probabilistic opinion pooling

We consider a group of n � 2 individuals, labelled i = 1; :::; n, who have to assign
probabilities to some events.

The agenda. The agenda is the set of events under consideration. We de�ne
events as sets of possible worlds. Formally, consider a �xed non-empty set 
 of
possible worlds (sometimes also called possible states). We take 
 to be �nite
for simplicity (but almost everything we say could be generalized to the in�nite
case). An event is a subset A of 
; it can also be interpreted as a proposition. The
complement of any event A is denoted Ac = 
nA and can be interpreted as its
negation. For any two events A and B, the intersection A\B can be interpreted
as their conjunction, and the union A[B as their disjunction. The events 
 (the
entire set) and ? (the empty set) represent the tautology and the contradiction,
respectively. All other events are contingent. For present purposes, the agenda is
simply the set of all possible events, formally the power set of 
 (the set of all
subsets of 
), denoted 2
 = fA : A � 
g.
The simplest non-trivial example is a set of two worlds, 
 = f!; !0g. Here,

the agenda contains only two contingent events, namely f!g and f!0g, e.g., �rain�
and �no rain�. Obviously, the agenda grows exponentially in the size of 
.1

1While we here take the agenda to consist of all possible events A � 
 (so that it is always
closed under the Boolean operations of conjunction, disjunction, and negation), this classical
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A concrete agenda. As an illustration (from Dietrich and List 2013a,b), con-
sider an expert committee that seeks to form collective opinions about climate
change. Possible worlds are vectors (j; k; l) of three characteristics, which may
each take the value 0 or 1:

� The �rst characteristic speci�es whether greenhouse gas concentrations ex-
ceed some critical threshold (j = 1) or not (j = 0).

� The second characteristic speci�es whether there is causal law by which
greenhouse gas concentrations above the threshold cause Arctic summers to
be ice-free (k = 1) or not (k = 0).

� The third characteristic speci�es whether Arctic summers are ice-free (l = 1)
or not (l = 0).

Formally, the set of possible worlds is


 = f(1; 1; 1); (1; 0; 1); (1; 0; 0); (0; 1; 1); (0; 1; 0); (0; 0; 1); (0; 0; 0)g:

This is the set of all triples of 0s and 1s with the exception of (1; 1; 0). The latter
triple is excluded because it represents an inconsistent combination of character-
istics. The expert committee must assign a collective probability to every event
A � 
.

The opinions. Opinions are represented by probability functions. A probability
function P assigns to each event A � 
 a real number P (A) in [0; 1] such that
� the tautology has probability one: P (
) = 1; and
� P is additive: P (A [B) = P (A) + P (B) whenever two events A and B are
mutually inconsistent, i.e., A \B = ?.

The probability of a singleton event f!g is often denoted P (!) rather than
P (f!g). Clearly, the probability of any event A can be written as the sum P (A) =P

!2A P (!). Thus a probability function P is fully determined by the probabilities
P (!) of the di¤erent worlds ! in 
. Let

� P be the set of all probability functions P , and
� P 0 be the set of all probability functions P which are regular, i.e., P (!) > 0
for all worlds !.

Opinion pooling. A combination of probability functions across the n indi-
viduals, (P1; :::; Pn), is called an opinion pro�le. A pooling function takes opinion
pro�les as input and produces collective probability functions as output. Formally,
it is a function, F , which maps each opinion pro�le (P1; :::; Pn) within some domain
of admissible pro�les to a single probability function PP1;:::;Pn = F (P1; :::; Pn). The

but demanding assumption is dropped in Dietrich and List (2013a), where the agenda is not
required to be closed under Boolean operations.
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notation PP1;:::;Pn indicates that the collective probability function depends on the
individual probability functions P1; :::; Pn.

Some pooling functions are de�ned on the domain of all logically possible
opinion pro�les, others on a more restricted domain, such as the domain of all
pro�les of regular probability functions. In the �rst case, F is a function from Pn
to P; in the second case, a function from P 0n to P. (As is standard, for any set
S, we write Sn to denote the set of all n-tuples consisting of elements of S.)

The linear example. The best-known example is a linear pooling function,
which goes back to Stone (1961) or even Laplace.2 Here, each opinion pro�le
(P1; :::; Pn) in the domain Pn is mapped to the collective probability function
satisfying

PP1;:::;Pn(A) = w1P1(A) + � � �+ wnPn(A) for every event A � 
,

where w1; :::; wn are �xed non-negative weights with sum-total 1. The class of lin-
ear pooling functions includes a variety of functions, ranging from linear averaging
with equal weights, where wi = 1

n
for all i, to an �expert rule�or �dictatorship�,

where wi = 1 for one individual and wj = 0 for everyone else. In the latter case:

PP1;:::;Pn(A) = Pi(A) for every event A � 
:

3 The axiomatic method

As should be clear, there is an enormous number of logically possible pooling
functions. Many are unattractive. For example, we would not normally want
the collective probability of any event to depend negatively on the individual
probabilities of that event. (An example of a negative dependence would be a
case in which the individual probabilities for some event all go up, while the
collective probability goes down, with all relevant other things remaining equal.)
Similarly, we would not normally want the collective probabilities to depend only
on the probabilities assigned by a single �dictatorial� individual. How can we
choose a good pooling function? Here, the axiomatic method comes into play.
Under this method, we do not choose a particular pooling function directly, say
linear pooling, but instead formulate general requirements on a �good�pooling
function � our axioms � and then ask which pooling functions, if any, satisfy
them. One example is the axiom of unanimity preservation, which requires that
if all individuals hold the same opinions, these opinions become the collective
ones. This is satis�ed by linear pooling functions, but also by many other pooling
functions. So, this axiom does not single out a unique pooling function. However,

2For other early contributions, see Bacharach (1972) and DeGroot (1974).
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if we add another axiom, as discussed below, we can narrow down the class of
possible pooling functions to the class of linear pooling functions alone.

The axiomatic method can guide and structure our search for a good pooling
function. The di¢ cult question of which pooling function to use is re-cast as
the more tractable question of which axioms to impose. This allows us to assess
di¤erent axioms one by one rather than having to assess a fully speci�ed pooling
function in one go.

