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Quantum Mechanics 

and Paradigm Shifts 

 
 

Abstract 
It has been argued that the transition from classical to quantum mechanics is an 

example of a Kuhnian scientific revolution, in which there is a shift from the 

simple, intuitive, straightforward classical paradigm, to the quantum, 

convoluted, counterintuitive, amazing new quantum paradigm. In this paper, 

after having clarified what these quantum paradigms are supposed to be, I 

analyze whether they constitute a radical departure from the classical 

paradigm. Contrary to what is commonly maintained, I argue that, in addition 

to radical quantum paradigms, there are also legitimate ways of understanding 

the quantum world that do not require any substantial change to the classical 

paradigm.  
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1. Introduction 

Since it was first proposed, physicists have wondered what to make of quantum 

mechanics: they can use the theory for their experiments but they have trouble 

understanding what it means. It is commonplace to consider quantum mechanics as a 

mysterious theory at best, especially when confronted with its predecessor classical 

mechanics. In particular, in the quantum world there are supposed to be particles 

behaving like waves and waves behaving like particles, with observers creating reality 

and consciousness playing a crucial role in physics. Regardless the details, everyone 

seems to agree that the world-view depicted by quantum theory is radically different 

from the one emerging from classical physics. Because of this, many have identified the 

transition from classical to quantum mechanics as a prototypical example of a 

paradigm shift, so that the rise of quantum mechanics amounted to a scientific 

revolution, as famously described by Thomas Kuhn. To cut a long story short, the 

claim is that we have moved from the paradigm of classical mechanics to the one of 

quantum mechanics, and during this transition, we have to change completely the way 
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in which we look at things through fundamental physical theories. This understanding 

of quantum theory and of its relation to classical mechanics is so widespread that it is 

also shared by the layman: literally, almost everyone thinks that the quantum world is 

believed to be populated by mysterious objects which we cannot truly comprehend 

with our obsolete classical concepts. In addition, this paradigm shift is advertised as 

necessary: there is no possible way of classically understanding the quantum 

phenomena. For instance, here is how Brain Greene puts it: “But of all the discoveries 

in physics during the last hundreds years, quantum mechanics is far and away the 

most startling, since it undermines the whole conceptual scheme of classical physics” 

[Greene 2005].  

In this paper I wish to clarify the situation and answer the following 

questions: what is a quantum paradigm? How does it differ from the classical one? 

Does the theory change from classical to quantum mechanics really require a paradigm 

shift? In section 2 I briefly remind the main claims made by Kuhn regarding paradigm 

shifts and scientific revolutions, I clarify which parts of Kuhn's views are relevant for 

the present discussion, and I define the theses I am going to address in the paper. In 

sections 3 I present the classical paradigm: the main ingredients of classical mechanics, 

and the way in which it accounts for microscopic and macroscopic phenomena. In 

section 4 I review the history of quantum theory to show that there is no single 

quantum paradigm: already in the early years of quantum mechanics there were 

multiple paradigms, which I dubbed the “early quantum paradigms.” They were the 

ones that historically prevailed and became the orthodoxy. As I describe in section 5, 

since the `50s a “new quantum paradigm” slowly started to gain popularity. As we 

will see, even if in different ways, both the early and the new quantum paradigms 

require radical changes to the classical paradigm. If they all require substantial 

changes, then the fact that there are multiple quantum paradigms does not undermine 

the thesis that a paradigm shift in the classical to quantum theory change is necessary. 

In section 6 I argue instead that, surprisingly enough, it is not the case: there are other 

quantum paradigms (at least as satisfactory as the one in section 5) which do not 

necessitate we fundamentally abandon the classical paradigm to account for the 

quantum world. In section 7 I summarize my conclusions: 1) even if people usually 

talk about one quantum paradigm, there is actually no single quantum paradigm; 2) 

both the early and the new quantum paradigms require a substantial paradigm 

change, even if the former require a change in the fundamental concepts while the 

latter do not; 3) in contrast with what is commonly believed, having a paradigm shift is 

not necessary: there are some quantum theories that fit nicely within the classical 
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paradigm, and whether or not there is a paradigm shift is going to depend on what 

quantum theory one decides to adopt.  

2. Kuhnian Revolutions 

Thomas Kuhn is famous for his idea that science evolves through different stages: a 

first stage of immature science (pre-science), a further stage of normal science (in which 

a paradigm is acquired), and a third stage of revolutionary science (in which there is a 

paradigm shift) [Kuhn 1962] ‏. According to Kuhn, the period of normal science is based 

on a given paradigm: a set of theories, methods, metaphysical and epistemological 

theses that scientists, at a certain point in history, accept. The paradigm specifies the 

ontology of the world, it dictates what puzzles science will work on, and what counts 

as an adequate solution to those puzzles, it establishes how science should be 

practiced, and what the aim of science is. Paradigms, Kuhn observed, often have 

anomalies: predictions not fulfilled, inconsistencies and so on. Normal scientists 

substantially ignore these problems since they believe them to be ultimately solvable 

within the framework of the theory, even if they currently have not. At a certain point, 

though, there are too many anomalies, and different scientists offer different kinds of 

solution, so that the paradigm becomes fractured. There is no longer a unified world-

view, and at some point there is crisis. This leads to a scientific revolution, which 

involves sweeping away the whole old paradigm, its theories, methods and standards, 

and starting from scratch. Revolutionary scientists paint over the canvas, to draw in a 

new outline, which new normal scientists will go on to fill in within the new paradigm. 

