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Abstract Biologists and philosophers of biology have argued that learning rules that
do not lead organisms to play evolutionarily stable strategies (ESSes) in games will
not be stable and thus not evolutionarily successful [21, 12]. This claim, however,
stands at odds with the fact that learning generalization—a behavior that cannot lead
to ESSes when modeled in games—is observed throughout the animal kingdom [22].
In this paper, I use learning generalization to illustrate how previous analyses of the
evolution of learning have gone wrong. It has been widely argued that the function
of learning generalization is to allow for swift learning about novel stimuli. I show
that in evolutionary game theoretic models learning generalization, despite leading
to suboptimal behavior, can indeed speed learning. I further observe that previous
analyses of the evolution of learning ignored the short term success of learning rules.
If one drops this assumption, I argue, it can be shown that learning generalization
will be expected to evolve in these models. I also use this analysis to show how ESS
methodology can be misleading, and to reject previous justifications about ESS play
derived from analyses of learning.

Keywords learning generalization · evolutionary game theory · philosophy of
biology

1 Introduction

Stimulus generalization, or learning generalization, is a learning behavior wherein an
actor conditioned to one stimulus responds in the same way to perceptually similar
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stimuli.1 This type of learning is extremely well documented.2 It occurs across a wide
variety of test subjects—mammals, birds, reptiles, amphibians, insects—across con-
texts, and across sensory modalities [22, 8]. In evolutionary game theoretic models,
however, learning generalization does not lead to the play of what are called ‘evo-
lutionarily stable strategies’ (ESSes). One point that theorists have generally agreed
on is that learning rules that do not lead organisms to play ESSes in games will not
be stable and thus not evolutionarily successful (see Maynard-Smith [21] and Harley
[12]). Why, this incongruity?

In this paper, I will use the case of learning generalization to investigate how
previous analyses of the evolution of learning have gone wrong. I point out that such
analyses have largely ignored the short term behavior of learning rules. Learning
generalization is standardly thought to be adaptive because it allows actors to quickly
learn to respond to novel stimuli [8]. In other words, it is especially useful in the short
term. I present evolutionary game theoretic models of learning generalization and
show that, indeed, generalizing can be beneficial in these models in that it helps speed
learning. Furthermore, if one considers evolutionary models of learning where the
short term behavior of learning rules is important, it becomes clear that generalization
can evolve. This supports the argument that previous analyses ignoring short term
learning were misguided. These results further inform game theory. Previous theorists
used analyses of learning to argue that ESS behavior should be seen in the real world.
The work presented here indicates that such claims are overly hasty. Furthermore,
this analysis lends credence to the idea that ESS methodology is often misleading.

The paper will proceed as follows. In section 2, I will discuss previous work on
the evolution of learning. In section 3, I will outline the ‘approximation game’, which
appropriately models the class of scenario in which generalization is seen. In section
4, I describe several learning rules where actors generalize to varying degrees. I go
on to show that in the long run rules that do not generalize outperform those that do
in the approximation game. In section 5, I present simulation results showing that
despite the long term success of non-generalized learning, under certain parameter
settings higher levels of generalization can do significantly better in the short term.
In section 6, I show that in evolutionary game theoretic models where short term
learning is important, learning generalization can evolve. I conclude by discussing
how this analysis informs game theory and evolutionary game theory.

2 The Evolution of Learning

Harley [12] and Maynard-Smith [21] use evolutionary game theoretic models to show
that only certain sorts of learning rules should be expected to evolve. Without going
into too much detail, these authors argue that only learning rules that lead to play of
evolutionarily stable strategies (ESSes) in games should be expected to persist in an

1 This behavior was documented in the famous ‘Little Albert’ experiment. Watson and Rayner [33]
conditioned a nine month infant to fear a white rat by frightening the child with loud noises whenever he
touched the animal. The child subsequently showed similar fear reactions to a number of fuzzy stimuli,
including a rabbit and a fur coat.

2 Thankfully not with regard to infant fear response.
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evolutionary setting. An ESS is a strategy in a game that is robust against invasion
by other strategies because it garners high payoffs for those using it.3 The arguments
Maynard Smith and Harley give are intuitively straightforward. Suppose that some
learning rule does not lead to play of ESSes in games. A rule that does lead to play
of an ESS will provide a higher payoff for those employing it. Then a learning rule
leading to ESSes will be more evolutionarily successful than one that does not, and
will be able to invade a population of those using a non-ESS learning rule.

