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1 Introduction

It is a prima facie reasonable assumption that if a physical quantity is mea-
surable, then it corresponds to a genuine physical property of the measured
system. You can measure a person�s mass because human beings have such
a property. You can measure the average mass of a group of people because
groups of people have such a collective property. And so on.
Now it would be truly surprising� miraculous, perhaps� if you could de-

termine the average mass of a group of people by making measurements on
just one of them. To ascribe such a statistical property to an individual
looks like a category mistake. At �rst glance, protective measurements seem
to pull o¤ just such a miracle, determining for example the expectation value
of position for an ensemble of particles via a measurement performed on one
of them. The lesson we are supposed to draw, of course, is that expecta-
tion values are not statistical properties at all, despite their name. Rather
than being an average over an ensemble of systems, the expectation value
of position for a particle is a physical property of the individual system,
and the wave function, as the bearer of these properties, is a physical entity
(Aharonov, Anandan and Vaidman, 1993).
The protective measurement procedure has been challenged (U¢ nk, 1999;

Gao, 2013; U¢ nk, 2013), but for present purposes I will assume that protec-
tive measurements exist, at least in principle, that are capable of revealing
�statistical�properties like expectation values in a single measurement. My
aim here is not to challenge the existence of such a physical procedure, but
rather to explore the arguments that connect the existence of protective mea-
surements with conclusions concerning the nature of physical reality. What
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protective measurements are supposed to show is that �epistemological�in-
terpretations of the quantum state are untenable� that the wave function of
a system must instead be interpreted �ontologically� (Aharonov, Anandan
and Vaidman, 1993: 4617).
But what exactly are the epistemological and ontological interpretations

contrasted here? There are at least two distinct possibilities.1 First, the
epistemological interpretation could be identi�ed with an empiricist attitude
towards quantum mechanics in general� taking the theory as a recipe for
generating the probabilities of measurement results. Here the contrast is
with scienti�c realism, construed as the view that quantum mechanics is in
some sense a true description of the physical world. However, Dickson (1995)
has convincingly argued that protective measurement cannot decide between
empiricism and realism about quantum mechanics, since protective measure-
ment is entirely consistent with empiricism.2 Hence I set this construal of
the argument aside.
Second, the contrast between the epistemological and ontological inter-

pretations of the wave function could be construed within an overall scienti�c
realist attitude towards quantum mechanics in terms of the distinction be-
tween a statistical description and a categorical description of the physical
system in question. Under this construal, the ontological interpretation is
that the wave function is a description of the properties of a single physical
entity, whereas the epistemological interpretation is that the wave function
is a description of the distribution of properties over an ensemble of similar
physical systems.
Taken in this way, the argument in favor of the ontological interpretation

is more interesting. At �rst glance, though, it is still somewhat puzzling, since
the conclusion of the argument is already the standard position among realist
interpretations of quantum mechanics, prior to any consideration of protec-
tive measurement. No-go theorems (e.g. Bell, 1964; Kochen and Specker,
1967) are taken to show that it is impossible to interpret the wave function
as a statistical distribution of properties over an ensemble of similar systems.
Interference phenomena seem to show that elements of the wave function

1Aharonov, Anandan and Vaidman take the target of their argument to be the position
that �the wave function represents at least partially our knowledge of the system�(1993:
4617), but this isn�t decisive between the two construals I outline here.

2Dickson does contend, though, that protective measurement puts realism and em-
piricism �back on an even footing�, since it counteracts the support for instrumentalism
provided by ordinary impulsive measurement (1995: 135).
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physically interact with each other, and hence that the wave function is
something like a physically real �eld. Indeed, all three of the major real-
ist research programs in the foundations of quantum mechanics� Bohmian,
Everettian and GRW� take the wave function to be a real dynamical entity.3

Perhaps the intention is just to put the last nail in the co¢ n of ensemble
interpretations. However, my goal here is to show that even though ensemble
interpretations face formidable (and well-known) obstacles, protective mea-
surements don�t lead to any additional di¢ culties. Rather, they provide us
with a nice illustration of a conclusion for which we had considerable indirect
evidence already, namely that quantum mechanics leads to a blurring of the
distinction between the intrinsic properties of a system and the statistical
properties of the ensemble of which it is a member. This conclusion goes for
all realist interpretations of the quantum state, both the mainstream ones
that take the wave function to be a real �eld and the more conjectural ones
that take the wave function to describe our knowledge of an ensemble.