Note that Kuhn made further claims about the nature of paradigm shits. Among 

other things, he maintained that theory change is holistic, like a gestalt-switch, and that 

theory choice is not rational. Moreover, he entertained the even more controversial 

thesis that theories belonging to different paradigms are incommensurable - they lack a 

common measure, so they cannot be truly compared. In this paper I do not want to 

comment on incommensurability or on the rationality of theory choice: I will ignore 

these aspects of Kuhn's thesis. In addition, since his definition of paradigm is complex 

and not well understood, I am going to consider that a paradigm consists of the 

following:  

1) a world-view: a claim about what exists in the world;  

2) a set of methodologies with which a scientist can account for the behavior of 

macroscopic objects and their properties in connection with the world-view; 
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3) a set of concepts to define 1 and carry out 2.  

Here is what is meant by paradigm shift in this paper:  

(PS) paradigm shift thesis: moving from one physical theory to the next our paradigm 

radically changes.  

Note that the notion of “radical change” is vague but in an unproblematic way, 

since it is simply supposed to capture the idea that the change is substantial in some 

important respect: the world-view, the methodologies, the concepts, or a combination 

of them. In this way we can define degrees of radicalism to allow for rough 

comparisons among paradigms: when compared to the a given paradigm p1, a second 

paradigm p2 that requires a change in all three ingredients of the paradigm will involve 

a more radical change than the one required by a third paradigm p3 that changes only 

one of them. Clearly this alone does not allow for a comparison between two 

paradigms that require a different change in an equal number of ingredients, but as we 

will see the current specification will be sufficient for our purposes.  

Kuhn believed that the typical example of paradigm shift was the passage from 

the Ptolemaic to the Copernican view of the universe: the change from a world-view in 

which the Earth is at the center of the Universe, to one in which the Earth is just 

another planet. He also took the theory change from classical to quantum mechanics as 

another example of paradigm shift. This view, which is just PS applied to the transition 

from classical to quantum mechanics, is shared also by the vast majority of physicists 

and even by the layman. It reads as follows:  

(PS_cq) paradigm shift thesis (in the classical to quantum theory change): the quantum 

paradigm is radically different from the classical paradigm. 

It turns out that many physicists take this thesis a step further. Take for instance what 

Lev Landau and Evgeny Lifshitz wrote in their milestone book on quantum mechanics: 

“it is clear that [the results of the new experiments] can in no way be reconciled with 

the [classical] idea that electrons move in paths. In quantum mechanics there is no such 

concept as the path of a particle” [Landau and Lifshitz 1958]. In addition to PS_cq, they 

seem to endorse the assumption that not only quantum mechanics is so radical that the 

classical paradigm has been contingently rejected, but also it necessarily had to be rejected. 

That is, they seem to hold the following thesis: 

(NPS_cq) Necessary paradigm shift thesis (in the classical to quantum theory change): 1) 

the quantum paradigm is radically different from the classical paradigm; 2) the 

quantum paradigm is necessarily radically different from the classical paradigm.  
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3. The Classical Paradigm  

The common wisdom is that classical mechanics is hardly a controversial theory, at 

least in the following respects: according to this theory the world is made of point-like 

particles in three-dimensional space, which evolve according to Newton’s law of 

motion, a second order differential equation, whose solutions provide the possible 

trajectories of the particles through space in time. The clear metaphysics of the theory 

(“everything is made of particles”) grounds a scheme of explanation that arguably 

allows identifying macroscopic physical objects and their properties in terms of the 

behavior of the fundamental objects in the theory. Arguably, in fact, in classical 

mechanics any physical body (gases, fluids, and solids) can be satisfactorily described 

as a suitable collection of particles. That is, some sort of compositionality principle holds: 

every macroscopic object is composed of microscopic constituents, the particles. In this 

way a table is just a table-shaped cluster of microscopic particles. Once the particles 

and the way in which they evolve are specified, every physical property of such 

macroscopic objects follows: the solidity of a table, the localization of a comet, the 

transparency of a pair of glasses, the liquidity of the water in this bottle, the 

compressibility of the air in this room, and so on. In other words, we have some sort of 

reductionism with respect to the particles, the fundamental constituents of matter: in 

classical mechanics we can identify macroscopic properties more or less 

straightforwardly given how the microscopic particles combine and interact to form 

complex bodies. Note that an antireductionist would object to this, but granting that 

reductionism is possible, this is how it is supposed to work. Moreover, the situation 

does not change much when we consider classical electrodynamics, in which there are 

charged particles and electromagnetic fields. Contrarily to particles, which are 

localized entities in three-dimensional space that evolve through time according to 

Newton’s equation, electromagnetic fields are spread-out objects in three-dimensional 

space which evolve in time according to Maxwell’s equation. Even if they have their 

differences, both are mathematically described by objects in three-dimensional space, 

so that some sort of principle of compositionality and reductionism can still hold.  

The bottom line is that in the classical framework we have a clear and 

straightforward scheme of explanation of macroscopic phenomena: given the particles 

at the microscopic level (the world-view), assuming compositionality and reductionism 

(the methodology), one can employ what now are standard methods to account for the 

properties of familiar macroscopic objects in terms of their microscopic constituents.  



