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Abstract

This paper develops a probabilistic reconstruction of the No Miracles Argu-
ment (NMA) in the debate between scientific realists and anti-realists. The goal
of the paper is to clarify and to sharpen the NMA by means of a probabilistic
formalization. In particular, we demonstrate that the persuasive force of the NMA
depends on the particular disciplinary context where it is applied, and the stability
of theories in that discipline. Assessments and critiques of “the” NMA, without
reference to a particular context, are misleading and should be relinquished. This
result has repercussions for recent anti-realist arguments, such as the claim that
the NMA commits the base rate fallacy (Howson, 2000; Magnus and Callender,
2004). It also helps to explain the persistent disagreement between realists and
anti-realists.
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1 Introduction

The debate between scientific realists and anti-realists is one of the classics of philoso-

phy of science, comparable to a soccer match between Brazil and Argentina. Realism

comes in different varieties, e.g., metaphysical, semantic and epistemological realism

(see Chakravartty, 2011, for a survey). In this paper, we focus on the epistemological

thesis that we are justified to believe in the truth of our best scientific theories, and that

they constitute knowledge of the external world (Boyd, 1983; Psillos, 1999, 2009). In

this view, the existence of a mind-independent world (metaphysical realism) and the

reference of theoretical terms to mind-independent entities (semantic realism) is usu-

ally presupposed—the real question concerns the epistemic status of our best scientific

theories.

A major player in this debate is the No Miracles Argument (NMA). It contends that

the truth of our best scientific theories is the only hypothesis that does not make the

astonishing predictive, retrodictive and explanatory success of science a mystery (Put-

nam, 1975, 73). If our best scientific theories did not correctly describe the world, why

should we expect them to be successful at all? The truth of our best theories is an ex-

cellent, and perhaps the only explanation of their success. Therefore, we should accept

the realist hypothesis: our best scientific theories are true and constitute knowledge of

the world.

It is not entirely clear whether the NMA is an empirical or a super-empirical ar-

gument. As an argument from past and present success of our best scientific theories

to their truth, it involves two major steps: the step from observed success to justified

belief in empirical adequacy, and the step from justified belief in empirical adequacy

to justified belief in truth (see Figure 1). The first of them is an empirical inference, the

second most probably not: ordinary empirical evidence cannot distinguish between

different theoretical structures that yield the same observable consequences.

Much philosophical discussion has been devoted to the second step of the NMA

(e.g., Psillos, 1999; Lipton, 2004; Stanford, 2006), which seems in greater need of a

philosophical defense. After all, the realist has to address the problem of underdeter-

mination of theory by evidence. But also the first step of the NMA is far from trivial,

and strengthening it against criticism is vital for the scientific realist. For instance,

Laudan (1981) has argued that there have been lots of successful, but non-referring

(and empirically inadequate) scientific theories. If Laudan were right, then the entire

NMA would break down, even if objections to the second step could be answered
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Figure 1: The structure of the NMA as a two-step argument from the empirical success of T
to its truth. In our model, we conceptualize the NMA as an argument for the first inference in
this figure, that is, for an inference from empirical success of T to its empirical adequacy.

successfully.

Such arguments do not only threaten full scientific realists, but also structural

realists (Worrall, 1989) and some varieties of anti-realism that stick out their neck.

One of them is Bas van Fraassen’s constructive empiricism (van Fraassen, 1980; Monton

and Mohler, 2012). Proponents of this view deny that we have reasons to believe that

our best scientific theories are literally true. However, they affirm that we are justified

to believe in the observable parts of our best theories. Thus they are also affected by

criticism and defense of the first step of the NMA.

Hence, the first step of the NMA does not draw a sharp divide between realists

and anti-realists. Rather, the debate takes place between those who derive epistemic

commitments from the success of science, and those who deny them. For convenience,

we stick to the traditional terminology and refer to the first group as “realists” and to

the second group as “anti-realists”.