Generally, once we have speci�ed a set of axioms, we will be faced with one of
three possible situations:

(1) Exactly one pooling function �or one salient class of pooling functions �
satis�es all our axioms, in which case we have successfully completed our
search for a pooling function.

(2) Several pooling functions �or even several structurally di¤erent classes of
pooling functions �satisfy all our axioms. This is a case of underdetermi-
nation, in which we may wish to impose further axioms.

(3) No pooling function satis�es all our axioms. This is a case of overdetermi-
nation, in which we may have to relax at least one axiom.

4 Linear pooling: the eventwise independent
approach

Which axioms characterize the class of linear pooling functions? Aczél and Wag-
ner (1980) and McConway (1981) give an elegant answer to this question, iden-
tifying two jointly necessary and su¢ cient axioms: eventwise independence and
unanimity preservation.

The �rst, eventwise independence (or simply independence), requires that the
collective probability of any event depend solely on the individual probabilities of
that event.3 This re�ects the democratic idea that the collective opinion on any
issue should be determined by individual opinions on that issue. The underlying
picture of democracy is a non-holistic one, under which the collective opinion on
any issue must not be in�uenced by individual opinions on other issues.

Independence. For each event A 2 X, there exists a function DA : [0; 1]
n !

[0; 1], called the local pooling criterion for A, such that

PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A))

for every opinion pro�le (P1; :::; Pn) in the domain of the pooling function.

3This axiom is also known as the weak setwise function property or weak label neutrality.
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Each local pooling criterion DA aggregates any combination of probabilities
(x1; :::; xn) on a speci�c event into a single collective probability DA(x1; :::; xn).
In the case of a linear pooling function, the local pooling criterion for any event
A is simply DA = D, with

D(x1; :::; xn) = w1x1 + � � �+ wnxn;

where w1; w2; :::; wn are the weights of the n individuals.

The second axiom, unanimity preservation, requires that if all individuals hold
the same opinions, these opinions become the collective ones:

Unanimity preservation. For every opinion pro�le (P1; :::; Pn) in the domain
of the pooling function, if all Pi are identical, then PP1;:::;Pn is identical to them.

This axiom seems very compelling, especially from the procedural perspective of
making collective probabilities responsive to individual probabilities. Surprisingly,
however, the axiommay be problematic from an epistemic perspective (see Section
7), but for now we do not question it.

Theorem 1. (Aczél and Wagner 1980; McConway 1981) Suppose j
j > 2.
The linear pooling functions are the only independent and unanimity-preserving
pooling functions (with domain Pn).4

This result is surprising, because eventwise independence seems, at �rst, to leave
a great degree of freedom in the speci�cation of the local pooling criteria DA. In
conjunction with unanimity preservation, however, independence becomes quite
restrictive. First, each local pooling criterion DA must then be a linear averaging
criterion. Second, the local pooling criteria DA must be the same for all events A.
This precludes de�ning the collective probability for any event A as the weighted
average

PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A)) = w
A
1 P1(A) + � � �+ wAnPn(A); (1)

where an individual i may have di¤erent weights wAi for di¤erent events A. One
might consider such event-dependent weights plausible, because an individual need
not be equally good at estimating the probabilities of di¤erent events. Ideally, one

4To be precise, Aczél and Wagner (1980) and McConway (1981) use another, logically inde-
pendent unanimity axiom, called zero preservation: if some event is assigned zero probability
by each individual, then it is assigned zero probability collectively. As another alternative, one
could use the following axiom, which weakens both of these conditions: if some world ! is as-
signed probability 1 by every individual (so that everyone holds the same degenerate probability
function), then ! is assigned probability 1 collectively. Other axiomatic characterizations of
linear pooling are given by Mongin (1995) and Chambers (2007). See also Lehrer and Wagner
(1981), who use linear opinion pooling to build a theory of consensus formation in groups.
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might wish to give each individual a greater weight in determining the collective
probability for events within his or her area of expertise than for events outside
that area. Unfortunately, formula (1) does not guarantee a well-de�ned collective
probability function unless each individual�s weight wAi is the same for all events
A (6= 
;?), as in standard linear pooling. In particular, if weights vary across
events, the function de�ned in (1) can violate additivity.

What can be said in defence of eventwise independence? There are at least two
pragmatic arguments for it. First, eventwise independent aggregation is easy to
implement, because it permits the subdivision of a complex aggregation problem
into multiple simpler ones, each focusing on a single event. Our climate panel can
�rst consider the event that greenhouse gas concentrations exceed some critical
threshold and aggregate individual probabilities for that event; then do the same
for the second event; and so on. Second, eventwise independent aggregation is
invulnerable to agenda manipulation. If the collective opinion about each event
depends only on the individual opinions about that event, then an agenda setter
who might wish to in�uence the outcome of the aggregation will not be able to
change the collective opinion about any event by adding further events to the
agenda or removing others from it. For instance, the agenda setter could not
a¤ect the collective probability for the event �snow�by adding the event �hail�to
the agenda.5 McConway (1981) proves that eventwise independence is equivalent
to the requirement that collective opinions be invariant under changes in the
speci�cation of the agenda; see also Genest (1984b).6

5 The limitations of eventwise independent
aggregation

There are a number of objections to eventwise independence and consequently to
linear pooling. First, it is questionable whether eventwise independent aggrega-
tion can be justi�ed epistemically. The collective opinions it generates may not
adequately incorporate the information on which individual opinions are based.
As we will see in Sections 6 to 9, some axioms that capture the idea of �adequately
incorporating information��namely the axioms of external Bayesianity and indi-
vidualwise Bayesianity �typically lead to pooling functions that violate eventwise
independence.

5A change in the agenda would have to be represented mathematically by a change in the
underlying set of worlds 
. In order to add the event �hail�to the agenda, each world ! in the
original set 
 must be replaced by two worlds, !1 and !2, interpreted as ! combined with the
occurrence of hail and ! combined with its non-occurrence, respectively.