2 Bohm�s theory

Although the usual target of arguments from protective measurement is en-
semble interpretations of the wave function, protective measurements have
also been used to argue against the tenability of Bohm�s theory (Aharonov,
Englert and Scully, 1999). The argument against Bohm�s theory begins from
a protective measurement that measures the wave function intensity in a
small region around x = 0 for a particle whose wave function is spread out
along the x axis. Wave function intensity, of course, is connected via the
Born rule to the statistical properties of the system; in this case, it tells us
the probability of �nding the particle close to x = 0 if we measure its position
using a standard impulsive measurement. The fact that the wave function
intensity itself can be directly measured seems to show that the wave function
intensity is a physical property of the system.
By itself, this is no argument against Bohm�s theory, since Bohm�s theory

already takes the wave function intensity to be a real physical property of
the system; it is the wave function that pushes the particle around. Rather,
the argument concerns the physical details of the measurement interaction.
The protective measurement is e¤ected by a Hamiltonian that links the state

3However, it is worth noting that some Bohmians argue that the wave function is a
physical law rather than a physical entity (Dürr, Goldstein and Zanghì, 1996).
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of the measured particle with the state of a second particle that acts as a
pointer. In particular, the Hamiltonian contains a weak, long-lasting coupling
term in the region around x = 0 between the two particles. This interaction
induces a shift in the wave packet of the pointer particle proportional to the
wave function intensity of the measured particle in the x = 0 region.
What (supposedly) makes this interaction problematic for Bohm�s the-

ory is that the Bohmian particle con�guration for the system never passes
through the x = 0 region. The interaction Hamiltonian is such that the mea-
sured particle and the pointer particle only interact within the x = 0 region.
So the Bohmian particle con�guration for the system cannot represent the
actual particle motions during a protective measurement. Protective mea-
surements, so the argument goes, cannot be given a physically acceptable
Bohmian analysis.
I think this argument involves a misunderstanding of the role of particles

in the Bohmian theory. Bohmian particles are not dynamically active entities;
they do not act on each other or on the wave function. Their role is passive
and phenomenological; they are pushed around by the wave function and
correspond to the observed outcomes of our measurements. So the fact that
the particle con�guration does not pass through the x = 0 region is irrelevant
to the explanation of the dynamical behavior of the system, since the particles
are dynamically inert. All the action lies in the evolution of the wave function,
construed as a real �eld. The wave function surely exists (in part) in the x = 0
region, and the dynamical behavior of the wave function in this region, under
the in�uence of the Hamiltonian, explains the motion of the wave packet for
the pointer particle. The only role of the Bohmian particle con�guration is to
pick out one precise location in this wave packet as representing the observed
outcome of the measurement.4

The confusion arises, I suspect, because the Hamiltonian itself is derived
from an analogous interaction in classical mechanics, and in the classical case
the interaction really does occur between particles at x = 0. In classical me-
chanics, the particles are dynamically active� the locus of forces. Classically,
if the particles did not pass through the interaction region, the interaction
could not occur. The Bohmian particles take on the phenomenological role
of the classical particles; their con�guration corresponds to the observed out-

4Indeed, this minimal role for the particle con�guration has been exploited by
Everettians seeking to argue that the Bohmian particles are redundant (e.g. Brown and
Wallace, 2005).
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come of a measurement. But they do not take on the dynamical role of the
classical particles; that role is taken on by the wave function.
It is instructive to compare the protective measurement to standard two-

slit interference, in which the particle passes through one slit or the other and
the wave function passes through both slits. Suppose the Bohmian particle
passes through the left-hand slit. Its trajectory is a¤ected by whether or not
the right-hand slit is open, even though the particle doesn�t pass through the
right-hand slit. One might try to parlay this into an objection to Bohm�s
theory� how could the particle be a¤ected by the state of a slit it doesn�t go
near?� but clearly this would be unfair to the theory. The particle trajectory
is not intended to be a dynamical explanation, as it is in classical mechanics.
This is not to say that Bohm�s theory is unproblematic. In systems with

more than one particle, the motion of one particle depends on the location of
all the other particles, no matter how distant. This makes it hard to square
Bohm�s theory with special relativity, since the location of distant particles
right now is unde�ned in special relativity. This problem certainly arises in
protective measurements, since they involve more than one particle, but it is
hardly a special problem for protective measurements, and it was well-known
before protective measurements were postulated (e.g. Bell 1971).