The paper aims to show how the realist and anti-realist standpoints can be rec-

onciled with probabilistic rationality. First, we set up a simple probabilistic model of

the NMA and use it to underline a recent criticism by Colin Howson (2000, 2013) that

the NMA falls prey to the base rate fallacy (Section 2). We then develop a refined

probabilistic model of the NMA where this criticism is addressed, and where the sta-

bility of scientific theories and the existence of relevant alternatives are accommodated

(Section 3). By assigning a crucial role to the nature and history of the relevant sci-

entific discipline, this model allows for a more nuanced assessment of the NMA. The
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paper concludes with a short discussion of the scope of the NMA, and a plea for a

context-sensitive assessment of its validity (Section 4).

2 A Probabilistic No Miracles Argument

The NMA is sometimes understood as a general argument for believing in the truth of

our best scientific theories. In this paper, we restrict it to a particular scientific theory
T which is predictively and explanatorily successful in a certain scientific domain.

Since we only investigate arguments for the empirical adequacy of T, we introduce a

propositional variable H—the hypothesis that T is empirically adequate. See Figure 2

for a simple Bayesian network representation of the dependence between H and the

propositional variable S that represents the empirical success of T.

H S

Figure 2: The Bayesian Network representation of the impact of H—the empirical adequacy
of theory T—on the empirical success of T, denoted by S.

Expressed as a probabilistic argument, the simple NMA then runs as follows: S is

much more probable if T is empirically adequate than if it is not:

p(S|H)� p(S|¬H)

From Bayes’ Theorem, we can then infer

p(H|S) > p(H)

In other words, S confirms H: our degree of belief in the empirical adequacy of T
is increased if T is successful.1 Here, we have interpreted the above probabilities as

rational degrees of beliefs, and the NMA as proving an increase in degree of belief.

This subjective Bayesian interpretation of the NMA strikes us as natural. However, the

validity of the argument is not affected if an objective interpretation of probability is

adopted instead. This is the reason why we refer to the probabilistic rather than the

Bayesian NMA. We leave the preferred interpretation of probability to the reader’s

taste and do not consider this issue further.
1See Hartmann and Sprenger (2010) for an introduction to Bayesian epistemology with applications

to topics in philosophy of science, such as explicating degree of confirmation.

4



To the above argument, anti-realists object that the inequality p(H|S) > p(H) falls

short of establishing the realist claim. We are primarily interested in whether H is

sufficiently probable given S, not in whether S raises the probability of H. After all, the

increase in probability could be negligibly small. The result p(H|S) > p(H) does not

establish that p(H|S) is beyond a critical threshold, e.g., a probability of 1/2.

More specifically, it has been argued that the NMA commits the base rate fallacy
(Howson, 2000; Magnus and Callender, 2004). This is an unwarranted type of inference

that frequently occurs in medicine. Consider a highly sensitive medical test which

yields a positive result. On the other hand, the medical condition in question is very

rare, that is, the base rate of the disease is very low. In such a case, the posterior

probability of the patient having the disease, given the test, will still be quite low.

Nonetheless, medical practitioners tend to disregard the low base rate and to infer

that the patient really has the disease in question (e.g., Goodman, 1999).

This objection can be elucidated by a brief inspection of Bayes’ Theorem. Our

quantity of interest is the posterior probability p(H|S), our confidence in H given S.

This quantity can be written as

p(H|S) =
p(H) p(S|H)

p(S)

=

(
1 +

1− p(H)

p(H)

p(S|¬H)

p(S|H)

)−1

which shows that p(H|S) is not only an increasing function in p(S|H) and a decreasing

function in p(S|¬H): its value crucially depends on the base rate or prior plausibility

of H, p(H) (=the prior plausibility of H).