6McConway captures this requirement by the so-called marginalization property, which re-
quires aggregation to commute with the operation of reducing the relevant algebra (agenda) to a
sub-algebra (sub-agenda); this reduction corresponds to the removal of events from the agenda.
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Second, eventwise independence becomes implausible when this requirement is
applied to �arti�cial�composite events, such as conjunctions or disjunctions of in-
tuitively unrelated events. There seems no reason, for example, why the collective
probability for the disjunction �snow or wind�should depend only on individual
probabilities for that disjunction, rather than on individual probabilities for each
disjunct. Except in trivial cases, the agenda will always contain some �arti�cial�
composite events, since it is closed under Boolean operations (conjunction, dis-
junction, and negation). (Eventwise independence may become more plausible if
we relax this closure requirement on the agenda; see Dietrich and List 2013a.)

Finally, eventwise independence con�icts with the principle of preserving prob-
abilistic independence. This requires that any two events that are uncorrelated
according to every individual�s probability function remain uncorrelated according
to the collective probability function. For instance, if each climate expert took
the events of high greenhouse gas concentrations and ice-free Arctic summers to
be uncorrelated, then these two events should remain uncorrelated according to
the collective probabilities. Unfortunately, as shown by Wagner (1984), eventwise
independent pooling functions do not preserve probabilistic independence (setting
aside degenerate pooling functions such as dictatorial ones).

In fairness, we should mention that the failure to preserve probabilistic inde-
pendence can be held not just against eventwise independent pooling functions
but against a much wider class of pooling functions (Genest and Wagner 1987).
This includes all linear, geometric, and multiplicative pooling functions that are
non-dictatorial. Further, the preservation of probabilistic independence is itself
a normatively questionable requirement. Why, for example, should probabilis-
tic independence judgments be preserved even when they are purely accidental,
i.e., not driven by any insight into the causal connections between events? It is
more plausible to require that only structurally relevant probabilistic independen-
cies be preserved, i.e., those that are due to the structure of causal connections
rather than being merely accidental. On the preservation of causally motivated
probabilistic independencies, see Bradley, Dietrich, and List (2014).

6 Geometric pooling: the externally Bayesian
approach

We now turn to a class of pooling functions based on geometric, rather than
linear, averaging. While the linear average of n numbers, such as x1; x2; :::; xn, is
x1+x2+:::+xn

n
, the geometric average is n

p
x1x2 � � �xn = x

1
n
1 x

1
n
2 � � �x

1
n
n . Just as a linear

average can be generalized to take the weighted form w1x1+w2x2+ :::+wnxn, so
a geometric average can be generalized to take the weighted form xw11 x

w2
2 � � �xwnn ,

where w1; :::; wn are non-negative weights with sum-total 1.
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A geometric pooling function determines the collective probabilities in two
steps. In the �rst step, it takes the collective probability of each possible world
(rather than event) to be a geometric average of the individuals�probabilities of
that world. In the second step, it renormalizes these collective probabilities in
such a way that their sum-total becomes 1.

Formally, a pooling function is called geometric (or also logarithmic) if it maps
each opinion pro�le (P1; :::; Pn) in the domain P 0n to the collective probability
function satisfying

PP1;:::;Pn(!) = c[P1(!)]
w1 � � � [Pn(!)]wn for every world ! in 
,

where w1; :::; wn are �xed non-negative weights with sum-total 1 and c is a nor-
malization factor, given by

c =
1P

!02
[P1(!
0)]w1 � � � [Pn(!0)]wn

:

The sole point of the normalization factor c is to ensure that the sum-total of the
collective probabilities across all worlds in 
 becomes 1. Two technical points
are worth noting. First, geometric pooling functions are de�ned by specifying
the collective probabilities of worlds, rather than events, but this is of course
su¢ cient to determine the collective probabilities of all events. Second, to ensure
well-de�nedness, the domain of a geometric pooling function must be P 0n rather
than Pn, admitting only regular individual probability functions as input.7

As in the case of linear pooling, geometric pooling functions can be weighted or
unweighted, ranging from geometric averaging with equal weights, where wi = 1

n

for all i, to an �expert rule�or �dictatorship�, where wi = 1 for one individual and
wj = 0 for everyone else, so that PP1;:::;Pn = Pi.

How can geometric pooling be justi�ed? First, it is clearly
unanimity-preserving. Second, unlike linear pooling, it is not eventwise indepen-
dent (except in the limiting case of an expert rule or dictatorship). Intuitively,
this is because the renormalization of probabilities introduces a holistic element.

However, geometric pooling satis�es another, epistemically motivated axiom,
called external Bayesianity (proposed by Madansky 1964). This concerns the
e¤ects that informational updating has on individual and collective probability
functions. Informally, the axiom requires that, if probabilities are to be updated
based on some information, it should make no di¤erence whether they are updated
before aggregation or after aggregation. We should arrive at the same collective

7Without this restriction, it could happen that, for every world, some individual assigns a
probability of zero to it, so that the geometric average of individual probabilities is zero for
all worlds, a violation of probabilistic coherence. A similar remark applies to the de�nition of
multiplicative pooling in the next section.
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probability function irrespective of whether the individuals �rst update their prob-
ability functions and then aggregate them, or whether they �rst aggregate their
probability functions and then update the resulting collective probability function,
where the update is based on the same information.

To formalize this, we represent information by a likelihood function. This is a
function L which assigns, to each world ! in 
, a positive number L(!), inter-
preted as the degree to which the information supports !, or more precisely the
likelihood that the information is true in world !. In our climate-panel example,
the information that a revolutionary carbon-capture-and-storage technology is in
use may be expressed by a likelihood function L that takes lower values at worlds
with high greenhouse gas concentrations than at worlds with low greenhouse gas
concentrations. This is because the information is more likely to be true at worlds
with low greenhouse gas concentrations than at worlds with high ones. (The revo-
lutionary carbon-capture-and-storage technology would remove greenhouse gases
from the atmosphere.)

