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omy and Path Structures in General Relativity and Yang-Mills Theory.” Int. J. Th.

Phys. 30(9), (1991)], establishes that given a “generalized” holonomy map from the

space of piece-wise smooth, closed curves based at some point of a manifold to a

Lie group, there exists a principal bundle with that group as structure group and

a principal connection on that bundle such that the holonomy map corresponds to

the holonomies of that connection. Barrett also provided one sense in which this

“recovery theorem” yields a unique bundle, up to isomorphism. Here we show that

something stronger is true: with an appropriate definition of isomorphism between

generalized holonomy maps, there is an equivalence of categories between the cate-

gory whose objects are generalized holonomy maps on a smooth, connected manifold

and whose arrows are holonomy isomorphisms, and the category whose objects are

principal connections on principal bundles over a smooth, connected manifold. This

result clarifies, and somewhat improves upon, the sense of “unique recovery” in Bar-

rett’s theorems; it also makes precise a sense in which there is no loss of structure

involved in moving from a principal bundle formulation of Yang-Mills theory to a

holonomy, or “loop”, formulation.
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I. INTRODUCTION

There are two mathematical formalisms that are widely used for Yang-Mills theory. One,

well-known among physicists since the publication of the so-called “Wu-Yang dictionary”,1 is

the formalism of principal connections on principal bundles.2–7 On this approach, a “gauge

field” or “Yang-Mills potential” is a principal connection on some principal bundle over

a relativistic spacetime, perhaps represented, in a section-dependent way, as the pullback

of a connection one-form along a local section of the bundle; the “field strength” is the

curvature of this connection, again represented relative to some section of the principal

bundle. The choice of a section relative to which one represents these fields on spacetime

corresponds to choosing a “gauge”. A second approach, attractive because it appears to do

away with gauge-dependent potentials, is the formalism of “loops” or holonomies.8–11 Here

one directly associates closed, piece-wise smooth curves on spacetime with elements of some

group, representing features of propagation along such curves, such as the phase-shifts in

interference experiments associated with those closed curves.

Given a principal connection on a principal bundle, one can immediately calculate the

holonomies of that connection, relative to some point in the total space. Conversely, a

pair of classic results, due to Barrett,9 show that there is a certain sense in which, given

appropriate “holonomy data” on a manifold M , there always exists a principal bundle over

M and a principal connection on that bundle such that the holonomy data arises as the

holonomies of that connection, and that this bundle is, in a sense to be explained, unique.

Here we show that something stronger is true. Given an appropriate notion of isomorphism

between assignments of holonomy data, Barrett’s reconstruction theorem gives the action

on objects of a functor realizing a categorical equivalence between a category whose objects

consist in specifications of holonomy data and whose arrows are holonomy isomorphisms

and a category whose objects are principal connections on principal bundles over connected

manifolds and whose arrows are connection-preserving principal bundle isomorphisms.

More precisely, let M be a smooth, connected, paracompact Hausdorff manifold.12 We

will use • to denote reparameterized composition of curves with compatible endpoints, so

that given two curves γ1 : [0, 1] → M and γ2 : [0, 1] → M such that γ2(0) = γ1(1), we

produce a curve γ2 • γ1 : [0, 1] → M .13 Given a curve γ : [0, 1] → M , meanwhile, we

will take γ−1 : [0, 1] → M to be the curve whose image is the same as γ’s, but whose

2



orientation is reversed. We will say that two curves γ1, γ2 : [0, 1]→ M are thinly equivalent

if they agree on both endpoints and there exists a homotopy h of γ−1
1 • γ2 to the null curve

idγ(0) : [0, 1] → γ1(0) such that the image of h is included in the image of γ−1
1 • γ2. Now

let x be some point of M and denote by Lx the collection of piece-wise smooth curves

γ : [0, 1]→M satisfying γ(0) = γ(1) = x. A smooth finite-dimensional family of loops at x

is a map ψ̃ : U → Lx, where U is an open subset of Rn for any n, which is smooth in the

sense that the associated map ψ : U × [0, 1]→ M defined by (u, t) 7→ ψ̃[u](t) is continuous

and smooth on subintervals U × [ik, ik+1], where i0 = 0 < ii < . . . < im = 1 for some finite

m.

With this background, we define the holonomy data mentioned above. Let M be a

smooth manifold, let G be a Lie group, and let x be some point in M . Then a generalized

holonomy map on M with reference point x and structure group G is a map H : Lx → G

satisfying the following properties: (1) for any γ, γ′ ∈ Lx, if γ and γ′ are thinly equivalent,

then H(γ) = H(γ′); (2) for any γ, γ′ ∈ Lx, H(γ • γ′) = H(γ)H(γ′); and (3) for any smooth

finite-dimensional family of loops ψ̃ : U → Lx, the composite map H ◦ ψ̃ : U → Lx → G is

smooth. For present purposes, the specification of a manifold M and a generalized holonomy

map H : Lx → G, for some Lie group G and point x ∈M , constitutes a full specification of

holonomy data; we will call the pair (M,H) a holonomy model for Yang-Mills theory. (Note

that we say nothing, here, of the dynamical relationship between H and any distribution of

charged matter.) Barrett’s results can then be stated as follows.

Theorem (Barrett reconstruction theorem). Fix a connected manifold M , a Lie group G,

and a point x ∈ M , and let H : Lx → G be a generalized holonomy map. Then there exists

a principal bundle G→ P
π→M , a connection Γ on P , and an element u ∈ π−1[x] such that

H = HΓ,u, where HΓ,u : Lx → G is the holonomy map through u determined by Γ.14

Theorem (Barrett representation theorem). The assignment of (P,Γ, u) to generalized

holonomy maps given in the above theorem is a bijection up to vertical principal bundle

isomorphisms that preserve both the connection Γ and the base point u.

