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Abstract

A conventional wisdom about the progress of physics holds that succes-
sive theories wholly encompass the domains of their predecessors through a
process that is often called “reduction.” While certain influential accounts of
inter-theory reduction in physics take reduction to require a single “global”
derivation of one theory’s laws from those of another, I show that global re-
ductions are not available in all cases where the conventional wisdom requires
reduction to hold. However, I argue that a weaker “local” form of reduction,
which defines reduction between theories in terms of a more fundamental no-
tion of reduction between models of a single fixed system, is available in such
cases and moreover suffices to uphold the conventional wisdom. To illustrate
the sort of fixed-system, inter-model reduction that grounds inter-theoretic re-
duction on this picture, I specialize to a particular class of cases in which both
models are dynamical systems. I show that reduction in these cases is under-
written by a mathematical relationship that follows the broad prescriptions
of Nagel/Schaffner reduction, and support this claim with several examples.
Moreover, I show that this broadly Nagelian analysis of inter-model reduc-
tion encompasses several cases that are sometimes cited as instances of the
“physicist’s” limit-based notion of reduction.

1 Introduction

According to the most commonly told story about the progress of physics, suc-
cessive theories in physics come ever closer to revealing the true, fundamental
nature of reality. This convergence rests on the supposition that later theo-
ries bear a special relationship to their predecessors often called “reduction,”
which minimally requires one theory to encompass the domain of application
of another. More specifically, the conventional wisdom tells us that Newto-
nian mechanics “reduces to” special relativity, 1 special relativity to general
relativity, classical mechanics to quantum mechanics, quantum mechanics to
relativistic quantum mechanics, relativistic quantum mechanics to quantum
field theory, thermodynamics to statistical mechanics, and more. In order to
assess the truth of the conventional wisdom, however, it is necessary to gain a

1As Nickles noted several decades ago, two opposing conventions have arisen in the
literature on inter-theoretic reduction, one (employed most commonly in the philosophical
literature) that takes a less encompassing theory to “reduce to” a more encompassing one,
and the other (employed most commonly in the physics literature) that takes the more
encompassing theory to “reduce to” the less encompassing one. Here, I will adopt the first
of these conventions. It should also be noted that the two concepts of reduction that Nickles
discusses in his paper differ on more substantive points than this choice of convention, which
I discuss further below [25].
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more precise sense of what is needed in a given case to show that one theory
reduces to another.

In his widely cited 1973 paper, Nickles distinguished two types of ap-
proach to reduction in physics: first, the approach commonly employed by
philosophers, which originates in Ernest Nagel’s well-known account of reduc-
tion, and second, the approach commonly employed by physicists that requires
one theory to be a “limit” or “limiting case” of another [25]. Since Nickles’
paper, these two accounts have tended to dominate philosophical discussion
concerning issues of the general methodology of reduction in physics. As com-
monly presented, both strongly suggest - and in some cases, state explicitly
- that reduction between theories in physics should rest on a single “global”
derivation of a high-level theory’s laws from those of a low-level theory. Here,
I argue by means of a particular example that global reduction is not always
available in cases where the conventional wisdom requires reduction to hold.
However, I argue that it is possible to a define a weaker “local” notion of re-
duction in physics that suffices to uphold the conventional wisdom by ensuring
the subsumption of one theory’s domain by another. This notion of reduction
is “local” in the sense that it permits the reducing theory to account for the
reduced theory’s success through numerous context-specific derivations that
are relativized to different systems in the high-level theory’s domain. These
derivations concern the specific models that the theories use to describe a single
fixed system, rather than the theories as a whole.

This paper has two main goals, which are mutually supporting. The
first is to motivate and develop a local account of inter-theoretic reduction
in physics. Inter-theoretic reduction in physics, understood minimally as the
requirement that one theory subsume the domain of another, does not require
anything as strong as global reduction directly between theories; local reduc-
tion suffices for this purpose, and moreover avoids difficulties that afflict global
approaches. I then argue that local reduction between theories should be un-
derstood in terms of the more basic notion of reduction between models of a
single fixed system. The second goal is to illustrate what is meant by fixed-
system, inter-model reduction by giving an account of this concept in a special
class of cases where both models of the system in question are dynamical sys-
tems, and to show that such cases can be analyzed in terms of a certain model-
based adaptation of the Nagel/Schaffner approach to reduction. I further show
that this broadly Nagelian analysis of inter-model reduction encompasses many
cases that have been cited as instances of “physicists’” limit-based notion of
reduction, as well as providing a more precise characterization of these cases
than do existing formulations of the limit-based approach. Finally, I suggest
how this model-based adaptation of the Nagel/Schaffner approach might be
extended to fixed-system, inter-model reduction involving models that are not
dynamical systems.

The present analysis of reduction is given in two parts, corresponding
respectively to the two goals just described. Part I, which consists of Sections
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2 and 3, is largely non-technical and concerns issues of general methodology. As
suggested, its purpose is to motivate and present a certain local, model-based
approach to inter-theoretic reduction and to explain how this strategy avoids
certain difficulties that afflict more global approaches. In Section 2, I briefly
review two approaches to reduction - global Nagelian and global limit-based -
that are often taken as the focus of philosophical discussions of inter-theoretic
reduction in physics, and highlight some of their limitations. In Section 3, I
sketch a local approach to inter-theoretic reduction in physics that relies on
the more basic notion of fixed-system reduction between models and respond
to one major objection that such an approach is likely to elicit.

Part II, which consists of Sections 4, 5 and 6, provides a detailed techni-
cal analysis of fixed-system, inter-model reduction in a particular set of cases
where both models of the system in question are dynamical systems, as well
as briefly discussing possible expansions of this analysis to fixed-system, inter-
model reduction involving other types of model. Section 4 describes a gen-
eral mathematical relationship between dynamical systems models that serves
to underwrite many real instances of fixed-system, inter-model reduction in
physics. In a certain strong sense, this mathematical relationship constitutes
an application of the criteria for Nagel/Schaffner reduction to the context of
fixed-system, inter-model reduction between dynamical systems models. Sec-
tion 5 shows how this general relationship serves to characterize reduction
across a wide range of particular cases, and to subsume a number of cases that
are commonly cited as examples of the physicist’s limit-based notion of re-
duction. Section 6 briefly discusses possibilities for extending and generalizing
this strategy for inter-model reduction beyond the set of cases discussed here:
first, to an analysis of the relationship between symmetries of the two models
involved in a reduction, and second, to an analysis of cases where one or both
of the models involved in the reduction is not a dynamical system but some
other kind of model (e.g., stochastic, non-dynamical, etc.).

The distinct portions of the analysis given in Parts I and II complement
each other in a number of important ways. Part I serves to frame the analysis
of reduction between dynamical systems given in Part II within a more general
picture of inter-theoretic reduction and in particular to situate this analysis
relative to the two accounts of inter-theoretic reduction in physics first distin-
guished by Nickles. By the same token, Part II provides a concrete illustration
of the sort of fixed-system, inter-model reduction that is taken as the basis for
the local approach to inter-theoretic reduction described in Part I.

1.1 A Few Points of Terminology

Before proceeding, it is worth taking a moment to clarify several points of
terminology.

Because debates about reduction are often frought with ambiguity as to
what, precisely, is meant by reduction, I should clarify my use of the term here.
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I do not attach my usage to any specific account of reduction - e.g., Nagelian,
limit-based, New Wave, functionalist. Rather, I use it to designate a certain
general concept that, I take it, all, or most, of the many specific accounts aim
to make more precise. “Reduction,” then, is taken to designate the general
requirement that two descriptions of the world “dovetail” in such a manner
that one description entirely encompasses the range of successful applications
of the other. That is, reduction on this usage requires subsumption of one
description’s domain of applicability by the other, while the specific sense in
which the two descriptions “dovetail” in order to achieve this is deliberately
left vague, so as not to bias its usage toward any particular account.

As Nickles has noted, the usage of the term “reduction” most common
among philosophers takes the less accurate and encompassing description in
a reduction to “reduce to” the more accurate and encompassing description,
whereas the usage most common among physicists takes the more accurate,
encompassing description to “reduce to” the less accurate and encompassing
description. In what follows, I will always adopt the philosopher’s convention,
even when discussing the physicist’s limit-based notion of reduction, so that if
theory T2 is a “limiting case” of T1, we will say that T2 “reduces to” T1.

I will also reserve the term “high-level” to refer to the description that
is purportedly reduced and “low-level” to refer to the description that pur-
portedly does the reducing. This usage generalizes another use of the “high-
level/low-level” distinction, which presupposes that the high-level description
is in some sense a coarse-graining of the low-level description, or that the
high-level description is in some sense “macro” and the low-level description
in some sense “micro.” Here, no such assumption is made. For example, where
the relation between Kepler’s and Newton’s theories of planetary motion is
concerned, Kepler’s theory would count on our usage as the “high-level” and
Newton’s as the “low-level” theory even though Kepler’s theory is not in any
normal sense a coarse-graining of Newton’s. While some authors have empha-
sized the distinction between “inter-level” reductions (e.g. thermodynamics to
statistical mechanics) and “intra-level” reduction (e.g. Newtonian mechanics
to special relativity, or Kepler’s to Newton’s theory of planetary motion), the
picture of reduction presented here does not rely on this distinction and treats
both kinds of reduction on a par. 2

Henceforth, when I speak of “Nagelian” reduction, the reader should take
this to refer specifically to the Nagel/Schaffner account of reduction, which
allows for approximative derivations rather than requiring exact derivations.
While Nagel/Schaffner reduction is widely framed within a syntactic view of
theories - as opposed to the semantic, model-theoretic view adopted here -
and is often taken to require global rather than local derivations, my use of
the label “Nagelian” here does not presuppose these characteristics. Rather,

2As with the term “reduce,” it is worth noting that one occasionally finds the high-/low-
distinction inverted, so that the “high-level” description is the more encompassing and the
“low-level” description the less encompassing of the two.
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what is taken to be constitutive of “Nagelian” reduction on my usage is the
general requirement that it be possible to derive, on the basis of the low-level
description and through the use of bridge principles, approximate versions of
the laws or constraints or equations that serve to characterize the high-level
description. My usage does not presuppose any view as to whether theories are
understood syntactically or semantically - although the specific local approach
to reduction advocated here fits much more naturally with a semantic view.
Moreover, my usage does not assume any commitments as to the particular
nature of these bridge principles - such as whether they are to be understood
as empirically established laws or definitions - apart from their role in enabling
a translation or comparison between the frameworks of the two descriptions in
question. Rather than taking the term “Nagelian” to designate a specific set of
precisely defined formal requirements for reduction, I use it here to designate
a certain broad strategy for reduction.

Since the local approach to inter-theoretic reduction that I describe here
is grounded in a certain account of inter-model reduction, I should say some-
thing about what I take to be the relationship between theories and models.
For the purposes of this discussion, it will suffice to note that the manner in
which any theory serves to describe a physical system in its domain is through
some particular model of that theory. Moreover, the specification of any such
model entails much narrower commitments than those that serve to charac-
terize the theory itself. For example, specification of a particular quantum
or classical model of a material object requires commitments to a particular
form for the Hamiltonian (or force law or Lagrangian), including particular
values for quantities like mass and charge, while the theories of quantum and
classical mechanics themselves are compatible with many functional forms of
the Hamiltonian and many values for these parameters. One of the central
points of my discussion here is that it is sometimes not just the more gen-
eral specifications that serve to characterize the high- and low-level theories in
question that are relevant to underwriting the success of the high-level theory
in a given case, but also the narrower, more context-dependent specifications
that characterize the particular models of the two theories.

