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Chapter 2  

Physically Similar Systems:  A History of the Concept 
 

S. G. Sterrett 
 

 
 
Summary  
 
The concept of similar systems arose in physics, and appears to have originated with Newton in the 
seventeenth century.  This chapter provides a critical history of the concept of physically similar 
systems, the twentieth century concept into which it developed.  The concept was used in the 
nineteenth century in various fields of engineering (Froude, Bertrand, Reech), theoretical physics (van 
der Waals, Onnes, Lorentz, Maxwell, Boltzmann) and theoretical and experimental hydrodynamics 
(Stokes, Helmholtz, Reynolds, Prandtl, Rayleigh).  In 1914, it was articulated in terms of ideas 
developed in the eighteenth century and used in nineteenth century mathematics and mechanics: 
equations, functions and dimensional analysis.  The terminology physically similar systems was 
proposed for this new characterization of similar systems by the physicist Edgar Buckingham.  
Related work by Vaschy, Bertrand, and Riabouchinsky had appeared by then.  The concept is very 
powerful in studying physical phenomena both theoretically and experimentally.  As it is not currently 
part of the core curricula of STEM disciplines or philosophy of science, it is not as well known as it 
ought to be.  
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2.1  Introduction  

 

      The concept of similar systems is one of the most powerful concepts in the natural sciences, yet 

one of the most neglected concepts in philosophy of science today.  The concept of similar systems 

was developed specifically for physics, and its use in biology has generally been in terms of plant and 

animal physiology; hence the term physically similar systems is often used.  It remains an open 

research question whether, and how, the concept of similar systems might be applied to sciences 

other than physics, such as ecology, economics, and anthropology.    

 

      This chapter is devoted to providing a history of the concept of physically similar systems.  It also 

aims, in doing so, to increase understanding and appreciation of the concept of similar systems in 

philosophy.  For, in addition to being neglected in philosophy of science, the concept of similar 

systems is also often not fully understood even when it is mentioned.   

 

       The concept of similar systems has been useful in developing methods for drawing inferences 

about the values of specific quantities in one system from observations on another system.   Some 

know of the concept only in this derivative way, via applications to specific questions in physics, 

biology, or engineering.   

 

That it has such useful applications has sometimes led to an underappreciation of the fundamental 

nature, immense power and broad scope of the concept.  Yet its utility in practical matters of 

determining or predicting the value of a particular otherwise unobservable quantity is an important 

feature of the concept.  For, it is due at least in part to the utility of methods involving the concept of 

similar systems in providing answers to some otherwise intractable problems that natural 

philosophers in the Renaissance such as Galileo Galilei and Isaac Newton reasoned using some 

version of the concept, and, later, in the late nineteenth and early twentieth century, that scientists 

further developed it.  Thus, understanding of the concept developed over centuries.  I will use the 

twentieth century understanding of similar systems to characterize the concept first, then go back to 

some early precursors from which it was developed and follow the path up to the twentieth century 

characterization of it.  This history of the concept, though admittedly not exhaustively complete, 

should help clarify its role in reasoning and drawing inferences.    
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2.2  Similar Systems, the 20th century concept 

 

The landmark year in clarifying and articulating the concept of physically similar systems was 1914.  

There were two papers with "Physically Similar Systems" in the title that year by Edgar Buckingham; 

one in July ("Physically Similar Systems")  in the Journal of the Washington Academy of Sciences 

[2.1], and one in October 1914 ("On Physically Similar Systems:  Illustrations of the Use of 

Dimensional Equations") in Physical Review [2.2].   Though the latter one is well known and highly 

cited, and the former one little known, I think that it is the former, i.e., the much shorter July 1914 

piece, that represents a crucial link or advance, conceptually speaking.  The  October 1914 

Buckingham paper is often credited for the theorem it contains, which is ironic: as Buckingham 

emphasized numerous times in later papers, a version of the theorem itself had been proven years 

before.  His articulation and discussion of the notion of physically similar systems, however, was 

unusually reasoned and more general than any others accompanying the proof of the theorem.   

 

For now, I just wish to characterize the concept as it is currently understood; for that, we look to the 

well-known October 1914 Physical Review paper [2.2].  The paper opens with a section "The Most 

General Form of Physical Equations,"  which is about describing a relation that holds among physical 

quantities of different kinds, by an equation.  This is followed by a section introducing and making use 

of the principle of dimensional homogeneity, entitled "Introduction of Dimensional Conditions."   After 

exhibiting those points in an example, comes "The General Form to Which Any Physical Equation is 

Reducible" which states as "a general conclusion from the principle of dimensional homogeneity" that  

 

"If a relation subsists among any number of physical quantities of n different kinds, and if the 

symbols Q1, Q2, . . . Qn represent one quantity of each kind, while the remaining quantities of 

each kind are specified by their ratios r', r'', . . . , etc. to the particular quantity of that kind 

selected, then: any equation which describes this relation completely is reducible to the form      

   

                Ψ (Π1, Π2, . . . Πi , r', r'' . . .) = 0      "  

 

( [2.2], p. 350 ) 

 

As this form of the equation will be key in defining the notion of similar systems, let us give it a proper 

name; I'll call it the Reduced Relation Equation of 1914.  The number of Π's in this equation is the 

difference between "the number of fundamental units required in an absolute system for measuring 

the n kinds of quantity, and n, the kinds of quantity [involved in the relation]."   The function Ψ  is not 
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defined in this form of the equation, but that is perfectly fine; we still consider it an equation --- it's just 

an equation in which the form of the function is not specified.  The equation states, basically, that 

such a function relating the Π's and r's does exist, and the conclusion is that this equation, the 

Reduced Relation Equation of 1914,  is another form of the original physical equation, i.e., that any 

physical equation can be reduced to this form.  Next follows a short section illustrating how this 

conclusion can be applied to the same example given earlier in the paper to determine the 

relationships between some specific quantities in an elegant and particularly useful way.  All this is 

done prior to, and independently of, defining the notion of physically similar systems.   

 

It is in the section entitled "Physically Similar Systems", the sixth section of the paper, that the notion 

of similar systems is first presented.  Referring to the equation in his paper shown above, which I 

have called the Reduced Relation Equation of 1914 , Buckingham writes that "we may develop from it 

the notion of similar systems";  he develops it as follows: 

 

"Let S be a physical system, and let a relation subsist among a number of quantities Q which 

pertain to S.  Let us imagine S to be transformed into another system S' so that S'  

"corresponds" to S as regards the essential quantities.  There is no point of the 

transformation at which we can suppose that the quantities cease to be dependent on one 

another: hence we must suppose that some relation will subsist among the quantities Q' in S' 

which correspond to the quantities Q in S.  If this relation in S' is of the same form as the 

relation in S and is describable by the same equation, the two systems are 'physically similar' 

as regards this relation. "  ( [2.2], p. 353 ) 

 

This is the notion of physically similar systems still currently in use today.  It was first articulated in 

1914 by the physicist Edgar Buckingham.  But it didn't arise from Buckingham's cogitations out of the 

blue.  For its precursors, we have to go back to the Renaissance.   

 

2.3  Newton and Galileo  

 

2.3.1  Newton on Similar Systems  

 

Newton seems to have been the first to use the term similar systems.  He uses it more than once, but 

the text usually associated with the concept of similar systems is in Book 2, Proposition 32, where he 

writes: 
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" Suppose two similar systems of bodies consisting of an equal number of particles, and let 

the correspondent particles be similar and proportional, each in one system to each in the 

other, and have a like situation among themselves, and the same given ratio of density to 

each other; and let them begin to move among themselves in proportional times, and with like 

motions (that is, those in one system among one another, and those in the other among one 

another.)  And if the particles that are in the same system do not touch one another, except in 

the moments of reflection; nor attract, nor repel each other, except with accelerative forces 

that are inversely as the diameters of the correspondent particles, and directly as the squares 

of the velocities: I say, that the particles of those systems will continue to move among 

themselves with like motions and in proportional times."  ( [2.3], p. 327 ) 

 

In his Science of Mechanics, Mach refers to Newton's concept of similar systems in the context of his 

own discussion of oscillatory motion.  ( [2.4], p. 203 )   Mach's critical-historical work on mechanics 

was written to be accessible to the nonspecialist; his critique is informative of the understanding of 

similarity and similar systems at that time.   After generalizing one of his own conclusions, Mach 

remarks: "The considerations last presented may be put in a very much abbreviated and very obvious 

form by a method of conception first employed by Newton."  He does not quite accept Newton's use 

of the term similar system there, though:  

 

"Newton calls those material systems similar that have geometrically similar configurations 

and whose homologous masses bear to one another the same ratio.  He says further that 

systems of this kind execute similar movements when the homologous points describe similar 

paths in proportional times."   ( [2.4], p. 203) 

 

Mach admires Newton's methodology here, but he points out an issue with  Newton's use of the term 

similar :  "Conformably to the geometrical terminology of the present day we should not be permitted 

to call mechanical structures of this kind (of five dimensions) similar unless their homologous linear 

dimensions as well as the times and the masses bore to one another the same ratio."    

 

I gather that what Mach is saying is that the notion of similar in use at the time he is writing is the 

notion of geometrical similarity, in which there is a kind of shrinking or enlarging of every linear 

quantity of each dimension by the same ratio (for geometrical similarity there would usually not be 

more than three dimensions).  That is, I believe he means that, if we are talking about a three-

dimensional machine, similarity amounts to shrinking or enlarging quantities of each linear dimension 

by the same ratio while keeping the machine and all its parts exactly the same shape, i.e., while 

preserving every ratio of linear quantities within the same machine.  Now of course areas and 
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volumes will bear a different ratio to their homologues than quantities of the linear dimensions do 

(e.g., if the ratio is 1:3 for the linear dimension, it will be 1:9 for an area and 1:27 for a volume), but 

the similarity can be defined in terms of the linear dimensions alone.  That is how geometrical 

similarity works.  Mach is saying, I think, that a strict application of the notion of geometric similarity 

would require that the ratio between a quantity and its homologous quantity be the same for all five of 

the dimensions that Newton mentions for his case, and that the situation imagined in Newton's 

proposition does not satisfy that constraint.   

 

However -- and what is significant and interesting -- Mach does not say that Newton is wrong here; 

rather, what he says is that what Newton was doing is better understood in Mach's day in terms of 

affine transformations:   

 

"The structures might more appropriately be termed affined to one another. 

    We shall retain, however, the name phoronomically [kinematically] similar structures, and in 

the consideration that is to follow leave the masses entirely out of account."  ([2.4] , p. 204) 

 

It is clear that Newton was interested in more than this, that he wanted to employ the notion of similar 

systems to reason about forces, too; in fact he does so in the remarks that follow the quote above.  

([2.3], p. 327 - 328;  [2.5] p. 766 - 768)  However, in leaving the masses out of the account, Mach is 

picking out from Newton's work what he wishes to endorse, and showing how the points he endorses 

ought to be understood in the terminology of the nineteenth century.  Mach shows how to understand 

phoronomically [kinematically] similar structures for the topic of oscillation he has been discussing:   

 

"In two such similar motions, then, let  

  the homologous paths be s and α s,  

  the homologous times be t and β t ;   

  whence the homologous velocities are v = s/t and αv = α/β  s/t,  

  the homologous accelerations φ = 2s/t2    and  ε φ =  α/β2  2s/t2   

Now all oscillations which a body performs under the conditions above set forth with any two 

different amplitudes 1 and α, will be readily recognized as similar motions."  [2.4]  

 

Thus, in spite of noting that similar generally means geometrically similar at the time he was writing, 

Mach indulges Newton in the use of the adjective "similar" to indicate phoronomically [kinematically] 

similar structures, which are, properly speaking (in the terminology of Mach's day), not related by 

similarity but by affinity [i.e., by affine transformations].  After showing how elegantly theorems about 

centripetal motion can be obtained by such means, he remarks:   
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It is a pity that investigations of this kind respecting mechanical and phoronomical affinity are not 

more extensively cultivated, since they promise the most beautiful and most elucidative 

extensions of insight imaginable. " ([2.4], p. 205) 

 

Thus Mach sees the great power of the notion of similar systems.  In terms of clarification of the 

notion itself, though, which is the topic of this article, Mach's attention in his critique of Newton is on 

the "similar" in similar systems; he does not here discuss criteria for something counting as a system.   

 

Newton is recognized for the concept today, as he has been throughout all of the nineteenth and 

twentieth centuries.  In their "Similarity of Motion in Relation to the Surface Friction of Fluids" paper in 

early 1914, Stanton and Pannell credit George Greenhill with pointing out that the idea that relations 

"applicable to all fluids and conditions of flow" existed was "foreshadowed by Newton in Proposition 

32, Book II of the 'Principia.' "  ([2.6], p. 199).  A. F. Zahm's 1929 report "Theories of Flow Similitude" 

[2.7] , also credits Newton for a method of "dynamically similar systems", citing Newton's Propositions 

32 and 33.  Also in many more recent works, including ([2.8], p. 86ff), ([2.9], p. 39 - 41),  and ( [2.5], p. 

766 ) 

 

2.3.2 Galileo  

 

Although Newton seems to have been the first to use the term similar systems, Galileo's reasoning 

certainly used a notion of similar systems akin to, if not prescient of, Newton's in discussing not only 

the motions of the bob of a pendulum, but the more complicated behavior of machines and structures 

with mass; this is especially clear in his Dialogues Concerning Two New Sciences.   Galileo's 

dialogue begins with Salviati (usually taken to be the voice of Galileo), recounting numerous 

examples of a large structure that has the same proportions and ratios as a smaller structure but that 

is not proportionately strong.  In these opening pages of the dialogue, Salviati explains to a puzzled 

Sagredo that "if a scantling can bear the weight of ten scantlings, a [geometrically] similar beam will 

by no means be able to bear the weight of ten like beams." ([2.10], m.p.  52 - 53).  The phenomenon 

of the effect of size on the function of machines of similar design holds among natural as well as 

artificial forms, Salviati explains:  "just as smaller animals are proportionately stronger or more robust 

than larger ones, so smaller plants will sustain themselves better. ([2.10] , m.p. 52 - 53)    

 

Perhaps the most well-known of Salviati's illustrations is about giants:   
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" I think you both know that if an oak were two hundred feet high, it could not support 

branches spread out similarly to those of an oak of average size.  Only by a miracle could 

nature form a horse the size of twenty horses, or a giant ten times the height of a man --- 

unless she greatly altered the proportions of the members, especially those of the skeleton, 

thickening the bones far beyond their ordinary symmetry."  ( [2.10] , m.p. 52 - 53 )    

 

Although Galileo's work opens with the wise participant in the dialogue reminding the others of the 

reasons for the lack of giant versions of naturally occurring life-forms, it soon proceeds to a case of a 

valid use of a small (artificial) machine to infer the behavior of a large (artificial) machine.  But the 

basis for the similarity is not merely geometric similarity.  Later in this same work of Galileo's, Sagredo 

makes use of Salviati's statement that the 'times of oscillation' of bodies suspended by threads of 

different lengths "are as the square roots of the string lengths; or we should say that the lengths are 

as the doubled ratios, or squares, of the times."  From this, Sagredo uses one physical pendulum to 

infer the length of another physical pendulum:   

 

"Then, if I understood correctly, I can easily know the length of a string hanging from any 

great height, even though the upper attachment is out of my sight, and I see only the lower 

end.  For if I attach a heavy weight to the string down here, and set it in oscillation back and 

forth; and if a companion counts a number of its vibrations made by another moveable hung 

to a thread exactly one braccio in length, I can find the length of the string from the numbers 

of vibrations of these two pendulums during the same period of time. "  ([2.10], m.p. 140) 

 

The reasoning that Sagredo uses to infer the length of one pendulum (the larger) from another (the 

smaller) is based upon the constancy of the value of a certain ratio involving the length and the 

frequency of a pendulum's oscillations.  What Sagredo derives from the constancy of that ratio for all 

pendulums is a law of correspondence telling him how to find the corresponding length in the large 

pendulum from the length of the small (or vice versa) and the number of oscillations of the two 

pendulums observed during the same time period.  (The time period itself during which the 

oscillations are observed is not needed; what is needed is only the (square of the) ratio of the number 

of oscillations of the two pendulums.)  He works out an example:  

 

". . . let us assume that in the time my friend has counted twenty vibrations of the long string, I 

have counted two hundred forty of my thread, which is one braccio long.  Then after squaring 

the numbers 20 and 240, giving 400 and 57,600, I shall say that the long string contains 

57,600 of those units [misure] of which my thread contains 400; and since my thread is a 
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single braccio, I divide 57,600 by 400 and get 144, so 144 braccia is the length of the string." 