Barrett’s reconstruction theorem effectively establishes that holonomy data is sufficient

to reconstruct a model of Yang-Mills theory in the sense of a principal connection on a

principal bundle; the representation theorem, meanwhile, gives one sense in which this

reconstruction is unique. But one might hope for something more regarding the uniqueness of

3



the reconstruction. In particular, on Barrett’s approach, everything is done relative to fixed

points x ∈M at which the closed curves are based and u ∈ π−1[x] at which the holonomies

are based; nothing is said about the relationship between holonomy models associated with

different base points, even though the base points play no role in the physics of Yang-Mills

theory.15 Moreover, the form of Barrett’s results is highly suggestive: it appears that the

relationship between holonomy maps and principal connections, properly construed, should

be functorial. Establishing this stronger result is the goal of the present paper.

In particular, we prove the following. Let PC be the category (actually, groupoid) of prin-

cipal connections on principal bundles over connected manifolds, with connection-preserving

principal bundle isomorphisms as arrows, and let Hol be the category (or rather, again,

groupoid) of holonomy models (as defined above) on connected manifolds, with “holonomy

isomorphisms”, to be defined in section II, as arrows.

Theorem 2. Hol and PC are equivalent as categories, with an equivalence that preserves

empirical content in the sense of preserving holonomy data.

Our proof of Theorem 2 depends on the following result concerning the notion of holonomy

isomorphism we will presently define. We take this result to be of some interest in its own

right.

Theorem 1. Let G → P
π→ M and G′ → P ′

π′→ M ′ be principal bundles with principal

connections Γ and Γ′ respectively, and suppose that M and M ′ are connected. Suppose there

are points u ∈ P and u′ ∈ P ′ such that the holonomy maps based at u and u′ are isomorphic.

Then there is a connection-preserving principal bundle isomorphism between P and P ′.

We believe these results substantially clarify the role of base points in Barrett’s con-

struction, by showing (1) how various changes of base point may be understood to induce

an isomorphism of holonomy data and (2) that holonomy models related by holonomy iso-

morphisms in this sense correspond to isomorphic principal connections. Theorem 2 also

provides one sense in which there is no “loss of structure” involved in moving from the prin-

cipal bundle formalism to the loop formalism (or vice-versa), despite claims by some that

the latter is more parsimonious.16

In the next section, we will define the notion of holonomy isomorphism needed for The-

orems 1 and 2 and show that, with this definition, Hol is a groupoid. In the following two

sections, we will prove Theorems 1 and 2. We conclude with a brief discussion.
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II. HOLONOMY ISOMORPHISM

Consider a connected manifold M , a Lie group G, and a generalized holonomy map

H : Lx → G for some point x ∈ M , in the sense defined above. We are interested in

developing a precise sense in which two such maps might be “isomorphic”, in the sense of

encoding the same physically relevant structure—i.e., the same “holonomy data”. To this

end, we take the physically relevant structure of a generalized holonomy map to consist in

the group theoretic structure of the assignments of elements of G to piece-wise smooth closed

curves in M . This suggests that there are several ways in which two generalized holonomy

maps might be understood to encode the same structure. For one, consider diffeomorphic

manifolds M and M ′. Clearly, if Ψ : M → M ′ is a diffeomorphism, we can understand the

generalized holonomy map H ′ : LΨ(x) → G defined by H ′(γ) = H(Ψ−1 ◦ γ) to encode the

same holonomy data as H. So we should take H : Lx → G and H ′ : Lψ(x) → G to be

isomorphic if they are related by a diffeomorphism in this way. Likewise, if φ : G → G′ is

a Lie group isomorphism, the generalized holonomy map H ′ = φ ◦ H : Lx → G′ may be

understood to encode the same holonomy data as H, so we should take H : Lx → G and

H ′ : Lx → G′ to be isomorphic if they are related by a Lie group isomorphism in this way.

There is a third sense in which two generalized holonomy maps may be understood to

encode the same holonomy data, though it is somewhat more subtle to state. The idea is

that although a generalized holonomy map is defined relative to some base point x ∈ M ,

this base point plays no role in the physics. Thus, we would like to have a precise sense in

which we can understand generalized holonomy maps associated with different base points

to encode the same data. We do this as follows. Let H : Lx → G be as above and consider

another point y ∈M . Let α be a piece-wise smooth curve in M from y to x. For all γ ∈ Lx,

define Hα(α−1 • γ • α) := H(γ). To extend Hα to all of Ly, recall that thinly equivalent

curves must have the same holonomies. Thus for any γ′ ∈ Ly, since γ′ ∼ α−1•α•γ′•α−1•α,

Hα(γ′) = Hα(α−1 •α•γ′ •α−1 •α) = H(α•γ′ •α−1). There is thus a natural sense in which,

relative to α, H and Hα may be understood to encode the same holonomy data. In other

words, given generalized holonomy maps H : Lx → G and H ′ : Ly → G, we should take H

and H ′ to be isomorphic if there exists some piece-wise smooth curve α : [0, 1] → M , with

α(0) = y and α(1) = x, such that H ′ = Hα.

In connection with first two senses of isomorphism between generalized holonomy maps,
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it is natural to associate the induced holonomy isomorphism with a given choice of diffeo-

morphism or Lie group isomorphism. In the third case, it is tempting to do likewise: that is,

to associate an isomorphism with the curve α relating the generalized holonomy maps. But

this does not give us quite what we want. The reason is that, given two generalized holon-

omy maps H : Lx → G and H ′ : Ly → G, there may exist distinct curves α, β : [0, 1]→ M ,

both satisfying α(0) = β(0) = y and α(1) = β(1) = x, and both such that H ′ = Hα = Hβ.

To count these as distinct isomorphisms would be to assert that there is a substantive (or

at least, salient) difference in the way α and β take H to H ′. But since the physics depends

only on the assignments of group elements to closed curves, if α and β both provide the

same “translation” from the assignments made by H to the assignments made by H ′, then

nothing in the physics turns on which translation one picks, and this should be reflected in

the isomorphisms—i.e., we should not make a distinction if there is no salient difference.