Anti-realists claim that NMA is built on a base rate fallacy: from the high value

of p(H|S) (“the empirical adequacy of T explains its success”) and the low value of

p(S|¬H) (“success of T would be a miracle if T were not empirically adequate”),

justified belief in H (“T is empirically adequate”) is inferred. The probabilistic model

of the NMA demonstrates that we need additional assumptions about p(H) to warrant

this inference. In the absence of such assumptions, the NMA does not entitle us to

accept T as empirically adequate.

What do these considerations show? First, they expose that the NMA, recon-

structed as a probabilistic inference to the posterior probability of H, is essentially

subjective. After all, any weight of evidence in favor of H can be counterbalanced
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by a sufficiently skeptical prior, that is, a sufficiently low value assigned to p(H). The

anti-realist will contend that the realist needs to provide convincing reasons why p(H)

should not be arbitrarily close to zero, and that such reasons will typically presuppose

realist inclinations. This is a problem for those realists who claim that the NMA is

an objective argument in favor of scientific realism. Howson (2013, 211) concludes that

due to the dependence on unconstrained prior degrees of belief, the NMA is, “as a

supposedly objective argument, [. . . ] dead in the water”. See also Howson (2000,

ch. 3), Lipton (2004, 196–198), and Chakravartty (2011).

Second, the anti-realist may argue that empirical adequacy is not required for pre-

dictive success. Every now and then, science undergoes radical discontinuities: it is

discovered that central terms in scientific theories do not refer, that theories fail to

apply outside a particular domain, etc. The theories which supersede them are empir-

ically distinct. Why should our currently best theory Tn = T not suffer the same fate as

it predecessors T1, . . . , Tn−1 which proved to be empirically inadequate although they

once were the best scientific theory? This is basically Laudan’s argument from Pes-

simistic Meta-Induction (PMI): “I believe that for every highly successful theory in the

past of science which we now believe to be a genuinely referring theory, one could find

half a dozen successful theories which we now regard as substantially non-referring”

(Laudan, 1981, 35). See Tulodziecki (2015) for a recent case study.

PMI affects the values of p(S|¬H) and p(H) as follows: On the one hand, history

teaches us that there have often been false theories that explained the data well (and

were superseded later). In other words, empirically inadequate theories can be highly

successful and p(S|¬H) need not be that low. Second, the fact that T1, . . . , Tn−1 stand

refuted, plus possible continuities and structural similarities between those theories

and Tn = T, suggest, by virtue of an inductive inference, that T may ultimately suffer

the same fate, lowering the probability that T is empirically adequate.

Let us check these arguments in a numerical analysis of the probabilistic NMA.

Conceding a bit to the realist, we set s := p(S|H) = 1: if theory T is empirically

adequate, then it is also successful.2 Furthermore, define s′ := p(S|¬H) and let h :=

p(H) be the prior probability of H. We now ask the question: for which values of

s′ and h is the posterior probability of H, p(H|S), greater than 1/2? That is, when

would it be more plausible to believe that T is empirically adequate than to deny

2Note that empirical adequacy does not guarantee predictive success: e.g., if T is a low-level theory
with many parameters to be estimated simultaneously, T may make less accurate predictions than an
empirically inadequate, but simpler theory (Forster and Sober, 1994).
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it? Satisfying this condition is arguably a minimal requirement for the claim that the

success of T entitles us to justified belief in its empirical adequacy.

By using Bayes’ Theorem, we can easily calculate when the inequality p(H|S) >

1/2 is satisfied. Equation (1) brings us to the inequality

1
2
<

(
1 + s′

1− h
h

)−1

which can be written as

s′ <
h

1− h
(1)

See Figure 3 for a graphical illustration.

Figure 3: The scope of the No Miracles Argument, represented graphically. p(H|S) > 1/2 is
the case in the white area below the line.