Part I: Local Reduction in Physics

In the literature on reduction across the sciences and in philosophy of
mind, concerns about multiple realization have lead many philosophers to es-
pouse a more “local” form of reduction that allows a low-level description to
account for a high-level description’s successes through many context-specific
derivations that employ context-specific bridge principles. As a whole, the lit-
erature on reduction specifically within physics - which merits focused atten-
tion in part because of the special mathematical issues that it raises - has been
slow to absorb this development, in that discussions of the general method-
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ology of inter-theoretic reduction in physics very often seem to presuppose a
global understanding of reduction. The goal of Part I of this article is to argue
that insights about local reduction that have arisen in the general philosophy
of science and philosophy of mind literatures ought to be imported into the
analysis of reduction specifically within physics, and to suggest how this should
be done.

In emphasizing a local approach to inter-theoretic reduction in physics,
I do not mean to suggest that it is not possible to effect global reduction, or
something approximating it, in some cases. Local reduction is weaker than
global reduction and so includes global reduction as a special case. In fact,
local reduction accommodates a whole spectrum of cases varying in the extent
of their “global-ness”: for inter-theoretic reductions at the least global extreme
of this spectrum, a separate derivation is required for each separate system in
the domain of the high-level theory in order to effect the necessary subsumption
of domains; at the most global extreme, it is possible to effect a fixed-system,
inter-model reduction for every system in the high-level theory’s domain on
the basis of a single derivation that applies uniformly across all such systems
(and so does not depend essentially on details that characterize some systems
but not others). In cases of inter-theoretic reduction that lie between these
extremes, the derivations that underwrite fixed-system, inter-model reduction
will rely on general results and mechanisms that apply across a wide range
of systems, while also requiring reference to system-specific details at certain
points in the derivation. An example of an inter-theoretic reduction at the
global extreme of the spectrum is the reduction of Kepler’s theory of planetary
motion (which consists of models that obey Keplter’s three laws) to Newton’s
theory of gravitation. The domain of Kepler’s theory consists the motions of
the various planets around the Sun (as well as other similar solar systems in
the cosmos). Because the same general derivation connects models of Kepler’s
theory to models of Newton’s theory irrespective of the particular planet in
this domain that is being represented, the reduction of Kepler’s theory to
Newton’s theory lies at the global end of the spectrum. On the other hand,
not all inter-theoretic reductions required by the conventional “imperialist”
view of the progress of physics admit of such global derivations, as I show
explicitly in Section 3.1.

2 Nickles’ Two Senses of Reduction

Since Nickles’ 1973 paper, most philosophical discussion about the general
methodology of reduction in physics has revolved around the Nagelian and
limit-based approaches. Conventional presentations of both approaches treat
inter-theory reduction as a matter of deriving one theory from another (whether
through Nagelian deduction or a limiting process). This manner of framing the
issue strongly suggests that inter-theoretic reduction is being taken in these
presentations to be a matter of effecting a single derivation of the high-level
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theory’s laws from the low-level theory, rather than many separate derivations
specialized to different contexts. This in turn suggests that it is the general
assumptions characterizing the two theories, rather than the more specific de-
tails characterizing the theories’ models of particular systems, that are relevant
to showing how the low-level theory serves to encompass the high-level the-
ory’s domain of success. Implicitly if not explicitly, these approaches seem to
demand a global rather than a local form of reduction. While it is not impos-
sible in some cases to interpret conventional formulations of both approaches
as allowing for many local derivations, what can be said with relative definite-
ness is that these formulations do not make the need for local derivations, or
the fact these local derivations concern specific models of the theories rather
than the theories themselves, at all explicit; and both of these points, I take
it, do bear emphasizing explicitly. Moreover, as I discuss below, where the
Nagel/Schaffner approach is concerned, the extensive philosophical literature
that takes multiple realizability to preclude application of this approach does
explicitly construe it as a global form of reduction.

2.1 Nagel/Schaffner Reduction

Reduction on the Nagel/Schaffner approach can be understood as a three-step
process, starting with the basic ingredients of a low-level theory Tl, a high-level
theory Th, and a set of bridge principles (see, for example, [2] and [12]):

1. Derive an “image” theory T ∗h for some restricted boundary or initial
conditions within the low level theory Tl. The “laws” of the image theory
T ∗h take the same form as the laws of Th, but relate quantities that are
defined using the terms and concepts of Tl.

2. Use bridge principles to replace terms in T ∗h , which belong to the vo-
cabulary of the low-level theory, with corresponding terms belonging to
the high-level theory. This yields the “analogue” 3 theory T ′h. Like the
“laws” of T ∗h , those of T ′h have the same form as the laws of Th, but
employ the terms and concepts of Th rather than of Tl.

3. If the analogue theory T ′h is ‘strongly analogous’ to the high level theory
Th, the high level theory has been reduced to Tl. The ‘strong analogy’
relation is sometimes also characterised as approximate equality, close
agreement, or good approximation and can be understood in any of these
senses.

Note that reduction on the Nagel/Schaffner approach does not require deriva-
tion of the high-level theory’s laws themselves, but rather of some suitable ap-
proximations to them. This is the key point that distinguishes Nagel/Schaffner

3The labels “image” and “analogue” are not common to all presentations of the
Nagel/Schaffner approach. However, the substantive points of procedure described here
are.
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reduction from Nagel’s original approach. A further point worth noting is that
there remains some dispute as to whether the bridge principles of Nagel/Schaffner
reduction are empirically discovered laws or mere definitions, and whether they
are biconditional or merely conditional relations. The popular term “bridge
law,” which is often used to designate bridge principles, suggests a clear bias
toward interpreting them as empirical laws; here, I use the term “bridge prin-
ciple” so as to avoid the suggestion of bias toward any particular view on this
matter.

2.2 Difficulties with Nagelian Reduction: Multiple Re-
alization

For a comprehensive review of, and response to, the many critiques that have
been levelled against Nagelian approaches to reduction, Dizadji-Bahmani et
al ’s 2011 article “Who’s Afraid of Nagelian Reduction?” is excellent [12]. In
the present context, I will focus exclusively on critiques grounded in multiple
realization (MR) because such critiques have served as the major impetus for
considering more local forms of reduction, particularly in the philosophy of
mind and general philosophy of science literatures.

As its name suggests, multiple realization occurs when a single element
of a high-level description (e.g., model, theory or whole science) is realized
by more than one element of some lower-level description. A classic example
from the philosophy of mind literature is the high-level psychological prop-
erty of pain, which can be multiply realized in human brains, dog brains,
badger brains and so on, all of which have different low-level biological (and
physical) descriptions [27]. In the context of Nagelian reduction, realization
of an element in the high-level theory by some element of the low-level the-
ory is signified by means of a bridge principle. On many formulations of the
Nagel/Schaffner approach, bridge principles are required to be bi-conditional
identity statements identifying natural kinds in the high-level theory with nat-
ural kinds in the low-level theory. But, as Fodor has argued, the best one
can do in cases where multiple realization occurs is to identify the relevant
concept in the high-level description with a disjunction of associated elements
in the low-level description, and it is simply false in most cases that such a
disjunction will be a natural kind of the low-level description (for example,
in the sense that it occurs naturally in the laws or equations of the low-level
theory)[16], [5]. In this manner, multiple realization typically precludes the ex-
istence of bridge principles of the sort that are required by these formulations
of Nagelian reduction.

Implicitly, this sort of MR-based critique presupposes a global interpreta-
tion of the Nagel/Schaffner approach, since its argument assumes that bridge
principles are required to identify an element of the high-level description with
the same “natural kind” element of the low-level description across all con-
texts where the high-level description applies. In cases of multiple realization,
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there simply do not exist such global bridge principles. The unavailability of
these bridge principles, in turn, precludes the possibility of the sort of global
derivation required by global formulations of Nagelian reduction.

2.3 Limit-Based Reduction

On the limit-based approach to reduction, a high-level theory Th reduces to a
low-level theory Tl if Th is a “limit” or “limiting case” of Tl. Somewhat more
precisely, Th reduces to Tl if there exists some set of parameters {εi} defined
within Tl such that

lim
{εi→0}

Tl = Th (1)

4 [25],[2]. Unlike Nagelian reduction, the notion of a limit-based approach
to reduction, as first explicitly identified by Nickles, seems to arise not from
any clear-cut statement of the general requirements for this kind of reduction,
but rather from an assortment of suggestive mathematical results, all of which
involve or somehow gesture at the use of mathematical limits. It also seems
to arise in part from a manner of speaking that is often employed in discus-
sions of inter-theory relations in physics, as exemplified by references to the
“nonrelativistic limit” of special relativity, the “classical limit” of quantum
mechanics, the “thermodynamic limit” of statistical mechanics, the “geomet-
ric optics limit” of wave optics, and so on. Various facets of this approach
to reduction have been explored by many authors, including Batterman, But-
terfield, Rohrlich, Berry, Ehlers, and Scheibe, among others [1], [7], [9], [28],
[4], [14], [30], [31]. Recently, Norton has highlighted a role for limiting proce-
dures in physics outside the context of reduction - specifically, in distinguishing
between the activities of approximation and idealization and in fending off po-
tential confusions caused by conflation of the two [26]. While it is clear that
limits have a central role to play in our understanding of inter-theory relations
generally, where reduction specifically is concerned, the vague and schematic
relation lim{εi→0} Tl = Th appears to be as close to a statement of general
criteria for limit-based reduction as has been given in the literature.

2.4 Difficulties with the Limit-Based Approach

Perhaps the most serious concern about the limit-based approach to reduction
is that, in spite of its mathematical nature, it is extremely vague in its char-
acterization of the general relationship that it takes to underwrite reduction.
The expression lim{εi→0} Tl = Th is not mathematically well-defined, as there
is no precise or general definition of what it is for one theory to be a limit or
limiting case of another. Moreover, it is unclear from this expression whether

4Note that if one has lim{εi→∞} Tl = Th, or lim{εi→a} Tl = Th where 0 < a <∞, one can
always redefine the parameters {εi} so that the limit approaches 0.
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the prescription to take the limit is to be understood literally or in some loos-
ened sense. For example, if we are to understand the claim that Newtonian
mechanics is the limit as v

c
→ 0 of special relativity literally, then the claim is

patently false, since the limit of special relativity as v
c
→ 0 is a theory in which

nothing moves, not Newtonian mechanics (assuming we take c, the speed of
light, to be constant, as it is for all real physical systems). For this paradig-
matic case to be regarded as an instance of limit-based reduction, it seems
necessary to adopt a more liberal construal of the term “limit” - for example,
by making use of first- or higher-order approximations in Taylor expansions in
v
c

since strictly speaking, it is only the zero-th order term of such an expansion
gives the actual limit of this series as v

c
→ 0. In other cases, including discus-

sions of the thermodynamic limit of statistical mechanics, where the number
of degrees of freedom in a system is taken to infinity, the limiting process is
interpreted literally - for example, when it is pointed out that the only way to
recover the discontinuities of certain functions in thermodynamics from statis-
tical mechanics is to literally take the limit as the number of degrees of freedom
approaches infinity. Beyond the points of vagueness already mentioned, it is
not clear on this approach which parts of Th and Tl must be related by these
“limits” in order for the relation lim{εi→0} Tl = Th to hold; presumably, not just
any limiting relation between any two parts of the theories will do. Finally,
limit-based approaches tend to differ on what constraints, if any, should be
placed on the parameters εi - for example, whether they are supposed to be
dimensionless, or may also be dimensionful constants of nature, for example.

Given that this approach offers very little by way of precise characteriza-
tions or clear commitments as to the nature of reductive relations in physics,
it seems possible to take many cases that we might wish to characterize as suc-
cessful reductions and categorize them as instances of limit-based reduction.
But if existing formulations of the limit-based approach succeed at accom-
modating many cases in physics, it is largely for the reason that they tell us
so little, and are so vague, about the general requirements for reduction. It
seems possible to count any reduction as an instance of limit-based reduction
as long as the reduction somehow incorporates a procedure that may liberally
be construed as “taking a limit.” The worry, then, is that this approach, at
least in its existing formulations, may give the false impression of providing an
authoritative, general account of reduction in physics in spite of having offered
little by way of general insight beyond the assertion that, in cases of reduction,
something like a limit is somehow involved in the explanation of the high-level
theory’s success on the basis of the low-level theory.