We address this issue as follows. We say that given generalized holonomy maps H :

Lx → G and H ′ : Ly → G, a curve α : [0, 1] → M induces a holonomy isomorphism∗,

α∗ : H → H ′, if H ′ = Hα. We then say that two such curves α, β : [0, 1]→M are equivalent

(relative to H and H ′) if H ′ = Hα = Hβ. Then, for any pair of holonomy maps H and H ′,

if there exists a holonomy isomorphism∗ α∗ : H → H ′, then we say that there is a holonomy

isomorphism α : H → H ′ induced by the equivalence class of curves under the equivalence

class just defined. (As we will observe in section V, the construction just sketched amounts

to defining a congruence relation on a certain category Hol∗; the category Hol described

above, which we show is equivalent to PC in Theorem 2, is then the quotient category.)

The considerations just described are summed up in the following definition of holonomy

isomorphism.

Definition 1 (Holonomy isomorphism). Let H : Lx → G and H ′ : Lx′ → G′ be (generalized)

holonomy maps on manifolds M and M ′. A holonomy isomorphism from H to H ′ is an

ordered triple (Ψ, α, φ) where Ψ : M → M ′ is a diffeomorphism, φ : G → G′ is a Lie group

isomorphism, and α is an equivalence class of piece-wise smooth curves α : [0, 1] → M

satisfying α(0) = Ψ−1(x′) and α(1) = x, which are all such that for any γ ∈ Lx, φ ◦H(γ) =

H ′(Ψ ◦ (α−1 • γ • α)). In other words, the following diagram commutes:
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Lx
α //

H

��

LΨ−1(x′)
ψ // Lx′

H′

��
H[Lx] φ

// H[Lx′ ]

Where ψ : LΨ−1(x′) → Lx′ is defined by γ 7→ Ψ ◦ γ and α : Lx → LΨ−1(x′) is defined by

γ 7→ α−1 • γ • α for some element α of the equivalence class α.

With this definition of holonomy isomorphism, we have a natural candidate for an

identity map associated with any generalized holonomy map H : Lx → G: namely, the

holonomy isomorphism 1H := (idM , idx, idG) : H → H. We also can define the com-

position of holonomy isomorphisms (Ψ, α, φ) : H → H ′ and (Ψ′, α′, φ′) : H ′ → H ′′, by

(Ψ′, α′, φ′) ◦ (Ψ, α, φ) := (Ψ′ ◦ Ψ, α • (Ψ−1 ◦ α′), φ′ ◦ φ), where α • (Ψ−1 ◦ α′) is the equiva-

lence class of curves generated by α•(Ψ−1◦α′) for any curves α ∈ α and α′ ∈ α′. With these

definitions, we can define the category Hol of holonomy maps and holonomy isomorphisms,

and confirm that it is a groupoid (which, in turn, justifies using the term “isomorphism” for

these maps).

Proposition 2. Hol is a groupoid.

Proof. It is clear from the forgoing that (a) we have identity arrows for each object and (b)

the composition of any two holonomy isomorphisms with appropriate domain and codomains

yields a new holonomy isomorphism, so it only remains to show that this composition is asso-

ciative and that every holonomy isomorphism has an inverse. Associativity is a trivial conse-

quence of the associativity of composition of the maps determining a holonomy isomorphism.

To see that every arrow has an inverse, consider a holonomy isomorphism (Ψ, α, φ) : H → H ′,

where H : Lx → G and H ′ : Ly → G′. Then (Ψ−1, (Ψ ◦ α)−1, φ−1) : H ′ → H is a holonomy

isomorphism such that (Ψ, α, φ) ◦ (Ψ−1, (Ψ ◦ α)−1, φ−1) = (Ψ ◦ Ψ−1, (Ψ ◦ α)−1 • (Ψ ◦ α), φ ◦

φ−1) = 1H′ and (Ψ−1, (Ψ ◦ α)−1, φ−1)◦(Ψ, α, φ) = (Ψ−1◦Ψ, α • (Ψ−1 ◦ (Ψ ◦ α)−1), φ−1◦φ) =

(Ψ−1 ◦Ψ, α • α−1, φ−1 ◦φ) = 1H , where in both cases the final equalities follow from the fact

that for any curve α, α •α−1 ∈ idα(1), because all holonomy maps agree on thinly equivalent

curves.
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III. PROOF OF THEOREM 1

Our proof of Theorem 1 will depend on the following three lemmas. In what follows

TΓ,γ(u) denotes the parallel transport via a connection Γ on a principal bundle P of a

point u along a curve γ : [0, 1] → M which is such that γ(0) = π(u). In other words,

TΓ,γ(u) = γ̂u(1).

Lemma 3. Let G → P
π→ M be a principal bundle and let Γ be a principal connection

on it. Then for all x ∈ M , u ∈ π−1[x], γ ∈ Lx, g ∈ G, and all piece-wise smooth curves

α, α′ : [0, 1]→M such that α(0) = α′(0) = x and α(1) = α′(1), the following hold:

(a) TΓ,α−1•α′(u) = TΓ,α−1(TΓ,α′(u)), where α−1 is the reverse orientation of α.

(b) TΓ,α−1(TΓ,α′(u)) = u iff TΓ,α(u) = TΓ,α′(u)

(c) HΓ,u(γ) = eG, the identity element of G, iff TΓ,γ(u) = u

(d) TΓ,α(ug) = TΓ,α(u)g

Proof. (a) and (b) follow from the fact that every curve α has a unique horizontal lift α̂u

which is such that α̂u(0) = u. (c) follows from the definition of holonomy map. (d) follows

from the equivariance of the connection under the right action of G on P .

Lemma 4. Let G → P
π→ M be a principal bundle and let Γ a principal connection on it.

Let α : [0, 1]→M be a piece-wise smooth curve such that α(0) = x and α(1) = x′. Then for

all u ∈ π−1[x′] and all γ ∈ Lx′, if v = TΓ,α−1(u) ∈ π−1[x], then

HΓ,u(γ) = HΓ,v(α
−1 • γ • α)

Proof. Suppose HΓ,u(γ) = g ∈ G, i.e. that TΓ,γ(u) = ug. Then by Lemma 3 (b) and

(d), vg = TΓ,α−1(u)g = TΓ,α−1(ug) = TΓ,α−1TΓ,γ(u) = TΓ,α−1TΓ,γTΓ,α(v) = TΓ,α−1•γ•α(v).