6 

4. The Early Quantum Paradigms  

Using Wilfrid Sellars terminology [Sellars 1962], in the scientific image of classical 

mechanics there are particles and fields that describe matter microscopically, and the 

manifest image, in which there are macroscopic objects with their properties, is 

obtained assuming compositionality and reductionism. The classical paradigm 

provides a very nice explanatory scheme: it is straightforward and clear. It turns out, 

though, that it seems we have to abandon it once we consider the quantum world: in 

order to account for the new experimental data, we need to change our paradigm.  

The change in paradigm seems to be particularly extreme, for several extremely 

strong assertions have been made about quantum theories: from the claim that it is 

impossible to be realist if quantum mechanics is true, to the idea that the observer can 

create reality, to the insistence that the “old,” classical way of understanding the world 

we just described is not suitable any longer. For instance, here is what reportedly Niels 

Bohr said to Werner Heisenberg: “Anyone who is not shocked by quantum theory has 

not understood it” [Heisenberg 1971]. But what exactly is the quantum paradigm? Is 

there more than one? Do they all involve some radical change to the classical 

paradigm? Let us briefly recall the history of the development of quantum mechanics 

to find some insight.  

At the end of the 19th century, the Newtonian picture of the world was commonly 

accepted, even if there were several puzzles: there were theoretical predictions that did 

not square out with experiments, and there were experiments whose results did not 

come out as the theory predicted. Some of them, from the stability of the atom, which 

is impossible to explain with the classical theory, to the Stern-Gerlach experiment, 

suggested the idea of quantization: a discretization of the values that certain physical 

quantities can assume. For instance, if energy in the classical framework could be 

described by any positive real numbers, in the quantum domain it is constrained to 

assume certain discrete values. This quantization assumption does not substantially 

challenge the classical hypothesis that physical objects are made of particles, and 

therefore hardly constitutes a change in world-view: the only difference is that in this 

new description the “properties” of particles (energy, momentum and the like) are 

discrete rather than continuous in values, while compositionality and reductionism 

still can apply.  

In contrast, other results suggested a change in the ontology was necessary. For 

instance, some experiments were taken to show that the concepts of particles and 

waves are inadequate to describe the quantum world. In fact, experiments like the two-
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slit experiment shows that electrons, taken to be particles, seem to be able to diffract 

and interfere like waves. This is problematical since particles and waves are 

incompatible ontologies: particles, by definition, have definite spatial positions, while 

waves are defined as delocalized, spread-out objects. Also, waves’ trajectories “bend” 

around obstacles: that is, they diffract. In addition, waves are characterized by their 

intensity, connected to their energy, and intensities can sum and subtract giving rise to 

interference phenomena. These behaviors are not allowed to particles, so how can one 

make sense of the two-slit experiment? Niels Bohr suggested that we need to revise our 

ways of understanding and describing reality: particles and waves are obsolete 

concepts, inadequate to represent the quantum reality, and should therefore be 

abandoned. We should talk about wave-particle duality instead: electrons, say, are not 

particles, but dual objects that in certain experiments show their particle side, and in 

others their wave side. More precisely, Bohr argued that we lack the proper concepts to 

describe such quantum objects, and that all science can do for us is to predict the 

results of measurements [Bohr 1949]. Such measurement results are derived in terms of 

a mathematical object that evolves in time according to an equation typical of a wave, 

and therefore has been interpreted as a wave, called “the wave function.” The equation 

that governs its temporal evolution is the famous Schrödinger equation.  

Does this constitute a shift in paradigm? It seems so: we have new world-view 

according to which the quantum world is made of classically incomprehensible objects, 

and they do not compose the macroscopic objects in the classical way. To be more 

precise, in Bohr's proposal the classical macroscopic world is postulated to exist in 

addition to the mysterious quantum world. That is, macroscopic objects obey the law 

of classical physics, which needs to be postulated in addition to quantum physics that 

governs the behavior of quantum objects.  

Many physicists embraced Bohr's paradigm, presumably because they believed 

that there was not much of a choice. Others instead were not so enthusiast, since this 

theory is not easy to swallow: even if one passes over the idea of giving up to classical 

concepts, there is an intrinsic vagueness in the way in which it is defined. In fact, the 

theory establishes that macroscopic objects obey classical mechanics, but it does not 

specify what counts as a macroscopic object. In other words, where is the boundary 

between the quantum and the classical world? To make things worse, this proposal just 

amounts to give up the possibility of accounting for the whole world (macro and 

micro) with a unique physical theory, and this is extremely unappealing. Because of 

these reasons, a good portion of physicists ended up with some sort of anti-realist 

position because they took Bohr's proposal as a reductio for scientific realism in the 
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quantum framework. They endorsed the so-called “shut up and calculate” attitude: if 

reality is so weird, let's forget about it, and let us stick with what we do best, namely 

compute the theoretical outcomes of experiments and check whether they come out 

correctly. 