What does it mean to update a probability function based on the likelihood
function L? Suppose an agent initially holds the probability function P and now
learns the information represented by L. Then the agent should adopt the new
probability function PL satisfying

PL(!) :=
P (!)L(!)P

!02
 P (!
0)L(!0)

for every world ! in 
. (2)

This de�nition can be motivated in Bayesian terms. For a simple illustration,
consider a limiting case of a likelihood function L, where L(!) = 1 for all worlds
! within some event A and L(!) = 0 for all worlds ! outside A. Here L simply
expresses the information that event A has occurred. (This is a limiting case of
a likelihood function because L is not positive for all worlds !, as required by
our de�nition, but only non-negative.) Formula (2) then reduces to the familiar
requirement that the agent�s posterior probability function after learning that
event A has occurred be equal to his or her prior probability function conditional
on A. In the Appendix, we discuss the notion of a likelihood function and the
Bayesian motivation for formula (2) in more detail.

The axiom of external Bayesianity can now be stated as follows:

External Bayesianity. For every opinion pro�le (P1; :::; Pn) in the domain of
the pooling function and every likelihood function L (where the updated pro�le
(PL1 ; :::; P

L
n ) remains in the domain), pooling and updating are commutative, i.e.,

PPL1 ;:::;PLn = P
L
P1;:::;Pn

.

Theorem 2. (e.g. Genest 1984a) The geometric pooling functions are externally
Bayesian and unanimity-preserving.
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Let us brie�y explain why a geometric pooling function (say with weightsw1; :::; wn)
is externally Bayesian. Without loss of generality, we can view any probabil-
ity function as a function from the set 
 of worlds into [0; 1], rather than as
a function from the set 2
 of events into [0; 1]. Consider any opinion pro�le
(P1; :::; Pn) (in the domain P 0n) and any likelihood function L. To show that
PPL1 ;:::;PLn = P

L
P1;:::;Pn

, we observe that each side of this equation is proportional to
the function [P1]w1 � � � [Pn]wnL. (Since we are dealing with probability functions,
proportionality then implies identity.) First, note that PLP1;:::;Pn is proportional
to this function by de�nition. Second, note that PPL1 ;:::;PLn is proportional to the
product of functions [PL1 ]

w1 � � � [PLn ]wn, also by de�nition. But, since each function
PLi is proportional to the product PiL, the product [P

L
1 ]
w1 � � � [PLn ]wn is, in turn,

proportional to the function

[P1L]
w1 � � � [PnL]wn = [P1]w1 � � � [Pn]wnLw1+���+wn = [P1]w1 � � � [Pn]wnL;

as required.

Why is external Bayesianity a plausible requirement? If it is violated, the time
at which an informational update occurs can in�uence the collective opinions. It
will then matter whether the informational update takes place before or after
individual opinions are aggregated. This would open the door to manipulation of
the collective opinions by someone who strategically discloses a relevant piece of
information at the right time. Of course, someone acting in this way need not have
bad intentions; he or she might simply wish to �improve�the collective opinions.
Nonetheless, the need to decide whether PPL1 ;:::;PLn or P

L
P1;:::;Pn

is a �better�collective
probability function raises all sorts of complications, which we can avoid if external
Bayesianity is satis�ed. See Rai¤a (1968, pp. 221-226) for some examples of
strategic information retention when external Bayesianity is violated.

Geometric pooling functions are not the only externally Bayesian and
unanimity-preserving pooling functions. The two axioms are also compatible with
a generalized form of geometric pooling, in which the weights w1; :::; wn may de-
pend on the opinion pro�le (P1; :::; Pn) in a systematic way.8 Genest, McConway,
and Schervish (1986) characterize all pooling functions satisfying the conditions
of Theorem 2, or just external Bayesianity. Once some additional axioms are
imposed, over and above those in Theorem 2, geometric pooling becomes unique
(Genest 1984a; Genest, McConway, and Schervish 1986). However, the additional
axioms are technical and arguably not independently compelling. So, we still lack
a fully compelling axiomatic characterization of geometric pooling. For a further

8Let us write wP1;:::;Pni for individual i�s weight when the pro�le is (P1; :::; Pn). In the pro�le-

dependent speci�cation of weights, all one needs to ensure is that, for all i, wP1;:::;Pni = w
P 0
1;:::;P

0
n

i

whenever the pro�le (P 01; :::; P
0
n) is �accessible via update�from the pro�le (P1; :::; Pn) in the sense

that there is a likelihood function L such that PLi = P 0i for every i. Accessibility via updates
de�nes an equivalence relation between pro�les in P 0n. Since there are many equivalence classes
(provided j
j > 1), there are many generalized geometric pooling functions.
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discussion and comparison of linear and geometric pooling, see Genest and Zidek
(1986).

7 From symmetric to asymmetric information

Although we have justi�ed geometric pooling in epistemic terms �by invoking the
axiom of external Bayesianity �there are conditions under which geometric pool-
ing is not epistemically justi�ed. These conditions motivate another approach to
opinion pooling, called multiplicative pooling (Dietrich 2010), which we introduce
in the next section. To identify those conditions, we must consider not just the
probability functions P1, P2, ..., Pn that are to be pooled, but their informational
bases: the information that the individuals have used to arrive at them.

Let us contrast two diametrically opposed cases, setting aside any intermediate
cases for simplicity. (We comment brie�y on intermediate cases in Section 10.)

Case 1: informational symmetry. The individuals�probability functions P1,
..., Pn are based on exactly the same information. Any di¤erences in these prob-
ability functions stem at most from di¤erent ways of interpreting that shared
information.

Case 2: informational asymmetry. The individuals� probability functions
P1, ..., Pn are based on di¤erent information, and there is no overlap between
di¤erent individuals�information, apart from some �xed background information
held by everyone. Each individual i�s probability function Pi is derived from some
prior probability function by conditionalizing on i�s private information. That is,
Pi = p

Li
i , where pi is i�s prior probability function and Li is the likelihood function

representing i�s private information. For simplicity, we assume a shared prior
probability function pi = p for every individual i, which re�ects the individuals�
shared background information.

Case 1 might occur if there is group deliberation and exchange of information
prior to the pooling of opinions. Case 2 might occur in the absence of such group
deliberation or exchange of information. We will now show that the axioms by
which we have justi�ed geometric pooling �unanimity preservation and external
Bayesianity �are plausible in Case 1, but not in Case 2.