Therefore HΓ,v(α
−1 • γ • α) = g

In the following lemma, we make use of the holonomy sub-bundle ΦΓ,u → PΓ,u
π̃→ M

associated with a point u ∈ P and principal connection Γ on a principal bundleG→ P
π−→M ,

as discussed in detail §II.7 of Kobayashi and Nomizu 2 . This is the bundle consisting of all

points of P that may be joined to u ∈ P by a horizontal curve. The Reduction Theorem

(Theorem II.7.1 of Kobayashi and Nomizu 2) establishes the following about this bundle:
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1. ΦΓ,u → PΓ,u
π̃→M is a reduced sub-bundle of G→ P

π→M with the holonomy group

ΦΓ,u as its structure group and with π̃ = π�PΓ,u
(and similarly P ′Γ′,u′ is a reduction of

P ′).

2. The connection Γ is reducible to a connection Γ̃ = Γ�π̃ on PΓ,u (and similarly, Γ′

reduces to Γ̃′ = Γ′�π̃′).

That PΓ,u is a reduced bundle of P means in particular that ΦΓ,u is a Lie subgroup of G and

that each element of P may be written (not necessarily uniquely) as xa for some x ∈ PΓ,u

and a ∈ G.

Lemma 5. Let G → P
π→ M and G′ → P ′

π′→ M ′ be principal bundles with principal

connections Γ and Γ′ respectively, with M and M ′ connected. Let ΦΓ,u → PΓ,u
π̃→ M and

Φ′Γ′,u′ → P ′Γ′,u′
π̃′→M ′ be the holonomy sub-bundles of P and P ′ at u and u′, respectively, and

Γ̃ and Γ̃′ be the restrictions of Γ and Γ′ to PΓ,u and P ′Γ′,u′, respectively. If there is a principal

bundle isomorphism (f,Ψ, φ�ΦΓ,u
) : PΓ,u → P ′Γ′,u′ that preserves the connections Γ̃ and Γ̃′,

where Ψ : M → M ′ is a diffeomorphism and φ : G → G′ is a Lie group isomorphism, then

(f,Ψ, φ�ΦΓ,u
) can be extended to a principal bundle isomorphism (F,Ψ, φ) : P → P ′ that

preserves Γ and Γ′.

Proof. Define F : P → P ′ from f as:

F (pg) := f(p)φ(g) for p ∈ PΓ,u, g ∈ G

To prove that (F,Ψ, φ) is a principal bundle isomorphism, we must show that F is well-

defined and a diffeomorphism, and that the following identities hold:

1. π′ ◦ F = Ψ ◦ π

2. π ◦ F−1 = Ψ−1 ◦ π′

3. For all v ∈ P , g ∈ G, F (vg) = F (v)φ(g)

Finally, we must show that (F,Ψ, φ) preserves Γ. We do this by showing that the bundles

agree, via the transformation (F,Ψ, φ), on which curves are horizontal.

To see that F is well-defined, consider any v ∈ P , and suppose there are x, y ∈ PΓ,u and

g, h ∈ G such that v = xg = yh. Then x = yhg−1, and hence

F (xg) = F ((yhg−1)(g)) = f(yhg−1)φ(g) = f(y)φ(h)φ(g−1)φ(g) = f(y)φ(h) = F (yh)
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To show that F is also a diffeomorphism, it is sufficient to show that F is bijective and

that it is locally a diffeomorphism. First suppose F (v) = F (w) for some v, w ∈ P . Then by

the definition of F , π(v) = π(w), so we may write v = xg and w = xh for the same x ∈ PΓ,u.

Thus f(x)φ(g) = F (v) = F (w) = f(x)φ(h), but since φ is an isomorphism, this implies that

g = h and hence v = xg = yh = w. Thus F is injective. Now consider any v′ ∈ P ′. Write

v′ = x′g′ for some x′ ∈ P ′Γ′,u′ , g′ ∈ G′. Then F (f−1(x′)φ−1(g′)) = x′g′ = v′. Since f and φ

are bijections, f−1(x′)φ−1(g′) is a well-defined element of P . So F is bijective.

Finally, let v ∈ P , and let U ⊂ M be a neighborhood of π(v) which is such that a local

trivialization of π is defined on U and a local trivialization of π′ is defined on Ψ[U ]. Then

there is a local section σ : U → PΓ,u, and f ◦ σ ◦ Ψ−1 is a local section of P ′Γ′,u′ on Ψ[U ].

Then for p ∈ π−1[U ],

F (p) = F (σ ◦ π(p)θ(p)) = f ◦ σ ◦ π(p)φ ◦ θ(p),

where θ : π−1[U ]→ G as p 7→ a, where a is the unique element of G such that p = σ(π(p))a.

To see that θ is smooth, let ξ : π−1[U ]→ U ×G be a local trivialization of P . Then

θ(p) = ((projR ◦ ξ ◦ σ ◦ π)(p))−1(projR ◦ ξ)(p)

where projR : U × G → G acts as (z, b) 7→ b. Thus F�π−1[U ] is the product of compositions

of smooth maps, and is hence smooth. The argument for its inverse follows by analogy,

once one notes that F−1(x′g′) = f−1(x′)φ−1(g′). This completes the argument that F is a

diffeomorphism.

We now confirm that the identities 1-3 above hold. Let v ∈ P . Then v = xg for some

x ∈ PΓ,u and g ∈ G. Since f is an isomorphism and π(v) = π(x),

π′ ◦ F (v) = π′(f(x)φ(g)) = π′(f(x)) = Ψ(π(x)) = Ψ(π(v)).

So π′ ◦F = Ψ ◦ π. An identical argument establishes that π ◦F−1 = Ψ−1 ◦ π′. Now suppose

we have some v ∈ P and g ∈ G. Then v = xh for some x ∈ PΓ,u and h ∈ G. It follows that

F (vg) = F (xhg) = f(x)φ(hg) = f(x)φ(h)φ(g) = F (v)φ(g).

So F (vg) = F (v)φ(g), and thus (F,Ψ, φ) is a principal bundle isomorphism.