Another group of physicists instead was not so eager to accept antirealism or 

Bohr’s view without a fight. Louis de Broglie thought of using the wave function to 

account for the perplexing behavior of the so-thought particles in the two-slit 

experiment [de Broglie 1927]. He proposed to associate such wave to each particle as a 

“guiding field:” each particle is “carried along” the wave, just like a small ship is 

carried along the current of the ocean. This is the reason his proposal is often called 

“the pilot-wave theory.” In this way, in situations like the two-slit experiment, particles 

seem to behave like waves not because they are neither particles nor waves, but because 

there are both (regular) particles and (regular) waves that interact so to produce the 

experimental outcome. As promising as it sounded, de Brogie's idea was soon 

abandoned (presumably too quickly, as we will see later) on the basis of some criticism 

by Wolfgang Pauli at the 1927 Solvay Congress where de Broglie presented his theory: 

he complained that de Broglie's theory was unable to provide a consistent account of a 

system composed by multiple particles [Pauli 1927].  

To complicate things further, some other results, like the Heisenberg uncertainty 

principle [Heisenberg 1927], were taken to show that, if quantum mechanics can still be 

taken realistically as describing an objective quantum world, it had to be about the 

wave function, and not about particles. In fact the uncertainty principle, which literally 

says that we cannot ever know simultaneously the position and velocity of a particle 

with absolute certainty, has been taken to signify (quite radically) that if there are 

particles then they do not possess definite properties, such as positions and velocity; 

they only acquire one of them after an experiment is made. This seemed absurd, and so 

people concluded that there are no particles, no points in three-dimensional space that 

follow in time a given path. If there cannot be particles, physicists with a realist 

inclination concluded that, if anything, they had to look at the wave function for a 

candidate to represents physical reality.  

Unfortunately, the attempt to interpret quantum mechanics realistically as a theory 

about the wave function seemed to fail as well! In fact, when Erwin Schrödinger tried 

to do so, he discovered the so-called “measurement problem” [Schrödinger 1935]: if the 

wave function completely describes physical systems, and it evolves according to the 

Schrödinger equation, then macroscopic superpositions, such as the superposition of a 

cat that is both dead and not dead at the same time, are produced. This shows that 
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there is something wrong in the analysis: we never observe macroscopic objects having 

contradictory properties. But which assumption is to blame?  

These macroscopic superpositions are bad. Note that Bohr did not have them 

because in his view the macroscopic world is classical and the quantum superpositions 

are just on the microscopic level, which we already know to be counterintuitive. Some 

of those who, against Bohr, tried to apply quantum mechanics to everything, and to 

interpret it realistically, proposed to get rid of the macroscopic superpositions by 

appealing to the notion of “observer.” Roughly put, the reason why macroscopic 

superpositions are never observed is that the observer plays an active role in the 

theory: it is her act of observing that “collapses” the wave function into one of the 

terms of the superposition. But what exactly does that mean? Eugene Wigner proposed 

that it is the consciousness of the observer that produces the collapse [Wigner 1967]. In 

this way, a non-physical entity like consciousness determines what physical entities do. 

John von Neumann instead proposed that Schrödinger's equation does not universally 

apply. When a measurement is performed, a new law of temporal evolution of the 

wave function supersedes the Schrödinger equation. This new law causes a random 

collapse of the wave function into one of the terms of the superposition [von Neumann 

1932]. In this way a microscopic quantum object is determined to evolve either 

deterministically (according to Schrödinger's equation) or randomly (governed by the 

collapse postulate) depending on a macroscopic phenomenon like the performance of a 

measurement. Interestingly enough, neither Wigner nor von Neumann commit 

themselves to say what constitutes the quantum world. Therefore it is unclear whether 

or not we can think of their paradigm as a realist attempt to make sense of quantum 

mechanics. Be that as it may, we can turn their approach into a realist one as follows: 

assume the entities populating the quantum world are the ones described by Bohr; the 

classical world emerges from the quantum world because either consciousness or the 

act of observation kicks in. Neither of these two approaches is close to the previously 

accepted paradigm of classical mechanics: while classically the world is made of 

microscopic particles that compose macroscopic objects and determine their properties, 

here we have almost the opposite. In fact in the approaches of Wigner and von 

Neumann, even if some sort of compositionality is assumed to hold, reduction seems 

to fail. In other words, even if we assume that in these approaches macroscopic objects 

are composed of microscopic quantum stuff, macroscopic properties are determined 

not in terms of the microscopic entities but rather either by a macroscopic entity (the 

act of measurement, in von Neumann's picture), or by a non-physical entity (the 

observer’s consciousness in the case of Wigner's approach).  
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There are many reasons to consider this kind of approach as unsatisfactory: the 

unfortunate reference to the observer or the process of measurement in the 

fundamental formalization of the theory makes it hopelessly vague; the appeal to 

consciousness is equivalent to the rejection of the completeness of physics. 

Nevertheless, the common understanding was that the situation did not leave many 

escapes: the classical paradigm in terms of stuff in three-dimensional space moving in 

time was not applicable any longer. So, no matter how much one dislikes them, they 

were believed to be, together with Bohr's proposal, the only options. They constitute 

what we can dub the early quantum paradigms. 

To summarize: there is no single quantum paradigm, there are many of them. All 

of these paradigms are radically different from the classical one, so that PS_cq seems to 

be true. In fact, all three elements in the paradigm, the world-view, the methodology 

and the concepts used, change substantially. In addition, the historical discussion 

seems to suggest that the necessity thesis NPS_cq is quite plausible: as we saw, it was 

taken to be impossible to use the classical concepts in the quantum domain.  