Recalling the focus here on comparing global and local forms of reduc-
tion, I should point out that since the limit-based approach is conventionally
formulated in terms of limiting relations between whole theories, it seems most
natural to read this approach as a global strategy for reduction. However, given
the vagueness of existing formulations of this approach, it does not appear that
anything precludes interpreting this relation on a more local basis. Even so,
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such a formulation is still vulnerable to worries about precisely the sort of
vagueness that allows for this vast flexibility of interpretation.

3 Local Reduction in Physics

It was largely in response to critiques of global Nagel/Schaffner reduction that a
number of authors, mostly in the philosophy of mind literature, were prompted
to advocate for a more local approach to reduction in which a lower-level
description accounts for the successes of a higher-level description through
many context-specific derivations employing context-specific bridge principles,
rather than through a single global derivation employing the same set of bridge
principles for all systems in the high-level description’s domain. In partic-
ular, Kim has argued that while multiple realization rules out “structure-
independent” reductions of psychology to physical science, it does allow for
“structure-specific” local reductions between these levels [22]. Following Kim,
Dizadji-Bahmani et al also have advocated a local response to anti-reductionist
arguments from multiple realizability in the context of their general defence
of Nagelian reduction [12]. Similar views can be found in the work of Church-
land, Hooker, Schaffner, Enc and Lewis [11], Ch. 7; [20]; [29]; [15]; [23]; [5].
The main goal of the present analysis is show explicitly how this sort of local
approach, which has been developed primarily in discussions about reduction
in philosophy of mind and general philosophy of science, can be imported
into methodological discussions of inter-theoretic reduction specifically within
physics.

3.1 The Need for Local Reduction in Physics: An Illus-
trative Example

An example, concerning the relationship between classical and quantum me-
chanics, will serve to make my general point that global reductions are not
available in all cases where the conventional wisdom requires reduction to oc-
cur, and that only a weaker and more local (but still highly non-trivial) form
of reduction is available in such cases. As we will see, the source of trouble for
global approaches to reduction in physics is that it is often not just the broad
generalities characterizing the theories - which are common to all models of
each of the theories - but also details that differentiate the various models of
a given theory, that play a role in explaining why the high-level theory works
in a given case. In short, system- or context-specific details often play an in-
dispensable role in accounting for the high-level theory’s success on the basis
of the low-level theory, and this precludes the sort of generality demanded by
global forms of reduction.

The conventional wisdom about the progress of physics asserts that quan-
tum mechanics has strictly superseded quantum mechanics in the sense that
any system whose behavior can be accurately modelled in classical mechanics
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also can be modelled, and modelled more accurately, in quantum mechanics.
5 Here, I will argue that any demonstration to this effect could not possibly,
even in principle, take the form of a global reduciton. Consider two systems
in the domain of classical mechanics, both of which are described by the same
classical model of a simple harmonic oscillator: the first system is a mass on
a spring; the second is an electric charge of the same mass moving along a
path bored through the axis of a uniform spherical charge distribution. (One
can show that in the second case, there will be a restoring force on the charge
that varies linearly with its distance from the center of the sphere.) Assume
moreover that frictional/radiation effects can be ignored in both systems, and
that the linear restoring force in both cases is characterized by the same ef-
fective spring constant. Assuming that macroscopic bodies do belong to the
domain of quantum mechanics, it is clear in this case that the quantum me-
chanical models that serve to describe these two physical systems are going
to be radically different from each other, and that the process of accounting
for the success of the classical harmonic oscillator model on the basis of these
quantum models is going to play out very differently in the two systems. In the
second case, the classical potential generated by the electric field in the classi-
cal model will be the same potential that appears in the Schrodinger equation
of the underlying quantum model of the charge’s behavior. In the first case,
the fact that one can employ a harmonic oscillator potential in the classical
model in order to describe the motion of the block is something that needs to
be explained in terms of the complex microscopic constitution of the spring -
at the microscopic level, this potential will be wildly fluctuating on the length
scale of the atoms and molecules making up the spring. A global reduction
of classical to quantum mechanics is thus out of the question, since distinct
derivations of the classical model’s success on the basis of the quantum model
are required for each of the two systems.

While global reduction between classical and quantum mechanics fails in
this case, there remains a non-trivial, and more local, sense of inter-theoretic
reduction in physics, which I describe in the next section, that has the potential
to accommodate this sort of example. One thing that people might - and, I take
it, often do - mean by the claim that “classical mechanics reduces to quantum
mechanics” is that every physical system whose behavior can be modeled in
classical mechanics also can be modeled in quantum mechanics at least as
accurately and in at least as much detail. This manner of construing the term
“reduction” allows for the possibility that for each system separately, there is a
direct relationship between the quantum and the classical model of that system

5There is a sense in which this particular case might appear to be less than an ideal exam-
ple, given the various added complexities brought about by the notorious interpretational
difficulties that afflict quantum mechanics, which seem as though they should bear quite
heavily on the relation between quantum and classical descriptions of real physical systems.
However, these difficulties do not affect my central point here, as long as we are safe in
assuming that the correct interpretation of quantum mechanics, whatever that happens to
be, is able to underwrite the success of classical descriptions on a case-by-case basis.
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that permits us to understand why the classical model succeeds at describing
the system’s behavior given that the quantum model is the more detailed and
accurate of the two descriptions. Arguments from multiple realization present
no reason for doubting that such system-specific quantum-mechanical accounts
of the success of classical mechanics are available in such cases.

3.2 A Local, Model-Based Approach to Inter-Theoretic
Reduction

The example just discussed suggests a local picture of inter-theoretic reduction
in physics where reduction between theories may consist of many local, fixed-
system reductions between models - which in turn may rely on assumptions
specific to individual systems - rather than requiring a single global derivation
that references only the broad generalities that characterize the theories as a
whole. Let us provisionally suppose a notion of reduction between two models
of a single fixed system, reductionM , whereby the low-level model accounts for
the success of the high-level model at tracking the behavior of the system in
question; the nature of this relationship will be further illustrated in the second
half of this paper through the detailed analysis of reductionM in a particular
class of cases where both models are dynamical systems. Let us designate our
local concept of reduction between theories reductionT , which we define as
follows:

Criteria for Local Inter-Theoretic Reduction: Theory Th
reducesT to theory Tl iff for every system K in the domain of Th
- that is, for every system K whose behavior is accurately repre-
sented by some model Mh of Th - there exists a model Ml of Tl also
representing K such that Mh reducesM to Ml.

There are several crucial points to note about this local, model-based concept
of inter-theoretic reduction. First, it presupposes a semantic understanding
of theories as families of models, rather than a syntactic view which treats
theories as axiomatic sets of propositions. Second, it is not simply a two-place
relation between the theory Th and the theory Tl, but rather a three-place
relation between Th, Tl, and that class of real systems in the world that are
well-described by models of Th. Since reduction is understood here to require
that one description dovetail (in some appropriate sense) with another specif-
ically in those cases where the reduced description works, some specification
of the reduced description’s domain of success is required in order to assess
whether any dovetailing between the theories is sufficient to underwrite the re-
quired subsumption; here, the relevant dovetailing between theories generally
occurs on a local level, between the different models that they use to describe
systems in the high-level theory’s domain. Third, reductionM , characterized
broadly, requires that Ml furnish at least as accurate a description of K as
Mh does in those cases where Mh successfully tracks (to within some margin
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of approximation) K’s behavior. Fourth, the precise nature of relationship
between models Mh and Ml that serves to underwrite reductionM in a given
case varies depending on the particular mathematical form of these models.
Fifth, given the emphasis here on the distinction between theories and their
individual models, it is also important to distinguish between what is meant
here by the domain of a theory, on the one hand, and the domain of a model
that the theory uses to describe a particular physical system. The domain
of a single model of a theory, relative to some physical system K, consists
of the set of circumstances under which the model accurately tracks the sys-
tem’s behavior. The domain of a theory, as understood here, consists of the
range of physical systems whose behavior is well-described (under some fairly
robust range of circumstances) by some particular model of the theory, as
well as the set of circumstances under which each of these models succeeds
in tracking the behavior of the system that it describes. Sixth, the account
of reductionM that I develop in Part II for the particular case of reductions
between dynamical systems models follows, in a certain strong but qualified
sense, the prescriptions of a localized Nagel/Schaffner approach. As I discuss
in Section 6.2, the broadly Nagelian character of reductionM in the case of
dynamical systems likely extends to cases of reductionM involving other kinds
of model as well. For this reason, the strategy for inter-theory reduction in
physics described here can be understood as a local, model-based formulation
of the Nagel/Schaffner approach.

3.3 A Worry about Local Reduction

The local approach to inter-theoretic reduction described in the last section
addresses worries about multiple realization by allowing domain-relative, lo-
cal derivations that employ context-specific bridge principles. One concern
about this sort of move, however, is that in its acceptance of disjointed, local
derivations of multiply realized high-level regularities, this strategy foregoes a
certain legitimate demand for explanation of MR - that is, an explanation that
alleviates our sense of mystery as to how systems with such disparate low-level
descriptions can all give rise to the same high-level regularity, presumably by
identifying some salient commonality among them.

The appropriate response to this sort of worry, I believe, begins by dis-
tinguishing two problems concerning inter-theory relations: first, the problem
of demonstrating the sort of subsumption that I take to define reduction, or
more precisely of showing that any system that can be accurately modelled in
the high-level theory can be modelled at least as accurately in the low-level
theory; second, the problem of explaining multiple realization. The response
then is simply to acknowledge that local approaches to reduction address the
first problem but not the second. Put more bluntly, the response is simply
that it is not the job of reduction, as the notion is understood here, to ex-
plain how multiple realization comes about. Given the vast differences in the
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mathematical and conceptual frameworks of theories between which reduction
is purported to hold, the task of understanding precisely how one and the
same physical system can consistently be described by models of both theories
simultaneously poses a significant enough challenge that it deserves not to be
conflated with the task of explaining how multiple realization comes about.
Reduction already has enough on its plate, so to speak. Indeed, there are
many who doubt, and some, including pluralists like Cartwright and Dupre,
who outright deny that it is possible to effect the sort of subsumption required
by local approaches to reduction - that is, who deny the possibility of the
sort of theoretical “imperialism” that seeks to include macroscopic systems
like the moon within the domain of quantum mechanics, or thermodynamic
systems within the domain of statistical mechanics [10], [13]. Local reduction
facilitates such imperialism, but without providing the sort of explanation of
multiple realization that is sometimes called for.

Having made these remarks, it is worth pointing out that a good deal
of important philosophical analysis has been done on the question of how to
explain multiple realization in physics. In particular, Batterman has noted
that the phenomenon of universality in physics just is multiple realization,
and that in physics one does find explanations of universality in the form of
renormalization group analyses [3]. However, I emphasize again that this sort
of issue is distinct from (though closely related to) the issue of how to effect
the sort of theoretical subsumption required by reduction, and that it is only
this latter issue that I seek to address here.

Part II: The Case of Dynamical Systems

My purpose in the second half of this paper is to illustrate more pre-
cisely, through a specific class of cases, what is meant by “fixed-system, inter-
model reduction” (“reductionM”) in the local picture of inter-theoretic reduc-
tion (“reductionT”) spelled out in Section 3.2. In the class of cases that I
consider here, both models of the system in question are dynamical systems
models and, moreover, are assumed to share a common time parameter. In
Section 4, I describe a general mathematical relationship, which I call “dy-
namical systems reduction,” “DS reduction,” or “reductionDS,” that provides
a template for reduction between dynamical systems models across a wide
range of cases, as I show explicitly with several examples in Section 5. More-
over, I show in Section 4.4 that there is a strong sense in which DS reduction
follows the broad prescriptions of Nagel/Schaffner reduction, albeit in a form
adapted to the specialized context of fixed-system reduction between dynami-
cal systems models. Part of the significance of reductionDS is that it provides
an example of a general mathematical relationship between models whereby
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one model can improve on the scope, detail and accuracy of another model
in its description of a physical system, fully encompassing the latter model’s
domain of application. It also serves to illustrate how models employing radi-
cally different mathematical and conceptual frameworks can both consistently
(within some margin of approximation) and accurately describe the behavior
of one and the same physical system.