It remains to show that (F,Ψ, φ) preserves Γ. Let γ be a smooth curve in M , v ∈

π−1(γ(0)), and suppose v = xg, x ∈ PΓ,u, g ∈ G. Since Γ is a principal connection, the lifts
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of γ to x and v are related as γ̂v(t) = γ̂x(t)g. Since f takes Γ̃ to Γ̃′, we have that

F (γ̂v(t)) = F (γ̂x(t)g) = f(γ̂x(t))φ(g) = Ψ̂ ◦ γf(x)(t)φ(g) = Ψ̂ ◦ γF (v)(t).

Thus Γ and Γ′ agree on horizontal curves.

We now turn to the principal result of this section, which we restate here for convenience.

Theorem 1. Let G → P
π→ M and G′ → P ′

π′→ M ′ be principal bundles with principal

connections Γ and Γ′ respectively, and suppose that M and M ′ are connected. Suppose there

are points u ∈ P and u′ ∈ P ′ such that the induced holonomy maps based at u and u′ are

isomorphic. Then there is a connection-preserving principal bundle isomorphism between P

and P ′.

Proof. We first show that there is a principal bundle isomorphism (f,Ψ, φ) : PΓ,u → P ′Γ′,u′

that preserves Γ̃, where ΦΓ,u → PΓ,u
π̃→ M and Φ′Γ′,u′ → P ′Γ′,u′

π̃′→ M ′ are the holonomy

sub-bundles of P and P ′ at u and u′, respectively, and Γ̃ and Γ̃′ are the restrictions of Γ

and Γ′ and PΓ,u and P ′Γ′,u′ , respectively. We then invoke Lemma 5 to extend (f,Ψ, φ) to a

principal bundle isomorphism (F,Ψ, φ) : P → P ′ that preserves Γ.

First, since HΓ,u and H ′Γ′,u′ , the holonomy maps induced by Γ and Γ′ and based at u and

u′, respectively, are isomorphic by assumption, there must be some holonomy isomorphism

(Ψ, α, φ) : HΓ,u → H ′Γ′,u′ . Let z := TΓ,α−1(u) ∈ π−1(α(0)), where α ∈ α. (Note that

z ∈ PΓ,u, and moreover PΓ,u = PΓ,z, i.e., every element of PΓ,u can be connected to z via

some piece-wise smooth, horizontal curve). Define f : PΓ,u → P ′Γ′,u′ as follows:

(i) f(z) := u′

(ii) For any v ∈ PΓ,u, pick some piece-wise smooth curve βv ∈ CM,π(z) (where CM,π(z)

denotes the set of piece-wise smooth space-time curves γ : [0, 1] → M such that

γ(0) = π(z) = α(0)) such that v = TΓ̃,βv
(z), the parallel transport in PΓ,u of z along

βv according to the connection Γ̃. Then set f(v) := T ′
Γ̃′,Ψ◦βv

(u′), the parallel transport

in π̃ of u′ along Ψ ◦ βv.

I claim that the triple (f,Ψ, φ) realizes the desired principal bundle isomorphism. To

prove this, we must show that f is well-defined, a diffeomorphism, and that the following

identities hold:

11



1. π̃′ ◦ f = Ψ ◦ π̃

2. π̃ ◦ f−1 = Ψ−1 ◦ π̃′

3. For all v ∈ PΓ,u, g ∈ ΦΓ,u, f(vg) = f(v)φ(g)

Finally, we must show that (f,Ψ, φ) preserves the reduced connection Γ̃.

We begin by showing that f is well-defined. Consider any point v ∈ PΓ,u. Suppose

the curves β and β′ ∈ CM,π(z) are such that TΓ̃,β(z) = TΓ̃,β′(z) = v. We want to show

that T ′
Γ̃′,Ψ◦β(u′) = T ′

Γ̃′,Ψ◦β′(u
′). Let β−1 denote the reverse orientation of β, and eG the

identity element of G (and hence of ΦΓ,z and ΦΓ,u). By Lemma 3 (a) and (b), TΓ̃,β−1•β′(z) =

TΓ̃,β−1(TΓ̃,β′(z)) = TΓ̃,β−1(v) = z. Thus by Lemma 3 (c), HΓ,z(β
−1 • β′) = eG. Since φ is a

Lie group isomorphism, we also know that φ(eG) = eG′ . By Lemma 4, then, we know that

eG = HΓ,z(β
−1 • β′) = HΓ,u(α • β−1 • β′ • α−1) = HΓ,u(ᾱ

−1(β−1 • β′)), where ᾱ is as in Def.

1. Since (Ψ, α, φ) is a holonomy isomorphism, we know that eG′ = φ ◦HΓ,u(ᾱ
−1(β−1 •β′)) =

(HΓ′,u′◦ψ◦ᾱ)(ᾱ−1(β−1•β′)) = HΓ′,u′(Ψ◦(β−1•β′)). This tells us that u′ = T ′
Γ̃′,Ψ◦(β−1•β′)(u

′) =

T ′
Γ̃′,Ψ◦β−1(T ′

Γ̃′,Ψ◦β′(u
′)). By Lemma 3 (b), this implies that T ′

Γ̃′,Ψ◦β(u′) = T ′
Γ̃′,Ψ◦β′(u

′). So f is

well-defined.

We now show that f is bijective. (Later we will also show that f and f ′ are smooth,

completing the proof that f is a diffeomorphism.) Let v, w ∈ PΓ,u, and suppose f(v) = f(w).