In the next section, I present another kind of quantum paradigm. This will not 

undermine PS_cq since it will still require a radical departure from the classical world-

view. But the change will be less substantial in a certain respect: even if the world-view 

and the methodologies will be radically different from the classical paradigm, the new 

quantum paradigm presented in section 5 will not need a new set of concepts. In this 

way, the necessity thesis will arguably start to lose plausibility. Be that as it may, it will 

be only in section 6 that we will see counterexamples to NPS_cq: explicit examples of 

satisfactory quantum paradigms in which concepts, world-views and methodologies 

will all be closer to the classical paradigm than we thought possible.  

5. The New Quantum Paradigm  

The early quantum paradigms did not remain the only ones on the market for long. 

Eventually in the 1950s less problematical solutions of the measurement problem were 

proposed. Let us see where they come from starting from Albert Einstein. He 

notoriously disliked quantum mechanics and proposed an argument to show that its 

current formulation was incomplete and should be supplemented by “hidden 

variables” [Einstein Podolsky and Rosen 1935]. Later, though, John Bell proved that 

one of the assumptions in Einstein's argument had to be refuted in the light of some 

new experiments [Bell 1964], [Aspect et al. 1981]. This assumption is locality: roughly 

the idea that what happens in a give region of space does not affect what happens in 
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another distant region.  

Even if Einstein's proof failed, the idea that quantum mechanics might be 

incomplete remained in the air. For example David Bohm, presumably with this idea in 

mind, revised and updated de Brogie's particle-wave theory to respond to Pauli's 

objection, and showed that his theory also solves the measurement problem [Bohm 

1952]. In Bohm's theory the description of any physical system is provided by the wave 

function supplemented by “hidden variables,” the particles' positions. As in text-book 

quantum mechanics, the wave function evolves according to Schrödinger's equation, 

while the particles evolve according to the so-called “guidance equation.” The 

symmetry among the various terms of the superpositions (dead and alive cat) is broken 

by the presence of the particle trajectories, and the measurement problem is solved: the 

cat is dead if the trajectories of the particles composing the cat fall in the support of the 

dead-cat wave function; she is alive if they fall in the support of the alive-cat wave 

function.  

However this theory had an unfortunate fate, arguably because a theorem proved 

by von Neumann, the first of a series of so-called “no go theorems,” was taken to prove 

that hidden variables are impossible [von Neumann 1932]. This conviction was 

reinforced by a certain (mis)understanding of Bell's inequality and Aspect's results, 

which were also taken to show the impossibility of deterministic completions of 

quantum theory. As a result, Bohm's theory was dismissed for a very long time: people 

believed that there was something wrong with it, even if it was not clear what. Only 

fairly recently it was finally appreciated that such interpretation of Bell's inequality and 

the no-go theorems is mistaken: as we have already seen, Bell's proof together with 

Aspect's results shows that reality is nonlocal, and the no-go theorems are based on 

unrealistic and restricted assumptions (for more on this, see e.g. [Bell 1964], [Cushing 

1994]). Therefore, there is nothing fundamentally mistaken about deterministic 

completions of quantum mechanics, like Bohm's theory. Still, only few scholars took 

Bohm's theory seriously, and some of them developed a better formulation of it that 

now goes under the name of Bohmian mechanics (see [Goldstein 2001] for a review). 

If this is correct, then it is still possible for the quantum world to be described as 

made of particles following trajectories in three-dimensional space. Nonetheless, even 

if a particle ontology was now viable, people still insisted on the wave function as the 

ontology of the quantum world. Presumably, this was due to the fact that in addition to 

Bohm's theory there are other solutions of the measurement problem, and they all 

involve the wave function in a fundamental way. Indeed, they all seem to be focused 

either on eliminating the macroscopic superpositions of the wave function, or on 
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somehow accepting them. Bell's famous summary on how to solve the measurement 

problem “either the wave function, as given by the Schrödinger equation, is not 

everything or it is not right” [Bell 1987] confirms this attitude: Bohm's theory aims to 

eliminate superpositions denying the completeness of the description provided by the 

wave function, and the other solutions, as we will see, will either deny that the 

temporal evolution of the wave function is given by Schrödinger's equation (so 

eliminating the superpositions), or they will embrace superpositions entirely. This 

emphasis on superpositions is clearly suggestive that it is the wave function that was 

considered as representing matter when talking about the quantum world. Before 

continuing with this, let me clarify that the solutions of the measurement problem 

often are called “interpretations of quantum mechanics,” suggesting that they provide 

an interpretation of the mathematical formalism used in the theory. As the case of 

Bohm's theory already has shown, they are much more than that: they are quantum 

theories, which provide different world-views, alternative to one another and to the ones 

we saw in the previous section. Exactly what kind of world-view they propose is what 

ultimately is at stake here, as we will see in the following section. For now let us 

quickly review the most promising solutions of the measurement problem, which are 

alternatives to Bohmian mechanics.  