However, inequality (1) is not easy to satisfy. As mentioned above, false theories

and models often make accurate predictions and perform well on other cognitive val-

ues(see Frigg and Hartmann, 2012, for an overview). Classical examples that are still

used today involve Newtonian mechanics, the Lotka-Volterra model from population

biology (e.g., Weisberg, 2007) and Rational Choice Theory. If we take anti-realist ar-

guments seriously, then the value of s′ = p(S|¬H) should not be too low. After all,

there are lots of false, but useful and successful theories in science. So let us choose

s′ = 1/4. To satsify inequality (1) and to make the NMA work, we would require
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that p(H) ∈ [1/3, 1]! In other words, the NMA only works for theories of whose em-

pirical adequacy we are already certain. What is more, for a “mildly skeptical prior”

such as p(H) = 0.05, the value of s′ would have to be in the range [0, 0.05]. This

amounts to making the assumption that only the empirical adequacy (or truth) of a

scientific theory can explain its success. But this is essentially a realist premise which

the anti-realist would refuse to accept. She could point to the existence of unconceived

alternatives (Stanford, 2006, ch. 6), the explanatory successes of false theories, etc. In

other words: the simple probabilistic model of the NMA demonstrates that (1) to the

extent that the NMA is valid, its premises presuppose realist inclinations; (2) to the

extent that the NMA builds on premises that are neutral between the realist and the

anti-realist, it fails to be valid.

Are things thus hopeless for the realist who wants to convince the anti-realist

that the NMA is a good argument? Does “all realistic hope of resuscitating the [no

miracles] argument [fail]”, as Howson (2013, 211) writes? Perhaps not necessarily

so. The next section develops another, more sophisticated probabilistic model whose

results are more friendly toward the realist position.

3 A New Model of the No Miracles Argument

So far, the probabilistic NMA only took the predictive and explanatory success of T
as evidence for the realist position. But perhaps, different kinds of evidence bear on

the argument, too. For example, Ludwig Fahrbach (2009, 2011) has argued that the

stability of scientific theories in recent decades favors scientific realism. In this section,

we show how such arguments could be part of a probabilistic NMA. We do not want

to take a stand on the historical correctness of Fahrbach’s observations: rather, we

would like to demonstrate how such observations can in principle affect the NMA.

Fahrbach’s argument is based on scientometric data. He observes an exponential

growth of scientific activity, with a doubling of scientific output every 20 years (Mead-

ows, 1974). He also notes that at least 80% of all scientific work has been done since

the year 1950 and observes that our best scientific theories (e.g., the periodic table of

elements, optical and acoustic theories, the theory of evolution, etc.) were stable dur-

ing that period of time. That is, they did not undergo rejection or major conceptual

change. Laudan’s examples in favor of PMI, on the other hand, all stem from the early

periods of science, e.g., the caloric theory of heat, the ether theory in physics, or the

humoral theory in medicine.
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For giving a fair assessment of PMI, we have to take into account the amount of

scientific work done in a particular period. This implies, for example, that the period

1800-1820 should receive much less weight than the period 1950–1970. According to

Fahrbach, PMI then fails because most “theory changes occurred during the time of

the first 5% of all scientific work ever done by scientists” (Fahrbach, 2011, 149). If PMI

were valid, we should have observed more substantial theory changes or scientific

revolutions in the recent past. However, although the theories of modern science often

encounter difficulties, revolutionary turnovers do not (or only very rarely) happen.

According to Fahrbach, PMI stands refuted—or at the very least, it is not more rational

than optimistic meta-induction.

The factual correctness of Fahrbach’s observations may be disputed, and his model

is certainly very simplified. Yet, it deserves to be taken seriously, particularly with

respect to the implications for the NMA. In this paper, we explore if observations of

long-term stability expand the set of circumstances where the NMA holds. To this

end, we refine our probabilistic model of the NMA.