( [2.10] , m.p. 140 ) 

 

Salviati (the voice of Galileo) responds approvingly to Sagredo's claim that this method will yield the 

length of the string: "Nor will you be in error by a span, especially if you take a large number of 

vibrations."   This is reasoning much like Newton's use of similar systems, in that one pendulum is 

regarded as being similar to another pendulum, so that the period of oscillation and length of one of 

the pendulums is homologous to the period of oscillation and length of the other.   

 

Of course Galileo's reasoning here is not presented as a general method, as it is specific to 

pendulums, whereas Newton's notion of similar systems is.  Nor do we find in Galileo's discussion 

here any explicit criteria for something being a machine that could serve to delineate the sorts of 

things on which this kind of reasoning could be used.  However, Galileo's discussion does make clear 

that the two quantities that are considered homologous -- the "time of vibration" and the length of the 

pendulum string -- are fixed features of a pendulum, in contrast to other quantities such as the 

amplitude of the oscillations, or the weight of the bob:  "Take in hand any string you like, to which a 

weight is attached, and try the best you can to increase or diminish the frequency of its vibrations; this 

will be a mere waste of effort.  On the other hand, we confer motion on any pendulum, by merely 

blowing on it [. . .] This motion may be made quite large . . .  yet it will take place only in accord with 

the time appropriate to its oscillations."   ( [2.10] , m.p. 141 )   

 

Thus each of the two quantities --- length of the string, time of vibration --- of a given pendulum 

determines the other.  The point germane to the topic of the history of similar systems, though, is this: 

every pendulum is related to every other pendulum by a law of correspondence.  The law of 

correspondence relates each of these two quantities in one pendulum to its homologue in another 

pendulum. I think we can see this as akin to how Newton conceived similar systems to be related: by 

a law of correspondence between quantities in one system and their homologous quantities in the 

similar system.  Only the length of the string and the time of vibration show up as homologous 

properties in the comparison of the two pendulums.  Thus Galileo makes a point of distinguishing 

between quantities that characterize a given pendulum (length of string; time of oscillation) and 

quantities that do not (amplitude of oscillation; weight of bob), in addition to making the point about 

how some behaviors of all pendulums are related to each other by a law of correspondence.   

 

Because the point is so often missed, it may be helpful to state it a slightly different way:  Clearly 

Galileo sees that in a pendulum's behavior, the quantities that characterize a pendulum's behavior are 

related to each other in a fixed (though nonlinear) relation, as evidenced by his remarks about the 
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time of oscillation of a pendulum being determined by the length of its string.  Yet, rather than 

illustrating that one can use this relation to figure out the value of one quantity associated with a 

certain pendulum by measuring another quantity associated with that same pendulum, what Galileo is 

doing here is using a completely different method of inference:  establishing a law of correspondence 

between two different pendulums.  Then, from an observation of one quantity obtained experimentally 

on another pendulum chosen or constructed for the purpose, the law of correspondence he has 

established is invoked to infer the value of the homologous quantity in the pendulum.  (In the passage 

from Galileo quoted above, the method was used to infer the length of one pendulum from the length 

of another pendulum.)  It is the articulation of this method that justifies including Galileo along with 

Newton in a history of the concept of physically similar systems.  [2.11]  

  

 

2.4  Late Nineteenth & Early Twentieth Century    

 

2.4.1  Introduction  

 

By the late nineteenth century, mechanics and the mathematics used in it had changed dramatically 

from Newton's -- at least in terms of many of the mathematical methods used.   The concept of 

mechanical similarity survived these major changes, though, and quite easily accommodated itself to 

the more advanced mathematics developed for mechanics.  In fact, the notion of mechanical similarity 

was developed further, and more rigorously, into different kinds of similarity in mechanics ---  

geometrical, kinematical, and dynamical -- and extended to other areas of physics that had become 

quantitative, such as heat and electricity.  The concept of similar systems survived, too, sometimes 

explicitly, sometimes only implicitly and in practice.  More problematically, during the nineteenth 

century, the term was sometimes used to refer to something other than the rigorous notions 

associated with the term that were being developed in physics.  

     The advances in mathematics and physics to which the concept of similar systems and, along with 

it, the concept of similarity, was rather easily incorporated were not merely superficial matters such as 

the use of a different notation for calculus.  By the late nineteenth century, there was widespread use 

of the more advanced mathematical methods that had been developed:  partial differential equations 

and associated analysis methods for continuum mechanics, hydrodynamics, gas theory, electricity, 

and magnetism.  During the eighteenth century, there had been many advances in mathematics and 

mechanics that transformed the methods of inquiry used into ones we would be at home with even 

today.  The question of what constitutes a system shifts from asking not only how to decide when a 

configuration of bodies constitutes a system (Newton and Galileo seem to have thought in terms of 

systems of that sort),  to also being able to ask what features of a function (or equation) indicate that 
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the relations between quantities that it expresses have also delineated a system.  For, it is functions 

that the eighteenth century gave mechanics, and functions represented or expressed "relations 

among quantities in nature", as Hepburn puts it. ( [2.12], p. 129)  As noted in section 1 above, when 

Buckingham articulated the concept of physically similar systems in 1914 [2.2], he did so by providing 

the "most general form of an equation", and, as seen in the excerpt quoted above, he did so by 

describing that form in terms of an equation using an unknown function:     

 Ψ (Π1, Π2, . . . Πi , r', r'' . . .) = 0,   

i.e., the equation I have called the Reduced Relation Equation of 1914.  

 

Buckingham did his doctoral work at the very end of the nineteenth century.  Where were people 

employing or talking about the notion of similar systems during the late nineteenth century?  By then, 

some notion of similar systems was known in theoretical physics, where it was occasionally explicitly 

discussed using the term 'similar systems', as well as in many branches of engineering, where it was 

involved, albeit sometimes implicitly or obliquely, in experimental investigations. Then, too, there were 

activities and investigations that did not fit neatly into one or the other of these categories, or 

straddled them.  How did various thinkers producing these works think about and express the 

concepts associated with mechanical similarity and similar systems?  

 

2.4.2  Engineering and similarity 'laws'  

 

    Similar Structures  

 

In engineering and science of the nineteenth century, the main notion invoked when reasoning with 

similar machines or systems was that of a 'similarity law' or a 'similarity principle.'  James Thomson 

(1822 - 1892); (brother of William Thomson, Lord Kelvin (1824 - 1907)) gave an influential paper in 

1875 entitled 'Comparison of similar structures as to elasticity, strength, and stability' [2.13] that tried 

to identify and lay out the methodology involved in the engineering design of structures such as 

bridges and buildings, but he used some other interesting examples such as obelisks and umbrellas, 

too.  Thomson's examples are often about how to vary some quantity such that two structures of 

different sizes are similar in one of these respects I refer to as behavioral: i.e.,  elasticity, strength, or 

stability.  Thomson's paper was built upon and expanded in 1899 (by Barr [2.14]) and again in 1913 

(by Torrance [2.15]).   

 

The principle James Thomson identified was meant to be general.  Yet, there were still different kinds 

of comparisons.  In his 1875 paper, which became more widely available when his collected works 

were published in 1912, Thomson distinguished between two kinds of comparisons of similar 



	   13	  

structures, which, he said, were "very distinct, and which stand remarkably in contrast each with the 

other."  One kind of comparison of similar structures is "in respect to their elasticity and strength for 

resisting bending, or damage, or breakage by similarly applied systems of forces."   The other, 

contrasting kind was "comparisons of similar structures as to their stability, when that is mainly or 

essentially due to their gravity [weight] or, as we may say, to the downward force which they receive 

from gravitation." ( [2.16], p. 362)   

 

Thomson offered a "comprehensive but simple and easily intelligible principle" for the first kind of 

comparison:  "Similar structures, if strained similarly within limits of elasticity from their forms when 

free from applied forces, must have their systems of applied forces, similar in arrangement and of 

amounts, at homologous places, proportional to the squares of their homologous linear dimensions."   

His reasoning in establishing this principle is a deductive argument special to solid mechanics, the 

mechanics of deformable bodies.  "To establish this we have only to build up, in imagination,  both 

structures out of similar small elements or blocks, alike strained, with the same intensity and direction 

of stress in each new pair of homologous elements built into the pair of objects." ( [2.16], p. 362 - 

363).  These small elements or blocks are imagined to be so small in relation to the overall body that 

the stresses in them can be considered homogenous throughout the element or block.  This is how 

the principle is derived, but the point of emphasis for both scientific understanding and engineering 

practice was that "similar structures of different dimensions must not be similarly loaded . . . if they 

are to be stressed with equal severity."   In saying that the structures must not be similarly loaded, he 

is drawing attention to the part of the principle that says that the loads in the two similar structures 

must vary by the squares of their linear dimensions, rather than by the simple multiplicative factor that 

the linear dimensions do.    

 

This was commonly what was meant at the time by a "similarity principle" or, sometimes "similarity 

law"  or "law of similarity."   Each one covered a certain class of cases.  The point of the "principle" 

was usually to state how one variable --- e.g., density, stiffness -- was to be varied as another, such 

as length, was varied.  One form such reasoning took was to show how the ratio of variables of one 

type varied as a ratio of another type of variable did: for instance, "If the scale ratio for any two 

orifices, i.e., the ratio of any two corresponding linear dimensions, is S, the ratio of the areas of 

corresponding elements of the orifices will be S2 , while if similarly situated with respect to the water 

surface, their depths are proportional to S." ( [2.17], p. 136)  However, sometimes the similarity law or 

principle for a certain kind of behavior was stated simply as a ratio, the implication being that that ratio 

was invariant for similar systems;  setting the ratio equal to one and rearranging terms yielded the 

relations between quantities that must be maintained in order to achieve similarity of that type.    
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Figure 1.   This timeline (not to scale) illustrates that the concept of similar systems is credited to 
Renaissance era thinkers Galileo and Newton, and was revived in the second half of the nineteenth 
century, when it was extended to chemistry, electromagnetic theory, heat, and thermodynamics.  
	  
 

 

Similar Interactions: A Law of Comparison for Model Ships 

 

One of the most well-known engineering advances employing similarity and, implicitly, the notion of 

similar systems, was William Froude's (1810 - 1879)  solution of significant, urgent and previously 

unsolved problems in ship design for the British Admiralty. ( [2.18], p. 279; [2.5], [2.19], [2.20] )  In the 

design of ships for stability and speed, not only does gravitational force enter into the consideration of 

a structure's behavior, but the ship's interaction with the water in which it is sitting or moving must 

also be considered.   
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Froude's reasoning about the stability of ships involved examining the motion of a pendulum in a 

resistive fluid ( [2.21], p. 5ff, 15ff, 61): the same question Newton was addressing when he presented 

the proposition in which he introduced the idea of similar systems.  Schaffer points out that, although 

the statement does not appear in the final version of the Principia, Newton had written that "if various 

shapes of ships were constructed as little models and compared with each other, one could test 

cheaply which was best for navigation"  ( [2.22], p. 90).  

 

Unlike Newton, Froude does not seem to analyze the notion of similar systems in thinking about a 

pendulum in a resistive medium.  However, the idea of relating quantities in one physical situation to 

those in another is predominant in Froude's work; it is, in fact, the topic of his main contributions to 

the problem of the efficient design of large ships driven by propellers.  As Zwart has pointed out [2.5], 

the naval architect John Scott Russell had already constructed and tested many small models, but his 

experience had convinced him that the little models, though they had provided him with much 

pleasure, could provide no help in determining how large ships behaved.   The exchange between 

Russell and Froude following Froude's reading of his 1874 paper was recorded in a transcript and so 

is available today ( [2.23] ), showing that the problem of how to extrapolate observations on the 

behavior of small models of ships when placed in water to the behavior of full size ships was 

considered unsolved when Froude took it on.  ( [2.23], [2.5] p. 15; [2.20] p. 128 - 130; [2.19] )  Hagler  

also notes that Froude's confidence that the smaller model ships (some of which were over 20 feet 

long) could be used to infer the behavior of larger full scale ships was based in part on Rankine's 

investigations on streamlines.  Froude explicitly discusses Rankine's work in his 1869  "The State of 

Existing Knowledge on the Stability, Propulsion and Seagoing Qualities of Ships."  [2.20]  He 

convinced the Admiralty to fund the construction of an experimental water tank to carry out the 

experiments he proposed.  His methods for extrapolating from smaller, scale-models of ships in his 

water tank to the full size ship were vindicated when the Admiralty conducted full scale tests on the 

HMS Greyhound and Froude was able to compare the measurements taken on the full size 

Greyhound with those he had taken on his 1/16 model of the HMS Greyhound in his experimental 

tank.   His "Law of Comparison" was soon adopted for all further ship design not only by the British 

Admiralty, but by the U. S. Navy, which constructed the Experimental Model Basin in Washington, 

D.C. in the 1890's.  The Experimental Model Basin was constructed under the leadership of David 

Watson Taylor.  Hagler [2.20] provides a good discussion of David Watson Taylor's writings on ship 

design; Taylor shows how the methodology used by the U.S. in almost all its naval design work in the 

first half of the twentieth century is ultimately traceable to this work Froude did in the nineteenth 

century.  
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Froude similarity was developed specifically for the purpose of using model experimentation for ship 

design.  As with the similarity laws in mechanics, Froude similarity can be expressed in terms of a 

ratio, the Froude number, which is a dimensionless parameter.  Though no notion of similar systems 

is defined, a nascent notion of similar systems was involved in practice, since similarity of situations is 

established when the Froude numbers for each of the two situations are equal.  One formulation of 

the Froude number is v / (gL)1/2   where v is a velocity, L is a length, and g the gravitational 

acceleration.  The application of Froude similarity requires expertise; which velocity and characteristic 

length are relevant depends on the phenomenon being investigated.   We can see from the form of 

the Froude dimensionless ratio, however,  that quantities do not all scale linearly, much less by the 

same linear factor.  Another point of note is that, as Froude similarity compares homologous forces as 

well as homologous motions, it is a kind of dynamic similarity, not merely a kinematic similarity.  

 

    Bertrand and Reech: The French Connection Between Newton and Froude  

 

Many have pointed out that Froude took over results due to others, naming in particular French 

engineering professor Ferdinand Reech and French mathematician Joseph Bertrand, both of whom 

wrote on similarity methods in mechanics.  ([2.24], p. 141ff; [2.25], p. 381; [2.26], p. 15; [2.18], p. 279)  

The extent to which this is true has been debated [2.24], but none deny that Froude holds a unique 

place as an experimentalist whose accomplishments advanced both the field of hydraulics and the 

industry of marine architecture.  Ferdinand Reech (1805 - 1884), publishing in 1852 on topics he had 

lectured about much earlier, explicitly followed Newton's approach, discussing and deriving principles 

about how to relate observations of velocities and motions of one ship to other ships of different sizes.  

Like Newton, he considered bodies and forces on them, though he employed the term 'similar system' 

in his discussions when deriving laws of comparison. [2.28]  It is Joseph Bertrand who seems to have 

taken a conceptual step beyond Newton, though he heaps quite a great deal of credit for his work 

upon Newton, as though he is doing little more than showing the consequences of Newton's theorems 

about similar systems.   