One possible response to the measurement problem can be seen as a way of 

making precise von Neumann's collapse postulate. In von Neumann's proposal the 

wave function collapses into one of the terms of the superpositions when a 

measurement is performed. As we saw this is problematical, since it is unclear what 

constitutes a measurement. Physicists GianCarlo Ghirardi, Alberto Rimini and Tulio 

Weber kept von Neumann's spirit that Schrodinger’s’ evolution gets interrupted by 

random collapses, but they made the idea precise rendering it a matter of natural law 

rather than the influence of a measurement [Ghirardi Rimini and Weber 1986]. In other 

words, the wave function evolves according to an equation which is essentially a 

“random” modification of Schrödinger's equation. This equation is such that the 

evolution is almost always the one of Schrödinger (and therefore creates 

superpositions), except at certain random times in which the wave function undergoes 

a spontaneous collapse into one of the terms of the superposition. This theory - called 

GRW theory, from the names of their proponents, or “spontaneous collapse theory” - is 

constructed in such a way that, in the case of macroscopic objects, the collapse happens 

almost immediately after the superposition formation. In this way, if macroscopic 

superpositions form, they disappear very quickly, explaining why they are never 

observed (for a review of the GRW theory, see [Ghirardi 2002]).  
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Finally, Hugh Everett developed the so called “many-worlds” theory. According to 

this theory the world is completely described by the wave function, evolving according 

to Schrödinger equation. As we know, this gives rise to macroscopic superpositions, 

but they are “taken care of” interpreting them as belonging to different worlds. In this 

way everything that can happen (all superposition terms), will happen, but in a 

different world [Everett 1957]. There are different takes on what constitutes in this 

theory a “world,“ but the point is that they are inaccessible to one another: so when a 

superposition forms, there is a formation of a different world for every different 

possible term of the superposition, and each of them can no longer interact with the 

others. In this way, contrarily to Bohmian mechanics and GRW theory, Everett's many 

worlds theory does not require any fundamental change of the mathematical 

formalism of ordinary quantum theory. It just requires a very complicated metaphysics 

of worlds (for a review of Everett's theory, see, among others, [Barrett 1998], [Vaidman 

2002], [Wallace 2002]).  

Note that all these theories, with the exception of GRW, are empirically equivalent 

to the early quantum theories: no experiment, in principle or in practice, can 

distinguish them. The GRW theory instead can give rise to different predictions, but it 

is currently well beyond our experimental capacities to detect these deviations.  

The three examples presented above show how it is possible to provide realist 

interpretations of the quantum formalism that do not rely on the notion of the 

observer, and that do not presuppose the existence of two irreducible worlds. For this 

reason these theories have been called “quantum theories without observers” [Popper 

1967]. What is interesting about them is that they do not require any fundamental 

change in the concepts to describe the quantum world. It will turn out though, that 

they still require a substantial change of the classical paradigm. To see why it is the 

case, let us analyze what pictures of the world these theories provide. As anticipated, 

all these theories were naturally taken to be theories about the wave function: the wave 

function mathematically represents a real, physical field that constitutes physical 

objects. For this reason we can talk about “wave function ontology” [Monton 2002]. 

Examples of this attitude can be found in [Albert 1996], [Lewis 2006], [Wallace 2003].  

The strongest argument for such a view is an argument by analogy. If in a physical 

theory there is a fundamental equation for the evolution of a given mathematical 

object, generally we think we are justified to take this object to represent matter. 

Consider for instance the mathematics of classical mechanics. The fundamental 

equation of this theory is Newton's equation: it a differential equation that describes 

the temporal evolution of a given mathematical object, a point in three-dimensional 
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space. Since it is natural to interpret it as describing a point-like particle, we conclude 

that classical mechanics is a theory about the behavior of point-like particles, which 

constitute what exists in the world according to the theory. By analogy, when we do the 

same in the quantum framework, we obtain that the world is made of wave function. 

In fact, let us follow these steps for all the solutions of the measurement problem that 

we discussed:  

1) identify the fundamental evolution equation;  

2) identify what this equation defines the evolution of; and then  

3) interpret this as representing what the world is made of. 

In the many-worlds theory the fundamental equation is Schrödinger's equation, and it 

describes the temporal evolution of the wave function. So, for the same reasons we 

took the classical world to be made of particles, it seems natural to take the wave 

function to represent physical objects. Quite similarly in GRW theory the fundamental 

equation, even if it is some complicated alteration of Schrödinger's equation, 

determines the temporal evolution of the wave function. In Bohmian mechanics the 

situation is a little more complicated because there are two evolutions equations: one 

for point-like particles and another for the wave function. Be that as it may, the wave 

function is still part of the ontology. The conclusion is therefore that, no matter which 

quantum theory without observer one considers, the wave function is the natural 

candidate for the ontology of the quantum world.  

A consequence of considering the wave function as the fundamental constituent of 

the world is that physical space, the space in which these constituents live, is very 

different from what we classically thought. That is, since in classical mechanics the 

microscopic constituents of the world are point-like particles that live in three-

dimensional space and that evolve in time, physical space is three-dimensional space: 

the same in which the particles move. If instead the world is made of wave functions, 

physical space is the space on which the wave function is defined: this space is called 

“configuration space.” Historically, configuration space has been introduced in 

classical mechanics for mathematical purposes. It is constructed from three-

dimensional space: if there are N point-like particles, each with position ri in three-

dimensional space ℝ3, then configuration space is defined as the space of the positions 

of all particles. That is, an element q of configuration space is given by q=(r1,r2,...,rN). As 

a consequence, if there are N particles in the universe, configuration space has 

dimension M=3N. Observe that if one maintains that physical bodies are represented 

by the wave function, then literally there are no particles, and therefore there is no real 

reason to call such space “configuration space.” The proponents of this view realize 
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that, but the name stick nonetheless. So, since the proposal is to take the wave function 

to represent physical objects, it seems natural to take configuration space as the “true” 

physical space. 