As before, the propositional variable H expresses the empirical adequacy of theory

T, and S denotes the predictive, retrodictive and explanatory success of T. Similar to

Dawid et al. (2015), we introduce a integer-valued random variable A that expresses

the number of satisfactory alternatives to T. In the individuation of alternatives, we

stick with the Dawid et al. paper: that is, we demand that alternative theories satisfy

a set of (context-dependent) theoretical constraints C, are consistent with the currently

available data D, and give distinguishable predictions for the outcome of some set

E of future experiments. In line with our focus on empirical adequacy rather than

truth, we do not distinguish between empirically equivalent theories with different

theoretical structures. Finally, major theory change in the domain of T is denoted by

variable C, and absence of change and theoretical stability by ¬C. “Theory change” is

understood in a broad sense, including scenarios where rivalling theories emerge and

end up co-existing with T.

The dependency between these four propositional variables—A, C, H and S—is

given by the Bayesian network in Figure 4. S, the success of theory T, only depends

on the empirical adequacy of T, that is, on H. The probability of H depends on the

number of distinct alternatives that are also consistent with the current data, etc. Fi-

nally, C, the probability of observing substantial theory change, depends on S and A:

the empirical success of T and the number of available alternatives. To rule out preser-

vation of a theory by a of series degenerative accommodating moves, the variable C
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should be evaluated over a longer period (e.g., 30–50 years).

A H S

C

Figure 4: The Bayesian Network representation of the relation between variables A (the num-
ber of alternatives to T), H (empirical adequacy of theory T), S (the success of T) and C (major
theory change).

We now define a number of real-valued variables in order to facilitate calculations:

• Denote by aj := p(A = j) the probability that there are exactly j alternatives to T
that satisfy the theoretical constraints C, are consistent with current data D and

give definite predictions for future experiments E , etc.3

• Denote by hj := p(H|A = j) the probability that T is empirically adequate if

there are exactly j alternatives to T.

• As before, denote by s := p(S|H) and s′ := p(S|¬H) the probability that T is

successful if it is (not) empirically adequate.

• Denote by cj := p(¬C|A = j, S) the probability that no substantial theory change

occurs if T is successful and there are exactly j alternatives for T.

Suppose that we now observe ¬C (no substantial theory change has occurred in

the last decades) and S (theory T is successful). The Bayesian network structure allows

3It is assumed that there are only finitely many alternative theories that satisfy these quite restrictive
specifications. See Dawid et al. (2015) for more argument for this claim.
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for a simple calculation of the posterior probability of H:

p(¬CSH) = ∑
A

p(A)p(¬C|AS)p(S|H)p(H|A)

=
∞

∑
j=0

aj cj s hj

p(¬CS) = ∑
A,H

p(A)p(¬C|AS)p(S|H)p(H|A)

= ∑
A

p(A)p(¬C|AS)p(S|H)p(H|A) + ∑
A

p(A)p(¬C|AS)p(S|¬H)p(¬H|A)

=
∞

∑
j=0

aj cj (s hj + s′(1− hj))

With the help of Bayes’ Theorem, these equations allows us to calculate the posterior

probability of H conditional on C and S:

p(H|¬CS) =
p(¬CSH)

p(¬CS)
=

∑∞
j=0 aj cj s hj

∑∞
j=0 aj cj (s hj + s′(1− hj))

(2)

We now make some assumptions on the values of these quantities.

A0 The variables A, C, H and S satisfy the (conditional) independencies in the

Bayesian Network structure of Figure 4.

A1 If T is empirically adequate then it will be successful in the long run: p(S|T) = 1.4

A2 The empirical adequacy of T is no more or less probable than the empirical ade-

quacy of an alternative which satisfies the same set of theoretical and empirical

constraints: hj := p(H|Aj) = 1/(j + 1). In other words, there is no “actualist

bias” in favor of T.

A3 The more satisfactory alternatives exist, the less likely is an extended period of

theoretical stability. In other words, cj := p(¬C|A = j) is a decreasing function

of j. For convenience, we choose cj := 1/(j + 1). (This particular assignment will

be relaxed later on.)