This argument leads to a puzzle, however. Generalized learning cannot lead to
play of ESSes in games (as I will show in section 4). How does the observed ubiquity
of learning generalization in the natural world square with these results?

The work of Maynard-Smith and Harley, of course, is not the end of the discussion
of the evolution of learning. It has been pointed out by Smead [29] that learning rules
that take populations to ESSes have no advantage over static behavioral rules where
the actor simply adopts ESS play rather than bothering to learn it.4 Furthermore, most
models of the evolution of learning assume that learning will bear a greater cost than
non-learning strategies (for cognitive architecture, time required to learn, etc.). This
means that non-learning strategies that adopt ESS play will actually receive higher
payoffs than rules that learn such play and so should be able to invade these learning
rules. This point seems to create a worry about learning generally. If learning rules
that do not lead to ESSes are unstable, and static behavioral rules can invade learning
rules that do lead to ESSes, there are no stable learning rules at all (never mind ones
that generalize).

The usual response by biologists and philosophers of biology to worries of this
sort is to argue that learning rules are primarily useful in situations where the envi-
ronment exhibits some level of variability.5 In such environments, the argument goes,
non-learning strategies get poor payoffs because the actors cannot respond to chang-
ing payoff structures by changing action. Actors that play an ESS in one situation,
but cannot deal with changes to the environment, now do poorly against learners that
reach this same ESS in the original situation and can re-adapt when necessary.

Something is amiss here, though. The arguments forwarded by Maynard-Smith
and Harley explicitly depend on the following assumption: when modeling the evolu-
tion of learning one can ignore what happens in the short term. In other words, when
associating fitnesses with learning rules, these authors do not consider payoff while
the actors are learning. Instead, they look only at the payoffs of the long term, stable
strategies developed by learners. To date, most game theoretic work on the evolution
of learning has shared this assumption.6

But, if learning is most effective in a variable environment, to the extent that it
should not be expected to evolve otherwise, this assumption is suspect. In a vari-

3 To be specific, an evolutionary stable strategy xi is one such that if u(xi,x j) is the payoff of strategy xi
played against x j: 1) u(xi,xi)> u(xi,x j) or 2) u(xi,xi) = u(xi,x j) and u(xi,x j)> u(x j,x j) for all x j 6= xi.

4 Maynard-Smith [21] was aware of this. Smead and Zollman [31] find something similar. Smead [30]
also argues that learning rules that lead to equilibria in many cases should not be expected to evolve.

5 See, for example, Godfrey-Smith [11], Plotkin and Odling-Smee [25], Johnston [17], Stephens [32],
Dunlap and Stephens [6], Shettleworth [28], and Maynard-Smith [21].

6 There are some exceptions. Zollman and Smead [34], for example, use interim strategies developed
by learning rules to determine the fitnesses of actors in an evolutionary model.
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able environment, an actor will be changing strategies and so may spend a signifi-
cant amount of time playing strategies that are not stable, long term outcomes of the
learning process. If so, short term behavior should be important to the evolution of
learning.7 In particular, if payoff in the short term matters there should be selection
pressure for learning rules that work quickly.

Biologists and psychologists have argued that the function of learning generaliza-
tion is to allow organisms to quickly learn to respond to novel scenarios [8]. Further-
more, as mentioned, it should not evolve according to Maynard-Smith and Harley.
As such, this learning behavior is an excellent case to explore whether the intuitive
argument I just gave—that short term learning matters in an evolutionary context—is
correct. In the rest of the paper, I will present evolutionary game theoretic models
of learning generalization. As I will show, when the short term behavior of learners
is incorporated into evolutionary models, generalization will evolve for just the rea-
sons that biologists and psychologists outline. If short term behavior is ignored, on
the other hand, generalization will not evolve. These results indicate that the intuitive
argument is right, and that ignoring short term behavior of learning rules can lead
evolutionary analyses significantly astray.