3 Contextual properties

So Bohm�s theory su¤ers from no special problem explaining protective mea-
surements, but only generic problems of an explicitly non-local theory. And
Bohm�s theory is particularly useful in making explicit the distinction be-
tween contextual and non-contextual properties of quantum systems. Since
this distinction will be important later, it is worth considering in detail how
contextual properties arise in Bohm�s theory.
A contextual property is one whose value depends on the context in which

it is measured. The x-spin of a particle prepared in an eigenstate of z-spin
provides a simple example of a contextual property in Bohm�s theory.5 Sup-
pose the x-spin of the particle is measured using a Stern-Gerlach device; if the
particle is spin-up it is de�ected upwards, and if it is spin-down it is de�ected
downwards. Since Bohm�s theory is a deterministic theory, the possible tra-
jectories of the Bohmian particles cannot cross in con�guration space (as
an intersection between trajectories would amount to indeterminism). In a

5My exposition here follows Albert (1992).
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single-particle experiment like that envisioned here, the con�guration space
is just ordinary three-space. This means that if the particle starts out in the
upper half of the wave packet, it is de�ected upwards, and if it starts out in
the lower half it is de�ected downwards (because otherwise the trajectories
would cross). So (one might think), spin-up particles are just those that are
located in the upper half of the wave packet.
But now suppose we rotate the Stern-Gerlach device by 180 � around the

paths of the particles, so that spin-down particles are de�ected upwards and
spin-up particles are de�ected downwards. Consider again a particle that
starts out in the upper half of the wave packet; by the same argument as
before, it must be de�ected upwards. But now this particle is recorded as a
spin-down particle. That is, a particle that starts out in the upper half of
the wave packet will manifest itself as a spin-up particle if the Stern-Gerlach
device is one way up, but a spin-down particle if the device it the other way
up. The spin of the particle depends on the context in which it is measured.
This way of putting things makes it sound like spin in Bohm�s theory

is a property of particles, albeit of a peculiar kind. But this is somewhat
misleading. In fact, rather than saying that spin is a (contextual) property
of the measured system, it is more accurate to say that the measured system
doesn�t really have a spin property� that nothing in its pre-measurement
state corresponds to the observed spin value. After all, the orientation of the
Stern-Gerlach device can�t a¤ect the earlier state of the measured system, so
prior to the measurement there can be no fact of the matter about whether
the system has the spin-up property or the spin-down property. However,
contextuality doesn�t arise for a particle residing in a wave packet that is an
eigenstate of x-spin. In such a case, the entire wave packet is de�ected up
(say), taking the particle with it, and if the Stern-Gerlach device is rotated,
the entire wave packet is de�ected down, again taking the particle with it.
Here it does seem appropriate to ascribe a spin property to the system. And
presumably the bearer of this spin property is the wave function, since as
noted above, the particles are causally inert in Bohm�s theory. So all in
all, it seems that spin is a property that the wave function possesses in
Bohm�s theory, but only when the wave function takes certain forms (the
spin eigenstates).
Similar considerations apply to the protective measurement described in

the previous section. In this measurement, the wave packet of the measured
particle is con�ned within a box centered on x = 0 in the ground state
(Aharonov, Englert and Scully, 1999: 138). The protective measurement
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e¤ectively measures an observable for which this state is an eigenstate whose
eigenvalue is the wave intensity around x = 0 (U¢ nk 1999: 3479). The
measurement outcome is recorded in the position of the pointer particle,
which let us suppose moves along its y-axis.
But now suppose that the wave packet of the measured particle is initially