 

Joseph Bertrand (1822 - 1900) produced many textbooks and treatises, including Sur la similitude en 

mecanique.  He also published, in English in 1847, a sort of manifesto advocating that "persons 

occupied with the study of mechanics" attend to the theorem about similitude he derives using 

nineteenth century methods in mechanics, but for which he credits Newton.  Of Newton's theorem 

about similar systems in the Principia, he writes:  

 

"This theorem constitutes a real theory of similitude in mechanics.  It will be seen, that any 

system being given, there exists an infinite number of possible systems, which may be regarded 
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as similar to it; and that, instead of a single kind of similitude, as in geometry, we may suppose 

four, viz., those of length, time, forces, and masses; each of these is, according to Newton's 

theorem, a consequence of the other three."  ([2.27], p. 130) 

 

Bertrand then went on in that same paper of 1847 to explain that he had "endeavoured to substitute . 

. . a proposition founded upon dynamic equations, and which does not differ mainly from the form 

employed by M. Cauchy to deduce from the equations of the movement of elastic bodies the laws of 

the vibrations of similar bodies, . . . but this theorem of M. Cauchy, although analogous to that of 

Newton, cannot be regarded as a corollary of the same"; using this instead, he deduces applications 

to laws of oscillation, centripetal force, speed of propagation of sound in various gases, and  "a 

theorem relating to turbines." ([2.27], p. 130)  Bertrand's concern seems to be twofold:  (i) to get 

people in the field of mechanics to appreciate the power of the theory (or principle) of similitude in 

providing solutions to otherwise insoluble problems, and, (ii) to get people who use model 

experiments to understand the appropriate precautions that must be taken in designing experiments 

using small models to prevent errors that can be anticipated using the theory.  He explains how the 

notion of similar systems, though it may look rather limited, is in fact sometimes indispensible, i.e., for 

problems not susceptible to a mathematical solution:  

 

"It is true that only proportional results can be deduced from [the principle];  and that, 

consequently, it will only serve to solve a question, when another of an analogous nature and of 

an equivalent analytical difficulty shall have been solved.  It may, however, be of great utility to 

determine in certain cases the analogy which exists between the movements of the two systems, 

even supposing each of them not to be susceptible of strict theoretical determination."  ([2.27], p. 

131)   

 

He gives an example of the usefulness of the principle:  the performance of "experiments on a small 

scale" to ascertain "the value of a mechanical invention, which is too expensive to put in operation on 

a large scale."  ( [2.27], 131)  What is interesting is that in this same paper where he is advocating 

use of the principle, he also discusses the kind of conundrums that arise in attempting to apply it to 

complicated cases such as a small-scale model of a locomotive; he cites an example of "an error 

which it is impossible to avoid, but which it is very essential to know."   This 1847 paper published in 

England is thus a call to improving engineering practice by attending to theoretical derivations in 

mechanics, i.e., the theory of similitude.  (Bertrand refers to it in the 1847 paper as the Cauchy 

theorem, which seems rather modest, for Cajori describes Bertrand as deriving "the principle of 

mechanical similitude" from "the principle of virtual velocities." ( [2.25], p. 380 )  I mention Bertrand's 

1847 paper here for its use of late eighteenth and nineteenth century mechanics.) 
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2.4.3  Similar Systems in Theoretical Physics:  Lorentz, Boltzmann, Van der Waals and Onnes 

 

Mechanical similarity held an important place among some researchers in theoretical physics in the 

late nineteenth century as well.  The notion of similar systems was often employed in theories about 

the relationship of microscopic configurations to macroscopic phenomena, sometimes explicitly.  

Sometimes the term 'similar systems' was extended beyond the normal use it had had up to that time, 

too.   

 

    Lorentz 

 

By the turn of the century, Henrik Lorentz (1853 - 1928)  would note that "The consideration of similar 

systems has already proved of great value in molecular theory", as it had allowed Kamerlingh Onnes 

"to give a theoretical demonstration of Van der Waals's law of corresponding states." [2.29]  The 

experimental confirmation of that law, Lorenz wrote, "has taught us that a large number of really 

existing bodies may, to a certain approximation be regarded as similar."    

 

Lorentz had already developed a notion of corresponding states for use in electrodynamics by 1900.  

The context in which he made the observation above, though, was his paper "The Theory of 

Radiation and the Second Law of Thermodynamics", in which he was concerned with the question of 

the similarity in structure of different bodies that would be mandated by thermodynamics. ([2.29], p. 

440)  It would take us too far afield to explain everything that Lorentz was trying to do in this paper; 

here we restrict our discussion to what concept of 'similar systems' Lorentz employed or seems to 

have had in mind. 

 

Lorentz' idea of 'similar systems'  involves starting with one system and then constructing a second 

one from the first.  Lorentz writes of 'comparing two systems';  what he says is that the systems he 

compares are :   ". . . in a wide sense of the word, "similar", i.e., such that, for every kind of 

geometrical or physical quantity involved, there is a fixed ratio between its corresponding values in 

the two systems, . . ."   [2.29]  It is not clear on what basis he justifies being able to say that "We shall 

begin by supposing that, in passing from one system to another, the dimensions, masses and 

molecular forces may be arbitrarily modified", as this seems to require a certain kind of independence 

among the things being modified.  He argues that "if the second system, as compared with the 

original one, is to satisfy Boltzmann's and Wien's laws", that "we shall find that the charges of the 

electrons must remain unaltered."   
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He first describes a certain system S which includes a "ponderable body" enclosed in a space.   

Some of the features of S are delineated (he ascribes "an irregular 'molecular' motion and the "power 

of acting on one another with certain 'molecular' forces" to the particles making up the body, for 

instance, and adds that some are electrically charged) but other features are not ("there may be other 

(molecular) forces of another kind, acting on the electron.") ([2.29], p. 443)   The description of the 

"really existing" system S is meant to pick out something that actually exists, in contrast to the system 

S', which "perhaps will be only an imaginary one." ( [2.29], p. 444)   To complete the description of the 

state of S' , "we indicate, for each of the physical quantities involved, the number by which we must 

multiply its value in S, in order to obtain its value in S' at corresponding points and times."  He then 

explores the constraints on these numbers; some are constrained by laws of motion, but others are 

not.  This leaves him free to "imagine a large variety of systems S', similar to S, and which must be 

deemed possible as far as our equations of motion are concerned." ( [2.29], p. 445) 

 

Lorentz uses the notion of similar systems to explore the constraints on theory, as opposed to using 

theory to state how one can construct a system S' to be similar to a certain system S,  in order to 

make inferences about one of the systems based upon observations about the other.  This seems a 

different use of the notion than Galileo or Newton made of it; it also allows contemplation of 

unprecendented kinds of similarity.  It may, Lorentz realizes, even give rise to systems of a different 

ontological status; he explains why that, too, may be useful:  

 

"It might be argued that two bodies existing in nature will hardly ever be similar in the sense we 

have given to the word, and that therefore, if S corresponds to a real system, this will not be the 

case with S'.  But this seems to be no objection.  Suppose, we have formed an image of a class 

of phenomena, with a view to certain laws that have been derived from observation or from 

general principles.  If, then, we wish to know, which of the features of our picture are essential 

and which not, i.e., which of them are necessary for the agreement with the laws in question we 

have only to seek in how far these latter will still hold after different modifications of the image; it 

will not at all be necessary that every image which agrees in its essential characteristics with the 

one we have first formed corresponds to a natural object."  ( [2.29], p. 447-448) 

 

Thus, Lorentz's exploratory use of similar systems in fields beyond mechanics was motivated by the 

example of van der Waals' and Onnes' highly successful results using mechanical similarity to derive 

new theoretical results.  

 

    Van der Waals and Onnes 
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In his 1881 "General Theory of Liquids", Onnes argued that van der Waals' 'Law of Corresponding 

States', which had just been published the previous year, could be derived from scaling arguments, in 

conjunction with assumptions about how molecules behaved.  Van der Waals was impressed with the 

paper, and a long friendship between the two ensued.  Van der Waals was awarded the Nobel Prize 

in Physics in 1910 for "The equation of state for gases and liquids' [2.30], and Onnes was awarded it 

in 1913 [2.31], for "Investigations into the properties of substances at low temperatures, which have 

led, amongst other things, to the preparation of liquid helium."   In his lecture delivered for the 

occasion, Onnes highlighted the connection between his investigations into properties of substances 

at low temperatures and similarity principles:   

 

". . . [F]rom the very beginning  . . . I allowed myself to be led by Van der Waal's theories, 

particularly by the law of corresponding states which at that time had just been deduced by Van 

der Waals.  

    This law had a particular attraction for me because I thought to find the basis for it in the 

stationary mechanical similarity of substances and from this point of view the study of 

deviations in substances of simple chemical structure with low critical temperatures seemed 

particularly important."  ([2.32], p. 306) 

 

What is special about the low temperatures Onnes needed to achieve in order to liquefy helium is 

that, according to the kinetic theory of gases on which van der Waals' equation of state was based, 

there would be much less molecular motion than in the usual kinds of cases considered.  Onnes's 

approach in looking for the foundation of the law of corresponding states has a slightly different 

emphasis than the kinetic theory of gases.  Boyle's Law (often called the ideal gas law) and van der 

Waals' equation were based on investigating the relationship between the microscale (the molecular 

level) and the macroscale (the properties of the substance, such as temperature and density.)  But 

Onnes was instead looking at the foundation for the similarity of states.  Like Van der Waals, he 

looked to mechanics and physics for governing principles, but Onnes pointed out that it was also 

useful to look at principles of similarity.  At low enough temperatures, where motion of the molecules 

was not the predominant factor, the relevant principles of similarity would be principles of static 

mechanical similarity, as opposed to dynamical similarity.   

 

The criterion for similarity Onnes developed arose out of investigations into the transition from one 

regime to another.  This had been the case in work in hydrodynamics, too;  In Osborne Reynolds 

work, discussed below, it was the critical point at which fluid flow underwent a transition from laminar 

to turbulent flow (or, in his terminology, from "lamellar" to "eddying" flow) that led to the identification 

of the dimensionless parameter that later became known as Reynolds Number.  The Reynolds 
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Number is in a way a criterion of similarity, in that fluid systems with the same Reynolds Number will 

be in the same flow regime, regardless of the fluid.  So it was with thermodynamics, Onnes showed:  

the critical point at which a substance undergoes a transition from the gaseous state to the liquid state 

led to the identification of a criterion of similarity of states that held for all substances.  

 

Van der Waals was interested in the continuity of states and used the critical values of pressure, 

volume, and temperature in a brilliant way to normalize pressure, volume and temperature.  He 

defined "reduced pressure", "reduced volume", and "reduced temperature"  to yield an equation of 

state in which none of the parameters that are characteristic of a particular substance appear.   As 

Levelt Sengers notes, "This is a truly remarkable result."  The equation of state is "universal; all 

characteristics of individual fluids have disappeared from it or, rather, have been hidden in the 

reduction factors.  The reduced pressures of two fluids are the same if the fluids are in corresponding 

states, that is, at the same reduced pressure and volume."  ( [2.33], p. 25)  This is an important part of 

the history of similar systems in that the principle of corresponding states allowed the production of 

curves representative of all substances from experiments on a particular substance:  

 

"The principle of corresponding states . . . frees the scientist from the particular constraints of 

the van der Waals equation.  The properties of a fluid can now be predicted if only its critical 

parameters are known, simply from correspondence with the properties of a well 

characterized reference fluid.  Alternatively, unknown critical properties of a fluid can be 

predicted if its properties are known in a region not necessarily  close to criticality, based on 

the behavior of the reference fluid."  ( [2.33], p. 26)  

 

Onnes used this insight about corresponding states to set up an experimental apparatus to liquefy 

helium, which has an extremely low critical temperature.  What is so exciting about his story is that he 

had to rely on the law of corresponding states to estimate the critical temperature so that he would 

know where to look --- that is, so that he would know what conditions to create in order for helium to 

liquefy.  What is especially relevant to the history of the notion of physically similar systems is that he 

did more than just use van der Waals' law of corresponding states.  He also gave a foundation for it 

that was independent of the exact form of van der Waals' equation and did not depend on results in 

statistical mechanics.  Instead, he used mechanical similarity: 

 

"Kamerlingh Onnes's (1881) purpose is to demonstrate that the principle of corresponding 

states can be derived on the basis of what he calls the principle of similarity of motion, which 

he ascribes to Newton.  He assumes, with Van der Waals, that the molecules are elastic 

bodies of constant size, which are subjected to attractive forces only when in the boundary 
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layer near a wall, since the attractive forces in the interior of the volume are assumed to 

balance each other . . . He realizes this can be valid only if there is a large number of 

molecules within the range of attraction . . . [Onnes] considered a state in which N molecules 

occupy a volume v, and all have the same speed u (no Maxwellian distribution!).  The problem 

is to express the external pressure p, required to keep the system of moving particles in 

balance, as a function of the five parameters.  He solves this problem by deriving a set of 

scaling relations for M, A, v, u, and p, which pertain if the units of length, mass, and time are 

changed."  ( [2.33], p. 30)  

 

Onnes provides a criterion for corresponding states based on these scaling relations, along with 

assumptions about what the molecular-sized objects are like.  Sengers remarks:   

 

"Two fluids are in corresponding states if, by proper scaling of length, time and mass for each 

fluid, they can be brought into the same "state of motion."  It is not clearly stated what he 

means by this, but he must have had in mind an exact mapping of the molecular motion in one 

system onto that of another system if the systems are in corresponding states." ( [2.33], p. 30 ) 

 

Sengers illustrates what being in the same "state of motion" means "in modern terms":   

 

". . . suppose a movie is made of the molecular motions in one fluid.  Then, after setting the 

initial positions and speed of the molecules, choosing the temperature and volume of a second 

fluid appropriately, and adjusting the film speed, a movie of the molecular motion in a second 

fluid can be made to be an exact replica of that in the first fluid."  ( [2.33], p. 30 ) 

 

Appeal to such imagined visual images is very much in keeping with nineteenth century science, and 

one can see here an attempt to generalize Newton's use of similar systems in the Principia to 

thermodynamics.   Onnes used the principle of corresponding states for more than visualizing, 

though, and, even, for more than theorizing; he used it to show how one could make a prediction 

about one fluid from knowledge about another.  Wisniak explains:  

 

Kamerlingh Onnes proposed to use the law of corresponding states to examine the possibility 

of cooling hydrogen further by its own expansion.  He then used this law to predict from the 

known experience with oxygen what was to be expected from the apparatus for the cooling of 

hydrogen:  [quoting Onnes:] 'But let us return to the thermodynamically corresponding 

substances.  If two such substances are brought in corresponding engines and if these 

engines are set in motion with corresponding velocities, then they will run correspondingly as 
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long as there is given off a corresponding quantity of heat in the corresponding times by the 

walls of the machine.'  ([2.34], p. 569) 

 

Thus Onnes has, not just corresponding motions and times, as in mechanical similarity, but 

corresponding quantities of heat.  Wisniak continues:  

 

He [Onnes] then introduced the notion of thermodynamically corresponding operations to 

argue that 'if then in a model, working with oxygen, after a given time a given volume of liquid 

oxygen is found, there will be obtained in the corresponding hydrogen apparatus after the 

corresponding time a corresponding volume of liquid hydrogen.'  "   ( [2.34], p. 569) 

 

By 'model' here, Onnes clearly means physical model, and the model includes the contained gases 

such as oxygen and hydrogen.  The model is an actual physical model:  a physical setup, an actual, 

physical machine.  By the end of the nineteenth century, the physics of machines included the 

thermodynamics of machines.  And, as in Newton and Galileo's day, one could talk both about 

imagined similar systems, and about actual similar machines.   