4The formulation p(S|T) = 1− ε is more cautious, but this not change the qualitative results and
only complicates the calculations.
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A4 Assume that T is our currently best theory and we happen to find a satisfactory

alternative T′. Then, the probability of finding another alternative T′′ is the same

as the probability of finding T′ in the first place. Formally:

p(A > j|
∞∨

k=j

(A = k)) = p(A > j + 1|
∞∨

k=j+1

(A = k)) ∀j ≥ 0. (3)

In other words, equation (3) expresses the idea that finding an alternative does

not, in itself, raise or lower the probability of finding another alternative.

Note that A0–A4 are equally plausible for the realist and the anti-realist. In other

words, no realist bias has been incorporated into the assumptions. We can now show

the following proposition (proof in the appendix):

Proposition 1: If equation (3) holds, then aj := a0 · (1− a0)j.

Together with this proposition, A0–A4 allow us to rewrite equation (2) as follows:

p(H|¬CS) =
∑∞

j=0(1− a0)j 1
(j+1)2

∑∞
j=0(1− a0)j 1−s′ j

(j+1)2

(4)

With the help of this formula, we can now rehearse the NMA once more and

determine its scope, that is, those parameter values where p(H|¬CS) > 1/2. The

two relevant parameters are a0, the prior probability that there are no satisfactory

alternatives to T, and s′, the probability that T is successful although not empirically

adequate. Since an analytical solution of equation (4) is not feasible, we conduct a

numerical analysis. Results are plotted in Figure 5.

These results are very different from the ones in Section 2. With the hyperplane

z = 0.5 dividing the graph into a region where T may be accepted and a region where

this is not the case, we see that the scope of the NMA has increased substantially

compared to Figure 3. For instance, a0 = p(H) > 0.1 suffices for a posterior probability

greater than 1/2, almost regardless of the value of s′. This is a striking difference to

the previous analysis where way more optimistic values had to be assumed in order

to make the NMA work.

So far, the analysis has been conducted in terms of absolute confirmation, that is, the

posterior probability of H. We now complement it by an analysis in terms of relative or
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Figure 5: The scope of the No Miracles Argument in the revised formulation. The posterior
probability of H, p(H|¬CS), is plotted as a function of (1) the prior probability that T is
empirically adequate (a0); (2) the probability that T is successful if T is false (s′ = p(S|¬H)).
The hyperplane z = 1/2 is inserted in order to show for which parameter values p(H|¬CS) is
greater than 1/2.

incremental confirmation. That is, we calculate the degree of confirmation that ¬CS ex-

erts on H. We use the log-likelihood measure l(H, E) = log2 p(E|H)/p(E|¬H) which

has a good reputation in confirmation theory (e.g., Crupi, 2013) and a firm standing

in scientific practice (e.g., Royall, 1997; Good, 2009). Also, it is a confirmation measure

that describes the discriminative power of the evidence with respect to the realist and

the anti-realist hypothesis and that is relatively insensitive to prior probabilities. To

apply it to the present case, we calculate

p(¬CS|H) =
p(¬CSH)

p(H)
=

∑A p(A)p(¬C|AS)p(S|H)p(H|A)

∑A p(A) p(H|A)

=
∑∞

j=0 aj cj s hj

∑∞
j=0 aj hj

=
∑∞

j=0(1− a0)j 1
(1+j)2

∑∞
j=0(1− a0)j 1

1+j
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p(¬CS|¬H) =
p(¬CS¬H)

p(¬H)
=

∑A p(A)p(¬C|AS)p(S|¬H)p(¬H|A)

∑A p(A) p(¬H|A)

=
∑∞

j=0 aj cj s′ (1− hj)

∑∞
j=0 aj (1− hj)

=
∑∞

j=0(1− a0)j s′ j
(1+j)2

∑∞
j=0(1− a0)j j

1+j

Figure 6: The degree of confirmation l(H,¬CS) = log2 p(¬CS|H)/p(¬CS|¬H), for three
different values of a0. Full line: a0 = 0.01. Dashed line: a0 = 0.05. Dot-dashed line: a0 = 0.1