As I argue in Section 6, certain central features of reductionDS can likely
be carried over to cases of reductionM in which the models in question do not
meet the preconditions for reductionDS - for example, in cases of reduction
between dynamical systems models that do not share a time parameter, or in
cases where one or both of the models Ml and Mh is stochastic (e.g., models of
Brownian motion, or of GRW quantum mechanics), or non-dynamical (e.g. the
Ideal Gas Model), or where there is no global splitting of the space of possible
solutions of the model into state spaces at different times. I also suggest how
various features of DS reduction might be extended to provide an analysis of
the relationship between symmetries of different models of the same system.
I leave it to future work to give a more detailed analysis of reductionM in
such contexts. However, I argue in Section 7 that the strategy for reduction
in these other cases is also likely to be Nagelian in the broad, liberalized sense
described in Section 1.1. As was noted in the Introduction, one important
general aspect of the approach to reduction adopted here is to begin narrowly
by considering reduction in relatively specialized contexts and then consider
what generalities can be drawn across ever wider ranges of cases, rather than
demanding a high level of generality at the outset.

4 Fixed-System Reduction Between Dynami-

cal Systems Models

Dynamical systems models occur widely throughout physics: in Hamilto-
nian models of non-relativistic and relativistic classical mechanics and non-
relativistic and relativistic classical field theory, in Schrodinger picture models
of non-relativistic quantum mechanics, relativistic quantum mechanics and
quantum field theory, and in heat diffusion equations in thermodynamics, to
name a few cases.

The notion of a dynamical system has been defined in a number of distinct
ways that vary both in generality and in their specific requirements. However,
all definitions capture some variation on the intuitive notion of a deterministic
rule that governs the time evolution of a point in some mathematical space,
which in real-world applications usually represents the state of a physical sys-
tem. More formally, a dynamical system is a triple M = (S, T , D), where the
“state space” S is a set, the “timeset” T ⊂ R is an additive semigroup, and
the “evolution operator” D : S × T → S is a one-parameter group of trans-
formations of S satisfying the properties D(x, 0) = x and D(D(x, t1), t2) =
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D(x, t1 + t2) for all x ∈ S and t1, t2 ∈ T [6]. For our purposes here, I will
further assume that S is a differentiable manifold endowed with a norm, that
T = R, that D is continuous, and that D is an invertible function of x for each
time t. In dynamical systems that occur in physics, the evolution operator D is
usually determined by some set of first-order differential equations of motion,

dx

dt
= f(x), (2)

where f(x) is a continous function of x. The functions f and D are related by
the equation ∂

∂t
D(x0, t) = f(D(x0, t)). That is, D(x0, t) for fixed x0 specifies a

solution to the equation (2).

4.1 ReductionM for Dynamical Systems

The analysis of reduction between dynamical systems provided in this section
draws on the work of several authors. All explore variations on the notion
that reduction between dynamical descriptions of a system requires commuta-
tion between the operation of dynamical evolution and some other operation,
such as coarse-graining, that maps elements of the low-level state space into
elements in the high-level state space. More precisely, the thought is that
application of the low-level dynamics for time t followed by application of
the mapping from the low- to the high-level state space should approximately
equal the result of first applying this mapping and then applying the high-level
dynamics for time t. Wallace explores variations of this idea in the context of
an investigation into the quantum-mechanical (specifically, Everettian) arrow
of time [33]. 6 Giunti discusses this requirement in the context of reduction
between dynamical systems generally, although the specific criteria that he
imposes are too strong to apply to very many, if any, realistic cases in physics
[18]. Yoshimi discusses a similar approach in the context of a general discussion
about supervenience, with a view toward applications in philosophy of mind
[35]. Butterfield suggests a formulation of this commutation condition that is
quite similar to (but formulated independently of) Yoshimi’s, with a view to
applications in physics; however, he points out a number of ways in which this
condition may need to be weakened in order to be applied to realistic cases in
physics [8]. The formulation of the commutation-based requirement for reduc-
tion that I describe here differs from those of Wallace, Yoshimi and Butterfield
in that it takes the high-level and the low-level models to be specified inde-
pendently of each other, whereas on these other formulations the high-level
dynamics are specifically defined as the dynamics induced by the low-level dy-
namics through some coarse-graining procedure. Giunti’s formulation, like the
one suggested here, does take the high- and low-level models to be indepen-
dently specified, though requires the operation connecting the state spaces of

6It was also Wallace who first introduced me, in conversation, to this way of thinking
about reduction.
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the models specifically to be an injection and requires the commutation to be
exact; both of these requirements preclude application to most realistic cases
in physics. As I show in the next section, the formulation of the requirement
that I present here is refined in such a way as to allow for broad application
specifically to inter-model reduction in physics.

Assume, then, that two distinct dynamical systems modelsMh = (R, Sh, Dh)
and Ml = (R, Sl, Dl), which share a time parameter t, both serve to de-
scribe the same physical system K. (This is the case, for example, with
non-relativistic and relativistic models of a proton, or between non-relativistic
quantum-mechanical and relativistic quantum-field-theoretic models of an elec-
tron, or between classical and quantum mechanical models of the center of mass
of a golf ball, and in a wide range of other instances.) Assume, moreover, that
Mh succeeds at tracking the dynamical behavior of some subset of the degrees
of freedom characterizing system K within margin of error δ over timescale τ
for initial conditions xh0 within some domain of states dh ⊂ Sh. Then define
the relation reductionDS as follows:

Mh reducesDS to Ml iff there exists a differentiable function
B : Sl → Sh that does not depend explicitly on time and a
nonempty subset dl ⊂ Sl in the domain of B such that dh ⊂
B(dl), and for any xl ∈ dl,

|B
(
Dl(xl, t)

)
−Dh

(
B(xl), t

)
|h < 2δ, (3)

or more concisely,

B
(
Dl(xl, t)

)
≈ Dh

(
B(xl), t

)
, (4)

for all 0 ≤ t ≤ τ .

The notation | ◦ |h designates the norm on Sh, and the margin of error 2δ is
taken to be implicit in the ≈ of (4). Note that the expression B

(
Dl(xl, t)

)
on

the left-hand side of (4) represents the trajectory on Sh induced by the low-
level dynamics Dl via the function B, while the expression Dh

(
B(xl), t

)
on the

right-hand side of (4) represents the trajectory prescribed by the high-level
dynamics for the initial condition B(xl) ∈ Sh. The mathematical relationship
between Mh and Ml specified by reductionDS thus requires that the function
B - let us call it a “bridge map” - commute with the operation of time evo-
lution, where the time evolution is specified by the low-level dynamics if it
comes before application of the bridge map and by the high-level dynamics if
it comes after application of the bridge map. The requirement that dh ⊂ B(dl)
is imposed for the purpose of ensuring that all possible trajectories of Mh that
would accurately track the behavior of the relevant degrees of freedom of K
are well-approximated by trajectories induced via B by the low-level dynam-
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Figure 1: ReductionDS requires the existence of a time-independent “bridge map” B
from the state space of the low-level model, Sl, to that of the high-level model, Sh, that
approximately commutes with the operation of dynamical evolution for initial states xl in
a certain domain dl ⊂ Sl. This amounts to the requirement that the trajectories on Sh
induced via B by the low-level dynamics approximate the trajectories prescribed by the
corresponding high-level dynamics.

ics. In fact, in cases of reduction one expects the trajectory B
(
Dl(xl, t)

)
to

track the behavior of these degrees of freedom more accurately than the tra-
jectory Dh(B(xl), t) if the low-level model Ml is the more accurate of the two
descriptions. That is, we expect that over timescale τ , B

(
Dl(xl, t)

)
tracks the

behavior of the relevant physical degrees of freedom of K to within a margin of
error γ such that γ < δ. This in turn requires that the trajectories Dh

(
B(xl), t

)
and B

(
Dl(xl, t)

)
agree with each other to within a margin of 2δ. Thus, the

physical property of system K that is represented by xh in the high-level model
is represented in the low-level model by B(xl), so that there is a strong sense
in which the high-level state and the function of the low-level state associated
with the bridge map co-refer in the range of contexts where both successfully
track the behavior of the system. 7

I should clarify here that reductionDS is not being presented as a nec-

7This claim should be interpreted with the understanding that these quantities are not
exactly equal and that they only serve to approximate the true behavior of the relevant
physical degrees of freedom in K.
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essary or sufficient condition for reductionM in cases where two dynamical
systems sharing a time parameter are purported to describe the same phys-
ical system (although I suspect that it does serve to characterize most such
instances). It is not being put forward as a sufficient condition because, if the
quantity B(xl) in the low-level model is supposed to stand in as the low-level
model’s surrogate for xh, one should expect it to mimic xh’s behavior in ways
other than through its dynamical evolution - for example, through its sym-
metry transformation properties. This point is discussed further in Section 6.
ReductionDS is also not being put forward as a necessary condition in order to
leave open the possibility that there might be other ways in which dynamical
systems models that share a time parameter and describe the same physical
system may relate to each other so as to facilitate the kind of subsumption
required of reduction. 8 Rather, the relation specified by reductionDS is being
suggested here as a template for reduction that is useful for the treatment of a
wide range of examples in this class of cases. Moreover, it suggests a strategy
for reduction in some inter-model relations that are not as yet well-understood
(e.g., between models of non-relativistic quantum mechanics and interacting
quantum field theory, both of which can be formulated as dynamical systems
using Schrodinger picture formulations) as well as suggesting extensions to
inter-model reduction involving other kinds of model.

4.2 Reduction as a Three-Place Relation

I wish to address a concern about DS reduction that may occur to some readers:
specifically, that given any two dynamical systems models in which the low-
level state space has at least the same cardinality as the high-level one, the
criteria for DS reduction will be satisfied trivially if we allow δ to be sufficiently
large, and τ and dh to be sufficiently small. This concern can be addressed by
highlighting the fact that it is not just any values of δ, τ and dh are consistent
with the criteria for DS reduction; rather, these parameters are constrained by
the nature of the fit between the model Mh and the behavior of the system K
itself. Recall that the parameter δ serves to characterize the degree of accuracy
with which Mh tracks the behavior of K; τ characterizes the timescales over

8Assuming that the Everett interpretation is an empirically viable formulation of quan-
tum mechanics, the reduction of classical Newtonian models to quantum Everettian models
in the context of certain classically behaving systems will require reference to the branching
structure of the quantum state in Everett’s theory. In this case, as in the cases considered
here, reduction concerns two dynamical systems models (a classical Hamiltonian model and
a model specifying the unitary evolution of the quantum state) sharing a time parameter.
However, unlike the cases considered here, the quantum-mechanical quantity that co-refers
with the phase space point in the classical model is not a function of the whole low-level
state, but only of some particular component associated with one particular branch of that
state that emerges dynamically through decoherence (where the branch in turn corresponds
to one particular “world” in the Everettian Many Worlds picture). Reductions such as this,
in which the low-level model describes a multiverse that emerges from the dynamics, are
not included in the present analysis and require separate treatment.
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which it does so; dh characterizes the set of initial states for which Mh succeeds
in tracking the system’s behavior within this timescale and margin of error.
Determining the values of these parameters is therefore an empirical matter,
to be assessed on the basis of the observed fit between the high-level model
and system. 9 Once we have fixed these parameters - or ranges of possible
values for them - the task of assessing whether the formal requirements of
DS reduction are met for a given pair of models become a question purely of
mathematics. Moreover, once these parameters have been set, the criteria for
DS reduction represent a highly non-trivial constraint on the mathematical
relationship between the two models.