 

 

    Maxwell and  Boltzmann  

 

As several scholars have noted, Ludwig Boltzmann ( 1844 - 1906) mentioned "similar systems" in his 

investigations into the theory of gases, too.  It's been noted that, in his 1884 and 1887 papers, 

Boltzmann "tried to deepen the foundation of the new theory [that was to become known as statistical 

mechanics] by introducing the concept of 'Ergoden' -- meaning a collection (ensemble) of similar 

systems (of gas molecules) having the same energy but different initial conditions" ( [2.35], pp. 56-

57).  Stephen G Brush, also citing Boltzmann's 1884 and 1887 papers, remarks that  

 

    "There has been considerable confusion about what Maxwell and Boltzmann really meant 

by ergodic systems.  It appears that they did not have in mind completely-deterministic 

mechanical systems following a single trajectory unaffected by external conditions; [. . .] 

   In fact, when Boltzmann first introduced the words Ergoden and ergodische, he used them 

not for single systems but for collections of similar systems with the same energy but different 

conditions. In these papers of 1884 and 1887, Boltzmann was continuing his earlier analysis 

of mechanical analogies for the Second Law of Thermodynamics, and also developing what 

is now (following J. Willard Gibbs) known as "ensemble" theory.  Here again, Boltzmann was 

following a trail blazed by Maxwell, who had introduced the ensemble concept in his 1879 
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paper.  But while Maxwell never got past the restriction that all systems in the ensemble must 

have the same energy, Boltzmann suggested more general possibilities and Gibbs ultimately 

showed that it is most useful to consider ensembles in which not only the energy but also the 

number of particles can have any value, with a specified probability."  ( [2.36] pgs 75 - 76 ). 

 

What these commentators on Boltzmann are referring to in mentioning the influence of Maxwell are 

Maxwell's remarks in his "On Boltzmann's Theorem on the average distribution of energy in a system 

of material points." [2.37]  There, Maxwell wrote, speaking of the case "in which the system is 

supposed to be contained within a fixed vessel":  

 

    I have found it convenient, instead of considering one system of material particles, to 

consider a large number of systems similar to each other in all respects except in the 

initial circumstances of the motion, which are supposed to vary from system to system, the 

total energy being the same in all.  In the statistical investigation of the motion, we confine our 

attention to the number of these systems which at a given time are in a phase such that the 

variables which define it lie within given limits.  (Emphasis in bold added.) 

   " If the number of systems which are in a given phase (defined with respect to configuration 

and velocity) does not vary with the time, the distribution of the systems is said to be steady. "  

([2.37], pgs. 715ff) 

 

It is not clear how the use of the notion of similar systems here, i.e., in forming ensembles in 

thermodynamics in order to study their behavior statistically, might be related to either Newton's 

notion of similar systems or the notion involved in the principle of corresponding states.  It is certainly 

a use of similar systems that is very different from using one system experimentally to infer the values 

of quantities in another.  So, if, as Brush's comment implies, Boltzmann was thinking of more general 

kinds of similar systems, it seems he was no longer restricting the notion of similar systems to 

systems that are behaviorally similar to each other with respect to motions, and he was not restricting 

its use to the use of one system or machine to infer the behavior of another.   

 

Yet Boltzmann's departure from Newton's use of the term similar systems was almost certainly not a 

matter of confusion on Boltzmann's part about the notion in the sense Newton had used it, for 

Boltzmann's encyclopedia entry on models [2.38]  shows that he was well aware of, and respected 

the distinctive nature of, the use of experimental models of machines, in which one machine is 

specially constructed in order to infer the behavior of another.  Boltzmann, in fact, associates the 

latter kind of model with Newton's insights.   
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On the approach in which physical models constructed with our own hands are actually a continuation 

and integration of our process of thought, Boltzmann says in that encyclopedia article ("Model"), 

"physical theory is merely a mental construction of mechanical models, the working of which we make 

plain to ourselves by the analogy of mechanisms we hold in our hands."  [2.38]  In contrast, 

Boltzmann explicitly described experimental models as of a different sort than the kind with which he 

was comparing mental models, and explained why they must be distinguished:   

 

"A distinction must be observed between the models which have been described and those 

experimental models which present on a small scale a machine that is subsequently to be 

completed on a larger, so as to afford a trial of its capabilities.  Here it must be noted that a 

mere alteration in dimensions is often sufficient to cause a material alteration in the action, 

since the various capabilities depend in various ways on the linear dimensions.  Thus the 

weight varies as the cube of the linear dimensions, the surface of any single part and the 

phenomena that depend on such surfaces are proportionate to the square, while other effects --

- such as friction, expansion and condition of heat, etc., vary according to other laws.  Hence a 

flying-machine, which when made on a small scale is able to support its own weight, loses its 

power when its dimensions are increased.  The theory, initiated by Sir Isaac Newton, of the 

dependence of various effects on the linear dimensions, is treated in the article UNITS, 

DIMENSIONS OF.  ([2.38]) 

 

The use of a flying-machine to illustrate the point was not incidental;  in his "On Aeronautics",  

Boltzmann urged research into solving the problem of flight, and expressed his opinion that 

experimentation with kites was the appropriate approach.  The complexities of airflow over an 

airplane wing, he said, were too difficult to study using hydrodynamics.  ([2.39], p. 256)  Yet, the basis 

for extrapolating from experiments on a kite or flying machine from one observed situation to another, 

unobserved, situation (even with a machine of the same size) owes something to hydrodynamics.   

The dimensionless parameters yielding the appropriate correspondences between homologous 

quantities for kites and flying-machines were provided by Helmholtz's innovative use of the equations 

of hydrodynamics.  

 

2.4.4  Similar systems in theoretical physics 

 

    Stokes and Helmholtz 

 

Hermann von Helmholtz (1821 - 1894 ) , like Ludwig Boltzmann and so many other physicists of the 

nineteenth century, contributed to the scientific literature on research into flight.  Some of these 
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contributions took the form of investigations concerning the earth's atmosphere.  Six of the twenty 

papers in the important and selective 1891 anthology "The Mechanics of the Earth's Atmosphere:  A 

collection of translations by Cleveland Abbe" [2.40] were by Helmholtz; one of these was his 1873 

"On a Theorem Relative to Movements That Are Geometrically Similar in Fluid Bodies, Together with 

an Application to the Problem of Steering Balloons." [2.41], [2.42]   It is the only one of Helmholtz's 

papers in that volume that explicitly addresses an application to the problem of flight.  What is 

relevant to the history of the concept of similar systems is the kind of reasoning he uses in the paper.  

 

Helmholtz's starting point is "the hydro-dynamic equations" which, he argues, can be considered "the 

exact expression of the laws controlling the motions of fluids." ([2.41], p. 67; [2.42])  What about the 

well-known contradictions between observations and the consequences of the equations?  Those, he 

argues, are only apparent contradictions, which disappear once the phenomenon of "surfaces of 

separation" are no longer neglected; his "On Discontinuous Motions in Liquids" [2.43] [2.44], also 

included in the same collection of translations, aims to establish their existence.    

 

The "Discontinuous Motions" paper [2.43] is an extraordinarily interesting contribution to the methods 

of reasoning by analogy between fluid currents, electrical currents, and heat currents.  For, the paper 

begins by pointing out that "the partial differential equations for the interior of an incompressible fluid 

that is not subject to friction and whose particles have no motion of rotation" are precisely the same 

as the partial differential equations for "stationary currents of electricity or heat in conductors of 

uniform conductivity."   ([2.43], p. 58)  Yet, he notes, even for the same configurations and boundary 

conditions, the behavior of these different kinds of currents can differ.   How can this be?  It would be 

easy to assume that the difference is a matter of the equations being, in the case of hydrodynamics, 

an "imperfect approximation to reality", possibly due to friction or viscosity.   Yet, Helmholtz argues, 

various observations indicate this is not plausible.  Instead, he proposes, the difference in behavior 

between fluid currents on the one hand and electrical and heat currents on the other is due to "a 

surface of separation" that exists or arises in the case of the fluid.  In some situations, "the liquid is 

torn asunder", whereas electricity and heat flows are not.  Though the main point of the paper is to 

propose his detailed account of what happens in the liquid to cause this difference (the pressure 

becomes negative), it is interesting, especially in the context of nineteenth century, that Helmholtz is 

discussing a case in which physical entities described by the same partial differential equations do 

not behave in the same way.  Yet, once the existence of discontinuous motions in fluids is 

recognized, Helmholtz says, the contradictions that "have been made to appear to exist between 

many apparent consequences of the hydro-dynamic equations on one hand and the observed reality 

on the other"  will then "disappear." ([2.41], p. 67) 
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The problem with the hydrodynamic equations is not that are wrong, for they are not; they are "the 

exact expressions of the laws controlling the motions of fluids."  The problem is that "it is only for a 

relatively few and specially simple experimental cases that we are able to deduce from these 

differential equations the corresponding integrals appropriate to the conditions of the given special 

cases."  So, the hydrodynamic equations are impeccable; it's their solution that is the problem.  

Simplifying is not going to work, either, since in some cases "the nature of the problem is such that 

the internal friction [viscosity] and the formation of surfaces of discontinuity can not be neglected."   

These surfaces of discontinuity present a very fundamental problem to finding a neat solution, too, for 

"The discontinuous surfaces are extremely variable, since they possess a sort of unstable equilibrium, 

and with every disturbance in the whirl they strive to unroll themselves; this circumstance makes their 

theoretical treatment very difficult."  Theory being of very little use in prediction here, "we are thrown 

almost entirely back upon experimental trials, . . . as to the result of new modifications of our hydraulic 

machines, aqueducts, or propelling apparatus."    

 

That was how things stood but, Helmholtz says, there is another method, one that is neither a matter 

of prediction from theory nor an experimental trial of the machine whose behavior one wishes to 

predict.  His description deserves to be read closely:  

 

   In this state of affairs [the insolubility of the hydrodynamic equations for many cases of 

interest] I desire to call attention to an application of the hydro-dynamic equations that allows 

one to transfer the results of observations made upon any fluid and with an apparatus of given 

dimensions and velocity over to a geometrically similar mass of another fluid and to apparatus 

of other magnitudes and to other velocities of motion." ([2.41], p. 68) 

 

The method Helmholtz is referring to, which he presented in this now-classic paper in 1873, thus 

differs from deducing predictions from theory in the same way that Newton's notion of similar systems 

and Galileo's use of one pendulum to inform him about another differ from deducing predictions from 

theory:  theory is involved in the inference, but the way that theory is involved is to allow someone to 

"transfer the results of observations" made on one thing (system, machine, mass of fluid, apparatus) 

over to another thing (system, machine, mass of fluid, apparatus).   

    

    The way Helmholtz proceeds to establish this different "application of the hydro-dynamic 

equations" appeals to a formalism not available to either Galileo or Newton, though:  "[t]he equations 

of motion in the Eulerian form introducing the frictional forces, as is done by Stokes."  Although 

Helmholtz does not use the term 'similar system' here, Stokes did use it, in his "On the Effect of the 

Internal Friction of Fluids on the Motion of Pendulums", presented in 1850. [2.45]  In that paper, 



	   28	  

before attempting a solution of some flow equations, Stokes first examined "the general laws which 

follow merely from the dimensions of the several terms which appear in the equations."  To do this, 

Stokes had employed 'similar systems':   

 

"Consider any number of similar systems, composed of similar solids, oscillating in a similar 

manner in different fluids or in the same fluid.  Let a, a', a'' . . . be homologous lines in the 

different systems; T, T', T'' . . . corresponding times, such for example as the times of oscillation 

from rest to rest.  Let x, y, z be measured from similarly situated origins, and in corresponding 

directions, and t from corresponding epochs, such for example as the commencements of 

oscillations when the systems are beginning to move from a given side of the mean position. "  

([2.45], 1850) 

 

Then, Stokes says, the form of the equations shows that the equations being satisfied for one system 

will be satisfied for all the systems, if certain relations between the quantities in those equations are 

met, which he lays out.  He adds the condition needed in order for the systems to be dynamically 

similar; then, if we "compare similarly situated points", the motions in the systems will also be similar, 

and the "resultants [of pressure of the fluids on the solids] in two similar systems are to one another" 

in a certain ratio that he shows how to obtain.  Stokes does not end there; the paper contains further 

discussion about establishing similarity between the two systems, having to do with how the fluids are 

confined.  This much about Stokes should give a general idea of how he conceived of and used the 

notion of 'similar systems.' 

 

Helmholtz' approach probably owes much to Stokes; David Cahan's study "Helmholtz and the British 

Scientific Elite:  From Force Conservation to Energy Conservation" identifies Stokes as one of the 

British elite with whom Helmholtz built a relationship during the 1850s and 1860s [2.46]  Helmholtz 

does refer to Stokes, to be sure, but there is also something creative in what he does in his own 

paper.  Helmholtz turns the idea of how the eulerian equations for flow are related to similar systems 

around, so that he sees how one might, in principle at least, use the equations in conjunction with 

model experiments on ships to inform us about how to predict and direct the motions of balloons 

(dirigibles).   

 

The discussion and derivation of the conclusions Helmholtz reaches for all the cases he considers in 

his 1873 paper [2.41] is too long to summarize here, but a few points can be mentioned: 

 

(i)  Helmholtz's strategy is to consider two given fluids and use the hydrodynamic equations to infer 

the way or ways in which their quantities must be related.  For the first fluid, the direction of its 
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coordinate axes are designated x, y, and z; the components of velocity associated with them are 

designated u, v, and w.  The time t, fluid density ε, pressure p, and coefficient of friction k (viscosity) 

are also named, which allows him to construct the equations of motion of the first fluid in eulerian 

form.  The second fluid is then given designations of U, V, W for the components of velocity (in 

coordinate axes X, Y, Z), the pressure P, the fluid density E, and the viscosity constant by K.  Three 

additional constants q, r, and n are named, so that the quantities in the second fluid can then be 

related to the designated quantities in the first fluid such that the quantities in the second fluid will also 

satisfy the equations of motion that were constructed for the first fluid.  For example, the densities of 

the two fluids are related by E = rε ; their coefficients of friction are related by K = qk; and the velocity 

components, by  U = nu, V = nv, and W = nw.  Then the pressures must be related by P = n2 r p + 

constant,  and the times in the two fluids must be related by T = q t  / n2.   Putting the terms for the 

quantities of the second fluid expressed in terms of the quantities of the first fluid into the equations of 

motion for the first fluid shows that they satisfy those equations.  

  

(ii) The nature of the two fluids determines how their densities and coefficients of friction are related to 

each other, so two of the three constants, q and r, are determined.  Helmholtz then considers various 

kinds of cases (e.g., compressible vs incompressible, cohesive vs non-cohesive (liquid vs gaseous 

fluids), certain boundary conditions, whether friction can be neglected), and what they permit to be 

inferred about the third undetermined constant n.  The paper contains a variety of interesting remarks, 

some of great practical significance, about how other quantities of the two fluids (e.g., velocity of 

sound) must be related to each other.   