In Figure 6, we have plotted the degree of confirmation as a function of the value of

s′, for three different values of a0, namely 0.01, 0.05 and 0.1. As visible from the graph,

the (logarithmic) degree of confirmation is substantial for all three cases, even for large

values of s′. In particular, it is robust vis-à-vis the values of a0 and s′, contrary to the

anti-realist argument from Section 2. Note that if s′ is small, as it will often be the

case in practice, the logarithmic (!) degree of confirmation comes close to 10, which

corresponds to a likelihood ratio of more than 1.000! This finding accounts for the

realist intuition that the stability of scientific theories over time, together with their

empirical success, is strong evidence for their empirical adequacy.
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Finally, we conduct a robustness analysis regarding the explication of A3. Ar-

guably, the function cj := p(¬C|A = j, S) = 1/(j + 1) suggests that scientists are quite

ready to give up on their currently best theory in favor of a good alternative. But

as many have philosophers and historians of science have argued (e.g., Kuhn, 1977),

scientists may be more conservative and continue to work in the standard framework,

even if good alternatives exist. Therefore we also analyze a different choice of the

cj, namely cj := e−
1
2 (

x
α )

2

, where cj falls more gently in j. This leads to the following

expression for the posterior probability of H:

p(H|¬CS) =
∑∞

j=0(1− a0)j 1
j+1 e−

1
2 (

x
α )

2

∑∞
j=0(1− a0)j 1−s′ j

j+1 e−
1
2 (

x
α )

2

The graph of p(H|¬CS), as a function of a0 and s′, is presented in Figure 7. We have

set α = 4, corresponding to a high degree of reluctance to reject the currently best

theory. Yet, the results match those from Figure 5: the scope of the NMA is much

larger than in the simple version of the probabilistic NMA. Hence, our findings seem

to be robust toward different choices of cj.

Figure 7: The scope of the No Miracles Argument in the revised formulation, with cj :=

e−
1
2 (

x
α )

2
. The posterior probability of H, p(H|¬CS), is plotted as a function of a0 and s′, like in

Figure 5, and contrasted with the hyperplane z = 1/2.
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All in all, our model shows that a probabilistic NMA need not be doomed. Its va-

lidity depends crucially on the properties of the disciplinary context where it operates

in. This involves the existence of satisfactory alternatives and whether or not the dis-

cipline has been in a long period of theoretical stability. Of course, our model makes

simplifying assumptions, but unlike those in Section 2, they do not carry a realist bias.

This allows for a more nuanced and context-sensitive assessment of realist claims.

4 Conclusions

This paper has investigated scope and limits of the No Miracles Argument (NMA)

when formalized as a probabilistic argument. In the simple probabilistic model of the

NMA, we have confirmed Howson’s (2000, 2013) diagnosis that it does not hold water

as an objective argument: too much depends on the choice of the prior probability

p(H), assuming what is supposed to be shown. We have supported this diagnosis by

a detailed analysis of the probabilistic mechanics of NMA.

However, we do not believe that all is lost for the NMA. We have developed a

probabilistic model of the NMA where additional evidence, such as the stability of

scientific theories, can be accommodated. This model also conceptualizes the possible

alternatives to the theory in question. Using this model, scientific realism can be de-

fended with much weaker assumptions than in the simple probabilistic version of the

NMA. While context-sensitive assumptions are required in this version of the NMA,

their relative weakness leaves open the possibility of a coherent, non-circular realist

position in philosophy of science. See also Dawid and Hartmann (2015).

We would like to stress that the context-sensitive nature of the NMA is not a vice,

but a virtue. True, context-sensitive elements apparently undermine the persuasive

force of the NMA for those who do not already share realist inclinations. But our

analysis in Section 3 has shown how much depends on the stability of scientific theo-

ries in order to make the NMA fly. When there is little stability in our currently best

theories compared to the past, or when empirically successful alternatives abound,

the NMA may fail to license an inference to the empirical adequacy of the theory in

question. Contextual considerations determine when the NMA is valid and when it

isn’t.