Consider unanimity preservation. In Case 1, this axiom is compelling. If
all individuals arrive at the same probability function P1 = ::: = Pn based on
shared information, there is no reason why this probability function should not
also become the collective one. After all, in the present case, the individuals not
only have the same information, as assumed in Case 1, but also interpret it in the
same way; otherwise, we would not have P1 = ::: = Pn.
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In Case 2, by contrast, unanimity preservation is not compelling. If all in-
dividuals arrive at the same probability function Pi based on di¤erent private
information, the collective probability function ought to incorporate that dis-
persed information. Thus it should incorporate the individuals�likelihood func-
tions L1; :::; Ln, and this may, in turn, require a collective probability function
distinct from P1 = ::: = Pn.9 Suppose, for example, that all the experts on our
climate panel assign the same high probability of 0.9 to the event that green-
house gas concentrations exceed the critical threshold. Plausibly, if each expert
has some private information that supports assigning a high probability to some
event, compared to a much lower prior, then the totality of private information
supports the assignment of an even higher probability to it. Thus the collective
probability should not be the same as the individual ones, but ampli�ed, above
0.9. Similarly, if all experts, prompted by their own independent evidence, as-
sign the same low probability of 0.1 to some event, then the collective probability
should be even lower. Here, the group knows more than each individual member.

Next consider external Bayesianity. In Case 1, where all individuals have the
same information, this requirement is well motivated, as should be clear from our
discussion in the last section. By contrast, in Case 2, where di¤erent individuals
have di¤erent and non-overlapping private information, external Bayesianity loses
its force. Recall that we justi�ed the requirement that PPL1 ;:::;PLn = PLP1;:::;Pn by
interpreting L as representing information that is received by all individuals.
In Case 2, however, individuals have only private information (apart from some
shared but �xed background information, which cannot include the non-�xed
information represented by L).10 Here, updating all probability functions Pi would
mean updating them on the basis of di¤erent private information. So, the updated
pro�le (PL1 ; :::; P

L
n ) would have to be interpreted as expressing the individuals�

opinions after incorporating di¤erent items of private information that happen
to be represented by the same likelihood function L for each individual. This
interpretation makes it implausible to require that PPL1 ;:::;PLn and P

L
P1;:::;Pn

be the
same. From the group�s perspective, there is not just one item of information to
take into account, but n separate such items. While each item of information by
itself corresponds to the likelihood function L, the group�s information as a whole
corresponds to the product of n such functions, namely Ln. In the next section,
we introduce an axiom that replaces external Bayesianity in Case 2.

9One may want to obtain the collective probability function PP1;:::;Pn by updating some
prior probability function p in light of all n likelihood functions. Then PP1;:::;Pn equals
(:::((pL1)L2):::)Ln , which in turn equals pL1L2���Ln , the probability function obtained by up-
dating p in light of the likelihood function de�ned as the product L1L2 � � �Ln. This is, in e¤ect,
what multiplicative pooling does, as should become clear in the next section.
10The information represented by L is non-�xed, since it is present in one opinion pro�le,

(PL1 ; :::; P
L
n ), and absent in another, (P1; :::; Pn).
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8 Multiplicative pooling: the individualwise
Bayesian approach

We now consider a class of pooling functions that are appropriate in Case 2, where
the probability functions P1, P2, ..., Pn are based on di¤erent private information
and there is at most some �xed background information held by all individuals.
This is the class of multiplicative pooling functions (proposed by Dietrich 2010),
which are based on multiplying, rather than averaging, probabilities.

A multiplicative pooling function, like a geometric one, determines the collec-
tive probabilities in two steps. In the �rst step, it takes the collective probabil-
ity of each possible world to be the product of the individuals�probabilities of
that world, calibrated by multiplication with some exogenously �xed probability
(whose signi�cance we discuss in Section 9). This di¤ers from the �rst step of
geometric pooling, where the geometric average of the individuals�probabilities
is taken. In the second step, multiplicative pooling renormalizes the collective
probabilities such that their sum-total becomes 1; this matches the second step of
geometric pooling.

Formally, a pooling function is called multiplicative if it maps each opinion
pro�le (P1; :::; Pn) in the domain P 0n to the collective probability function satis-
fying

PP1;:::;Pn(!) = cP0(!)P1(!) � � �Pn(!) for every world ! in 
,
where P0 is some �xed probability function, called the calibrating function, and c
is a normalization factor, given by

c =
1P

!02
 P0(!
0)P1(!0) � � �Pn(!0)

:

As before, the point of the normalization factor c is to ensure that the sum-total
of the collective probabilities across all worlds in 
 is 1. To see that multiplicative
pooling can be justi�ed in Case 2, we now introduce a new axiom that is plausible
in that case �individualwise Bayesianity �and show that it is necessary and suf-
�cient for multiplicative pooling. (The present characterization of multiplicative
pooling is distinct from the one given in Dietrich 2010.)

The axiom says that it should make no di¤erence whether some information
is received by a single individual before opinions are pooled or by the group as
a whole afterwards. More speci�cally, we should arrive at the same collective
probability function irrespective of whether a single individual �rst updates his
or her own probability function based on some private information and the prob-
ability functions are then aggregated, or whether the probability functions are
�rst aggregated and then updated �now at the collective level �given the same
information.
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Individualwise Bayesianity. For every opinion pro�le (P1; :::; Pn) in the domain
of the pooling function, every individual i, and every likelihood function L (where
the pro�le (P1; :::; PLi ; :::; Pn) remains in the domain), we have PP1;:::;PLi ;:::;Pn =
PLP1;:::;Pn.

Just as external Bayesianity was plausible in Case 1, where all individuals�proba-
bility functions are based on the same information, so individualwise Bayesianity
is plausible in Case 2, where di¤erent individuals�probability functions are based
on di¤erent private information. The argument for individualwise Bayesianity
mirrors that for external Bayesianity: any violation of the axiom implies that it
makes a di¤erence whether someone acquires private information before opinions
are pooled or acquires the information and shares it with the group afterwards.
This would again generate opportunities for manipulation by third parties able to
control the acquisition of information.

Theorem 3. The multiplicative pooling functions are the only individualwise
Bayesian pooling functions (with domain P 0n).