a superposition of the ground state and the �rst excited state. This wave
packet is not an eigenstate of the observable measured by the protective
measurement; the ground state has large wave intensity around x = 0, but
the �rst excited state has small wave intensity here. (For this reason the
measurement would not count as protective, since it disturbs the measured
system.) Hence the the pointer particle ends up in a superposition of two
distinct positions; its wave function has signi�cant intensity in two distinct
regions, close to y = 0 and far from y = 0. If the pointer wave function is
initially concentrated close to y = 0, then the wave function splits into two
packets, one of which moves up and the other of which stays put. Consider the
motion of Bohmian particles in this case. Since Bohmian trajectories cannot
cross, if the particle starts in the upper half of the initial wave packet it moves
up, and if it starts in the lower half it stays put.6 Now consider what happens
if the direction of the measurement Hamiltonian is reversed; the term in the
pointer superposition corresponding to the ground state moves down rather
than up, so particles that start in the lower half of the initial wave packet
move and those in the upper half stay put. For a given initial con�guration
of the Bohmian particles, then, whether the measurement indicates that the
wave intensity close to x = 0 is small or large depends on the orientation of
the measuring device.
So just like x-spin, the property measured by this protective measurement

is contextual according to Bohm�s theory. And again, since the state of
the measured system can�t depend on measurements that have yet to be
performed on it, to say that a property is contextual is tantamount to saying
that it doesn�t exist at all; the pre-measurement system lacks a property
corresponding to wave intensity at the origin. As before, this contextuality
doesn�t arise when the state of the measured particle is an eigenstate of the

6Matters are complicated slightly here by the fact that we are dealing with a two-
particle system inhabiting a six-dimensional con�guration space. Bohmian trajectories
cannot cross in this con�guration space. However, since the Bohmian trajectories are
practically stationary in the coordinates of the measured particle (Aharonov, Englert and
Scully, 1999: 144), this amounts to the condition that the trajectories do not cross in the
coordinates of the pointer particle.
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measured observable (so that the measurement is genuinely protective). In
that case, it is appropriate to ascribe a wave intensity property to the system,
where the bearer of the property is the wave function rather than the particle.
That is, the wave intensity measured by this protective measurement is a
property that the wave function sometimes possesses� a property that it
possesses when it is in the ground state, but does not possess when it is a
superposition of the ground and �rst excited states.
One might object to this conclusion on the grounds that the measure-

ment just described is not a protective measurement (as noted above), since
it disturbs the measured system. A genuine protective measurement is avail-
able that measures the wave intensity around the origin for the superposition
state; this requires a di¤erent Hamiltonian from to ensure that the measure-
ment is non-disturbing.7 On the basis of this genuine protective measure-
ment, one might reasonably infer that since the wave intensity can be mea-
sured in the superposition state, the wave function possesses a wave intensity
property for this state too. However, it is equally true that one can measure
the spin property of a particle in a superposition of distinct x-spin eigenstates
without disturbing its state. Suppose the particle is initially in a symmetric
superposition of x-spin eigenstates. Then one can measure the spin property
of this particle without disturbing it by rotating the Stern-Gerlach device by
90 �, since the symmetric superposition of x-spin eigenstates is an eigenstate
of spin along the z-axis. But of course, although the particle has a z-spin
property in this state, it does not have an x-spin property (and we know this
because an x-spin measurement on the z-spin eigenstate is contextual).
A similar thing can be said in the case of wave intensity measurements.

Although one can perform a non-disturbing measurement that returns a wave
intensity value for the superposition state, the corresponding property that
this state possesses cannot be the same as the property measured by the
original protective measurement on the ground state. Whatever property
the original protective measurement measures, the superposition of ground
and protective states lacks it, since the measurement on this state is contex-
tual. The superposition state has a related property, measured by the new

7It might be argued that the only di¤erence in the Hamiltonian between the two mea-
surements is the protective term that ensures that the measured state remains undis-
turbed. That is, the term in the Hamiltonian that de�nes the measured property remains
unchanged. But it would need to be shown that a principled distinction can be drawn
between these various parts of the Hamiltonian� one that does not beg the question by
assuming that the measured property remains the same.