We want to show that v = w. Since f(v) = f(w), we know that T ′
Γ̃′,Ψ◦βv

(u′) = f(v) = f(w) =

T ′
Γ̃′,Ψ◦βw

(u′). By Lemma 3 (a) and (b) and the fact that Ψ is a diffeomorphism, we get that

u′ = T ′
Γ̃′,(Ψ◦βv)−1(T ′

Γ̃′,Ψ◦βw
(u′)) = T ′

Γ̃′,(Ψ◦βv)−1•(Ψ◦βw)
(u′) = T ′

Γ̃′,Ψ◦(β−1
v •βw)

(u′). Thus by Lemma 3

(c) we get that HΓ′,u′(Ψ ◦ (β−1
v • βw)) = eG′ . Since (Ψ, α, φ) is a holonomy isomorphism,

this implies that φ(HΓ,u(ᾱ
−1(β−1

v • βw))) = eG′ , which, since φ is a Lie group isomorphism,

implies that HΓ,u(ᾱ
−1(β−1

v • βw)) = eG. By Lemma 4, then, HΓ,z(β
−1
v • βw) = eG. Thus by

Lemma 3 (c), v = TΓ̃,βv
(z) = TΓ̃,βw

(z) = w. So f is injective. Now let w′ ∈ P ′Γ′,u′ , and let

the curve β′ ∈ CM ′,π′(u′) be such that T ′
Γ̃′,β′

(u′) = w′. Then there is a unique v ∈ PΓ,u such

that v = TΓ̃,Ψ−1◦β′(z). Then f(v) = T ′
Γ̃′,Ψ◦αv

(u′) = T ′
Γ̃′,Ψ◦(Ψ−1◦β′)(u

′) = T ′
Γ̃′,β′

(u′) = w′. (The

second equality follows from fact that f is well-defined.) It follows that f is bijective.

We will now establish identities 1-3. Let v ∈ PΓ,u. Then

π̃′(f(v)) = π̃′(T ′
Γ̃′,Ψ◦βv(u

′)) = (Ψ ◦ βv)(1) = Ψ(βv(1)) = Ψ(π̃(v)).

12



So π̃′ ◦ f = Ψ ◦ π̃. By identical reasoning, π̃ ◦ f−1 = Ψ−1 ◦ π̃′. Finally, let v ∈ PΓ,u

and g ∈ ΦΓ,u. First note that by Lemma 3 (d) and the well-definedness of f , we can

assume without loss of generality that βvg = βv • βzg. By Lemma 3 (a), f(vg) =

T ′
Γ̃′,Ψ◦(βv•βzg)

(u′) = T ′
Γ̃′,Ψ◦βv

(T ′
Γ̃′,Ψ◦βzg

(u′)). By the definition of holonomy isomorphism,

TΓ̃′,Ψ◦βzg(u
′) = u′HΓ′,u′(Ψ◦βzg) = u′HΓ′,u′(Ψ◦ ᾱ◦ (α•βzg •α−1)) = u′φ(HΓ,u(α•βzg •α−1)) =

u′φ(HΓ,z(βzg)) = u′φ(g). Plugging this equality into the last one, and using Lemma 3 (d),

we get: f(vg) = T ′
Γ̃′,Ψ◦βv

(u′φ(g)) = T ′
Γ̃′,Ψ◦βv

(u′)φ(g) = f(v)φ(g).

Next we show that f preserves Γ. It suffices to show that for all piece-wise smooth curves

γ : [0, 1]→M and all w ∈ π−1(γ(0)), f(TΓ̃,γ(w)) = T ′
Γ̃,Ψ◦γf(w). But this follows easily from

the definition of f : f(TΓ̃,γ(w)) = T ′
Γ̃,Ψ◦βT

Γ̃,γ
(w)

(u′) = T ′
Γ̃,Ψ◦(γ•βw)

(u′) = T ′
Γ̃,Ψ◦γ(T

′
Γ̃,Ψ◦βw

(u′)) =

T ′
Γ̃,Ψ◦γ(f(w)).

To complete the proof, we have only to show that f and f−1 are smooth. Then f will be

a diffeomorphism, and (f,Ψ, φ) will be a principal bundle isomorphism that preserves Γ. Let

v ∈ PΓ,u and let V ⊆ M an open neighborhood of x = π̃(v) on which a local trivialization

of PΓ,u is defined. Let V ′ be a neighborhood of Ψ(x) on which a local trivialization of P ′Γ′,u′

is defined. Let g be a metric on M , g′ = Ψ∗(g). Let U be an open subset of V ∩ Ψ−1[V ′]

(containing x) on which the exponential map expx is a diffeomorphism from a subset Ux ⊆

TxM onto U .

By definition, expx(ξ) = γξ(1), where γξ is a g-geodesic in M such that
(
d
dt
γξ
)
t=0

= ξ.

We may also “lift” expx to v by defining êxpv : Ux → PΓ,u, where ξ 7→ (γ̂ξ)v(1). Similarly

we may define expΨ(x) : U ′Ψ(x) → P ′Γ′,u′ on M ′ using g′, in which case U ′Ψ(x) = Ψ∗[Ux], and

for any ξ′ ∈ U ′Ψ(x),

expΨ(x)(ξ
′) = γξ′(1) = Ψ ◦ γΨ∗(ξ′)(1) = Ψ ◦ expx(Ψ∗(ξ′))

since g′ = Ψ∗(g). (Recall that since Ψ is a diffeomorphism, we may define the pullback of

vectors as Ψ∗ = (Ψ−1)∗.) We also get that

êxpf(v)(ξ
′) = (γ̂ξ′)f(v)(1) = ( ̂Ψ ◦ γΨ∗(ξ′))f(v)

= T ′Γ′,Ψ◦(γΨ∗(ξ′)•βv)(u
′)

= f(TΓ,γΨ∗(ξ′)•βv(u))

= f ◦ êxpv(Ψ∗(ξ′)).

13



Now define a smooth local section σ : U → PΓ,u as σ = êxpv ◦ exp−1
x . Then

σ′ = f ◦ σ ◦Ψ−1 = f ◦ êxpv ◦ exp−1
x ◦Ψ−1 = êxpf(v) ◦Ψ∗ ◦ exp−1

x ◦Ψ−1

is a smooth local section of P ′Γ′,u′ . Now let η : U ×ΦΓ,u → π̃−1[U ] be a local trivialization

of PΓ,u such that η−1[σ[U ]] = U × {eG}, and let η′ : Ψ[U ] × Φ′Γ′,u′ → π̃′−1[Ψ[U ]] be a local

trivialization of P ′Γ′,u′ such that η−1[σ′[Ψ[U ]]] = Ψ[U ]× {eG′}. Then we can write f locally

as

f�U = η′ ◦ (Ψ× φ) ◦ η−1

since for all w ∈ π̃−1[U ], we can write w = yg for some y ∈ σ[U ]. Then

η′ ◦ (Ψ ◦ φ) ◦ η−1(w) = η′ ◦ (Ψ ◦ φ)(π̃(w), g)

= η′(Ψ ◦ π̃(w), φ(g))

= η′(Ψ ◦ π̃(w), eG′)φ(g)

= σ′(Ψ ◦ π̃(w))φ(g)

= f ◦ σ ◦Ψ−1(Ψ ◦ π̃(w))φ(g)

= f ◦ σ ◦ π̃(w)φ(g)

= f(y)φ(g) = f(w).