This (new) result has an intuitive proof, which we now give.

Proof: Let us again view any probability function as a function from the set 
 of
worlds into [0; 1], rather than as a function from the set 2
 of events into [0; 1].
As noted earlier, this is no loss of generality. We �rst prove that multiplicative
pooling functions satisfy individualwise Bayesianity. Consider a multiplicative
pooling function, for some exogenously �xed probability function P0, which serves
as the calibrating function. Note that, for any opinion pro�le (P1; :::; Pn),

� the function PP1;:::;PLi ;:::;Pn is by de�nition proportional to the product
P0P1 � � � (PiL) � � �Pn, and

� the function PLP1;:::;Pn is by de�nition proportional to the product
(P0P1 � � �Pn)L.

These two products are obviously the same, so individualwise Bayesianity is sat-
is�ed. Conversely, we prove that no pooling functions other than multiplicative
ones satisfy the axiom. Consider any pooling function with domain P 0n that
satis�es individualwise Bayesianity. Let P � be the uniform probability function,
which assigns the same probability to every world in 
. We show that our pooling
function is multiplicative with calibrating function P0 = PP �;:::;P �. Consider any
opinion pro�le (P1; :::; Pn) (in P 0n). The argument proceeds in n steps. It could
be re-stated more formally as an inductive proof.

� Step 1 : First, consider the likelihood function L := P1. The function
PP1;P �;:::;P � is equal to P(P �)L;P �;:::;P �. By individualwise Bayesianity, this
is equal to PLP �;:::;P �, which is in turn proportional to PP �;:::;P �L = P0P1, by
the de�nitions of P0 and L.
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� Step 2 : Now, consider the likelihood function L := P2. The function
PP1;P2;P �;:::;P � is equal to PP1;(P �)L;P �;:::;P �. By individualwise Bayesianity,
this is equal to PLP1;P �;:::;P �, which is in turn proportional to PP1;P �;:::;P �L,
i.e., to P0P1P2, by Step 1 and the de�nition of L.
...

� Step n: Finally, consider the likelihood function L := Pn. The function
PP1;:::;Pn is equal to PP1;:::;Pn�1;(P �)L . By individualwise Bayesianity, this is
equal to PLP1;:::;Pn�1;P �, which is in turn proportional to PP1;:::;Pn�1;P �L, i.e.,
to P0P1 � � �Pn, by Step n� 1 and the de�nition of L. �

9 How to calibrate a multiplicative pooling
function

Recall that the de�nition of a multiplicative pooling function involves a calibrating
probability function P0. The collective probability of each possible world is not
merely the renormalized product of the individuals�probabilities of that world,
but it is multiplied further by the probability that P0 assigns to the world. How
should we choose that calibrating probability function?

It is simplest to take P0 to be the uniform probability function, which assigns
the same probability to every world in 
. In this case, we obtain the simple
multiplicative pooling function, which maps each opinion pro�le (P1; :::; Pn) in P 0n
to the collective probability function satisfying

PP1;:::;Pn(!) = cP1(!) � � �Pn(!) for every world ! in 
,

for a suitable normalization factor c.

The simple multiplicative pooling function is the only multiplicative pooling
function that satis�es an additional axiom, which we call indi¤erence preservation.
It is a weak version of the unanimity-preservation axiom, which applies only in
the special case in which every individual�s probability function is the uniform
one.

Indi¤erence preservation. If every probability function in the opinion pro�le
(P1; :::; Pn) is the uniform probability function, then the collective probability
function PP1;:::;Pn is also the uniform one (assuming the pro�le is in the domain of
the pooling function).

Corollary of Theorem 3. The simple multiplicative pooling function is the
only individualwise Bayesian and indi¤erence-preserving pooling function (with
domain P 0n).
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When is indi¤erence preservation plausible? We suggest that it is plausible if
the individuals have no shared background information at all; all their informa-
tion is private. Recall that we can view each individual i�s probability function
Pi as being derived from a shared prior probability function p by conditionalizing
on i�s private information Li. If the individuals have no shared background infor-
mation, it is plausible to take p to be the uniform prior, following the principle
of insu¢ cient reason (though, of course, that principle raises some well-known
philosophical issues, which we cannot discuss here). Any deviations from the uni-
form probability function on the part of some individual �i.e., in some function Pi
�must then plausibly be due to some private information. But now consider the
opinion pro�le (P1; :::; Pn) in which every Pi is the uniform probability function.
For the individuals to arrive at this opinion pro�le, there must be a complete lack
of private information, in addition to the lack of collectively shared background
information. (If some individuals had relevant private information, some Pi would
arguably have to be distinct from the uniform probability function.11) In such a
situation of no information � private or shared � it seems plausible to require
the collective probability function to be uniform. So, indi¤erence preservation is
plausible here.

By contrast, if the individuals have some shared background information, indif-
ference preservation is questionable. The individuals�prior probability functions
will not normally be uniform in this case, so any uniformity in an individual�s
posterior probability function Pi points towards the presence of some private in-
formation which has led the individual to update his or her probabilities from
the non-uniform prior ones to uniform posterior ones. The collective probability
function should therefore incorporate both the group�s shared background infor-
mation and the individuals�private information. There is no reason to expect that
incorporating all this information will generally lead to the uniform probability
function. Consequently, indi¤erence preservation is not plausible here.

How should we choose the calibrating probability function P0 when we cannot
assume indi¤erence preservation? Our answer to this question follows Dietrich
(2010). Again, consider Case 2, where di¤erent individuals have di¤erent private
information and there is at most some �xed background information that is col-
lectively shared. Let p be every individual�s prior probability function, assuming
a shared prior (which may re�ect the shared background information).