8



protective measurement, one that perhaps has an equal claim to be called
�wave intensity�. Hence wave intensity, like spin, is best thought of as a
family of related properties, not a single property, and di¤erent protective
measurements measure di¤erent wave intensity properties.
The upshot of this argument is that although Bohmians typically take the

wave function to be a physical entity, its property structure is quite complex.
In particular, the intensity of the wave function around a particular point in
(con�guration) space is perfectly well-de�ned in the theory, but can generate
disparate measurement results depending on how it is measured, indicating
that it should not be viewed as a single possessed property of the system.
That is, although the wave function underlies the physical properties of a sys-
tem, in the sense that a di¤erence in physical properties requires a di¤erence
in the wave function, it does not follow that all the mathematical properties
of the wave function correspond to simple physical properties of the system.
The contextual nature of wave intensity in Bohm�s theory explored above
suggests that even though wave intensity can be measured via a protective
measurement, it should not be regarded as a simple physical property of the
system.

4 Ensemble interpretations

In the previous section I argued that we have to be careful in our inference
that the result of a protective measurement corresponds to a property of the
measured system. So far, though, nothing I have said challenges the ba-
sic argument that protective measurements show that the wave function is a
physical entity, and hence rule out ensemble interpretations of the wave func-
tion. Even though the wave intensity property can be contextual, there is no
contextuality when the state is an eigenstate of the protective measurement
operator. So the existence of protective measurements shows that there exist
measurements that reveal �statistical�properties like wave intensity, and re-
veal them with certainty without disturbing the measured system. Hence we
can turn Einstein�s criterion of reality against him. Einstein famously held
that �if, without in any way disturbing a system, we can predict with cer-
tainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of reality corresponding to that quantity�(Ein-
stein, Podolsky and Rosen 1935, 777). Since protective measurements allow
us to predict the values of wave function properties with certainty (and with-
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out disturbing the system), there must be elements of reality corresponding
to these properties, undermining Einstein�s own hope that the wave function
can be interpreted as a statistical description of an ensemble rather than a
physical entity.
As noted above, however, ensemble interpretations were apparently ruled

out by the no-go theorems long before the advent of protective measure-
ments. Still, there are those who continue to hold out hope. One prominent
strategy for evading the no-go theorems is to invoke retrocausality� the hy-
pothesis that causal in�uences can travel from later events to earlier events,
as well as in the usual fashion from earlier events to later events (Cramer,
1986; Kastner, 2013; Price, 1994; Price and Wharton, 2013; Sutherland,
2008; Wharton, 2010). How does this strategy fare against the challenge of
protective measurement?
It is important to note that contextuality is typically ubiquitous in retro-

causal theories. Since causal in�uences can travel from later measurement
events to earlier system preparation events, it is always possible for the initial
state of a system to re�ect the measurements that will later be performed on
it.8 Unlike the contextuality that emerges in Bohm�s theory, retrocausal con-
textuality can in principle even a¤ect systems in eigenstates of the measured
observable. For example, suppose that the state of a one-particle system is
prepared in the spin-up eigenstate of x-spin. Then if the x-spin of the system
will later be measured, the possessed properties of the system must corre-
spond to x-spin-up, in the sense that those possessed properties will bring
about the spin-up result with certainty. But if the x-spin of the particle will
not later be measured, this fact can a¤ect the earlier possessed properties of
the particle, so they might di¤er from those that correspond to x-spin-up.
Consider what this means for the protective measurement of wave in-

tensity discussed above. Like Bohm�s theory, retrocausal theories ascribe
determinate trajectories to a set of particles, but unlike Bohm�s theory, there
is no wave function steering the particles. So retrocausal theories cannot
avail themselves of the response to Aharonov, Englert and Scully I gave on
behalf of Bohm�s theory; since there is no wave function in a retrocausal
theory, the particles themselves must be the dynamically active entities. A
further disanalogy with Bohm�s theory is that we cannot rule out the possi-
bility of particle trajectories crossing in the retrocausal case; since we have as