3 The Approximation Game

Learning generalization occurs when an organism applies behavior that was success-
ful in one scenario to a perceptually similar scenario. What this means is that an
appropriate model to explore the evolution of this phenomenon will need to include
‘similar’ scenarios for the actor to potentially generalize over. In order to do this, I
introduce the approximation game.8 The approximation game involves one actor and
occurs in two stages. In the first stage, a state of the world is chosen probabilistically
by nature or some exogenous force. In the second stage, the actor observes this state
of nature and chooses an act. The state/act combination then determines what sort
of payoff the actor receives. In order to model the type of scenario in which gen-
eralization evolves, the possible states of the world are assumed to bear similarity
relationships to one another. This is done by treating these states as existing in a met-
ric space where distance represents similarity. For example, an approximation game
might have three states (1, 2, and 3) existing on a line. If state 1 is closer to state 2
than to state 3, it is assumed that state 1 is more similar to state 2.9

7 Smead [29] points out something similar. Empirical observations about, for example, death rates in
young birds also confirm the important of learning speed in animals [28].

8 This model should more properly be called the ‘approximation problem’ because it is a one-player
decision problem rather than a multi-player game. Decision problems, however, are formally idental to
one-player games. For this reason, the relevant results on the evolution of games directly bear on decision
problems, and results from the problems investigated here can be used to inform evolutionary game theory.
For simplicity sake, then, I use the language of game theory, and not decision theory, to describe the model
used.

9 Note that this is similar to the sim-max game, introduced by Jäger [16] to model signaling in situations
where states of the world bear similarity relations to one another.
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For each state of the world in the approximation game, it is assumed that there
is some ideal act which, should the actor choose it, will give a perfect payoff.10 It is
also assumed that acts will receive similar payoffs in similar states. In the previous
example, in state 1 the actor would achieve a perfect payoff by choosing act 1. But
she would also obtain a good payoff for choosing act 2. Her payoff for choosing act
3 would be less good. One simple way to model this is to determine payoff using
a function that takes as input the distance between the state and the act.11 For the
purposes of this paper, unless otherwise specified it will be assumed that the actor’s
payoffs are strictly decreasing with distance between state and act.

Figure 1 shows the simplest approximation game of interest—the one described
above. The central node of the figure represents the starting point of the game, where
nature chooses a state (S1, S2, or S3). The probabilities that each state is chosen by
nature are fixed at p, q, and 1-p-q. The three decision nodes labeled ‘A’ for actor
represent the possible choices of act in each state (A1, A2, or A3). Payoffs for each
state/act combination are shown at the final nodes. It is assumed that 0 < ε < δ < 1
(payoff decreases strictly in distance between state and act, but is always positive).
It is also assumed that p and q are strictly positive and p+ q < 1 (that every state is
played with positive probability).
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A2

A1 A3

A2A1

A3A2
A1

1

1

1

Fig. 1 A 3 state/3 act approximation game with payoffs 1, δ and ε for distance of 0, 1, and 2 between state
and act. The game begins with the central node labeled ‘N’ for nature and continues to the three decision
nodes labeled ‘A’ for actor.

Figure 2 shows some possible state spaces for approximation games. Diagram (a)
represents the state space of a game like the one just outlined, i.e., modeled on a line,
but with four states. Diagram (b) shows a game with a two dimensional state space.12

Approximation games with state spaces of any dimensionality are possible, though
this paper will only consider the simplest ones—those where states are modeled on a

10 For simplicity sake, acts will always be labeled by the state they are most appropriate for, i.e., act 1
will be the ideal act for state 1 and so forth.

11 This is a useful way to understand payoff in these games. It is more precise to say that a payoff is
defined for each state-act pair, and this payoff is chosen using such a function.

12 Note that games with state spaces of higher dimensionality can be used to model cases where an actor
is responding to states with multiple properties varying along different dimensions.
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line. For the purposes of this paper, these spaces are best understood as representing
perceptual similarity spaces.13 In other words, the states of the world in the game
correspond to perceptual states. This is a useful interpretation of the model as learning
generalization happens over perceptually similar states. It also avoids sticky issues
around how or whether external states are similar to each other.

Fig. 2 Two examples of state spaces for an approximation game. Diagram (a) shows a game with four
states modeled on a line. Diagram (b) shows a game with eight states modeled in a plane.