If none of the individuals holds any additional private information, then each
individual i�s probability function is simply Pi = p, and it is reasonable to require
the group to have the same probability function p, because no further information

11Alternatively, it is possible for an individual to have multiple pieces of private information
that perfectly cancel each other out, so that, on balance, his or her probability function remains
uniform. Strictly speaking, to justify indi¤erence preservation in such a case, we must assume
that di¤erent individuals�private information is uncorrelated (i.e., mutually independent). We
brie�y discuss the issue of correlated private information in Section 10.
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is available to the group. Formally, Pp;:::;p = p.12 By the de�nition of multiplicative
pooling, the collective probability function Pp;:::;p is proportional to the product
P0p

n (where probability functions are viewed as functions de�ned on the set of
worlds 
). So, p, which is equal to Pp;:::;p, must be proportional to P0pn, which
implies that P0 must be proportional to 1=pn�1. Formally,

P0(!) =
c

[p(!)]n�1
for every world ! in 
,

where c is a normalization factor to ensure that P0 is a probability function.

This shows that the choice of P0 is not free, but constrained by the individuals�
prior probabilities. In particular, the probability assignments made by P0 must
depend strongly negatively on the individuals�prior probabilities. This idea can
be generalized to the case in which di¤erent individuals have di¤erent priors, as
shown in the Appendix.

10 Concluding remarks

We have discussed three classes of opinion pooling functions �linear, geometric,
and multiplicative �and have shown that they satisfy di¤erent axioms and are jus-
ti�able under di¤erent conditions. Linear pooling may be justi�ed on procedural
grounds, but not on epistemic grounds. Geometric and multiplicative pooling may
be justi�ed on epistemic grounds, but which of the two is appropriate depends
not just on the opinion pro�les to be aggregated but also on the information on
which they are based. Geometric pooling can be justi�ed if all individuals�opin-
ions are based on the same information (Case 1), while multiplicative pooling can
be justi�ed if every individual�s opinions are based solely on private information,
except for some shared background information held by everyone (Case 2).

There are, of course, many intermediate cases between Case 1 and Case 2, in
which the opinion pooling problem becomes more complicated. First, there are
cases in which an opinion pro�le is based on some information that is neither
shared by everyone, nor held by a single individual alone, but shared by a proper
subset of the individuals. In such cases, neither geometric nor multiplicative
pooling is justi�ed but a more complicated pooling function �involving a recursive
construction �is needed (see Dietrich 2010).

Second, there are cases in which there are correlations between di¤erent indi-
viduals�private information �a possibility implicitly assumed away in our discus-
sion so far. If di¤erent individuals�private information is correlated, the axiom
of individualwise Bayesianity loses its force. To see this, note that the combined

12To ensure that the opinion pro�le (p; :::; p) is in the domain of the pooling function, we
assume that p belongs to P 0, i.e., is a regular probability function.
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evidential strength of two pieces of correlated private information, represented by
the likelihood functions L1 and L2, is not their product L1L2. So, it is not plausi-
ble to demand that P

P1;:::;P
L1
i ;:::;P

L2
j ;:::;Pn

= PL1L2P1;:::;Pn
, as individualwise Bayesianity

(applied twice) would require. (On the subject of dependencies between di¤erent
individuals�opinions, see Dietrich and List 2004 and Dietrich and Spiekermann
2013.)

In sum, it should be clear that there is no one-size-�ts-all approach to prob-
abilistic opinion pooling. We wish to conclude by mentioning some other ap-
proaches that we have not discussed. One such approach is supra-Bayesian opin-
ion pooling (introduced by Morris 1974), a radically Bayesian approach. Here, the
collective probability of each possible world is de�ned as the posterior probability
of that world (held by a hypothetical Bayesian observer), conditional on learning
what the opinion pro�le is. Opinion pooling then becomes a complex form of
Bayesian updating. This presupposes a very rich probability model, which speci-
�es not just the prior probability of each possible world, but also the probability of
obtaining each possible opinion pro�le conditional on each possible world. In prac-
tice, it is unclear where such a rich model could come from, and how a group could
agree on it. Nevertheless, from a radically Bayesian perspective, supra-Bayesian
pooling is a very natural approach �or even the rationally required one.

There are also a number of approaches that not merely lead to di¤erent opinion
pooling functions but rede�ne the aggregation problem itself. Here, the opinions
to be aggregated are no longer given by probability functions, but by other formal
objects. Two examples are the aggregation of imprecise probabilities (e.g., Moral
and Sagrado 1998) and the aggregation of ordinal probabilities, which are expressed
by probability orders (using the binary relation �at least as probable as�) rather
than probability functions (e.g., Weymark 1997). Similarly, one could in principle
use the tools of formal aggregation theory to study the aggregation of ranking
functions (as discussed, e.g., by Spohn 2012).

In recent years, there has been much work on the aggregation of binary opin-
ions, where a group seeks to assign the values �true�/�false�or �yes�/�no�to a set
of propositions, based on the individuals�assignments �a problem now known as
judgment aggregation (e.g., List and Pettit 2002; Dietrich 2007; Dietrich and List
2007; Nehring and Puppe 2010; Dokow and Holzman 2010; for a recent review,
see List 2012). Truth-value assignments, especially in classical propositional logic,
can be viewed as degenerate probability assignments (restricted to the values 0
and 1). Interestingly, the analogues of the axioms characterizing linear averag-
ing in probabilistic opinion pooling typically lead to dictatorial aggregation in
judgment-aggregation problems (for discussion, see Dietrich and List 2010).

Pauly and van Hees (2006) consider judgment-aggregation problems in many-
valued (as distinct from two-valued) logics and show that some of the dictatorship
results familiar from the two-valued case continue to hold in the many-valued case
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(for further results, see Duddy and Piggins 2013). Relatedly, Bradley and Wagner
(2012) discuss the aggregation of probability functions that take values within
a �nite grid, such as the grid fk=10 : k = 0; 1; :::; 10g. They show that this
aggregation problem is also susceptible to dictatorship results akin to those in
judgment aggregation. Under certain conditions, the only eventwise independent
and unanimity-preserving aggregation functions are the dictatorial ones.

The list of examples could be continued. For a uni�ed framework that sub-
sumes several aggregation problems under the umbrella of attitude aggregation,
see Dietrich and List (2010). In an attitude-aggregation problem, each individ-
ual i holds an attitude function Ai, which assigns to each proposition on some
agenda a value in some set V of admissible values, which could take a variety
of forms. We must further specify some criteria determining when an attitude
function counts as consistent or formally rational, and when not. The task, then,
is to map each pro�le (A1; :::; An) of individual attitude functions in some domain
to a collective attitude function. It should be evident that probabilistic opinion
pooling, two-valued and many-valued judgment aggregation, and �nite-grid prob-
ability aggregation can all be viewed as special cases of such attitude-aggregation
problems, for di¤erent speci�cations of (i) the value set V and (ii) the consistency
or rationality criteria. (An extension of this line of research, using an algebraic
framework, can be found in Herzberg forthcoming.)