If this reading of quantum theories is correct, then even if there are no irreducible 

worlds, there are no observers in the fundamental formalism of the theory, and we do 

not need to fundamentally change our concepts to describe the quantum world, we 

nonetheless have a substantial paradigm shift: we move from the classical, common-

sensical view that there are microscopic objects in regular three-dimensional space 

(particles and/or fields) that compose macroscopic familiar objects, to the quantum 

view in which we all live together in configuration space, and we cannot use the 

classical rules of compositionality and reduction any longer. As a consequence, we 

need to develop new methods: if physical space is configuration space, this is where 

physical objects are. Clearly, this seems to be false: it seems obvious to us that we live 

in three-dimensions. Therefore, a proponent of the wave function ontology will have to 

provide an account of why it seems as if we live in three-dimensional space even though 

we do not. Similarly, one would need to explain how to “recover the appearances” of 

macroscopic objects in terms of the wave function. This is something that the 

proponents of such view are working on, and the current proposals are based on the 

addition of a number of supevenience rules. They are supposed to specify how to 

translate the language of the scientific image, given in terms of the wave function, into 

the macroscopic language of the manifest image, in which we talk, for instance, of 

particles being localized in space. Here is how the translation is supposed to go: we say 

that a particle of position x is in region R if and only if the proportion of the total 

square amplitude of x's wave function which is associated with points in R is greater 

than or equal to 1-p (where the parameter p is a conventional matter) [Albert and 

Loewer 1996].  

Be that as it may, regardless of whether this approach is successful and 

satisfactory, the wave function ontology framework constitutes the new quantum 

paradigm. Even if the early quantum paradigms (Bohr, Wigner and von Neumann) 

were substituted by the new quantum paradigm we just saw, the shift from the 

classical paradigm is still substantial: the wave function lives on configuration space, 

and the classical explanatory scheme based on a microscopic ontology, classical 

compositionality and reductionism has to be drastically revised. In the next section we 

will see that there are other quantum paradigms which do not involve any radical 

change. They therefore provide a counterexample to the necessity thesis NPS_cq that 

the quantum world has to be described by a paradigm that involves a substantial 
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change to the classical paradigm.  

6. “Classical“ Quantum Paradigms  

Recently it has been recognized that we do not have to interpret quantum theories as 

theories of the wave function. And since the shift from the classical to the new 

quantum paradigm arises from taking the wave function as describing physical objects, 

if we do not do that then we can avoid a radical change in paradigm altogether. 

Various proposals have been made of quantum theories in which the wave function is 

not representing material objects but, as in classical theories, the world is described by 

trajectories of microscopic stuff in space-time that compose macroscopic objects. In this 

way we can develop a new but clear explanatory scheme, on the lines of the classical 

one, to account for the macroscopic world in terms of its microscopic constituents. If 

we take this route, there is no quantum revolution, or at least not the one advertised so 

far. In this section I describe how these proposals are supposed to work.  

To understand where they come from, let us go back to Bohmian mechanics: as we 

saw, one could think of it as a theory about both particles and the wave function. After 

all, it is argued, in Bohmian mechanics we have two fundamental equations, one for 

the wave function and one for the particles, and they both describe what there is. But 

arguably Bohmian mechanics is a theory just of particles, whose temporal evolution is 

governed by a Schrödinger evolving wave function. In other words, one can think of 

this theory so that the wave function does not describe matter: points in three-

dimensional space do. Rather, the wave function helps to describe the way in which 

matter moves. In this way, we can think of the wave function as representing a law for 

the evolution of matter [Goldstein and Teufel 2001] or perhaps a property of matter 

[Monton 2002], and not matter itself. With this understanding of the role of the wave 

function in Bohmian mechanics, then one can look to the other quantum theories 

without observers and see whether we can think of the wave function in this way also 

in their context.  

In GRW theory we have just the wave function, which evolves according to the 

Schrödinger evolution interrupted by random collapses. So it seems that this approach 

is not applicable: what can describe matter other than the wave function? Nonetheless, 

two distinct theories in which the wave function evolves according the same equation 

as the one in GRW (the modified Schrödinger evolution) have been proposed, and they 

are such that physical objects are not represented by the wave function. The first one 

was originally developed by Ghirardi and collaborators in [Benatti Ghirardi Grassi 
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1995], and the second one by Bell in [Bell 1987]. The first theory, dubbed “GRWm,” is a 

theory in which, matter is described by a field in three-dimensional space, contrarily to 

the understanding of GRW presented in the previous section in which matter was 

described by the wave function. This field is defined in terms of the wave function, and 

represents the matter density of physical systems. The second theory, dubbed “GRWf,” 

is a theory directly formulated in space-time: certain points in space-time are “full,” 

and others are “empty,” and the full ones are the ones in which matter is. These “full” 

points in space-time are called “flashes” because they are discontinuous, contrarily to 

what one is used to. In fact in classical mechanics matter is made of particles, which 

have continuous trajectories in space-time determined by Newton's equation: one can 

draw them without removing the pen from the paper. In contrast, in GRWf there are 

no continuous trajectories of matter. Rather we have just random “full” points that pop 

in and out of existence, and appear here now and there later. The reason why nobody 

notices is that everyone is made of flashes as well as everything else, and everyone 

goes in and out of existence along with the flashes. The rate of these flashes is 

determined by the wave function in terms of a well-defined equation. So, in both 

GRWm and GRWf the evolution of matter (the matter density field and the flashes, 

respectively) is determined by the wave function, which in turns evolves according to 

the modified GRW dynamics. In this way, we can think of the wave function in the 

same way as we did in Bohmian mechanics: not as representing matter but as a law or 

as a property of matter.  