Since v was arbitrary, f is smooth everywhere. An analogous procedure can be performed

for f−1.

IV. PROOF OF THEOREM 2

We now prove the main result. Again, we restate it first for convenience.

Theorem 2. Hol and PC are equivalent as categories, with an equivalence that preserves

empirical content in the sense of preserving holonomy data.

Proof. Let C : Hol → PC be a functor that takes holonomy maps H : Lx → G on a

manifold M to a principal bundle G → P
π→ M and principal connection Γ given by the

Barrett reconstruction theorem—i.e., to a bundle and connection (G → P
π−→ M,Γ) such

that there exists a point u ∈ π−1[x] satisfying HΓ,u = H—and takes a holonomy isomorphism

(Φ, α, φ) to the principal bundle isomorphism (F,Ψ, φ) : C(HΓ,u) → C(H ′Γ′,u′) given in the

14



proof of Theorem 1. First, note that C clearly preserves holonomy data, and thus preserves

empirical content in the required sense. We will first show that C is indeed a functor, and

then show that C is one half of an equivalence, by showing it is full, faithful, and essentially

surjective.

First, it is clear from the definition of F that C((Ψ, α, φ) : H → H ′) = (F,Ψ, φ) :

C(H)→ C(H ′). It remains to show that C(idH) = idC(H) and that C(g ◦ f) = C(g) ◦C(f)

for any arrows f : H → H ′ and g : H ′ → H ′′ of Hol. So let H be an arrow of Hol,

suppose C(H) = (G → P
π→ M,Γ), and suppose u ∈ π−1[x] is such that HΓ,u = H. Then

C(idH) = C((idM , idπ(u), idG)) = (idP , idM , idG) = idC(H). Thus identities are preserved.

Now let (Ψ, α, φ) : H → H ′ and (Ψ′, α′, φ′) : H ′ → H ′′ be isomorphisms of holonomy maps

H : Lx → G, H ′ : Lx′ → G′ and H ′′ : Lx′′ → G′′. Let (P,Γ), (P ′,Γ′), and (P ′′,Γ′′) be

the corresponding principal bundles and connections in the Barrett construction, and let

u ∈ π−1[x], u′ ∈ π′−1[x′], and u′′ ∈ π′′−1[x′′] be such that H = HΓ,u, H = HΓ′,u′ , and

H = HΓ′′,u′′ , respectively. Then

C((Ψ, α, φ) ◦ (Ψ′, α′, φ′)) : H → H ′′

= C(Ψ′ ◦Ψ, α • (Ψ−1 ◦ α′), φ′ ◦ φ) : H → H ′′

= (F ′′,Ψ′ ◦Ψ, φ′ ◦ φ) : C(H)→ C(H ′′)

Where for v ∈ P , if v = xg for x ∈ PΓ,u, g ∈ G, then

F ′′(v) = TΓ′′,Ψ−1◦Ψ(α•(Ψ−1◦α′))(u
′′)(φ′ ◦ φ)(g)

= F ′(f(x)φ(g)) = (f ′ ◦ f)(x)(φ′ ◦ φ)(g)

= F ′ ◦ F (v)

We now show that C is full, faithful, and essentially surjective. Let H : Lx → G and

H ′ : Lx′ → G′ be objects of Hol, and suppose C(H) = (G → P
π→ M,Γ), C(H ′) = (G′ →

P ′
π′→ M ′,Γ′), where u ∈ π−1[x] and u′ ∈ π′−1[x′] are such that H = HΓ,u and H ′ = HΓ′,u′ .

Suppose there is an isomorphism (F ′,Ψ, φ) : (P,Γ) → (P ′,Γ′) of the principal bundles and

connections. Let α be a piece-wise smooth curve in M such that α(0) = Ψ−1(x′), α(1) = x,

and α̂F ′−1(u′)(1) = u. We claim that C((Ψ, α, φ)) = (F ′,Ψ, φ). For let (F,Ψ, φ) be the

isomorphism corresponding to (Ψ, α, φ) given in Theorem 1, and suppose v ∈ P is such that

v = yg for some y ∈ PΓ,u and g ∈ G. Then F (v) = T ′Γ′,Ψ◦βy(u
′)φ(g) for some piece-wise

15



smooth curve βy : [0, 1]→M such that βy(0) = Ψ−1(x′) and β̂yz(1) = y, where β̂yz is the lift

of βy through z = TΓ,α−1(u) = F ′−1(u′). Thus T ′Γ′,Ψ◦βy(u
′) = Ψ̂ ◦ βyu′(1) = F ′(βy(1)) = F ′(y)

by the definition of principal connection. Thus F (v) = F ′(y)φ(g) = F ′(v), so C(Ψ, α, φ) =

(F ′,Ψ, φ). So C is full.

Now suppose there are two holonomy isomorphisms (Ψ, α, φ) and (Ψ′, α′, φ′) : H → H ′

which are such that C(Ψ, α, φ) = C(Ψ′, α′, φ′) = (F,Ψ′′, φ′′). Then by the definition of C on

arrows, Ψ = Ψ′ = Ψ′′ and φ = φ′ = φ′′. Thus for all γ ∈ Lx,

H ′(Ψ ◦ (α−1 • γ • α)) = φ ◦H(γ) = φ′ ◦H(γ) = H ′(Ψ ◦ (α′−1 • γ • α′))

Thus α = α′, and so (Ψ, α, φ) = (Ψ′, α′, φ′) and C is faithful. Finally, let G→ P
π→M be a

principal bundle with connection Γ, (P,Γ) ∈ PC. Then C(HΓ,u) = (P,Γ) for some u ∈ P .