 

(iii)  When Helmholtz comes to addressing the practical problem mentioned in the title:  "driving 

balloons forward relative to the surrounding air," he uses, not two masses of air in which two different 

air balloons are situated, but, rather:  for the second fluid, a mass of air in which an air balloon is 

situated, and, for the first fluid, a mass of water in which a ship is situated.  He writes:  "our 

propositions allow us to compare this problem [driving balloons forward relative to the surrounding air] 

with the other one that is practically executed in many forms, namely, to drive a ship forwards in water 

by means of oar-like or screw-like means of motion.  . . . we must . . . imagine to ourselves a ship 

driven along under the surface.  Such a balloon which presents a surface above and below that is 

congruent with the submerged surface of an ordinary ship scarcely differs in its powers of motion from 

an ordinary ship."  ( [2.41], p. 73)  Then, letting "the small letters of the two above given systems of 

hydro-dynamic equations refer to water and the large letters to the air" he examines the practical 

conditions under which he can "apply the transference from ship to balloon with complete 

consideration of the peculiarities of air and water."   
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Helmholtz's discussion contains many subtle points concerning what would need to be considered if 

actually building the kind of ship needed to model an air balloon.  As he indicates, the practical 

considerations involved in applying the method are not trivial and can sometimes even be prohibitive; 

nevertheless the point is that the approach he outlines permits one to make a proper analysis of any 

such comparison, or "transference" using the hydro-dynamic equations, and can sometimes yield a 

solution when the hydro-dynamic equations are insoluble.  Evidence of the influence and significance 

of this particular paper of Helmholtz's into the twentieth century appears in Zahm's "Theories of Flow 

Similitude" [2.7].   Zahm identifies three methods, one with Isaac Newton, one with Stokes and 

Helmholtz, and one with Rayleigh.  The sole paper by Helmholtz cited there is this paper of 1873. 

[2.41] 

 

The significance to the history of physically similar systems is that Helmholtz's account of his method 

involves a differential equation, that the equation is so central to the account, and that how it is 

involved is stated so clearly.  What is not stated very clearly is whatever it is that plays the role of 

system; sometimes Helmholtz seems to be saying the transference is from one mass of fluid to 

another; other times, that it is between the objects situated within the fluid.  If we denote whatever 

ought to play that role by the term system, though, we would say that, in Helmholtz's analysis, the 

hydro-dynamic equations are not only the core of the criterion for allowing "transference" of results 

observed in one situation to another, but they indirectly give a criterion for, and thus specify, what a 

system is, i.e., what the similarity in 'similar systems' is between.  If we use the term system this way, 

then it is implicit in Helmholtz's account that a system is the mass and its configuration (including 

anything situated within the mass), with boundary conditions, to which the partial differential equation 

applies.  We might also take note of the fact that what the equation applies to is in equilibrium (though 

not necessarily static equilibrium).  The governing differential equations are important, too, in the 

specification of what quantities need to be considered in the analysis.   

 

Yet, Helmholtz is careful not to overreach concerning what can be deduced from the form of an 

equation; as he points out in his "Discontinuous Motions" paper [2.43] when investigating the example 

of fluid being "torn asunder":  just because a certain situation is governed by an equation of the same 

form as another equation governing a different situation, does not in itself guarantee that the two 

situations will exhibit analogous behavior --- even when the configuration and boundary conditions are 

also analogous.   It is for the confluence of all these points that I consider Helmholtz' 1873 paper 

[2.41] such a major contribution to the history of the concept of similar systems.   
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    Reynolds 

 

Osborne Reynolds' (1842  - 1912)  work and influence on similarity was immense, but it was by no 

means his only major achievement. [2.47]  Unless one has invested the time required to read a 

significant part of his work, any evaluation of his achievements and influence will sound like 

hyperbole.  I mention here only his most significant contribution relevant to the history of the concept 

of similar systems.   

 

The decisive difference Reynolds made in the notion of similar systems was to show that it applied 

beyond well-behaved regimes.  In fact, he showed, it applied during the transition between well-

behaved regimes and chaotic ones.   And, not only that, but that the critical point of transition between 

well-behaved (laminar flow) and chaotic (turbulent flow) regimes could be characterized, and 

characterized by a parameter that was independent of the fluid.  Stokes put it well in the statement he 

made in his role as President of the Royal Society on the occasion of presenting a Royal Medal to 

Reynolds on November 30, 1888: 

 

"In an important paper published in the Philosophical Transactions for 1883, [Osborne Reynolds] 

has given an account of an investigation, both theoretical and experimental, of the circumstances 

which determine whether the motion of water shall be direct or sinuous, or, in other words, regular 

and stable, or else eddying and unstable.  The dimensions of the terms in the equations of motion 

of a fluid when viscosity is taken into account involve, as had been pointed out, the conditions of 

dynamical similarity in geometrically similar systems in which the motion is regular; but when the 

motion becomes eddying it seemed no longer to be amenable to mathematical treatment.  But 

Professor Reynolds has shown that the same conditions of similarity hold good, as to the average 

effect, even when the motion is of the eddying kind; and moreover that if in one system the 

motion is on the border between steady and eddying, in another system it will also be on the 

border, provided the system satisfies the above conditions of dynamical as well as geometrical 

similarity."   ([2.45], p. 234) 

 

Stokes does not here use the term 'similar systems', but that is what he means in using the 

grammatical construction: "if in one system . . ., in another system it will also . . .,  provided the 

system satisfies the above conditions of dynamical as well as geometrical similarity."    What this 

means is that there are some (experimentally determined) functions of a certain (dimensionless) 

parameter that describe the behavior of fluids, whatever the fluid.  The parameter is not a single 

measured quantity such as distance, velocity, or viscosity; rather, it is a ratio involving a number of 

quantities (e.g., density, velocity, characteristic length, and viscosity).  The ratio is without units, as it 
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is dimensionless.  Reynolds is often cited for coming up with the criterion of dynamical similarity, but 

obviously, the idea predated his work, as Stokes' statement recognizes.  Rather, what Reynolds did 

that was so decisive for the future of hydrodynamics (and aerodynamics) was, as he explained in a 

letter to Stokes, that there was a critical value (or values) for 'what may be called the parameter of 

dynamical similarity [the dimensionless parameter mentioned earlier, which is now known as 

Reynolds number].'  ([2.49], p. 233.)  

 

In the excerpt from his statement quoted above, Stokes puts his finger on why what Reynolds did was 

so significant in terms of a fundamental understanding of fluid behavior, but Reynolds' 1883 paper 

also had practical significance for research in the field as well.  Stokes continued:  

 

"This is a matter of great practical importance, because the resistance to the flow of water in 

channels and conduits usually depends mainly on the formation of eddies; and though we cannot 

determine mathematically the actual resistance, yet the application of the above proposition leads 

to a formula for the flow, in which there is a most material reduction in the number of constants for 

the determination of which we are obliged to have recourse to experiment."  ( [2.48], p. 234) 

 

It is not surprising that interest in applying the methods of similar systems grew in the subsequent 

years.   

 

    Prandtl  

 

Prandtl's work in experimental hydrodynamics and aerodynamics is singularly prominent in work done 

in the field in Germany in the twentieth century.  Ludwig Prandtl (1873 - 1953 ) was an ex-engineer-

turned-professor in the Polytechnic at Hanover conducting research on air flow when he presented a 

paper at the Third International Congress of Mathematicians in 1904:  "Motion of fluids with very little 

viscosity"  [2.50].  It didn't make much of a splash -- except with Felix Klein, then a prominent 

mathematician at the University of Gottingen.  In his paper, Prandtl laid out a plan to treat flow around 

bodies.  What he proposed was that the problem be analyzed into several distinct questions: (i) what 

happened at the boundary of the "skin" that formed against the body, and what happened on each 

side of it, i.e., (ii) what happened in the fluid on the side of the boundary that was within the "skin", 

and (iii) what happened in the fluid on the other side of the boundary, within the main fluid stream. 

[2.50]  Prandtl showed that, in the mainstream, the mathematical solutions that were obtained by 

neglecting viscosity could be applied to even these real fluids.  In the part of the flow under the "skin" 

formed around the body, however, viscosity did have to be taken into account.  And, crucially, what 

happened in the mainstream  -- the formation of vortices --- set conditions for what happened on the 
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other side of the boundary, via setting boundary conditions at the interface between the two layers.  

Klein saw the potential of Prandtl's approach and brought him to a post in Gottingen right away.  

[2.11] 

 

In Gottingen, Prandtl then made use of the knowledge that had been developed about 

hydrodynamical similarity, using a water tank for some of his most famous experiments.  Rather than 

towing an object in the water, though, Prandtl used a water-wheel to move the fluid in the water tank, 

much like fans were being used to push air through wind tunnels (which by then were replacing the 

whirling arm or moving railcar apparatuses used earlier in aerodynamical research.)  Prandtl's results 

for airfoils were based on hydrodynamical similarity and, hence, on the concept of dynamically similar 

systems. His approach went beyond that, too, including fundamental questions he addressed by 

combining mathematical solutions and experimental results in an uncommon kind of synthesis.  

William Lanchester in England also employed dynamic similarity and authored significant works about 

his theoretical and experimental research in aerodynamics; his visit to Prandtl  in 1908 may have 

contributed somewhat to Prandtl developing these ideas, since Prandtl was in a position to 

understand Lanchester's work, and appreciate its significance.  [2.11] 

 

	  
 
Figure 2.  This timeline (not to scale) shows there was a lot of discussion about and interest in issues 
regarding similarity in 1914 and the years immediately preceding.  In 1914 the term "physically similar 
systems" comes into use.   

 

1905 1911 1912 1913 1914-1 1914-2 1914-3 1914-4 
 

Buckingham 
"Interpret. of 
Model Expts."  
(May) and 
"Physically 
Similar 
Systems" 
(June) 

New English 
transl of Galileo's 
Two New 
Sciences makes it 
available in 
English (February) 

Riabouchinsky  
"Methode des 
variables de 
dimension 
zero" in 
French 

Rayleigh's "Fluid 
Motions" in English in 
several venues (March, 
June) 

Stanton & Pannell 
"Similarity of 
Motion . . ." in 
English (January) 

 
Some important works in the History of the Concept of  

Physically Similar Systems 1905 - 1914 
 

 

J. Thomson's 
"Comparison of 
similar 
structures . . ." 
is republished in 
a collection of 
his works in 
English 

Buckingham 
"On 
Physically 
similar 
systems"  in 
English 
(October) 

 

Tolman's "The Principle 
of Similitude" in English 
(April) 
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    Rayleigh  

 

Lord Rayleigh (John William Strutt) (1842 - 1919)  became a proponent of dynamic similarity in Great 

Britain.   The context of his advocacy of the method was part scientific, part political.  The scientific 

part was an appreciation for the significance of dynamical similarity in effective research; the political 

part was a feeling that Britain ought not be left behind in aeronautical research.  His political, social, 

and professional prominence put him in a position to be an effective advocate.   He was the first 

president of the British Advisory Committee on Aeronautics, founded in 1909.  Its first report includes 

his "Note as to the Application of the Principle of Dynamical Similarity [2.51]; he introduces the topic 

by first citing Lanchester for one application of the principle of dynamical similarity, then noting his 

own communications of "a somewhat more general statement which may be found to possess 

advantages."  The next year, 1910-11, the committee's annual report included two papers on 

dynamical similarity, one of them by Rayleigh, under the "General Questions in Aerodynamics" 

section of the report. [2.52]  In 1911-12, the annual report mentions plans for experiments on an 

airship to determine its resistance "by towing tests in the William Froude National Tank."  [2.53]  

Under a section "The Law of Dynamical Similarity and the Use of Models in Aeronautics"  the report 

notes its significance to all their research:  "The theory relating to dynamical similarity explained by 

Lord Rayleigh and Mr. Lanchester in the first of the Annual Reports of the Committee is of 

fundamental importance in all applications of the method of models to the determination of the forces 

acting on bodies moving in air or in water,"  [2.52]  The next year, the annual report noted that "Much 

evidence has now been accumulated in favour of the truth of the law of dynamical similarity to which 

attention was drawn by Lord Rayleigh and Mr. Lanchester in the first Report of this Committee" [2.54]     

 

In June of 1914, the journal Nature featured a kind of survey paper, "Fluid Motions", based on "a 

discourse delivered at the Royal Institution on March 20" by Rayleigh. [2.55]  Here, we see Rayleigh 

actively campaigning for wider appreciation and use of the principle, which he credits Stokes with 

having "laid down in all its completeness."   We know that Stokes explicitly used the notion of similar 

systems in developing and explaining the use of the principle, so it is fair to say that Rayleigh means 

his discussion and use of it to be consistent with Stokes' notion of similar systems.  

 

In this paper, Rayleigh pointed out that it appeared that viscosity was important in many cases where 

it was so small that it seemed improbable that it should matter.  When viscosities were low, as in 

water, one would not expect that the actual value of viscosity would be a significant factor in water's 

qualitative behavior.  As explained above, Osborne Reynolds' results on fluid flow in pipes had shown 

that it is; Reynolds began to suspect that viscosity was important even in water when he observed 

unexpected changes in fluid flow as the temperature was varied.  Since viscosity varies with 
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temperature, he investigated the effect of viscosity and found that it was indeed important for fluid 

flow through pipes, even for nonviscous fluids such as water.  Rayleigh added that Reynolds also 

investigated cases where viscosity was the "leading consideration", as Rayleigh put it, in remarking 

that "It appears that in the extreme cases, when viscosity can be neglected and again when it is 

paramount, we are able to give a pretty good account of what passes.  it is in the intermediate region, 

where both inertia and viscosity are of influence, that the difficulty is the greatest"  [2.55] This is the 

lead-in to his advocacy for the law of dynamic similarity:  "But even here we are not wholly without 

guidance."   What is this guidance?  He continues:    

 

There is a general law, called the law of dynamical similarity, which is often of great service.  In the 

past this law has been unaccountably neglected, and not only in the present field.  It allows us to 

infer what will happen upon one scale of operations from what has been observed at another." 

([2.55], p. 364) 

 

Rayleigh also notes: "But the principle is at least equally important in effecting a comparison between 

different fluids.  If we know what happens on a certain scale and at a certain velocity in water, 

[emphasis in the original] we can infer what will happen in air on any other scale, provided the velocity 

is chosen suitably."  This is, of course, the point Helmholtz had made in 1873.  Rayleigh notes that 

the point applies only in the range where the velocities are small in comparison to the velocity of 

sound. [2.55] 

 

Rayleigh gives an example of a use of the principle which permits one observation or experiment to 

be regarded as representative of a whole class of actual cases:  i.e., the class of all the other cases to 

which it is similar, even though the cases may have very different values of measurable quantities 

such as velocity.  The important fact about the situation is expressed by the formula for the 

dimensionless parameter, which picks out the cases to which it is similar:  "It appears that similar 

motions may take place provided a certain condition be satisfied, viz. that the product of the linear 

dimension and the velocity, divided by the kinematic viscosity of the fluid, remain unchanged."  

([2.55], p. 364)  Put more specifically, the important feature of a particular situation is the value of this 

dimensionless parameter; what Rayleigh is saying is that, even in cases of a different fluid, so long as 

this dimensionless product is the same (and, of course, that one is in the applicable velocity range for 

which it was derived), the motions will be similar.   

 

One might think that, by 1914, when the use of wind tunnels had become recognized as essential to 

practical aeronautical research, this principle would have become accepted and would no longer be in 

question, at least among aeronautical researchers.  But if Rayleigh's estimation of the state of the 
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profession is correct, apart from Lanchester's work, this wasn't so, even as late as March of 1914; he 

says that  "although the principle of similarity is well established on the theoretical side and has met 

with some confirmation in experiment, there has been much hesitation in applying it, . . ."  He 

especially mentions problems in its acceptance in aeronautics due to skepticism that viscosity, which 

is extremely small in air, should be considered an important parameter:  "In order to remove these 

doubts it is very desirable to experiment with different viscosities, but this is not easy to do on a 

moderately large scale, as in the wind channels used for aeronautical purposes."  