What about the many-worlds theory? [Allori et al. 2011] have argued that 

Schrödinger’s original proposal that gave rise to the measurement problem was 

actually a many-worlds theory of this kind. In this theory, which they dubbed “Sm,” 

matter is represented by a field in three-dimensional space that depends on the wave 

function, as in GRWm. In contrast to it, though, the wave function evolves according to 

Schrödinger's equation like in Bohmian mechanics. Contrarily to GRWm, where the 

matter field does not produce macroscopic superposition because the GRW evolution 

of the wave function quickly dumps all but one of the terms of the superposition, in Sm 

there are macroscopic superpositions, just like in many-worlds theories:  in fact, since 

the wave function evolves according to Schrödinger's equation, it develops 

macroscopic superpositions, and these superpositions are inherited by the matter field. 

That is, Sm can be properly understood as a many-worlds theory, and the 

superpositions interpreted as belonging to different worlds. In this way, also in the case 

of many-worlds theories, matter is not necessarily described by the wave function, but 

by the matter field in three-dimensional space, and the wave function can be, again, 
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taken as a law or as a property of matter. A non-exhaustive list of other possible 

quantum paradigms in which the wave function is not taken to represent physical 

objects can be found in [Allori et al. 2008]. To use another terminology the particles in 

Bohmian mechanics, the mass density in GRWm and Sm, and the flashes in GRW are 

the primitive ontology of the theory.  

Notice that in this framework quantum theories have the same structure as 

classical theories: there is microscopic stuff in ordinary three-dimensional space that 

moves in time (except for GRWf in which the formulation is directly in space-time), 

and this microscopic stuff combines together to form the familiar macroscopic objects 

of our experience. Because of this, also in these theories we should be able to recover, at 

least in principle, all the macroscopic properties of physical objects using an 

explanatory scheme derived along the lines of the classical one using classical 

compositionality and reductionism, or some variants of it. There is no radical paradigm 

shift at all if one adopts one of these “classical” quantum paradigms. 

Let me add some clarifications. First, one should not think that I am arguing that 

there are no important changes in going from a classical to a quantum description of 

the world: after all, quantum physics is not classical physics, so clearly there are some 

changes, and some are more important than others. Among the important ones there is 

nonlocality: as we saw, Bell's theorem has shown that the classical assumption of 

locality is false. But this does not mean that there was a paradigm shift, since this 

important change followed from a change in the laws of nature, and not in the world-

view. In fact particles and fields in three-dimensional space are still around in these 

“classical” quantum paradigms, even if now they interact in ways that classically we 

thought were impossible.  

Secondly, one could think that in the case of GRWf there is a fundamental change 

with respect to the classical paradigm: after all, these flashes are in space-time, they are 

discrete, discontinuous and random, and most of space-time is empty. It is unclear, 

though, whether or not this change is truly radical in the sense we are discussing here: 

while it is true that the world-view has changed, one could argue that these flashes are 

so small that we can proceed with our methodologies to determine macroscopic objects 

and properties as if there were no discrete flashes. Be that as it may, some work on 

deriving macroscopic properties from the quantum microscopic constituents has been 

accomplished, but more needs to be done, especially in the GRW framework. An 

antireductionist, again, would object to the whole project, but the point here is that 

within these quantum paradigms the reductionist is not worse off than within the 

classical framework. That is, whatever can be raised against reductionism in classical 
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mechanics, in principle could also be raised here. But there seems to be no additional 

problem for reductionism due to just the fact that we are in the quantum framework.  

Lastly, moving from classical to quantum mechanics, the dynamics governing 

matter changes. I do not regard this as a radical change in paradigm because this does 

not change any of its ingredients, even if perhaps a (strong) realist with respect to laws 

of nature would disagree.  

7. Conclusion  

To summarize and conclude:  

1. When one refers to “quantum mechanics” she is not referring to a single theory. 

Rather, there are multiple ways to understand the quantum formalism, and 

they give rise to different quantum paradigms. Each of the quantum paradigms 

is substantially different from the classical one so that there is some sort of 

substantial paradigm shift going from classical to quantum physics.  

2. The above needs a qualification: the radical paradigm shift necessary adopting 

the early quantum paradigms is different from the (less radical even if still 

substantial) paradigm shift using the new quantum paradigm; 

3. Recently, new insights have shown that none of the above mentioned shift in 

paradigm is necessary: there are other “classical” quantum paradigms which do 

not involve a substantial paradigm shift. Therefore, whether or not there is a 

quantum revolution, embodied in a radical paradigm shift as PS_cq describe, is 

a matter of which quantum paradigm one decides to endorse: the early and the 

new quantum paradigm will make PS_cq true, but the “classical” paradigm will 

not. It is beyond the scope of this paper to assess which choice one should 

make. The point is that, contrarily to what is claimed, NPS_cq is false: it is 

possible to describe the quantum world within a paradigm that is not so 

radically different from the classical one, so that there is no necessity in having 

a quantum revolution.  
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