So C is essentially surjective.

V. DISCUSSION

We have now proved the main results of the paper. In particular, Theorem 2 establishes

that on at least one construal of the category of holonomy models, Hol and PC are equiv-

alent. This captures one sense in which one might think that no structure is lost in moving

between principal bundle and loop formulations of Yang-Mills theory; one might also take it

to capture a sense in which these formalisms are equivalent, by virtue of having the capacity

to represent just the same physics.

The interpretation of Theorem 2, however, turns on the definition of Hol. And this

might give one pause. Recall above that, in our definition of holonomy isomorphism, we

argued that there were three senses in which two non-identical generalized holonomy maps

might represent the same physics. At a certain point in that construction, we defined a kind

of holonomy map, which we called a holonomy isomorphism∗, and then defined holonomy

isomorphisms as equivalence classes of maps of this sort. One might wonder what turns on

the choice between holonomy isomorphism and holonomy isomorphism∗.

The answer can be made precise by defining a second category of holonomy models, Hol∗,

whose objects are the same as Hol, but whose arrows are holonomy isomorphism∗s, which

are ordered triplets (Ψ, α, φ), where Ψ and φ are precisely as with holonomy isomorphisms,

but α is now a piecewise smooth curve, rather than an equivalence class of such curves.
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(Recall Def. 1.) An argument nearly identical to the proof of Prop. 2 establishes that Hol∗

is a category (though not a groupoid).17 We may then define a congruence relation R on

Hol∗ as follows. Let H : Lx → M and H ′ : Lx′ → M ′ be holonomy models. Then for any

holonomy isomorphism∗s (Ψ, α, φ), (Ψ, β, φ) ∈ hom(H,H ′) say that (Ψ, α, φ) ∼ (Ψ, β, φ) just

in case H ′(Ψ ◦ (α−1 • γ • α))) = H ′(Ψ ◦ (β−1 • γ • β)) for all γ ∈ Lx. One can then easily

confirm, simply by comparing the definitions, that Hol = Hol∗/R.

This relationship suggests the following. First, there is a quotient functor Q : Hol∗ →

Hol that clearly preserves empirical content. This functor is bijective on objects and it is

full, but it is not faithful. This means that, if we use the Baez-Dolan-Bartels classification

for forgetful functors,18 Q forgets (only) “stuff”. (What stuff? It is not clear that a clean

answer is available, but our intuition is that we are forgetting unnecessary information about

the base point.) Likewise, if F : Hol → PC is the functor that realizes the equivalence in

Theorem 2, then F ◦ Q : Hol∗ → PC is also a functor that forgets only “stuff”. Thus, if

we chose to work with Hol∗ instead of Hol, there would be a sense in which the holonomy

formalism has more “stuff” than the principal bundle formalism. This helps clarify what

is at stake in choosing between Hol and Hol∗; it also gives some reason to doubt that

moving to Hol∗ will help someone who believed the holonomy formalism was somehow more

parsimonious.

That said, any comparison of theoretical structure (in a general sense that should encom-

pass structure, stuff, and property in the Baez-Dolan-Bartel sense) will always be relative to

the choice of functor between the categories in question. In particular, if we are attentive to

how we define Hol (i.e., we only consider manifolds within some fixed universe of sets), then

Q is an epi in Cat, the category of small categories. One might then wonder if Q splits, i.e.,

if there is a functor K : Hol → Hol∗ such that Q ◦K = 1Hol. If such a functor did exist,

then it would preserve empirical content, it would be bijective on objects, and it would be

faithful, but it would not be full: i.e., it would forget (only) “structure”. Then there would

be a functor K ◦F−1 : PC→ Hol∗ that also forgot only “structure”. One might then argue

that there is a sense in which the holonomy formalism has less structure than the principal

bundle formalism after all, provided one could argue that Hol∗ is otherwise preferable to

Hol. It turns out, however, that this argument can be blocked, as shown by the following

Proposition.

Proposition 6. Q doesn’t split.19
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Proof. If Q split, there would be a functor K : Hol→ Hol∗ s.t. Q ◦H = 1Hol. Consider a

holonomy map H associated to principal bundle with a flat connection, i.e., H : Lx → G is

such that H ≡ idG. Let α, α′ : [0, 1]→M be s.t. α(1) = α′(0) = x and α(0) = α′(1) = x′ 6=

x. Then

(idM , α
′, idG) ◦ (idM , α, idG) = (idM , α • α′, idG) = (idM , idx, idG).

Since this is the identity on H in Hol, K must map it to the identity on K(H) in Hol∗, i.e.

K((idM , α
′, idG) ◦ (idM , α, idG)) = (idM , idx, idG).

However, in order to be a functor, K must also satisfy:

K((idM , α
′, idG) ◦ (idM , α, idG)) = K(idM , α

′, idG) ◦K(idM , α, idG)

= (idM , β
′, idG) ◦ (idM , β, idG)

= (idM , β • β′, idG)

Where β ∈ α and β′ ∈ α′, so β(0) = β′(1) = x′ 6= x, so β • β′ 6= idx and hence

(idM , β • β′, idG) 6= (idM , idx, idG), which is a contradiction. Thus there is no such functor

K.

This result seems to us to remove the worry that moving to Hol from Hol∗ somehow

“adds” structure (in the Baez-Dolan-Bartel sense) in a way the undermines the significance

of Theorem 2. That said, there is some sense in which these final considerations are beside

the point. One might have thought that the question of real interest was whether or not

the principal bundle formalism allows us to describe physical situations that, by the lights

of that theory, are somehow physically inequivalent—say because they require us to make a

choice between different, inequivalent bundle structures—but which correspond to the same

holonomy data. One might then think that the principal bundle formalism has some sort of

“excess structure”, such that we would need to posit a new form of isomorphism between

principal bundles with connections, analogous to the gauge transformations one introduces

in classical electromagnetism, to remove that structure.20 But if that were the worry, then

Theorem 1 substantially settles the issue, since it establishes that given an equivalence class

of holonomy models, in either the sense of Hol or Hol∗, then there is a unique principal

bundle and principal connection with the appropriate structure group that gives rise to those

holonomy models.
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