 

Rayleigh tries to persuade the reader of the significance of the effects of viscosity on the velocity of 

fluid flow by relating some experiments he performed with a cleverly designed apparatus in his 

laboratory.  The apparatus consisted of two bottles containing fluid at different heights, connected by 

a tube with a constriction, through which fluid flowed due to the difference in "head," or height of fluid, 

in the two bottles.  The tube with the constriction contained fittings that allow measurement of 

pressure head at the constriction, and on either side of it.  To investigate the effects of viscosity, 

Rayleigh varied the temperature of the fluid, which changes the fluid viscosity, and he observed how 

the velocity of the fluid flowing between the two bottles was affected.  The kind of relationship he 

establishes and uses is of the form Galileo employed in reasoning from one pendulum to another.  In 

other words, he worked in terms of ratios (ratios of velocities, ratios of viscosities, ratios of heads), 

and he employed the fact that some ratios are the square root of others. [2.56]  He took the 

experimental results he reported in this 1914 paper to conclusively settle the question of the 

relevance of viscosity to fluid motions.  This is an example of the kind of exploratory work that can be 

involved in order to answer one of the questions needed in order to use the principle of similarity 

properly:  what quantities are relevant to the behavior of interest (in the range of interest)?   Although 

the researcher's experience and judgment are involved, sometimes new experiments should be, and 

are, conceived and carried out to help determine the question. 

 

Rayleigh delivered this "discourse" in early 1914. [2.55]  1914 was a very special year for the concept 

of similar systems, and deserves a section all its own.  

 

2.5.  1914:  The Year of "Physically Similar Systems"  

 

In terms of an advance in the understanding and formalization of physically similar systems, 1914 

was a landmark year, just as 1850 (Stokes' paper [2.45]), 1873 (Helmholtz's paper [2.41]), and 1883 

(Reynold's paper [2.56]) would still be nineteenth century landmarks in any history of the concept of 

dynamical similarity.  Going back to earlier eras, many would also consider the dates 1638 (Galileo's 

Two New Sciences [2.10]  ) and 1673 (Newton's Principia [2.3] ) significant to the concept of similar 
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systems. My review above suggests additions to the above list of dates in the nineteenth century that 

should be recognized as important in the history of the concept of similar systems:  the years around 

1880 (van der Waals paper [2.57]) and 1881 (Onnes' paper [2.33] ).  The role of the notion of similar 

systems in both the development and the understanding of the principle of corresponding states in 

physical chemistry should enjoy far more recognition among philosophers of science than it has to 

date, and perhaps Lorentz ought to be included, too, for his recognition of the importance of the 

method of similar systems.  A strong argument could also be made for including a date 

commemorating one of Froude's influential achievements in the nineteenth century list.   

 

In contrast, however, dates for the papers by Maxwell and Boltzmann using the term 'similar systems' 

should not be included on this list, in my view.  This exclusion is not a lack of generosity, but an effort 

at clarification.  Their use of the term "similar system" in statistical mechanics,  a term that already 

had a fairly well-defined meaning in the theories of mechanical similarity and dynamical similarity, 

may have caused, or at least contributed to, confusion about  the concepts of 'similar system' and 

similarity as they are used in connection with mechanical and dynamical similarity.  As we shall see, 

confusions about these concepts came to a head in 1914; perhaps it is no coincidence that at least 

one source of the confusion was a proposal by someone known for his work in statistical 

thermodynamics.  

 

2.5.1  Overview of relevant events of the year 1914    

 

In the part of 1914 leading up to Buckingham's landmark paper in October 1914 [2.2] that developed 

the notion of physically similar systems, hardly a month went by without some major work concerning 

similarity and similar systems appearing:   

 

 In January 1914, Stanton and Pannell publish a major compendium of work [2.6] done at Britain's 

National Physical Laboratory over the previous four years, Investigation into Similarity of Motions  

 

In February 1914, a much-anticipated English translation of Galileo's Two New Sciences [2.10] is 

published.  

 

In March 1914, Rayleigh delivers his lecture Fluid Motions [2.55] at the Royal Institute (March 20, 

1914)   
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In April 1914,  Richard Chace Tolman's "The Principle of Similitude" appears in Physical Review 

[2.58], and Rayleigh's Fluid Motions [2.55] is published in the periodical Engineering, 97 (April 8, 

1914). 

 

In May 1914, Buckingham gives a paper on The Interpretation of Model Experiments to the 

Washington Academy of Sciences. [2.59] 

 

In June 1914, Rayleigh's review article "Fluid Motions" is published in Nature. [2.55] 

 

In July 1914, Buckingham's "Physically Similar Systems" in Journal of the Washington Academy of 

Science [2.1] 

 

In October 1914, Buckingham's "Physically Similar Systems: Illustrations of the Use of Dimensional 

Equations." [2.2] 

 

And sometime during 1914, Philipp Forchheimer's Hydraulik was published, which contains a section 

on "The Law of Similarity."  (Das Ahnlichkeitgesetz [umlaut on A])  Hydraulik becomes a highly 

regarded compendium and reference work on Hydraulics for many decades afterwards.  In the 

concluding paragraph of the section on the law of similarity, Forchheimer writes that  every hydraulic 

equation that fulfills the law of similarity can be expressed in the form of an equation consisting of an 

unidentified function F of three dimensionless ratios set equal to an unidentified constant.  He 

indicates that the law of similarity is shown to be merely a special case of the general law according 

to which all the terms of any of the equations of importance in mechanics, need to be of equal 

dimension, inasmuch as the law of similarity treats one body as a prototype, and the others as copies 

of it.    

 

2.5.2   Stanton and Pannell  

 

In January of 1914, T. E. Stanton and J. R. Pannell read their paper "Similarity of Motion in Relation to 

the Surface Friction of Fluids" [2.61] to the Royal Society of London.  Stanton was superintendent of 

Britain's National Physical Laboratory (NPL) Engineering Department.  The paper was a compendium 

of the work done there on similarity, and had been submitted to the Society in December 1913.  It 

begins with references to Helmholtz's and Stokes' work using equations for non-ideal fluid flow, refers 

to Newton's Principia on similar motions, and uses Rayleigh's equation for fluid resistance.  It explains 

that Stanton and Pannell's work involves investigating "the conditions under which similar motions 

can be produced under practical conditions."  The work had been carried out due in part to interest in 
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the possibilities of using small scale models in wind tunnels for engineering research.  With one 

exception, they began, experimental study of similar motions of fluids was very recent:  

 

Apart from the researches on similarity of motion of fluids, which have been in progress in the 

Aeronautical Department of the National Physical Laboratory during the last four years, the only 

previous experimental investigation on the subject, as far as the authors are aware, has been that 

of Osborne Reynolds . . . ([2.61], p. 200)  

 

Stanton and Pannell cite several of Reynolds' major discoveries: (i) that there is a critical point at 

which fluid flow suddenly changed from "lamellar motion" to "eddying motion"; (ii) that the critical 

velocity is directly proportional to the kinematical viscosity of the water and inversely proportional to 

the diameter of the tube, and (iii) that for geometrically similar tubes, the dimensionless product:  

(critical velocity) x (diameter) / (kinematic viscosity of water) is constant.   

 

Stanton and Pannell also noted a complication:  surface roughness needed to be taken into account; 

this is a matter of geometry on a much smaller scale making a difference.  However, the overall 

approach of the use of dimensionless parameters to establish similar situations was still seen to be 

valid, as indicated by their extensive experiments:  

 

From the foregoing it appears that similarity of motion in fluids at constant values of the variable 

vd/ν  [ velocity x diameter / kinematic viscosity of water ] will exist, provided the surfaces relative 

to which the fluids move are geometrically similar, which similarity, as Lord RAYLEIGH pointed 

out, must extend to those irregularities in the surfaces which constitute roughness. In view of the 

practical value of the ability to apply this principle to the prediction of the resistance of aircraft 

from experiments on models, experimental investigation of the conditions under which similar 

motions can be produced under practical conditions becomes of considerable importance, . . . 

By the use of colouring matter to reveal the eddy systems at the back of similar inclined plates in 

streams of air and water, photographs of the systems existing in the two fluids when the value of  

vd/ν  was the same for each, have been obtained, and their comparison has revealed a 

remarkable similarity in the motions.  ([2.61], p. 201) 

 

In referring to the dimensionless parameter vd/ν  as a "variable", what Stanton and Pannell meant 

was that their equation for the resistance R includes a function of this dimensionless parameter, i.e., 

resistance R = (density) x (velocity)2  x (some function of vd/ν ).  As they put it, R = ρ v2 

F(vd/ν ), where F (vd/ν )  indicates some unspecified function of vd/ν .  Hence, vd/ν  is a variable in 
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the sense that the relation for resistance includes an unspecified function of vd/ν .  It is also a variable 

in a more practical sense:  it can be physically manipulated.   

 

Stanton and Pannell presented this relation as a consequence of the Principle of Dynamical Similarity 

(in conjunction with assumptions about what "the resistance of bodies immersed in fluids moving 

relatively to them" depends on.  Evidently, it was Rayleigh who suggested the generalization; they cite 

Rayleigh's contribution in the Report to the Advisory Committee for Aeronautics, 1909 - 1910 ([2.51], 

p. 38)  Rayleigh had there spoken of the possibility of taking a more general approach than current 

researchers were taking in applying the "principle of dynamical similarity."   

 

In presenting the results they obtained at the National Laboratory in the paper, it is noteworthy that 

the results are presented in graphs where one of the variables plotted is the term R/ ρ v2 , which is 

just another expression for the unspecified function, and is dimensionless.  What this implies is that 

the laboratory experiments are not conceived of in terms of the values of individual measurable 

quantities such as velocity but in terms of the value of a dimensionless parameter.   

 

Rayleigh, too, presented a kind of survey paper in early 1914, as mentioned above .  In that March 

1914 paper [2.55], Rayleigh noted that the principle of dynamical similarity "allows us to infer what will 

happen upon one scale of operations from what has been observed at another."  That is, one use of 

the principle is to use an observation or experiment as representative of a whole class of actual 

cases:  all the other cases to which it is similar, even though the cases may have very different values 

of measureable individual quantities such as velocity.  The important fact of the situation is the 

dimensionless parameter just mentioned:  "It appears that similar motions may take place provided a 

certain condition be satisfied, viz. that the product of the linear dimension and the velocity, divided by 

the kinematic viscosity of the fluid, remain unchanged."  [2.55] 

 

A consequence of this fact is that, even in cases of a different fluid, so long as this dimensionless 

product is the same, the motions will be similar:  no mention of the fluid!  Not only is this striking claim 

correct, but it is responsible for a particularly useful application of Stanton and Pannell's work, of 

which they were well aware:  tests done on water can be used to infer behavior about systems where 

the fluid is air.  Not because air and water are similar -- the relevant fluid properties are very different, 

in fact --- but because the dimensionless parameter relating a number of the features of the fluid and 

of the situation is the same.  Air and water are about as different as can be: "The fluids used in the 

majority of the experiments have been air and water.  The physical properties of these are so widely 

different that observations on others are hardly necessary . . . "  ([2.61], p. 202)  Just as the theorem 

of corresponding states in physical chemistry allowed the construction of a function such that the 
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values for many different kinds of fluids all fell on the same line, so here, too:  that the function of the 

variable     is the same for air, water, and oil is experimentally illustrated by figure xx from the paper.   

 

2.5.3  Buckingham and Tolman 

 

    Buckingham's background in 1914  

 

Edgar Buckingham (1867 - 1940) was a physicist who had been working at the National Bureau of 

Standards in Washington, D.C. since 1906.  He had little previous experience or background in 

aeronautics when he began working on issues related to aeronautical research.  His involvement 

arose as a consequence of efforts afoot to establish a government agency devoted to aeronautical 

research in the United States, modeled on the British Advisory Committee for Aeronautics; one spot 

was allocated for a physicist from the National Bureau of Standards. [2.62]  How did it end up that it 

was Buckingham, then, who authored the paper that has become such a landmark in hydrodynamics 

and aerodynamics?  In a letter to Rayleigh in 1915, Buckingham explained the origins of his 1914 

paper "On physically similar systems:  illustrations of the use of dimensional equations": 

 

"Some three or four years ago, having occasion to occupy myself with practical hydro- and 

aerodynamics, I at once found that I needed to know more about the method [of dimensions] in 

order to use it with confidence for my own purposes.  Since you and the few others who have 

made much use of the method of dimensions have generally referred to it somewhat casually as 

to a subject with which everyone was familiar, I supposed that the hiatus in my education would 

be easily filled."  [2.63] 

 

But  it was not:  

 

". . . upon looking through your collected papers, the "Sound" [probably a reference to Rayleigh's 

Theory of Sound], Stokes's papers, and a few standard books such as Thompson and Tait 

[Principles of Mechanics] and Routh's Rigid Dynamics I was amazed at my failure to find any 

simple but comprehensive exposition of the method which could be used as a textbook.  . . . Each 

one of your numerous applications of the method seemed perfectly clear, and yet their simplicity 

gave them the appearance of magic and made the general principle rather elusive."  [2.63] 

 

It is noteworthy that Buckingham mentions looking at the main mechanics textbooks used in Britain, 

rather than engineering texts.  Approaching aerodynamics from the point of view of a physicist was 

consistent with the kind of community in which Buckingham worked and had been educated.  He had 
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earned an undergraduate degree in physics at Harvard University (graduating in 1887) and a 

doctorate in physics from Leipzig in 1894.   Descriptions of him as "an engineer" or "physicist-

engineer", as in Maila Walter's book [2.8] are somewhat misleading.  After a few years as a physics 

professor, Buckingham worked as a physicist at US government agencies; first at the USDA Bureau 

of Soils (where he did very original theoretical work, applying energy methods), then at the National 

Bureau of Standards. [2.11]  Involving physicists on aerodynamical research planning made sense, 

but it also helped cultivate a more prestigious image of a research institution concerned with 

aerodynamics in 1914.  Buckingham seemed aware of this, as evidenced by his remark to Rayleigh 

about the latter's Nature article on the principle of dynamical similarity; he wrote Rayleigh that "a note, 

such as the one in Nature of March 18th, which has your authority behind it, has an effect far more 

important in the present state of affairs than any detailed exposition of the subject, however good, 

because physicists will be sure to read it."  [2.63] 

 

One of Buckingham's special areas of expertise within physics was thermodynamics.  He didn't view 

thermodynamics as merely a subspecialty in physics, though, but rather as an enlightened view of 

science in which thermodynamics encompassed all of classical mechanics.  In his 1900 book Outline 

of a Theory of Thermodynamics, Buckingham had written:   

 

"Thermodynamics . . . aims at the study of all the properties or qualities of material systems, and of 

all the forms of energy which they possess.  It must, therefore, be held, in a general sense, to 

include pure dynamics, which is then to be looked upon as the thermodynamics of systems of 

which a number of non-mechanical properties are considered invariable.  For 'thermodynamics', in 

this larger sense, the more appropriate name 'energetics' is often used, the word 'thermodynamics' 

being reserved to designate the treatment of problems which are directly concerned with 

temperature and heat." ([2.65], p. 16 )  

 

Buckingham's approach towards formalizing physics in his 1900 book on the foundations of 

thermodynamics had been to make the formalism he proposed as flexible as possible, and to build as 

few assumptions into it as possible.  In generalizing the existing science of dynamics, he chose to 

regard as variable certain properties that are often considered invariable in dynamics.  As 

Buckingham obtained his doctorate in Leipzig under Wilhelm Ostwald, a friend of Boltzmann who was 

often engaged with him in discussions and debates about foundational issues in science, Buckingham 

was familiar with debates in philosophy of science.  [2.11]  Buckingham developed (if he had not 

already had) a penchant for asking foundational questions, too;  in his new role of advisor on research 

into aeronautics, he set for himself the task of discerning the foundations of the methods he saw 

being used in aeronautical research.   
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    Buckingham's papers at the Washington Academy of Sciences in 1914 

 

By the middle of 1914, Buckingham had figured out some things about the foundations of the 

methods used in aerodynamical research.  As his note to Rayleigh indicates, he had been 

concentrating on understanding how "the method of dimensions", or dimensional analysis, was 

employed in aerodynamical and hydrodynamical research.   On May 23, 1914, he presented a paper 

entitled "The interpretation of experiments on models" to the Washington Academy of Sciences in 