More research is needed into which areas of science have been theoretically sta-

ble. It may be argued that scientific theories of the recent past remained stable on the

surface, e.g., in the basic assumptions they make, but that central concepts underwent
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major meaning shifts over the last decade. Evolutionary theory is such a case in ques-

tion: while basic principles such as the causal power of natural selection to bring about

evolutionary change have been unchanged, the meaning of concepts such as natural

selection, fitness, and selective environments has been fiercely debated (Lloyd, 2014).

All this demonstrates that conceptualizations of the NMA as a general argument for

scientific realism are mistaken. Instead of reading NMA as a “wholesale argument”

for scientific realism that is valid across the board, we should understand it as a “retail

argument” (Magnus and Callender, 2004), that is, as an argument that may be strong

for some scientific theories and weak for others.

For philosophers like ourselves, who are not committed to a particular position

in the debate between realists and anti-realists, the probabilistic reconstruction of the

NMA offers the chance to understand the argumentative mechanics behind the realist

intuition, to better appreciate the context-dependency of the NMA, and to critically

evaluate the merits of realist and anti-realist standpoints. The realist argument is

based on contexts where theories are stable and there are few potential explanations

of empirical success. Such circumstances favor the NMA. The anti-realist objections are

grounded on those case studies where scientific theories have been volatile or one of

our assumptions A0–A4 is implausible. The probabilistic reconstruction of the NMA

can thus explain and guide the strategies that realists and anti-realists pursue when

defending their positions.

A Proof of Proposition 1

Assumption A4 is equivalent to the following claim:

p(A = j|
∞∨

k=j

(A = k)) = p(A = j + 1|
∞∨

k=j+1

(A = k)) ∀j ≥ 0.

which entails that for all j ≥ 0, we have

p(A = j)
p(
∨∞

k=j(A = k))
=

p(A = j + 1)
p(
∨∞

k=j+1(A = k))
.
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This implies in turn

p(A = j + 1) = p(A = j)
p(
∨∞

k=j+1(A = k))
p(
∨∞

k=j(A = k))

= p(A = j)
1−∑

j
k=0 p(A = k)

1−∑
j−1
k=0 p(A = k)

By a simple induction proof, we can now show

p(A = n) = p(A = 0)

(
1−

n−1

∑
k=0

p(A = k)

)
(5)

For n = 1, equation (5) follows immediately. Assuming that it holds for level n, we

then obtain

p(A = n + 1) = p(A = n)
1−∑n

k=0 p(A = k)
1−∑n−1

k=0 p(A = k)

= p(A = 0)

(
1−

n−1

∑
k=0

p(A = k)

)
1−∑n

k=0 p(A = k)
1−∑n−1

k=0 p(A = k)

= p(A = 0)

(
1−

n

∑
k=0

p(A = k)

)

where we have used the inductive premise in the second step. Finally, we use straight

induction once more to show that

p(A = n) = p(A = 0)(1− p(A = 0))n (6)
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where the case n = 0 is trivial and the inductive step n→ n + 1 is proven as follows:

p(A = n + 1) = p(A = 0)

(
1−

n

∑
k=0

p(A = k)

)

= p(A = 0)

(
1−

n

∑
k=0

p(A = 0) (1− p(A = 0))k

)

= p(A = 0)
(

1− p(A = 0)
1− (1− p(A = 0))n+1

1− (1− p(A = 0))

)
= p(A = 0)(1− (1− (1− p(A = 0))n+1))

= p(A = 0)(1− p(A = 0))n+1

In the second line, we have applied the inductive premise to p(A = k), and in the third

line, we have used the well-known formula for the geometric series:

n

∑
k=0

qk =
1− qn+1

1− q

This shows (6) and completes the proof of the proposition. �
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