Most of the approximation games considered in this paper will have a few prop-
erties that bear mentioning. First, they will have considerably larger state spaces than
the game described above. The reason for this is that in real world learning scenarios,
the number of possible states of the world is often extremely large. This is certainly
true under the interpretation of the game here—that the actor is responding to percep-
tual states. Consider, for example, the number of discriminable colors picked out by
the human visual system, or the number of distinguishable smells. Furthermore, as I
shall show later in the paper, considering games with large state spaces is relevant for
understanding why generalized learning might evolve. Second, in the games consid-
ered, payoff loss over distance will usually be modeled with a gaussian function. This
function is used because it is always positive and strictly decreasing. These attributes
make it particularly tractable from a modeling perspective. While this choice may
seem arbitrary, the analytic results presented are robust under choice of function as
long as it is strictly decreasing.14 I will call the gaussian just described the ‘payoff
gaussian’ as it determines the degree to which an approximate match of state and act
will lead to payoff for the actor.

As noted, for every state of an approximation game there is one ideal act. A strat-
egy for a game defines an act in every possible state.15 What this means is that there
is a single, optimal strategy for every approximation game in which the actor always
picks the correct act for the state. The existence of a single optimal strategy is sig-
nificant from an evolutionary standpoint. Under the replicator dynamics, the most
common model of evolutionary change in evolutionary game theory, a population
playing the approximation game will evolve to take this strategy in every case. For

13 See Gärdenfors [7] for more on such spaces. See Krantz et al. [18] for how such spaces can be built
using experimental data.

14 O’Connor [23] also found that results in simulations of related signaling games were robust under
choice of function for payoff loss modeled as linear, quadratic, or decreasing in steps.

15 Again, while the term that technically should be used here is ‘choice’ because this is a one-player
problem, I use ‘strategy’ to avoid confusion. Once again, nothing hangs on this distinction.
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this reason, the approximation game would not usually be of much interest to evo-
lutionary game theorists—it is immediately obvious what behavior will be adopted
by a population evolving to play it. However, as I will argue in the next section, an
organism learning to respond to this game, and employing generalizing learning, will
not develop the optimal strategy.

4 Learning Rules

4.1 Herrnstein Reinforcement Learning and Generalized Reinforcement Learning

In evolutionary game theory, learning dynamics, unlike evolutionary dynamics, are
taken to model the emergence of learned individual behaviors over the course of a
organism’s lifetime, rather than the emergence of evolved population behaviors over
the course of evolutionary time. Herrnstein reinforcement learning, first proposed
by Roth and Erev [26], is so named in reference to R.J. Herrnstein’s psychological
work on learning, which motivates the model [14].16 This learning rule has been
widely used in evolutionary game theory because 1) it is psychologically natural,
i.e., based on observed learning behavior and 2) it makes minimal assumptions about
the cognitive abilities of the actors. This means that behaviors which emerge under
this rule can be assumed to be available to cognitively simple animals. In this case,
because generalized learning is seen in a wide variety of animals, including those
with minimal cognitive abilities [22], Herrnstein learning is an appropriate starting
place to model it.

The basic assumption that underlies reinforcement learning rules is that actors
will be more likely to repeat successful behavior. In other words, they reinforce this
behavior. In a simulation of these rules actors engage in a game many times, at each
step reinforcing successful behavior and thus improving their strategies. Herrnstein
learning can be described using the following analogy. In the context of the approxi-
mation game, imagine that for each state of the world the actor has an urn into which
is placed one colored ball for each possible act available to her. In the first round of
learning, nature selects a state of the world and the actor draws a ball from the urn for
that state. The color of the ball determines which act she will take. If the act is suc-
cessful, the actor returns the drawn ball to her urn and then reinforces her tendency
to take that act in that state by adding a ball (or two, or half a ball, etc.) of the same
color to that urn. The reinforcement is proportional to the success of the act, i.e., the
higher the success the greater the reinforcement. For our purposes, the amount of re-
inforcement will always be equal to the payoff achieved by the actor in each step of
the simulation. At the beginning of a simulation using Herrnstein learning, an actor
uses all her acts with equal probability, as she has one of each type of ball in each urn.
As play progresses and successful acts are reinforced, the actor becomes increasingly
likely to choose these acts. In the limit, the actor’s strategy may, under the right cir-

16 This learning rule is also sometimes called ‘Roth-Erev’ or ‘Vanilla’ reinforcement learning.



8 Cailin O’Connor

cumstances, converge to a successful one. In other words, she will use this strategy
with probability approaching 1.17