It should be emphasized here that the two models Mh and Ml by them-
selves do not provide us with sufficient information to assess whether the re-
quirements for DS reduction are met between them. A third element - namely,
the system itself, and more specifically a comparison of the system’s behavior
with the behavior prescribed by Mh - is needed in order to assess whether
the criteria for DS reduction are satisfied. This should come as no surprise
since reductionM requires that the low-level model dovetail structurally with
the high-level model only in those circumstances where the high-level model
“works” at tracking the behavior of the system K. And, of course, the question
as to what, precisely, these circumstances are is an empirical one requiring
reference to the system itself.

The criteria for DS reduction reflect a more general approach to reduc-
tion in which reduction is, in a certain sense, regarded not as a two place
relation between high- and low-level descriptions, but as a three-place relation
between high-level description, low-level description and that portion of the
physical world that both represent. This follows naturally from the particu-
lar construal of “reduction” adopted here, which requires that the low-level
description subsume the domain of application of the high-level description;
in order to determine what this domain of application is, it is necessary to
consider not only the descriptions themselves, but the quality and scope of
agreement between the high-level description and the portion of the world it
is supposed to represent.

4.3 “Differential” Conditions for DS Reduciton

Assume that the dynamics of the high- and low-level models are specified by
first-order differential equations of the form (2), so that dxh

dt
= fh(x, t) and

9Having said this, it is also important to acknowledge that it may not always be a simple
matter to assess the precise parameters of agreement between our models and the systems
they represent. Nevertheless, it is often possible at the very least to place empirically
determined bounds on δ, τ and dh. For example, we know that current models of quantum
field theory will likely cease to track the dynamical behavior of systems they represent for
initial states of momentum near the Planck scale. We do not expect any successor to QFT
to dovetail with the theory’s prescriptions for the behavior of states in this domain.
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dxl
dt

= fl(x, t).
10 Then it is possible to state a stronger, “differential” version

of (4) that requires the low-level quantity B(xl) to approximately satisfy the
high-level equations of motion. Making the variable substitution x′h ≡ B(xl),
we can write this requirement compactily as

dx′h
dt
≈ fh(x

′
h, t) (5)

or more explicitly as,

dB (xl (t))

dt
≈ fh

(
B
(
xl(t)

)
, t

)
. (6)

If this condition holds over timescale τ and the margin of error characterizing
the approximate equality in (6) is η, then condition (4) will be satisfied over
timescale τ and within margin of error 2δ ≡ ητ . 11 As we will see in the
next section, in typical cases, the approximate equality (6) will continue hold
only as long as xl(t) remains in some restricted domain d′l ⊂ Sl. Also, since
the validity of the relation (6) hinges on the behavior of B (xl (t)), which in
turn depends on the behavior of xl(t), which in turn depends on the low-level
dynamical equations of motion, the condition (6) should be deduced from the
low-level dynamics, together with the state restriction xl ∈ d′l.

4.4 DS Reduction as a Special Case of Local Nagel/Schaffner
Reduction

Recall that global Nagel/Schaffner reduction, described in Section 2, distin-
guishes four ‘theories’: a low-level theory Tl, a high-level theory Th, an “im-
age” theory T ∗h , and an “analogue” theory T ′h. T ∗h is formulated in terms of
the concepts of Tl and deduced directly from Tl, typically for some restricted
boundary or initial conditions. T ′h is then obtained from T ∗h by straightfor-
ward bridge principle substitution, and is formulated in terms of the concepts
of Th. If the reduction is successful, T ′h will be “strongly analogous” to Th,
where strong analogy signifies approximate agreement of some sort. DS reduc-
tion, if effected through proof of the differential condition described in Section
4.3, follows essentially the same series of steps, but with models rather than
theories.

By analogy with the four “theories” of global Nagel/Schaffner reduction,
in DS reduction one has a low-level model Ml, a high-level model Mh, an
“image model” M∗

h and an “analogue model” M
′

h. The image model M∗
h is

formulated using elements of the model Ml - that is, in terms of mathematical
structures defined on Ml’s state space - and can be deduced from Ml solely on

10Where, recall, ∂
∂tDh(xh0, t) = fh(Dh(xh0, t)) and ∂

∂tDl(xl0, t) = fl(Dl(xl0, t))
11To see this, integrate both sides of (6) from t = 0 up to any time t less than τ , employing

the substitution fh(B(xl(t))) = ∂
∂tDh(B(xl0), t), the fact that B(Dl(xl0, 0)) = B(xl0) =

Dh(B(xl0), 0), and the fact that xl(t) = Dl(xl0, t).
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the basis of a restriction to a particular domain of states in Sl. Its dynamics
are given by the relation,

“Image Model” Dynamics:

d

dt
B
(
xl(t)

)
≈ fh

(
B
(
xl(t)

)
, t
)

(7)

which holds for xl in some domain d′l ⊂ Sl. Note that this relation approxi-
mately takes the same form as the high-level equation of motion dxh

dt
= fh(xh, t),

but with xh replaced by its counterpart B(xl) in the low-level model. Recall
from Section 4.3 that satisfaction of the image model dynamics within ap-
propriate margins suffices to ensure satisfaction of the condition (4). The
analogue model M

′

h is then obtained from the image model through the bridge
map substitution,

Bridge Map Substitution:

x′h ≡ B(xl) (8)

and the analogue dynamics are specified by the relation,

“Analogue Model” Dynamics:

dx′h
dt
≈ fh(x

′
h, t). (9)

Note that this dynamical equation is identical to the high-level equation of
motion, apart from the approximate nature of the given equality. The domain
of applicability of this equation within Sh is the image domain B(d′l). Note that
the expression B(xl), which occurs in the image model, is an expression built
from structures within the low level model Ml - in this sense, the image model
is formulated in the mathematical ‘language’ of the low-level model. On the
other hand, the more condensed notation of the analogue model conceals the
detailed construction of x′h from quantities in the low-level model Ml, regarding
x′h simply as a point in Sh rather than as a quantity constructed from elements
of Ml; in this sense, one may view the analogue model as formulated in the
mathematical ‘language’ of the high-level model. For reduction to take place,
the analogue model M ′

h must be “strongly analogous” to the high level model
Mh. In DS reduction, the relationship of strong analogy is unambiguous, and
specifically requires that

‘Strong Analogy’ :
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∣∣x′h(t)− xh(t)∣∣h < 2δ ∀ 0 ≤ t ≤ τ, (10)

where τ again is the reduction timescale and the measure of approximation
between the analogue and high-level dynamics is provided by the norm | ◦ |h
on the high-level state space. Note that this “strong analogy” claim is just the
condition (3) rewritten using bridge map substitution x′h(t) ≡ B

(
Dl(xl0, t)

)
and the definition xh(t) ≡ Dh

(
B(xl0), t

)
.

5 Examples of DS Reduction

In this section, I show that the conditions for DS reduction are satisfied by a
range of different model pairs. I do so specifically by showing that the relation
(6) holds for a certain choice of bridge map and a certain domain of states in the
low-level state space, offering qualitative remarks concerning the timescale over
which the relation (6) continues to hold. My presentation of each example will
follow a common outline: a. specification of the state spaces and dynamical
equations of the two models; b. specification of the bridge map between the
models; c. specification of the domain d′l where Eq. (6) holds between the
models; d. statement of the condition (6) for the particular pair of models
being considered; e. restatement of this condition, in the form (5), which
more directly resembles the high-level dynamical equation; f. discussion of
factors affecting the timescale on which (6) holds. Where necessary, proof of
(6) is deferred to the Appendix.

5.1 CM/QM

Let the high-level model Mh be a model of classical mechanics whose state
space is some N -particle, 6N -dimensional phase space Sh ≡ ΓN and whose
dynamics Dh are given by the solutions to the Hamilton equations (dX

dt
, dP
dt

) =

(∂H
∂P
,−∂H

∂X
), with H = P 2

2M
+ V (X). In the notation of Section 4.3, we have

xh ≡ (X,P ) and fh(xh) ≡ (∂H
∂P
,−∂H

∂X
) = ( P

M
,− ∂V

∂X
).

Let the low-level model Ml be a model of non-relativistic quantum me-
chanics whose state space is some N -particle Hilbert space Sl ≡ HN and
whose dynamics Dl are given by the solutions to the Schrodinger equation

i∂|ψ〉
∂t

= Ĥ|ψ〉, with Ĥ = P̂ 2

2M
+ V (X̂). In the notation of Section 4.3, we have

xl ≡ |ψ〉 and fl(xl) ≡ −iĤ|ψ〉.
Consider the function B : HN → ΓN from the low-level to the high-level

state space that maps a quantum state into the phase space point associated
with the expectation values of position and momentum in this state,

B(xl) ≡ (〈ψ|X̂|ψ〉, 〈ψ|P̂ |ψ〉) = (〈X̂〉, 〈P̂ 〉). (11)

Consider further the domain of narrow wave packet states:
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d′l ≡ {|ψ〉 ∈ HN ||ψ〉 = |q, p〉 for some q, p ∈ ΓN}, (12)

where |q, p〉 denotes a narrow wave packet with average position q and average
momentum p, and the required standard of narrowness in X is defined relative
to the scale of spatial variation of the potential V . On the basis of the low-level
Schrodinger dynamics, one can show that for |ψ〉 in d′l, the relation (6) holds
relative to this particular case, so that the quantity associated with the bridge
map approximately satisfies the high-level Hamilton equations:

d

dt
(〈ψ|X̂|ψ〉, 〈ψ|P̂ |ψ〉) ≈

(
∂H

∂P

∣∣∣∣
〈ψ|X̂|ψ〉,〈ψ|P̂ |ψ〉

,−∂H
∂X

∣∣∣∣
〈ψ|X̂|ψ〉,〈ψ|P̂ |ψ〉

)
=

(
P

M

∣∣∣∣
〈P̂ 〉
,−∂V (X)

∂X

∣∣∣∣
〈X̂〉

)
,

(13)

or, more compactly, employing the variable substitutions (X ′, P ′) ≡ (〈ψ|X̂|ψ〉, 〈ψ|P̂ |ψ〉),

d

dt
(X ′, P ′) ≈

(
∂H

∂P

∣∣∣∣
X′,P ′

,−∂H
∂X

∣∣∣∣
X′,P ′

)
=

(
P

M

∣∣∣∣
P ′
,−∂V (X)

∂X

∣∣∣∣
X′

)
. (14)

This claim follows straightforwardly from Ehrenfest’s Theorem, which states

that d〈P̂ 〉
dt

= −〈 ˆ∂V (X)
∂X
〉, from the fact that d〈X̂〉

dt
= P̂

M
, and from the well-

known result that for wave packets whose position-space width is narrow
by comparison with the characteristic length scales on which V (X) varies,
d〈P̂ 〉
dt
≈ −∂V (X)

∂X

∣∣
〈X̂〉 [24].