Washington, D.C., of which he was a member; 27 people were present, and four discussed the paper 

afterwards. [2.59]  The account published in the academy's journal stated that  "The speaker began 

by deducing a general theorem regarding the form which physical equations must have in order to 

satisfy the requirement of dimensional homogeneity."  Dimensional homogeneity is an exceedingly 

general requirement of an equation; if the terms in an equation have any units (as equations in 

physics do), the equation is not really considered an equation if it does not meet the requirement of 

dimensional homogeneity.  Thus this deduction is of something very fundamental in physics; it is 

about the logic of equations.  The account continues:  

 

"The theorem may be stated as follows:  If a relation subsists among a number of physical 

quantities, and if we form all the possible independent dimensionless products of powers of those 

quantities, any equation which describes the relation is reducible to the statement that some 

unknown function of these dimensionless products, taken as independent arguments, must 

vanish."  [2.59] 

 

The antecedent of the theorem is extremely general:  "if a relation subsists among a number of 

physical quantities. . ." ; what is striking is that the antecedent of the theorem is not a requirement that 

the relation mentioned be known, only that it exist.  The theorem was described as a "general 

summary of the requirement of dimensional homogeneity."  The report on Buckingham's talk added 

that the method of determining the number and forms of the independent dimensionless products was 

explained.   There is no mention of similar systems in the journal's account of this May 1914 talk, but 

it does add that the theorem "may be looked at from various standpoints and utilized for various 

purposes", and that "several illustrative examples" were given showing the "practical operation of the 

theorem."  [2.59] 

 

In July of 1914, the academy's journal featured a short, six page paper by Buckingham.  The topic 

identified was more general than model experiments, and this time it did mention 'similar systems'; in 

fact, the paper is titled "Physically Similar Systems."  That Buckingham meant the July paper to be 
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seen as a generalization of the earlier paper on the interpretation of model experiments is indicated in 

the closing sentence of the paper:  "A particular form of this theorem, known as the principle of 

'dynamical similarity' is in familiar use for the interpretation of experiments on mechanical models; but 

the theorem is equally applicable to problems in heat and electromagnetism." (emphasis added)  

([2.2], p. 353 )    

 

Like the May 1914 talk, the short July 1914 paper is notable for the generality of its approach.  It did 

not imply that there were any set fundamental quantities, nor how many there were.  It did not talk 

about physics, even.  It spoke of quantities, relations between quantities, and equations.  It is spare 

and elegant.  It begins: "Let n physical quantities, Q, of n different kinds, be so related that the value 

of any one is fixed by the others.  If no further quantity is involved in the phenomenon characterized 

by the relation, the relation is complete and may be described by an equation of the form  Σ M Q1
b1  Q 

2
b2   Q 3b3  . . . Qn

bn  = 0 , in which the coefficients M are dimensionless or pure numbers."  [2.1]   He 

makes it clear that it is a matter of choice which units are to be regarded as fundamental ones.  "Let k 

be the number of fundamental units needed in an absolute system for measuring the n kinds of 

quantity.  Then among the n units required, there is always at least one set of k which are 

independent and not derivable from one another, and which might therefore be used as fundamental 

units, the remaining (n - k) being derived from them." 

 

Together, these allow him to say how the quantities other than those that are taken to be among the k 

fundamental quantities are related to those fundamental quantities.  Denoting the fundamental units 

by [Q1] through [Qk] -- in this July 1914 paper he sometimes uses the square brackets indicate the 

units of the enclosed quantity --  and the remaining (n - k) units that are derived from them by  [P1], 

[P2], and so on up to [P n-k], we get (n - k) equations that relate the units of the (n - k) Ps to the units of 

the k Qs.  Putting these requirements in terms of dimensions rather than units allows one to apply the 

requirement of dimensional homogeneity -- doing so for each of the fundamental units gives k 

equations; each of the k equations is a result of setting the exponents of one of the units to zero.  It 

can then be shown that the number of independent dimensionless parameters Πi s is (n - k). [2.1] 

 

The generality of the treatment here marks this work on similar systems by Buckingham's off from the 

earlier work by Stokes in 1850 [2.45] and Helmholtz in 1873  [2.41].   Whereas Stokes spoke of 

"similar systems, composed of similar solids, oscillating in a similar manner" and of comparing 

"similarly situated points in inferring from the circumstance that [the relevant hydrodynamical 

equations] are satisfied for one system that they will be satisfied for all [the other similar] systems"  

[2.45]  Buckingham spoke of an undetermined function whose arguments were dimensionless 

parameters.  Buckingham spoke of varying the quantities (Qs and Ps above) in ways that "are not 
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entirely arbitrary but subjected to the (n - k - 1) conditions that [certain] dimensionless Πi 's remain 

constant."  [2.1] 

 

Putting it in other terms, Buckingham characterized systems as similar in terms of a (non-unique) set 

of invariants.  His emphasis is on the principle of dimensional homogeneity, which is really about the 

logic of the equations of physics.  The concept of similar systems arises from reflecting on how the 

principle of dimensional homogeneity might actually be put to use, what it might allow one to infer.  

After the paper's opening pages, in which he laid out the observations about the nature of equations 

that express relations in nature (i.e., wherein the value of one quantity is fixed by the others) stated 

above, he writes: "The chief value of the principle of dimensional homogeneity is found in its 

application to problems in which it is possible to arrange matters so that the [dimensionless ratios] r's 

and the [dimensionless parameters] Π's of [the set of linear equations relating the P's to the Q's and 

the (unknown) function φ of the dimensionless r's and Π's ] remain constant", so that the unknown 

function φ takes on a fixed value, thus giving a definite relation between the Ps and Qs in terms of the 

value of the unknown function φ .   As he remarks, the point is not that dimensional analysis provides 

the function φ or even the value φ takes on once the values of the invariants are set.  Rather, the 

principle allows one to express the relations between quantities in terms of φ , which has a fixed value 

if all its arguments (the dimensionless parameters) are fixed.  Hence, doing an experiment on one 

case yields the relation for all the cases in which the dimensionless parameters that are the 

arguments of φ have the same value, even if the individual quantities from which those parameters 

are formed are all different.  

 

Though Buckingham was, he said, only aiming to give a clear treatment of the same idea that Stokes 

and others had stated, a lot had happened in mathematics and physics (especially in physical 

chemistry and thermodynamics), in the intervening decades.   In their works on similar systems, 

Stokes and Helmholtz worked with physical equations, the partial differential equations of fluids and 

fields; Buckingham, as a physicist, was certainly cognizant of and competent in working with them, 

too, but in the July 1914 paper on similar systems, he worked with (more abstract) dimensional 

equations.  The goal here, in this lean paper that featured no examples or applications, was to get 

straight on things that (so far as he was aware) had not yet been articulated by others who had 

employed the method.  He would later write to Rayleigh about these first papers on the method:  

 

"I had therefore . . . to write an elementary textbook on the subject for my own information.  My 

object has been to reduce the method to a mere algebraic routine of general applicability, 

making it clear that Physics came in only at the start in deciding what variables should be 

considered, and that the rest was a necessary consequence of the physical knowledge used at 
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the beginning; thus distinguishing sharply between what was assumed, either hypothetically or 

from observation, and what was mere logic and therefore certain.   

 

The resulting exposition is naturally, in its general form, very cumbersome in appearance, and a 

large number of problems can be handled vastly more simply without dragging in so much 

mathematical machinery." [2.63]  

 

His exposition treats of a system S characterized very abstractly: "The quantities involved in a 

physical relation pertain to some particular physical system which may usually be treated as of very 

limited extent." ( [2.1], p. 352 ) The system constructed to be similar to it, likewise, is described very 

formally:  "Let S' be a second system into which S would be transformed if all quantities of each kind 

Q involved in [the equation expressing the physical relation pertaining to the system] were changed in 

some arbitrary ratio, so that the r's for all quantities of these kinds remained constant, while the 

particular quantities Q1, Q2, . . . Qk changed in k independent ratios. " ( [2.1], p. 352)  After completing 

the specification of the constraints on how the quantities change in concert with each other so that S' 

also satisfies the relation: "Two systems S and S' which are related in the manner just described are 

similar as regards the physical relation in question."   

 

The exposition may have been cumbersome, but the point is elegant and spare:  the constraints that 

must be satisfied in constructing the system S' are just these:  to keep the value of the dimensionless 

parameters that appear in the general form of the equation -- the arguments of the function φ -- the 

same in S' as in S.  So, what is crucial is to identify a set of dimensionless parameters that can serve 

as the arguments of the undetermined function φ .  For Buckingham, unlike for some predecessors 

writing about similar systems or dynamic similarity, the method underlying the construction of 

physically similar systems is not a method peculiar to mechanics; it applies to any equation describing 

a complete relation that holds between quantities.   

 

    Richard Chace Tolman's "Principle of Similitude"   

 

Meanwhile, another physicist in the United States was publishing on similitude, too, though with 

considerably less rigor.  Richard Chace Tolman (1881 - 1948) was an assistant professor of the 

relatively new field of physical chemistry at the University of California when Onnes won the Nobel 

Prize for his work in physical chemistry on the liquefication of helium; Onnes delivered his Nobel Prize 

Lecture in December 1913.  [2.66],[2.31]   As noted above, Onnes had aimed to "demonstrate that the 

principle of corresponding states can be derived on the basis of what he calls the principle of 

similarity of motion, which he ascribes to Newton."  [2.32] 
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Tolman published "The Principle of Similitude" in the March 1914 Physical Review, in which he 

proposed the following:   

 

"The fundamental entities out of which the physical universe is constructed are of such a nature 

that from them a miniature universe could be constructed exactly similar in every respect to the 

present universe." ([2.58], p.  244 )  

 

Tolman then (he claimed) showed that he could derive a variety of laws, including the ideal gas law, 

from the principle of similitude he had proposed, proceeding in somewhat the same way as Onnes 

had proceeded in showing that the principle of corresponding states was a consequence of 

mechanical similarity.  Tolman seemed to appeal to a criterion that the two universes should be 

observationally equivalent:   

 

. . . let us consider two observers, O and O', provided with instruments for making physical 

measurements.  O is provided with ordinary meter sticks, clocks and other measuring 

apparatus of the kind and size which we now possess, and makes measurements in our 

present physical universe.  O', however, is provided with a shorter meter stick, and 

corresponding altered clocks and other apparatus so that he could make measurements in the 

miniature universe of which we have spoken, and in accordance with our postulate obtain 

exactly the same numerical results in all his experiments as does O in the analogous 

measurements made in the real universe.  ([2.58], p. 245 )   

 

He brings up some other considerations, some from physics (Coulomb's Law), some from the theory 

of dimensions, and then tries to show how various physical relations, such as the ideal gas law, can 

be deduced from simple physical assumptions and his proposed principle of similitude.  For relations 

involving gravitation, however, a contradiction arises; his response is to use the contradiction as 

motivation to propose a new criterion for an acceptable theory of gravitation.  He concludes that his 

proposed principle is a new relativity principle:  the "principle of the relativity of size."   

 

Tolman believes that, in his paper, he has lain out transformation equations that specify the changes 

that have to be made in lengths, masses, time intervals, energy quantities, etc., in order to construct a 

miniature world such that  

 

"If, now, throughout the universe a simultaneous change in all physical magnitudes of just the 

nature required by these transformation equations should suddenly occur, it is evident that to 
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any observer the universe would appear entirely unchanged. The length of any physical object 

would still appear to him as before, since his meter sticks would all be changed in the same ratio 

as the dimensions of the object, and similar considerations would apply to intervals of time, etc.  

From this point of view we can see that it is meaningless to speak of the absolute length of an 

object, all we can talk about are the relative lengths of objects, the relative duration of lengths of 

time, etc., etc.  The principle of similitude is thus identical with the principle of the relativity of 

size."  ([2.58], p. 255) 

 

Tolman's suggestion differs from the concept of similar systems mentioned so far, though the 

difference may not be obvious.  Others working on similar systems where quantities or paths were 

homologous between similar systems noted that there were limits of applicability; they recognized the 

fact that there are ranges in which size matters (e.g., surface tension matters disproportionately at 

small scales (Froude [2.21]);  the restriction in Helmholtz' 1873 paper that velocities must be small 

with respect to the velocity of sound [2.41], Reynolds' recognition of the role of "mean range" of 

molecules in transpiration [[2.11]).  Helmholtz even explicitly discussed the practical difficulties of 

constructing models of a different size than the configuration modeled, raising the question of whether 

in some cases it may not be possible to do so. [2.41] Tolman not only does not recognize such limits; 

he suggests making the denial that they exist a principle of physics.  It seems pretty clear that Tolman 

is here modeling his exposition on Einstein's 1905 paper on the special theory of relativity.  Tolman 

proposes that the relativity of size be regarded along the lines of the relativity of motion:  in his paper 

on special relativity, Einstein had considered it a principle that observers cannot tell one state of 

unaccelerated motion from another; Tolman proposes to do the same for the statement that 

observers not be able to distinguish an appropriately constructed model universe from the actual one 

[2.58], if inhabiting it as an appropriately transformed being and using appropriately constructed or 

transformed instruments.  There is a confusion in Tolman's reasoning.  While it is quite natural to say 

that a desirable principle of nature, and a desirable constraint on measuring systems, is that it should 

not matter to the project of pursuing truth that one observer in the actual world is using one system of 

measurement and another observer in the actual world is using another system of measurement, 

Tolman seems here to be confusing that requirement with a requirement that miniature universes 

constructed from the materials of the actual universe be indistinguishable from the actual, full size, 

universe by the miniature observers inhabiting those miniature universes.   

 

    Buckingham's Physical Review paper & Reply to Richard Chace Tolman 

 

It's rather obvious that the notion of similar systems --- one system being transformed into another 

system S' in such a way that it "corresponds" to S ("as regards the essential quantities") -- is relevant 
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to evaluating the claim Tolman made in his 1914 "Principle of Similitude" paper [2.58] that the 

universe could be transformed overnight into an observationally indistinguishable miniature universe.  

The notion of similar systems is also relevant to Stanton and Pannell's "similarity of motion" paper 

[2.61], in that it is a more general treatment of the methodology of model testing ("the principle of 

dynamical similarity") given there.  In the next paper Buckingham wrote on the topic [2.2], in addition 

to presenting the generalized treatment found in the July 1914 version of "Physically Similar 

Systems," he addressed both these related topics on which major papers had appeared in the earlier 

part of the year:  experimental models and Tolman's claims about the possibility of an observationally 

indistinguishable miniature universe.  The October 1914 Physical Review featured Buckingham's "On 

Physically Similar Systems: Illustrations of the Use of Dimensional Equations"; his manuscript is 

dated June 18th of that year.  [2.2] 

 

In his 1914 Physical Review paper [2.2], Buckingham says that his purpose in presenting how the 

notion of physically similar systems can be developed from the principle of dimensional homogeneity 

in that paper was to provide background against which to respond to Tolman's proposed "principle of 

similitude."  He makes several points relevant to addressing Tolman's proposal for a new principle in 

physics in developing "the notion of physical similarity" and "the notion of physically similar systems":  

 

(i)  It is only "the phenomenon characterized by the relation [expressed by the equation whose 

existence was assumed at the start]" that "occurs in a similar manner" in both systems: "we say 

that the bodies or systems are similar with respect to this phenomenon. (emphasis added)"  

Buckingham specifically points out that systems that are "said to be 'dynamically similar' " might 

not be similar "as regards some other dynamical relation";  two dynamically similar systems 

might not "behave similarly in some different sort of experiment."   

 

(ii) There is a more general conception of similarity than dynamical similarity, and it too "follows 

directly from the dimensional reasoning, based on the principle of homogeneity."  