8Indeed, this is precisely how retrocausal theories evade the no-go theorems (Price,
1994).
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yet no explicit dynamics for a retrocausal theory, we cannot know whether a
fully formulated retrocausal theory would be deterministic. But the crucial
disanalogy with Bohm�s theory is that any property can be contextual in a
retrocausal theory, even the position of a particle, and even if the quantum
state is an eigenstate of the observable to be measured.
Given this last point, it immediately follows that the property measured

by a protective measurement can be contextual according to a retrocausal
theory. That is, the possible particle trajectories can be sensitive to the kind
of measurement that will be performed on the system. If a protective mea-
surement is performed, this later fact can (in principle) cause the earlier
particle trajectories to all pass through the region around x = 0, and hence
de�ect the pointer particle via the interaction Hamiltonian. If on the other
hand a standard impulsive measurement is performed on the system, this
later fact can (in principle) cause the earlier particle trajectories to be statis-
tically distributed according to the wave function intensity, so that the wave
function can be interpreted epistemically. In the latter case, presumably only
a small proportion of the particle trajectories pass through the region around
x = 0. (The caveat �in principle�is a huge one here, of course, since nobody
has succeeded in explicitly constructing such a theory.)
What should we make of the ontological status of contextual properties in

retrocausal theories? In Bohm�s theory, I suggested that contextual proper-
ties are strictly speaking not properties of the system at all, since the state of
the system now cannot depend on the measurements that will be performed
on it later. But in a retrocausal theory, the state of the system now can
depend on the measurements that will be performed on it later, so there is
no barrier to contextual properties being genuine possessed properties of the
system. And since there is no wave function in a retrocausal theory, these
contextual properties have to be possessed properties of the particles in the
system.
There is something a little strange in this, perhaps: the �wave intensity�

property measured by the protective measurement is in fact the property of
a particle, not a wave. But it is surely no stranger than �particle�proper-
ties like spin turning out to be properties of the wave function in Bohm�s
theory, GRW and Everett. In GRW and Everett �particles�are really just
manifestations of the wave function; the wave function mimics particles un-
der certain circumstances. Even in Bohm�s theory, particle properties other
than position are carried by the wave function. Retrocausal theories mani-
fest the opposite e¤ect; particles sometimes mimic the properties we might

11



otherwise attribute to the wave function. The ontology underlying a partic-
ular measurement result depends on the theory used to explain that result;
it can�t be read o¤ the measurement itself.
One might object that the fact that the particles in retrocausal theories

have properties like �wave intensity�that can be measured using protective
measurements means that the wave function in e¤ect still exists, since wave-
like properties are still physically instantiated. But it is worth noting that
the contextuality of retrocausal theories means that only those �wave-like�
properties whose values will be determined by protective measurements on
the system are actually instantiated. A typical system subject only to im-
pulsive measurements will have no such properties. A system subject to the
above protective measurement will have a property corresponding to wave
intensity at the origin, but not (for example) to the expectation value of
position. In non-retrocausal theories like Bohm�s theory the state cannot
depend on which measurements will be performed on the system, and so all
possible wave function properties must be instantiated at once. Only in this
latter case must we postulate the wave function as a physical entity.
Of course, there are formidable obstacles to be faced by any ensemble in-

terpretation of the quantum state. While retrocausal theories have long been
proposed, nobody has yet succeeded at explicitly formulating the dynamics
for such a theory. Perhaps it will prove to be impossible. My point here is
only that protective measurements provide no new argument against ensem-
ble interpretations; any interpretation that can bypasses the no-go theorems
by appealing to contextual properties can thereby also evade the protective
measurement argument for the reality of the wave function.

5 Ensemble properties and individual prop-
erties: a blurring of the lines

Suppose an ensemble interpretation of quantum mechanics along the lines
given in the previous section is possible. Then protective measurements can
be explained without postulating a genuinely wave-like entity; the motion
of the particle can fully explain the result. But there is still an air of mys-
tery surrounding this account of protective measurement. The result of the
protective measurement lines up with a genuinely statistical property� the
proportion of particles one would �nd close to x = 0 were you to perform a se-
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ries of ordinary impulsive measurements on an ensemble of similarly-prepared
particles. What explains this agreement, if the protective measurement itself
just records the value of a possessed property of the particle? How can the
properties of a single particle re�ect the statistical properties of an ensemble
of particles?
What I wish to suggest is that this agreement is somewhat mysterious

for all the major realist traditions for interpreting quantum mechanics, so
there is nothing special about ensemble interpretations in this regard. The
Bohmian, Everettian and GRW programs also explain the result of the pro-
tective measurement in terms of a possessed property of the system, albeit
a property of the wave function. So these theories also face the problem of
how a possessed property of an individual system can re�ect the statistical
properties of an ensemble of similarly-prepared systems. Postulating an en-
tity that is spread out in con�guration space as the bearer of the property
does not solve the problem of how the actual wave-intensity property re�ects
the statistical properties of sets of unactualized impulsive measurements.
The mystery is deepest in Everettian quantum mechanics. There are no