On timescales where wave packets remain in d′l, the relation (13) ensures
that quantum expectation values of position and momentum approximately
satisfy the classical dynamics of the high-level model, and that (4) is satisfied.
These timescales in turn will depend on two general factors: 1) the maximum
spread in position and momentum of wave packets allowed by the definition of
d′l, which in turn will depend on the required accuracy of the approximation in
(13) and on the scale of spatial variation of the potential V ; 2) the dynamics of
the low-level model, and in particular the mass M and the strength of chaotic
effects associated with the Hamiltonian H. In general, the larger M is, the
slower wave packets inHN will tend to spread; moreover, it is typically the case
that the smaller the Lyapunov exponent characterizing chaotic divergences of
trajectories in the classical phase space of the system, the slower the rate of
spreading of wave packets in HN [36]. 12

12I should note that the low-level model in this case will not suffice to model macroscopic
systems like the center of mass of a planet or a baseball, since any realistic quantum model
of such a system must take account of the system’s interaction with its environment and, in
particular, the effects of decoherence (the reduction between quantum and classical models
of such systems is a more intricate matter, which I will not consider here). However, in
smaller systems like large molecules, effects of decoherence can often be neglected and the
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5.2 NRQM/RQM

Let the high-level model Mh be a model of nonrelativistic quantum mechanics
of a spin-1/2 particle whose state space is the Hilbert space of 2-spinors Sh ≡
HP

13 and whose dynamics Dh are given by the solutions to the Pauli equation,

i ∂
∂t
φα(x, t) =

{
1

2m
[σ · (p̂− qA(x))]2 + qV (x)

}αβ
φβ(x, t), where φα(x, t) are 2-

spinor functions on 3-D space, α, β = 1, 2, σi are the Pauli matrices, m is the
particle’s mass, q is its electromagnetic charge, and A(x) and V (x) are fixed
background electromagnetic potentials. 14 In the notation of Section 4.3, we
have xh ≡ φα(x, t) and

fh(xh) ≡ −i
{

1
2m

[σ · (p̂− qA(x))]2 + qV (x)
}αβ

φβ(x, t). 15

Let the low-level model Ml be a model of relativistic quantum mechanics
for a spin-1/2 particle whose state space is the Dirac Hilbert space of 4-spinors
Sl ≡ HD and whose dynamics Dl are given by the solutions to the Dirac
equation i ∂

∂t
ψa(x, t) =

[
α · (−i∇ − q ~A(x)) + βm + qV (x)

]ac
ψc(x, t), where

a = 1, 2, 3, 4 and likewise for b and c, where repeated spinor indices have been
summed over, αi and β are the Dirac matrices, m is the mass of the particle,
q is its electromagnetic charge, and A(x) and V (x) are fixed background elec-
tromagnetic potentials. In the notation of Section 4.3, we have xl ≡ ψa(x, t)

and fl(xl) ≡ −i
[
α · (−i∇− q ~A(x)) + βm+ qV (x)

]ac
ψc(x, t). 16

Consider the function B : HD → HP from the low-level to the high-level
state space given by

B(xl) ≡ eimtPα
a ψ

a(x, t), (15)

where Pα
a is the projector onto the subspace of the 4-spinor space corresponding

to the upper two components of any spinor. Because of the time-dependent
factor eimt, this bridge map may seem to violate the requirement that bridge
maps not depend explicitly on time. However, the violation is only apparent

evolution of the molecule’s center of mass in some cases can be accurately described by the
unitary evolution of a pure state (“bucky ball” interference experiments with large molecules
have shown this explicitly, as discussed, for example, in [32], Ch. 6). The relatively large
mass of such molecules by comparison with smaller particles like electrons, protons and
neutrons slows the rate at which pure state wave packets spread, thereby allowing narrow
wave packets to maintain their approximately classical evolutions over longer timescales in
these systems. On such timescales, both the classical and quantum models are adequate to
describe the motion of the molecule’s center of mass to within a certain reasonable margin
of error.

13Where the “P” is for “Pauli.”
14Unless explicitly stated otherwise, I employ the Einstein summation convention over

repeated indices throughout.
15 The reader should note that for purposes of concision, I am abusing notation here,

since the state xh is not properly described by the components φα(x, t), but rather by the
expression xh ≡ |φ〉 =

∑
α

∫
dx φα(x, t) |xα〉, where |xα〉 is a state of position x and spin

α (say, in the z-direction). Likewise, the expression for fh(xh) employs a similar abuse of
notation, as does my notation describing the low-level relativistic Dirac model.

16As in the high-level model, the reader should note the abuse of notation for purposes of
concision.
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since the state space is in fact the projective Hilbert space, and multiplication of
a Hilbert space vector in either the high-or low-level model by an overall phase
(whether time dependent or not) does not affect the projective representation
of the state. Now consider the domain of low-momentum 4-spinors,

d′l =

{
ψa(x) ∈ HD

∣∣∣∣ψa(x) =
∑
i=1,2

∫ µ

0

d3k ψ̃i(k)uai (k)e−ikx,
µ

m
<< 1

}
, (16)

where uai (k) are positive energy eigenstates of the Dirac Hamiltonian indexed
by momentum k and the spin i, and the upper limit µ on the momentum
integral imposes the restriction to low-momentum states. On the basis of
the low-level Dirac dynamics, one can show that for ψa(x) ∈ d′l, the relation
(6) holds for the given bridge map and models, so that B(xl) in this case
approximately satisfies the high-level Pauli equation:

∂

∂t

(
eimtPα

a ψ
a(x, t)

)
≈ −i

{
1

2m
[σ · (−i∇− qA(x))]2 + qV (x)

}αβ (
eimtP β

a ψ
a(x, t)

)
(17)

or, more compactly, employing the variable substitution φ
′α(x, t) ≡ eimtP β

a ψ
a(x, t),

∂

∂t
φ

′α(x, t) ≈ −i
{

1

2m
[σ · (−i∇− qA(x))]2 + qV (x)

}αβ
φ

′β(x) (18)

for all spatial positions x (not to be confused with the high-level state xh
or the low-level state xl). Proof of this relation can be found in [19], or in
most good textbooks on relativistic quantum mechanics, such as [24]. The
timescales on which ψa(x, t) remains in d′l will depend primarily on the choice
of background fields A(x) and V (x); the domain d′l will be preserved as long
as these background fields do not transfer significant amounts of momentum
(that is, on the order of m) to the spinor field.

5.3 NRQM/RQFT

Let the high-level model Mh be model of N free spinless particles in non-
relativistic quantum mechanics whose state space is some N -particle Hilbert
space Sh ≡ HN and whose dynamics Dh are given by the solutions to the
non-relativistic Schrodinger equation for N free particles all with mass m:
i ∂
∂t
ψ(x1, ..., xN , t) = −

∑N
i=1

1
2m
∇2
iψ(x1, ..., xN , t). In the notation of Section

4.3, we have xh ≡ ψ(x1, ..., xN , t) and fh(xh) ≡ i
∑N

i=1
1

2m
∇2
iψ(x1, ..., xN , t).

17

Let the low-level model Ml be a model of a free massive scalar quantum
field in relativistic quantum field theory whose state space is the free-particle

17I employ the same abuse of notation here described in the footnotes of the previous
section.
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Fock space of Klein-Gordon quantum field theory, Sl ≡ FKG, and whose dy-
namics Dl are given by the solutions to the Schrodinger equation for a free

Klein-Gordon quantum field theory, i ∂
∂t
|Ψ〉 = 1

2

∫
d3x

[
π̂2(x) +

(
∇φ̂(x)

)2

+m2φ̂2(x)

]
|Ψ〉,

where φ̂(x) is the Hilbert space operator associated with the scalar field, and
π̂(x) the Hilbert space operator associated with its conjugate momentum.
Using the usual expansions of φ̂(x) and π̂(x) in terms of creation and an-
nihilation operators â†k and âk, the Schrodinger equation can be re-written,

i ∂
∂t
|Ψ〉 =

(∫
d3k

(2π)3
Ekâ

†
kâk + C

)
|Ψ〉, where Ek ≡

√
k2 +m2 and C signifies a

constant (associated with the vacuum energy) that diverges with the cutoff of
the theory. In the notation of Section 4.3, we have xl ≡ |Ψ〉 and

fl(xl) ≡ −i1
2

∫
d3x

[
π̂2(x) +

(
∇φ̂(x)

)2

+m2φ̂2(x)

]
|Ψ〉 =

[∫
d3k

(2π)3

(
Ekâ

†
kâk + C

)]
|Ψ〉.

Consider the function B : FKG → HN from the low-level to the high-level
state space given by

B(xl) ≡ ei(Nm+C)t〈0|φ̂(x1)...φ̂(xN)|Ψ〉. (19)

As in the previous example, the requirement that the bridge map not depend
explicitly on time is preserved despite the exponential ei(Nm+C)t since it is
projective Hilbert space rather than the Hilbert space itself that represents
possible physical states. Now, consider the domain of states in the low-level
space consisting of N -particle states of momenta k1,...,kN much less than m:

d′l =

{
|Ψ〉 ∈ HKG

∣∣∣∣|Ψ〉 =

∫ µ

0

d3k1...d
3kN ψ̃(k1, ..., kN)â†kN ...â

†
k1
|0〉, µ

m
<< 1

}
.

(20)
On the basis of the low-level free RQFT dynamics, one can show that for |Ψ〉
in d′l, the relation (6) holds relative to this particular case, so that,

i
∂

∂t

(
ei(Nm+C)t〈0|φ̂(x1)...φ̂(xN)|Ψ〉

)
≈ −

N∑
i=1

1

2m
∇2
i

(
ei(Nm+C)t〈0|φ̂(x1)...φ̂(xN)|Ψ〉

)
.

(21)
or, more compactly, employing the variable substitution ψ′(x1, ..., xN) ≡ ei(Nm+C)t〈0|φ̂(x1)...φ̂(xN)|Ψ〉,

i
∂

∂t
ψ′(x1, ..., xN) ≈ −

N∑
i=1

1

2m
∇2
iψ
′(x1, ..., xN). (22)

The proof of this relation is given in the Appendix. If |Ψ〉 begins in d′l at t = 0,
the relation (21) will be preserved for all time since there are no interactions
that might result in a change of particle number or a transfer of momentum
between particles in the low-level state space. 18

18However, it is important to note that scalar quantum field theories such as the one
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As an extension of this example, one might consider the reduction of
the non-relativistic model considered here to a model of interacting relativis-
tic quantum field theory - for example, massive scalar quantum field theroy
with a φ̂3 or φ̂4 interaction. In such a case, we would wish to underwrite
the non-relativistic quantum description of N low-momentum particles widely
separated in space on the basis of the interacting quantum field theory. This
is a substantially more difficult task than in the case of free quantum field
theory, for the question of precisely how to identify those QFT states of the
interacting theory that behave as N -particle states, or of whether one can
even do this, remains a matter of some dispute in the foundations of quantum
field theory [34], [17]. Nevertheless, one expects that the reduction, if it can
be effected, will follow the same basic pattern as in the case discussed here,
except that the domain of states in the field theory for which the bridge map
function approximately satisfies the non-relativistic equation of the high-level
model will likely impose a restriction not only to states of low momentum, but
also to states in which the N particles are in some quantifiable sense widely
separated in space (so that they do not interact).

5.4 NM/SR

Let the high-level model Mh be a model of Newtonian mechanics whose state
space is the non-relativistic phase space Sh ≡ ΓNR of a single massive charged
particle in a background electromagnetic field and whose dynamics Dh are
given by the solutions to the corresponding non-relativistic Hamilton equa-

tions, (dX
dt
, dP
dt

) = (∂HNR
∂P

,−∂HNR
∂X

), with HNR = (P−qA(X))2

2M
+ qφ(X), where q is

the particle’s charge, M its mass, and φ(X) and A(X) external electrostatic
and magnetic vector potentials, respectively. In the notation of Section 4.3,

xh ≡ (X,P ) and fh(xh) ≡ (∂HNR
∂P

,−∂HNR
∂X

) =
(
P−qA
M

, q (Pi−qAi)
M

∂Ai
∂X
− q ∂φ

∂X

)
. Us-

ing a number of vector identities and the definitions of the electric and magnetic
fields in terms of the potentials φ and A, one can show that combined, these two
equations yield the non-relativistic Lorentz Force Law: M d2X

dt2
= qE + qv×B.