Generalized reinforcement learning (GRL) builds on the Herrnstein reinforce-
ment learning model.18 Under GRL rules, successful acts are reinforced, but they
are also generalized, i.e., reinforced for other, similar states of the world. In other
words, to continue the urn analogy, when an actor draws a colored ball from her urn
for a state and takes a successful act she adds balls of the same color to that urn,
but also adds balls of that color to the urns for similar states. It must be specified,
for these rules, the degree to which generalization occurs. How many other states
are reinforced? How much reinforcement occurs in those states? For the purposes of
this paper, generalization will be determined using a gaussian function. To be clear,
a model of an approximation game evolved using GRL employs two gaussian func-
tions. The payoff gaussian, introduced above, determines the level of payoff based
on how accurate the act chosen is for the state. The second gaussian determines to
what degree this payoff is generalized taking as input the distance between the state
of the world and the state to be reinforced. I will call this second gaussian the ‘re-
inforcement gaussian’.19 Figure 3 represents the way these two functions determine
reinforcement in an approximation game evolved using a GRL rule.

!"#"$%&'%"($%)&*+,

Distance between State and Act

Payo! Gaussian

Reinforcement Gaussian

Reinforcement for  
State of the World

Reinforcements for  
Other States

Fig. 3 A representation of how the payoff and reinforcement gaussians determine payoff in an approxi-
mation game evolved using a GRL rule.

A model of an approximation game evolved using these learning rules will have
five relevant parameters. The first is the size of the state space of the game. The sec-
ond and third are the height and standard deviation of the payoff gaussian. These

17 For more on this and other learning dynamics see Huttegger and Zollman [15]. For extensive work on
Herrnstein reinforcement learning and variations of it in signaling games (which are in some ways similar
to the approximation game) see recent work by Barrett [1, 2, 4].

18 This learning rule was first outlined by O’Connor [23]. Roth and Erev [26] look at a learning rule that
incorporates a slight amount of generalization in a similar way to GRL. They interpret this aspect of the
learning rules as persistent error.

19 Ghirlanda and Enqvist [8] argue that generalization is best modeled in many cases by a gaussian
function, suggesting that the choice of a gaussian as the reinforcement function here is a natural one. Fur-
thermore, Shepard [27] argues that the specifics of how an actor learns to generalize may not be particularly
important in determining subsequent behavior.
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control the level of payoff for perfect coordination in the approximation game (the
height) and the degree to which an actor receives payoff for imperfect action in the
game (the standard deviation). The fourth parameter is the standard deviation of the
reinforcement gaussian.20 Variations of this parameter correspond to GRL rules with
different degrees of generalization. In models where Herrnstein reinforcement learn-
ing is used, this parameter will not apply. It can be noted, though, that Herrnstein
learning is a limiting case of GRL as the width of the reinforcement gaussian ap-
proaches 0. The fifth relevant parameter will be the length of trial for simulations of
these models. This parameter will control the number of times the actor plays the
approximation game and updates her strategies.

4.2 Long Term Success

One way to explore the evolution of generalized learning is to compare learning rules
with different levels of generalization, like GRL and Herrnstein reinforcement learn-
ing, to see if high levels of generalization can outperform lower levels in these mod-
els. One method for doing this is to consider convergence outcomes of the models
just described. When this is done, however, it becomes clear that in the long term,
Herrnstein reinforcement learning can always outperform GRL in the approximation
game.

Laslier et al. [19] show that a single actor employing Herrnstein learning in a sta-
tionary environment, i.e., where payoffs remain constant, in the long run will always
learn to play the act that receives the highest expected payoff.21 This result can be
applied to each state in the approximation game. To do so requires that each state
be a stationary environment, which is the case given that the payoffs in the approx-
imation game do not change.22 It also requires that each state be selected infinitely
often as the length of learning goes to infinity, which is also the case as each state in
the approximation game has a strictly positive probability. Thus these results indicate
that in the long run, for each state in the approximation game, the act of an agent
employing Herrnstein reinforcement learning will converge to the optimal one. For
the entire game, then, the strategy of the actor will converge to the optimal strategy.
In the long run, the actor will take the perfect act in every state in the approximation
game if using Herrnstein learning. This result holds for an approximation game of
any finite size.