 

(iii)  Tolman's proposed "Principle of Similitude" is not clearly stated, but inasmuch as 

Buckingham understands it, it seems to him "merely a particular case" of the theorem 

Buckingham presents in the paper.  Buckingham reasons as follows:  The way Tolman 

proceeds is to select four specific independent kinds of quantity (length, speed, quantity of 

electricity, electrostatic force), subjects these four kinds of quantity to four arbitrary conditions, 

then finds the conditions that some other kinds of quantities are subject to "in passing from the 

actual universe to a miniature universe that is physically similar to it."  ([2.2], p. 356)  I take 

Buckingham's point to be that, inasmuch as what Tolman is concluding is correct, it can be 
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concluded using the principle of dimensional homogeneity without the aid of the "new" principle 

that Tolman proposed in his March 1914 Physical Review paper.  

 

Having already remarked that the notion of similar systems used in constructing and using a model 

propeller is generalizable beyond mechanics, he then goes on to show how the principle involved in 

doing so --- the "method of dimensions" -- applies in problems ranging from electrodynamics (energy 

density of a field, the relation between mass and radius of an electron, radiation from an accelerated 

electron) to thermal transmission, and, finally, at a higher level, to the kind of "bird's-eye view" 

question to which his interest tended to migrate: "the relation of the law of gravitation to our ordinary 

system of mechanical units." 

 

The question he asks about the role of the law of gravitation in determining units of measure is a bit 

different.  It is about the number of "fundamental units," and the question Buckingham asks can be 

put in terms of similar systems:  if it is in fact true that in mechanics three fundamental units suffice to 

describe mechanical phenomena (more if thermal and electromagnetic phenomena are to be 

described), then it would be correct to conclude that: 

 

"a purely mechanical system may be kept similar to itself when any three independent kinds of 

mechanical quantity pertaining to it are varied in arbitrary ratios, by simultaneously changing 

the remaining kinds of quantity in ratios specified by [the constraint of dimensional 

homogeneity]  . . . For instance, we derive a unit of force from independent units of mass, 

length, and time, by using these units in a certain way which is fixed by definition, and we 

thereby determine a definite force which is reproducible and may be used as a unit.  Now by 

Newton's law of gravitation it is, in principle, possible to derive one of the three fundamental 

units of mechanics from the other two." ([2.2], p. 372-373) 

 

Buckingham then describes a laboratory experiment from which a unit of time can be derived from 

units of mass and length -- if one assumes Newton's law of gravitation to hold.  To be clear:  

Buckingham is granting that people have sometimes reduced the number of fundamental units to two, 

such as when a unit of time is derived from units for mass and length, when working on specific 

problems.  What he is concerned to show is that, in order to do so, they have had to use assumptions 

about the law of gravitation.  He is not unaware that the current state of physics indicates Newton's 

law of gravitation is not the final word, and is pointing out the role that a law of gravitation plays in 

such reductions of the number of fundamental units to two.  Put in terms of similar systems, the 

question is:  how many degrees of freedom do we have in constructing a system S' that is similar to 
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S?   How many quantities can be varied in an arbitrary ratio when we transform S into S', a system 

that is physically similar to it?  

 

Buckingham points out that, even in the domain of mechanics, it depends.  It depends on what 

phenomenon the relation between quantities characterizes.  As he emphasized, the notion of physical 

similarity and physically similar systems involve only similarity with respect to a specified relation. 

(Recall that the analysis started with the quantities involved in a given equation, where that equation 

describes a relation that relates a certain number of kinds of quantities such that any one was 

determined by all the others, and the relation characterized a phenomenon of interest.)  In developing 

a general methodology, Buckingham had considered any such relation; that is, all possible relations 

that could exist among the given kinds of quantities.  In practice, this means that, if, on the contrary, 

we consider only some such relations ("all our ordinary physical phenomena [which] occur subject to 

the attraction of an earth of constant mass and under such circumstances that the variation of gravity 

with height is of no sensible importance"), we can take advantage of some features of specific 

relations.  However, for precise geodesy and astronomy, one needs to be explicit about the law of 

gravitation.  

 

Buckingham's answer to the question Tolman's paper raises about the possibility of constructing 

observationally indistinguishable miniature universes thus bifurcates into two cases, depending on 

whether or not the phenomenon that we are interested in observing in the miniature universe is 

influenced by the law of gravitation.  If not, then it might not be impossible to construct a miniature 

universe, as Tolman suggests, that will be similar to the universe (as regards that phenomenon.) On 

the other hand, if the phenomenon is influenced by the law of gravitation, more things must be taken 

into account:  "the gravitational forces in the miniature universe must bear to the corresponding 

gravitational forces in the actual universe a ratio fixed by the law of gravitation."  He points out that the 

effect of the law of gravitation on the phenomena of interest shows up in the process of constructing 

similar systems.  If we erroneously try to independently choose three units rather than letting the third 

be determined by the first two fundamental units chosen, we run into trouble because the measured 

values for corresponding speeds and forces won't correspond to the values in the actual universe -- 

unless, that is, the third unit is allowed to be fixed by the law of gravitation in terms of the first two.   

 

The points about physically similar systems, systems of units, and the law of gravitation seem to be 

questions in the logic of physics.  Yet, the main claim of Buckingham's papers on physically similar 

systems can actually be stated in terms of a theorem about the symbolism of relations between 

physical quantities.   
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This is seen in the "convenient summary" with which he concludes the paper:  

 

A convenient summary of the general consequence of the principle of dimensional homogeneity 

consists in the statement that any equation which describes completely a relation subsisting 

among a number of physical quantities of an equal or smaller number of different kinds, is 

reducible to the form  Ψ (Π1, Π2, . . . Πi , etc.) = 0  in which the Π 's are all the independent 

dimensionless products of the form Q1
 x Q2

 y  . . ., etc. that can be made by using the symbols of all 

the quantities Q.   ([2.2], p. 376)  

 

The equation   Ψ (Π1, Π2, . . . Πi , etc.) = 0   in the quote from Buckingham above is what I called The 

Reduced Relation Equation of 1914 in Section 1 of this article.  

 

2.5.4  Precursors of the "pi-theorem" in Buckingham's 1914 papers 

 

This article is devoted to the history of the notion of physically similar systems.  Buckingham's 1914 

papers are considered a landmark in the development of our current notion of physically similar 

systems, due to the articulation of what a physically similar system is and how it is related to the 

symbolism used to express relations in physics.   First, Buckingham showed that The Reduced 

Relation Equation of 1914 followed from the principle of the homogeneity of a physical equation.  

Then, he showed how the notion of 'physically similar systems' could be developed from it.   

 

However, since Buckingham's name has since become attached to the so-called 'pi-theorem', and the 

full contents of his 1914 papers are often ignored, being inaccurately viewed as doing little more than 

presenting the pi-theorem, I want to emphasize that what has become known as the pi-theorem itself 

is not actually due to Buckingham.  There were, in fact, many precursors who proved the same result, 

with varying levels of generality.   

 
 
    Vaschy and Bertrand   
 

The 'pi-theorem" is referred to in France as the Vaschy-Buckingham Pi Theorem.  In 1892, Vaschy 

(1857 - 1899)  published "Sur les lois de similitude en physique" ( [2.67], [2.68] ), in which he stated 

the result about the number of parameters required to state a given relationship that is often attributed 

to Buckingham.  However, unlike Buckingham, Vaschy did not mention dimensions or dimensional 

equations.  He spoke of quantities and units, and did so as though they were the same sort of thing, 

though he did speak of some units as fundamental and others as derived.  More precisely, Vaschy's 

theorem is:  
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"Let a1 , a2, , a3, , . .  an be physical quantities, of which the first p are distinct fundamental units 

and the last (n - p) are derived from the p fundamental units (for example, a1 could be a length, 

a2  a mass, a3 a time, and the (n-3) other quantities would be forces, velocities, etc.; then p = 3).  

If between these n quantities there exists a relation  F (a1 , a2, , a3, , . .  an) = 0,  which remains the 

same whatever the arbitrary magnitudes of the fundamental units, this relationship can be 

transformed in another relationship between at most ( n - p ) parameters, that is  f ( x1 , x2, , x3, , . .  

xn-p ) = 0 , the parameters  x1 , x2, , x3, , . .  xn-p  being monomial functions of  a1 , a2, , a3, , . .  an. "   

[2.68]     

 

The parameters  x1 , x2, , x3, , . .  xn-p  play the same role as the dimensionless  Π 's in Buckingham's 

theorem.   Vaschy then shows how to obtain reduced relations for the pendulum and for a telegraph 

cable.  What is notable is that he produces a pair of ratios, not just one ratio, in each case, and he 

expresses the result as an unknown function of these parameters (xi's) set equal to zero.  He does 

not use the terminology of systems, but he is interested in laws of similitude (in the sense of the 

similarity 'laws' of section 2.4.2) that can be derived from them, citing one by W Thomson (Lord 

Kelvin) in the case of the telegraph line.  The conditions of Vaschy's theorem are not exactly the 

same as in Buckingham's theorem, but Vaschy does emphasize that his reasoning does not assume 

any particular system of units, and he does derive the key move to the Reduced Relation Equation of 

1914 .   The case is strong for crediting Vaschy's paper with containing the "pi-theorem." 

 

Some have also argued that Joseph Bertrand provided an even earlier, though less general, proof of 

the pi-theorem in 1878, in  "Sur l'homogeneite dans les formules de physique."  ([2.67], p. 209)  This 

is the same Joseph Bertrand (1822 - 1900) cited above for the much earlier 1847 work drawing 

attention to the principle of similitude, in which he mentioned "an infinite number of possible systems, 

which may be regarded as similar to" a given system, and provided a new basis for Newton's theorem 

of similarity using a result by Cauchy involving the principle of virtual velocities.   

 

These two works by Bertrand thirty years apart reflect an important late nineteenth century 

development that permitted using a logical principle about the equations of physics, i.e., the 

homogeneity of equations of physics, rather than a principle of physics itself.   This late nineteenth-

century development was the idea of coherence as a constraint on a system of units; the idea, that is, 

of a coherent system of units.  Coherence of a system of units, and its importance in connecting 

dimensional analysis and similarity, is discussed in Sterrett [2.70].   

    

    Riabouchinsky 
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Sometime after 1914, Buckingham became aware that Dimitri Riabouchinsky (1882 - 1962 ) had also 

proved a mathematical theorem about the number of dimensionless parameters needed to express a 

given physical relation, using the methods of dimensional analysis, in 1911. [2.71]  Riabouchinsky 

(spelled Riabouchinski in Buckingham's papers), was a scientist who had provided the private funding 

for the Aerodynamic Institute of Koutchino associated with the University of Moscow, which had a 

wind tunnel; hence Riabouchinsky was, like Buckingham, faced with the problem of understanding 

how to interpret model experiments.  After becoming aware of Riabouchinsky's proof, Buckingham 

credited him prominently for the proof in his writings.  In a paper in 1921, discussing the desire that 

had arisen for a more systematic procedure for obtaining the results that Rayleigh and others had 

obtained using dimensional methods, he wrote:  "Such a routine procedure is provided by formulating 

the requirement of dimensional homogeneity as a general algebraic theorem, which was first 

published by Riabouchinski (sic), and which will be referred to as the Π theorem." ([2.72],  p. 696)  

Buckingham speculated that he might have seen a notice of Riabouchinski's result in one of the 

Annual Reports of the British Advisory Committee on Aeronautics [2.73], and that "Guided . . . by the 

hint contained in this abstract, the present writer came upon substantially the same theorem, . . . The 

theorem does not differ materially from Riabouchinski's, except in that he confined his attention to 

mechanical quantities."  ([2.72], p. 696n.) 

 
 
2.6    Physically Similar Systems: the path in retrospect  

 

We are now in a position to survey the path from Newton's theorem about similar systems of bodies 

in the seventeenth century to Buckingham's development of the notion of similar systems from what I 

have called the Reduced Relation Equation of 1914, in the early twentieth century.  Painting what we 

can see in retrospect in broad brush strokes, the picture of this path is that there are several key 

ideas that made the twentieth century notion of physically similar systems possible.  The first of these 

is the notion of a function developed in the eighteenth century, and the second is the notion of a      

coherent system of units developed in the late nineteenth century.   

 

Brian Hepburn identifies Leonhard Euler as a key eighteenth century figure linking Newton's age and 

ours, and has argued that the concept of a function was crucial to the development of what we now 

know as Newtonian mechanics.  Whereas Newton's mechanics "dictated how motions are generated 

in time by forces" and "would treat of the actual process of moving bodies,"  Hepburn says, for Euler, 

in contrast, "the central object of investigation in mechanics is the [mathematical] function."  [2.12]   

He points out that equilibrium relations are the most important among relations, and hence that "sets 
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of quantities" characterized "states" -- I would amend this to "states of a system."   The notion of a 

function allowed the concept of a system to be expressed in terms of the interrelatedness of some 

quantities -- if one quantity changed, any of the others in the system might be affected, too.  The 

notation of a function set to 0, i.e.,  f ( x1 , x2,  . .  xn ) = 0  can be used to express this interrelatedness.  

The notion of equilibrium and an equation of state, which are expressible by the functional notation, 

are important in this newer notion of a system; what this new notion of system eventually replaced 

was the notion of a system as a configuration of particles and/or bodies.  The notion of a similarity law 

likewise progressed from simply a single ratio to express an invariant relation, to a function with 

multiple arguments, each of which was a dimensionless ratio.  

 

When Bertrand invoked the principle of virtual velocities in 1847 ([2.25], p. 380) to derive the principle 

of mechanical similitude, he was using the notion of a function, but he was still using considerations 

and principles of mechanics.   By 1878, he could take a much more general approach, using a 

principle that was a constraint on the equation expressing relations between the physical quantities, 

rather than the system of bodies and particles itself.  Independently, many others could do so, too:  

Vaschy in France and Riabouchinsky in Russia, and they were not the only ones.  In physical 

chemistry, van der Waals and Onnes, thinking of collections of molecules as systems, could apply 

these more formal notions of similar systems to come up with a way to predict the behavior of one 

substance based on only its critical points, along with observations about how another substance 

behaved.  The amazing success of this approach in physical chemistry seems to have encouraged 

extending the approach of similar systems to electromagnetic theory and the kinetic theory of gases.   

 

That the time was right in 1914 for deriving the pi-theorem and the Reduced Relation Equation of 

1914 is clear from the fact that so many had already done it by then.  That Buckingham was the one 

to write what has become the landmark paper articulating the notion of physically similar systems, 

which he developed from the Reduced Relation Equation of 1914 in the Π−theorem , then, appears to 

be a matter of timing, at least in part:  when he was suddenly asked to devote time to the question of 

the value of model experiments using wind tunnels, it was the early twentieth century, when the 

notion of a system was readily expressible by the notation for a function, when coherent systems of 

units in every part of physics was something that could be assumed, and someone with a doctorate in 

physics would have a facility with formal methods applied to equations.   

 

Around the same time, or shortly thereafter, D'Arcy Wentworth Thompson wrote his classic work, On 

Growth and Form [2.74], on the mathematicization of biology.  In that work, he carried the use of 

similitude in physics over into biology and he, too, explicitly cites Newton (for his use of similitude), as 

well as Galileo (for his discussion of scaling and similitude), Boltzmann, Helmholtz and numerous 
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publications on aerial flight.  A  detailed discussion of D'Arcy Thompson on similitude may be found in 

Chapter 6 ("The Physics of Miniature Worlds") of Wittgenstein Flies A Kite ( [2.11], pgs 117 - 130)   

 

How do things stand today, in the early twenty-first century?  Certainly there are pockets in many 

disciplines -- physics, hydrodynamics, aerodynamics, the geological and other sciences, hydrology, 

mechanics, biology, and more -- where researchers recognize the value of thinking in terms of 

physically similar systems.  However, it is not really a staple of the basic curriculum.   Few 

philosophers of science understand the concept or why it is significant.  This article is offered to help 

improve at least the latter situation.   
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