Let the low-level model Ml be a model of relativistic classical mechanics
whose state space is the relativistic phase space Sl = ΓSR of a single relativistic
massive particle in a background electromagnetic field and whose dynamics Dl

are given by the solutions to the corresponding relativistic Hamilton equations,
dx
dt

= ∂HSR
∂p

, dX
dt

= −∂HSR
∂x

, with HSR =
√

(p− qA)2 +M2 + qφ, where q is the

particle’s charge, M its mass, and φ(x) and A(x) external electrostatic and

considered here are more a pedagogical tool for illustrating the basic principles of quantum
field theory than they are a description of any real physical system that would also be well-
described by a model of non-relativistic quantum mechanics. Thus, it is unlikely that there
is any real system K to which both models apply. However, the example is nevertheless
instructive in that it does serve to illustrate the sort of inter-model relation that satisfies the
requirements of DS reduction. Moreover, this sort of reduction between quantum-mechanical
and quantum-field-theoretic models might be extended to more realistic QFT models.
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magnetic vector potentials, respectively. In the notation of Section 4.3, we have

xh ≡ (x, p) and fh(xh) ≡ (∂HSR
∂p

,−∂HSR
∂x

) =
(
p−qA
γM

, q (pi−qAi)
γM

∂Ai
∂x
− q ∂φ

∂x
,
)

. Using

a number of vector identities and the definitions of the electric and magnetic
fields in terms of the potentials φ and A, one can show that, combined, these
two equations yield the relativistic Lorentz Force Law: d

dt
(γMv) = qE+qv×B.

Consider the function B : ΓSR → ΓNR from the low-level to the high-level
state space that identifies the point (X,P ) in ΓNR with with the point (x, p)
in ΓSR, so that (X,P ) ≡ (x, p):

B(xl) ≡ (x, p). (23)

Note that the bridge map in this case is trivial in a sense since it maps the rel-
ativistic phase space point into the non-relativistic phase space point with the
same position and momentum (though it should be noted that the dynamics of
the two models will relate momentum and velocity differently). Now consider
the domain,

d′l ≡ {(x, p) ∈ ΓSR| =
p− qA(x)

γm
<< 1}, (24)

where v = p−qA
γm

is the velocity of the particle (this follows from the well-
known relationship between relativistic canonical momentum and velocity, p =
γmv + qA(x)). 19

On the basis of the low-level relativistic dynamics, one can show that
for (x, p) in d′l, the relation (6) holds relative to this particular case, so that
the quantity associated with the bridge map (namely, position and momen-
tum in the relativistic phase space) approximately satisfies the nonrelativistic
Hamilton equations:

d

dt
(x, p) ≈

(
∂HNR

∂P

∣∣∣∣
x,p

,−∂HNR

∂X

∣∣∣∣
x,p

)
(25)

or, employing the variable substitutions (X ′, P ′) ≡ (x, p),

d

dt
(X ′, P ′) ≈

(
∂HNR

∂P

∣∣∣∣
X′,P ′

,−∂HNR

∂X

∣∣∣∣
X′,P ′

)
. (26)

The proof of this relation is straightforward and simply invokes the fact that
for v << 1, γ ≡ 1√

1−v2 ≈ 1. The relation (25) will continue to hold as long as

(x, p) remains in d′l - that is, as long as v << 1. The timescales on which this
holds, in turn, are likely to depend on the initial value of (x, p) in d′l and on
the strength and form of the fields φ(x) and A(x).

19Note that I have set c = 1, and were we to include factors of c in our analysis, we would
see that the domain restriction amounts to the requirement that v

c << 1.
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5.5 Open-Subsystem NRQM/Closed-System NRQM

Let the high-level model Mh be a quantum-mechanical model of an open sys-
tem S whose state space Sh = D(HS) is the space of density operators on S’s
Hilbert space HS, and whose dynamics Dh is given by solutions to the density
matrix master equation idρ̂S

dt
= [ĤS, ρ̂S] − iΛ[X̂, [X̂, ρ̂S]]. In the notation of

Section 4.3, we have xh ≡ ρ̂S and fh(xh) ≡ −i[ĤS, ρ̂S] − Λ[X̂, [X̂, ρ̂S]]. Let
us assume here that the density matrix and its dynamics are defined inde-
pendently of and without reference to any lower-level pure state description.
20

Let the low-level model Ml be a model of non-relativistic quantum me-
chanics in the closed system SE, whose state space Sl ≡ HS⊗HE is the tensor
product space of S’s Hilbert space and the Hilbert space of its environment E;
let the dynamics Dl of the model be given by solutions to the Schrodinger equa-

tion i d
dt
|ψ〉 =

(
ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI

)
|ψ〉 for the closed system SE; the

system Hamiltonian ĤS, the environment Hamiltonian ĤE, and the interaction
Hamiltonian ĤI will not be precisely specified here, as the following remarks
apply for a wide range of forms for these operators and a wide range of sys-
tems. For examples of detailed models, like the well-known Caldeira-Leggett
model, in which a precise form for these Hamiltonians is specified, as well as
for a detailed derivation of an approximate high-level density matrix master
equation of the form specified in Mh from these models, the reader may wish
to consult [32], Ch.’s 4,5 and [21], Ch.3. In the notation of Section 4.3, we have

in this case that xl ≡ |ψ〉 and fl(xl) ≡ −i
(
ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI

)
|ψ〉. 21

Now, consider the function B : HS ⊗ HE → D(HS) from the low-level
to the high-level state space given by taking the trace over the environment of
the pure-state density operator associated with the state |ψ〉 ∈ HS ⊗HE:

B(xl) ≡ TrE(|ψ〉〈ψ|). (27)

The relevant domain d′l ⊂ HS ⊗HE in this particular case is harder to specify
than in the earlier examples. However, it is generally assumed to involve the
restriction to states in which the temperature of the environment is high in
comparison to certain other relevant energy scales characterizing the system
and environment; see [32], Ch.5.

On the basis of the low-level Schrodinger dynamics for SE - assuming any
among a range of suitable low-level Hamiltonians - it widely thought that one
can show that for |ψ〉 in some restricted domain d′l, the quantity TrE(|ψ〉〈ψ|)
associated with the bridge map approximately satisfies the high-level density
matrix master equation, thereby also satisfying the condition (6):

20That is, let us forget momentarily about the association between the density matrix of
S and the trace over the environment of the pure state density matrix of some larger system
SE.

21Thanks to David Wallace for this example.
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i
dTrE ρ̂SE

dt
≈ [ĤS, T rE ρ̂SE]− iΛ[X̂, [X̂, T rE ρ̂SE]], (28)

or, more compactly, employing the variable substitution ρ̂′S ≡ TrE(|ψ〉〈ψ|),

i
dρ̂′S
dt
≈ [ĤS, ρ̂

′
S]− iΛ[X̂, [X̂, ρ̂′S]]. (29)

For a derivation of this equation and a discussion of the various assumptions
on which it relies, see [32], Ch. 4. As with the matter of specifying the domain
d′l, the matter of specifying precisely the timescale on which this relation holds
is more complicated than in the other examples considered; however, existing
analyses strongly suggest that the high-level equations should hold to good ap-
proximation over macroscopically long timescales, as observed in experimental
applications of density matrix master equations like the one considered here.

5.6 “Macro” CM/“Micro” CM

Let the high-level model Mh be a non-relativistic model of classical mechan-
ics prescribing the Newtonian evolution of some N centers of mass (e.g. of
planets in the solar system) interacting via some time-independent potential
V dependent only on the distance between the centers of mass (e.g. a New-
tonian gravitational potential). The state space will be a 6N -dimensional
phase space Sh ≡ Γmacro and the dynamics Dh will be given by the solu-
tions to the Hamilton equations (dX

dt
, dP
dt

) = (∂Hmacro
∂P

,−∂Hmacro
∂X

), with Hmacro =∑N
i=1

P 2
i

2Mi
+ 1/2

∑
i 6=j V (Xi − Xj). In the notation of Section 4.3, we have

xh ≡ (X,P ) and fh(xh) ≡ (∂Hmacro
∂P

,−∂Hmacro
∂X

)

=
(
P1

M1
, ..., PN

MN
;− ∂

∂X1

∑
j 6=1 V (X1 −Xj), ...,− ∂

∂XN

∑
j 6=N V (XN −Xj)

)
.

Let the low-level model Ml also be a non-relativistic model of classical
mechanics whose state space Sl ≡ Γmicro is the phase space of some n point par-
ticles, where n > N , and whose dynamics Dl are given by the solutions to the

Hamilton equations (dx
dt
, dp
dt

) = (∂Hmicro
∂p

,−∂Hmicro
∂x

), with Hmicro =
∑n

i=1
p2i

2mi
+

1/2
∑

i 6=j v(xi − xj). In the notation of Section4.3, we have xh ≡ (X,P ) and

fh(xh) ≡ (∂Hmicro
∂p

,−∂Hmicro
∂x

)

=
(
p1
m1
, ..., pn

mN
;− ∂

∂x1

∑
j 6=1 v(x1 − xj), ...,− ∂

∂xn

∑
j 6=n v(xN − xj)

)
.

Now, consider a grouping of the n particles of the low-level model into
N sets, with each set corresponding to those particles contained in one of the
bodies whose center of mass is described by the high-level model. Let n1 be the
number of particles contained in the first body, n2 the number in the second,
and so on up to nN in the N th, where n1 + n2 + ... + nN = n. Given this
grouping, consider the function B : Γmicro → Γmacro from the low-level to the
high-level state space given by,
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B(xl) ≡
(∑ni

α1=1 mα1xα1∑n1

αi=1mα1

, ...,

∑nN
αN=1mαNxαN∑nN
αN=1 mαN

;

n1∑
α1=1

pα1 , ...,

nN∑
αN=1

pαN

)
. (30)

For notational convenience, define X ′i ≡
∑ni
αi=1mαixαi∑ni
αi=1mαi

and P ′i ≡
∑ni

αi=1 pαi .

Moreover, assume that Mi =
∑

αi
mαi and V (Xi − Xj) = ninj v(Xi − Xj),

where Mi and V are the masses and potential function of the high-level model.
Now consider the domain,

d′l =

{
(x, p) ∈ Γmicro

∣∣∣∣|xαi−X ′i| << Lv ∀ i ≤ i ≤ N and ∀ 1 ≤ αi ≤ ni

}
, (31)

where Lv characterizes the typical length scale over which v varies, determined
by v’s derivatives (see the Appendix for a more precise definition of LV ). On
the basis of the low-level “micro” Hamilton dynamics, one can show that for
(x, p) in d′l, the relation (6) holds relative to this particular case, so that the
quantity associated with the bridge map approximately satisfies the high-level
“macro” Hamilton equations, written out schematically as,

d

dt
(X ′, P ′) ≈

(∂Hmacro

∂P

∣∣∣∣
X′,P ′

,−∂Hmacro

∂X

∣∣∣∣
X′,P ′

)
=

(
P ′

M
,−∂V (X ′)

∂X ′

)
. (32)

Proof of this relation is given in the Appendix. 22 The timescale on which this
relation holds will depend on timescales on which the low-level initial condition
(x0, p0) remains in d′l as it evolves according to the low-level dynamics.

5.7 A Note on Limit-Based Approaches to Reduction

It is worth noting here that a number of the examples discussed in this section
- in particular, those discussed in Sections 5.2, 5.3, 5.4 and 5.6 - can in a certain
sense be cited as instances of limit-based reduction. All of these cases involve
domain restrictions of the form ε << 1 for some dimensionless parameter ε,
which, although they are not strictly speaking mathematical limits, call to
mind the sort of thing people often mean when they talk of one theory’s being
a limit or limiting case of another. I only wish to point out here that the
relations (4) and (6) offer a far more precise characterization of the common
structure that these various reductions possess, as well as of the structure they
possess in common with other cases, than does the claim that one model is
a limit or limiting case of another - a claim that, as we have seen, may be
interpreted in any number of ways.

22Note that variable substitutions have already been incorporated into this statement of
condition (6), as writing it out explicitly in terms of the variables of the low-level model
would be more cumbersome than illuminating in this case.
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6 Extending DS Reduction

In this section, I consider possible extensions of DS reduction, first to include
an analysis of the relations between symmetries of different dynamical systems
models and then to an analysis of the relation reductionM outside the class of
cases to which reductionDS applies.