particles in the Everettian theory, so the result of the protective measurement
described above is explained by a property of the wave function. What if
an ordinary impulsive measurement is performed on the same system? Then
the Schrödinger dynamics drives the wave function into a set of (practically)
non-interacting branches, one for each possible outcome. The wave intensity
of these branches matches the wave intensity of the corresponding elements of
the original measured state� so, for example, if an impulsive measurement is
performed to determine whether the particle is close to x = 0, the intensity of
the �yes�branch will be the same as the wave intensity of the measured state
close to x = 0. But now comes the tricky part: it needs to be established that
the intensity of a branch corresponds to its probability. There as a well-known
research program seeking to establish this (Deutsch, 1999; Wallace, 2012),
but it remains controversial. There is certainly no obvious explanatory link
between the intensity of a branch� which is a possessed property of a single
entity� and the frequency of a given outcome in an ensemble. If Deutsch-
Wallace program succeeds, it does so by uncovering a surprising explanatory
link here; if it does not succeed, it is because there is no such link at all.
Bohmian and GRW theories are built on the assumption that the Everettian

explanation fails, and both attempt to add such an explanation by modify-
ing quantum mechanics. The GRW collapse law is a stochastic law tailored
speci�cally to connect wave intensity with the probability of recording the
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associated result were an ordinary impulsive measurement to be performed
on the state. That is, the connection between the possessed properties of
the wave function and the statistical properties of impulsive measurements
is established by �at. Whether one �nds this genuinely explanatory proba-
bly depends on one�s general feelings about the explanatory status of brute
propensities (Dorato and Esfeld, 2010). Bohmian interpretations use much
the same strategy. The Bohmian dynamical law is formulated speci�cally
to ensure that the particle positions are always statistically distributed ac-
cording to wave function intensity, hence connecting wave function intensity
with the statistics of ordinary impulsive measurements in the required way.
Again, this connection is established by �at.
In this context, the explanation embodied by a putative ensemble inter-

pretation does not look so bad after all. The explanation for the agreement
between the result of the protective measurement and the statistical distribu-
tion of impulsive measurement results is that the retrocausal dynamics takes
all the particle trajectories through the x = 0 region in the protective case,
but distributes them so that only a small proportion of them pass through
this region in the impulsive case. Whether the dynamical law that accom-
plishes this shares the ad hoc �avor of the GRW and Bohmian dynamical
laws remains to be seen; as yet we have no such law. It is promising, I think,
that retrocausal theories are being developed based on the Feynman path
construction, in which a quantum system probes all possible paths between
two points (Wharton, Miller and Price, 2011). This makes it more plausible
that a substantive explanation might be found whereby the present state of
the system re�ects the statistical properties of future possibilities. But even
if no such explanation is forthcoming and the law establishes the link by �at,
it is in good company.
The main virtue of the literature on protective measurements, it seems

to me, is to bring to the fore the rather remarkable connection between en-
semble properties and individual properties in quantum mechanics. Prior to
quantum mechanics, one would have said that applying a statistical property
like an expectation value to an individual system is just a category mistake;
statistical properties only properly apply to ensembles of identically-prepared
systems. But the postulation of the wave function as a physical entity by
Everettian, Bohmian and GRW quantum mechanics means that statistical
properties like expectation values are re�ected in the actual properties of a
single system. Protective measurements do not provide a new argument for
this conclusion, but they make it manifest in a remarkably direct way.
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But the link between the existence of protective measurements and the
existence of the wave function as a physical entity should not be overstated.
Some property of the measured system must correspond to the result of the
protective measurement, but the protective measurement itself provides no
evidence that the property must be instantiated by a wave-like entity rather
than a particle. That is, measurement alone can�t tell you what exists; rather,
you have to look at the best theoretical explanation of the measurement re-
sults, and infer what exists from the ontological commitments of that theory.
It is true that wave function explanations are dominant at the moment, but
they are far from problem-free, and retrocausal particle-only explanations
remain a promising alternative.
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