Finally, much of the literature on opinion pooling is inspired, at least in part,
by Arrow�s pioneering work in social choice theory (Arrow 1951/1963). Social
choice theory, in the most general terms, addresses the aggregation of potentially
con�icting individual inputs into collective outputs (for a survey, see List 2013).
Much of the work in this area, following Arrow, focuses on the aggregation of
preferences, welfare, or interests. The theory of opinion pooling can be seen as an
epistemically oriented counterpart of Arrovian social choice theory.13
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12 Appendix

12.1 Likelihood functions and their Bayesian interpreta-
tion

According to our de�nition, a likelihood function L assigns, to each world ! in 
,
a positive number L(!), interpreted as the likelihood that the information is true
in world !. This notion of a likelihood function is slightly non-standard, because
in statistics a likelihood function is usually associated with some information
(data) that is explicitly representable in the relevant model. In our climate-panel
example, by contrast, the information that a revolutionary carbon-capture-and-
storage technology is in use cannot be represented by any event A � 
. To relate
our notion of a likelihood function to the more standard one, we need to make
the following construction.

Let us �split� each world ! = (j; k; l) in 
 into two more re�ned worlds:
!+ = (j; k; l; 1) and !� = (j; k; l; 0), in which the fourth characteristic speci�es
whether or not a revolutionary carbon-capture-and-storage technology is in use.
The re�ned set of worlds, 
0, now consists of all such �four-dimensional�worlds,
formally, 
0 = 
 � f0; 1g. The information that a revolutionary carbon-capture-
and-storage technology is in use can then be represented as an event relative to
the re�ned set of worlds 
0, namely the event consisting of all re�ned worlds whose
fourth characteristic is 1; call this event E.

Under this construction, the non-standard likelihood function L on 
 corre-
sponding to this information becomes a standard likelihood function relative to
our re�ned set 
0. Formally, for any unre�ned world ! 2 
,

L(!) = Pr(Ej!) = Pr(!+)

Pr(!)
,

where Pr is a probability function for the re�ned set of worlds
0, and any unre�ned
world ! in 
 is re-interpreted as the event f!+; !�g � 
0.
One can think of Pr as a re�nement of a probability function for the original

set 
. Of course, di¤erent individuals i may hold di¤erent probability functions
Pi on 
, and so they may hold di¤erent re�ned probability functions Pri on

0. Nonetheless, the likelihood function L(!) = Pri(Ej!) is supposed to be the
same for all individuals i, as we focus on objective (or at least intersubjective)
information, which has an uncontroversial interpretation in terms of its evidential
support for worlds in 
.

For present purposes, the individuals may disagree about prior probabilities,
but not about the evidential value of the incoming information. A paradigmatic
example of objective information is given by the case in which worlds in 
 cor-
respond to rival statistical hypotheses (e.g., possible probabilities of �heads�for
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a given coin) and the information consists of statistical data (e.g., a sequence of
coin tosses).

Finally, we show that our rule for updating a probability function P based
on the likelihood function L �formula (2) in the main text � is an instance of
ordinary Bayesian updating, applied to the re�ned model. Note that PL(!), the
probability assigned to ! after learning the information represented by L, can
be interpreted as Pr(!jE), where E is the event in 
0 that corresponds to the
information. By Bayes�s theorem,

Pr(!jE) = Pr(!) Pr(Ej!)P
!02
 Pr(!

0) Pr(Ej!0) ,

which reduces to

PL(!) =
P (!)L(!)P

!02
 P (!
0)L(!0)

;

as in formula (2).

12.2 How to calibrate a mutiplicative pooling function
when there is no shared prior

For each individual i, let pi denote i�s prior probability function, and let p denote
the prior probability function that the group as a whole will use, without asking
�for the moment �where p comes from. Plausibly, in the absence of any private
information, when each individual i�s probability function is simply Pi = pi, the
group should stick to its own prior probability function p. Formally, Pp1;:::;pn = p.

14

By the de�nition of multiplicative pooling, Pp1;:::;pn is proportional to the product
P0p1 � � � pn (where probability functions are again viewed as functions de�ned on
the set of worlds 
). So, p, which is equal to Pp1;:::;pn, must be proportional to
P0p1 � � � pn, which implies that P0 must be proportional to p=(p1 � � � pn). Formally,

P0(!) =
cp(!)

p1(!) � � � pn(!)
for every world ! in 
; (3)

where c is an appropriate normalization factor.

This expression still leaves open how to specify p, the group�s prior probabil-
ity function. Plausibly, it should re�ect the individual prior probability functions
p1; :::; pn. Since the individuals�prior probabilities are not based on any infor-
mational asymmetry �they are, by assumption, based on the same background
information �their aggregation is an instance of Case 1. Hence, geometric pooling
is a reasonable candidate for determining p on the basis of p1; :::; pn. If we further

14We assume that each pi belongs to P 0, i.e., is a regular probability function. So the pro�le
(p1; :::; pn) is in the domain of the pooling function.

25



wish to treat the individuals equally � perhaps because we equally trust their
abilities to interpret the shared background information correctly �we might use
unweighted geometric pooling, i.e., take p to be proportional to p1=n1 � � � p1=nn . As
a result, expression (3) reduces to the following general formula:

P0(!) =
c[p1(!)]

1=n � � � [pn(!)]1=n
p1(!) � � � pn(!)

=
c

[p1(!) � � � pn(!)]1�1=n
for every world ! in 
;

where c is an appropriate normalization factor.

We have now arrived at a unique solution to our opinion pooling problem,
having speci�ed a multiplicative pooling function without any free parameters.
However, the present solution is quite informationally demanding. In particular,
it requires knowledge of the individuals�prior probabilities. For more details, see
Dietrich (2010).
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