6.1 DS Reduction and Symmetry

Given that B(xl) and xh serve to represent the same physical degrees of free-
dom (albeit within the context of different models), it is natural to ask whether
these two quantities share other physically relevant transformation properties
besides their dynamical evolution - in particular, their transformation proper-
ties under certain symmetry operations. More specifically, one can inquire as
to whether the sort of approximate commutation condition that holds between
the bridge map and the dynamical evolution of the two models extends to the
symmetries of the models, so that if Th(xh) is a symmetry of the high-level
model, there exists some symmetry Tl(xl) of the low-level model such that for
states xl in some subset d′′l ⊂ d′l ⊂ Sl,

Th(B(xl)) ≈ B(Tl(xl)). (33)

We can perform a cursory initial examination of the examples considered in
Section 5 to check whether such a condition holds in these cases. Consider first
the case presented in Section 5.1, concerning the relation between quantum and
classical dynamical systems models; it is straightforward to see that rotations
of the quantum state in Hilbert space will induce rotations in the phase space
through the bridge map given there, and likewise for translations, reflections
and Galilean boosts. Similarly, regarding the relation between non-relativistic
and relativistic models of quantum mechanics considered in Section 5.2, it
can be shown that the action of a Lorentz boost on the 4-spinor space of the
relativistic model induces a corresponding Galilean boost on the 2-spinors of
the non-relativistic model when acting within the domain of low-momentum
4-spinors [19]. In the relation between the N-particle model of NRQM and
the model of free scalar quantum field theory discussed in Section 5.3, spatial
translations, rotations and reflections acting on the state of the RQFT model
induce corresponding transformations in the non-relativistic model; it would be
interesting to see whether Lorentz boosts within the range of low-momentum
N -particle states in the QFT state space likewise induce approximate Galilean
transformations on the state in the NRQM model. In the example of Section
5.4 concerning the relationship between Newtonian and relativistic models of
classical mechanics, rotations, translations, and reflections on the relativistic
phase space all induce corresponding transformations on the non-relativistic
phase space; likewise, Lorentz boosts acting within the domain of low-velocity
states of the relativistic phase space induce transformations that approximate
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corresponding Galilean transformations on the non-relativistic phase space. In
the example of Section 5.5, a rotation on the pure state of the total closed sys-
tem SE should induce a corresponding rotation on the reduced density matrix
describing S, and likewise for translations and reflections. In the example of
Section 5.6, it is relatively straightforward to see that rotations, translations,
reflections and Galilean boosts acting on the micro-level state space all induce
corresponding transformations on the macro-level state space.

In all of these cases, it is also natural to ask whether the bridge map
respects the composition properties of the various symmetry transformations -
that is, whether the transformation induced via the bridge map by the compo-
sition of two symmetry transformations in the low-level model approximates
the composition of the corresponding transformations in the high-level model.
Without checking this explicitly in each case, it seems prima facie likely that
this condition (with appropriate qualifications) should hold in the model pairs
discussed in the above examples. What the preliminary considerations of this
subsection all suggest is that the relationship between B(xl) and xh is in fact
much richer and more comprehensive than is suggested merely by the similar-
ity of dynamical behavior discussed in Sections 4 and 5. Detailed elaboration
of these claims is postponed to a future article.

6.2 Extending DS Reduction to Other Types of Model

It is natural to ask which aspects of DS reduction can be extended to fixed-
system, inter-model reduction - what I have called reductionM - in cases out-
side the class of model pairs considered here - for example, in cases where
one or both of the models is not a dynamical system, or where the two dy-
namical systems do not naturally share a time parameter. It seems that at
least two aspects of DS reduction are likely to carry over to these cases: the
use of bridge maps and domain specificity. It also seems that the following
general Nagelian strategy employed in DS reduction may also apply in these
other cases: namely, to prove on the basis of the low-level model’s constraints
(dynamical or otherwise), together with a restriction to a certain subset in the
space of the low-level model, that the quantity associated with the bridge map
approximately satisfies the constraints of the high-level model; this amounts
to deriving a certain “image” of the high-level model’s constraints within the
framework of the low-level model; one can then employ bridge map substitu-
tions to write down an “analogue” form of these relations, which is “strongly
analogous” to the constraints imposed by the high-level model. As in the case
of DS reduction, one can interpret “strong analogy” in a precise sense if the
high-level model includes specification of a norm on the high-level space.
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7 Conclusion

I have argued against a general, if not always explicit, tendency in the litera-
ture on inter-theory relations in physics to conceive of inter-theoretic reduction
as an exclusively global affair - that is, as primarily a matter of deriving, in
a completely general way that is insensitive to the particularities of different
systems, the laws of one-theory from those of another. Taking a cue from cer-
tain authors primarily in the philosophy of mind literature, I have advocated
a more local approach to inter-theory reduction in physics that is sensitive
to such particularities. More precisely, I have argued that such an approach
should focus not on derivations directly between theories, but on derivations
that relate the particular models that the high- and low-level theories use to de-
scribe individual systems in the high-level theory’s domain. I have shown that
in the particular class of cases where both models of the system in question are
dynamical systems, this sort of fixed-system reduction between models follows
the main strategic prescriptions of Nagel/Schaffner reduction (suitably adapted
to the context at hand). I have also suggested in a preliminary way how these
prescriptions might be extended to fixed-system inter-model reduction in other
kinds of cases. Within the specialized context of reduction between dynamical
systems, I have shown that a particular mathematical relationship precisely
characterizes the manner in which the low-level model underwrites the suc-
cess of the high-level model across a wide range of cases. Moreover, I have
shown that while a number of these cases also might be cited as instances of
limit-based reduction, the criteria for DS reduction offer a much more precise
and comprehensive characterization of these cases than does the vague claim
that one model is a “limit” or “limiting case” of another. 23 While there is
still much work to be done in elaborating the local, model-based approach to
inter-theoretic reduction in physics described here - in particular, in examining
the relationship between the symmetries of different models, and in extending
this approach to fixed-system reduction involving other model-types - I hope
that the preceding analysis has served to underscore the value of analyzing
reduction first in specific cases and then expanding outward to see what gen-
eralities can be drawn, rather than demanding an unrealistically high level of
generality at the outset.

Acknowledgments: I would like to thank David Wallace, Simon Saunders,
Christopher Timpson, Jeremy Butterfield and John Norton for invaluable com-
ments on earlier drafts of this work, and Jos Uffink, Cian Dorr and David Al-
bert for helpful discussions. Thanks also to audiences in Munich, Pittsburgh
and Amersfoort, where earlier versions of this article were presented. This

23Whether it is possible to give a more precise meaning to such a claim that extends
across the range of examples considered here is not something I have the space to comment
on here. Suffice it to say that no existing formulations of the limit-based approach succeed
in avoiding the vagueness that has grounded my critique of this approach here.
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A Proof of Eq. (21)

A general state |Ψ〉 ∈ FKG in the low-level model can be expanded in the form

|Ψ〉 = ψ0|0〉+
∞∑
n=1

∫
d3k1...d

3kn ψ̃n(k1, ..., kn) â†kN ...â
†
k1
|0〉 (A-1)

where ψ0 ≡ 〈0|Ψ〉 and ψ̃n(k1, ..., kn) ≡ 〈0|âk1 ...âkN |Ψ〉. The QFT Schrodinger
equation for the low-level model straighforwardly entails that,

i
∂

∂t
ψ0 = Cψ0

i
∂

∂t
ψ̃n(k1, ..., kn, t) =

(
C +

√
|k1|2 +m2 + ...+

√
|kn|2 +m2

)
ψ̃n(k1, ..., kn, t) ∀n.

(A-2)

If we now restrict the state |Ψ〉 to lie in the domain d′ of low-momentum
N -particle states defined by Eq. (20), then we may make the approximation√
|ki|2 +m2 ≈ m+ 1

2m
k2
i . Within this domain and under this approximation,

Eq. (A-2) yields,

i
∂

∂t
ψ0 = 0

i
∂

∂t
ψ̃n(k1, ..., kN , t) ≈

(
C +Nm+

1

2m
k2

1 + ...+
1

2m
k2
N

)
ψ̃N(k1, ..., kN , t).

(A-3)

We can return the position representation ψn(x1, ..., xN , t) of N-particle states
using the expansion φ̂(x) =

∫
d3k

(2π)3
1

2Ek

(
âke

ikx + â†e−ikx
)
. Doing this, we get

ψn(x1, ..., xN , t) ≡ 〈0|φ̂(x1)...φ̂(xN)|Ψ〉 =
∫

d3k1
(2π)3

... d
3kN

(2π)3
1√

2Ek1
... 1√

2EkN
ψ̃N(k1, ..., kN , t)e

ik1x...eikNx.

Together with this expression, (A-3) entails,

i
∂

∂t
〈0|φ̂(x1)...φ̂(xN)|Ψ〉 ≈

(
C +Nm− 1

2m
∇2

1 − ...−
1

2m
∇2
N

)
〈0|φ̂(x1)...φ̂(xN)|Ψ〉

(A-4)
This in turn entails that,

i
∂

∂t

(
ei(Nm+C)t〈0|φ̂(x1)...φ̂(xN)|Ψ〉

)
≈ −

N∑
i=1

1

2m
∇2
i

(
ei(Nm+C)t〈0|φ̂(x1)...φ̂(xN)|Ψ〉

)
.

(A-5)
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B Proof of Eq. (32)

I prove the X- and P -components of the relation (32) separately. For the
X-components,

dX ′i
dt

=
d

dt

(∑
αi
mαixαi∑
αi
mαi

)
=

∑
αi
pαi∑

αi
mαi

=
P ′i
M ′

i

, (B-1)

where in the second equality I have used the low-level Hamilton equation
dxαi
dt

=
pαi
mαi

. For the P -components,

dP ′i
dt

=
d

dt

(∑
αi

pαi

)
= −

∑
αi

∂

∂xαi

∑
αj 6=αi

v(xαi − xαj)

≈ −
∑
αi

∑
αj 6=αi

∂

∂X ′i
v(X ′i −X ′j)

= − ∂

∂X ′i

(∑
j 6=i

ninjv(X ′i −X ′j)
)

(B-2)

= − ∂

∂X ′i

(∑
j 6=i

V (X ′i −X ′j)
)
. (B-3)

In going from the first to the second line I have used the low-level Hamil-

ton equation,
dpαi
dt

= − ∂
∂xαi

∑
αj 6=αi v(xαi − xαj). In going from the second

to third line, I have used the definition xαi ≡ X ′i + rαi and the fact that
∂v
∂xαi

∣∣
X′
i+rαi ,X

′
j+rαj

≈ ∂v
∂xαi

∣∣
X

′
i ,X

′
j

+ ∂2v
∂xαi∂xαi

∣∣
X

′
i ,X

′
j
rαi + ∂2v

∂xαj ∂xαi

∣∣
X

′
i ,X

′
j
rαj + ..., so

that if |rαi | is sufficiently small, all but the lowest order terms in the expansion
can be ignored and ∂v

∂xαi

∣∣
X′+r

≈ ∂v
∂xαi

∣∣
X′ . Define Lv to be the length scale (de-

termined by v’s derivatives) such that all higher-order terms in the expansion

can be neglected when |rαi | << Lv ∀αi. We can then rewrite
∂v(xαi−xαj )

∂xαi

∣∣
X′

as
∂v(X′

i−Xj)
∂X′

i
. In going from the third line to the fourth, I have used the

fact that under the approximation made in the previous step, v(X ′i − X ′j)
does not vary with changes in the index αi for fixed i, or in αj for fixed j,
so that

∑ni
αi=1

∂
∂X′

i
v(X ′i − X ′j) = niv(X ′i − X ′j) and

∑
αj 6=αj

∑ni
αi=1

∂
∂X′

i
v(X ′i −

X ′j) =
∑

j 6=i njniv(X ′i − X ′j). In the final step, I have used the assumption
V (Xi −Xj) = ninj v(Xi −Xj).
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