What happens to the strategy of an actor using a GRL rule in the approximation
game in the long run? Unlike Herrnstein learning, GRL rules will not converge to
the optimal strategy and, in fact, the level of generalization will determine a bound
of accuracy which a player will not be able to surpass. This bound of accuracy will

20 The height of the reinforcement gaussian is determined by the level of payoff.
21 In other words, as the learning time goes to infinity, the probability with which the actor chooses

non-optimal acts goes to 0.
22 The results of Laslier et al. [19] hold for expected payoffs. An expected payoff is an average payoff

over possible outcomes weighted by the probabilities of those outcomes. Note that for an approximation
game, the payoff for choosing an act in a state is always the same, and so the expected payoff in that state
is simply equal to the payoff. These results would apply even if this were not the case, as in a multi-armed
bandit problem.
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in turn determine a bound on the payoff success an actor can achieve. The intuitive
reason for this is that if an actor were able to converge to the perfect act in one state,
she would simultaneously prevent convergence in neighboring states by generalizing
the same act to them.

One can show this by solving for the consistent, limiting probabilities of acts for a
model of the approximation game evolved using a GRL rule. This is done by finding
the distribution of reinforcements in a game where the probability of an act being
selected in one round of simulation is equal to the probability of it being selected
in the next round. Consider a toy model of the approximation game with two states
and two acts. Suppose that in each state the payoff for the perfect act is 2 and for
the other act is 1. Assume that states of the world are equiprobable.23 This game is
pictured in figure 4 which should be read like figure 1. Also consider a simple form
of GRL where successful acts are reinforced in the state of the world by the amount
of the payoff and in the other state by that amount multiplied by α where 0≤ α ≤ 1.
In this simple model, α determines the level of generalization. A high α means that
success will lead to strong generalization in the other state of the world, a low α

will mean that generalization is weak. If α is equal to .1, the consistent, limiting
probabilities of this game are such that the actor selects the more successful act in
each state with probability 5/6 and the other act with probability 1/6. It is possible
(though increasingly difficult) to calculate such limiting probabilities for larger games
and more complex generalization rules.

N

A A

2112

S1 S2

A2A1 A2A1

Fig. 4 A 2 state/2 act approximation game with payoffs 2 and 1 for distance of 0 and 1 between state and
act. The game begins with the central node labeled ‘N’ for nature and continues to the two decision nodes
labeled ‘A’ for actor.

One can further explore this phenomenon through simulation. It is easy to show
what happens in this toy model at the two bounds of α . If one sets α = 0, the learning
rule is the same as Herrnstein learning and so converges to perfect behavior. If one
sets α = 1, the actor fully generalizes. In other words, if she reinforces act 1 in state
1 by .43, she will also reinforce act 1 in state 2 by .43 and so on. This complete
generalization of success means that reinforcement levels for the actors will always
be identical in the two states of the world. Because actors will not be able to learn to
condition their acts on which state has been selected, every attainable strategy (those

23 This degenerate approximation game is not generally an interesting one as it is formally the same as a
game with no similarity structure over the payoffs. It is useful, however, as a simple case to consider GRL.
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where the probability for each act is the same in both states) will get an expected
payoff of 1.5, the same as choosing by chance.

For intermediate levels of α , simulations of the toy model show that the actor
eventually reaches a level of accuracy, and thus success, that is bounded by the level
of generalization. The lower the generalization, the greater the success. In figure 5
success rates are shown for a simulation of this game for α ranging from 0 to .3 and
α equal to 1. In each case, success is calculated by dividing the expected payoff for
the actor given her learned strategy by the perfect possible expected payoff (which,
in this case, is 2).

Success = expected payoff given learned strategy
perfect possible expected payoff

Each line represents the success rate of a simulation over time for a different
level of generalization. Darker lines represent lower levels of generalization. Rates
were averaged over 50 runs of simulation. As should be clear from figure 5, for each
level of generalization, the success of the simulation reaches some upper bound and
stays there. Note that time is presented logarithmically. The reason for this bound on
success has already been laid out. When the actor generalizes, success in one state
means that an act will be taken with greater probability in other states where it is less
successful.

1 2 3 4 5 6 7
Length of Trial0.70

0.75

0.80

0.85

0.90

0.95

1.00
Success

Toy Model Success Rates

1
.3
.2
.1
0
a

Fig. 5 Success levels for a 2 state/2 act approximation game with various levels of generalization (α). The
y-axis tracks success and the x-axis represents of length of the trial where each value x is 10x runs.

The results from these toy models can be extended to larger approximation games
since in every larger game reinforcement in neighboring states will prevent conver-
gence in the same way as it does in a two state model.24 Thus these results indicate
that in the approximation game, over the long run, low levels of generalization will
outperform high levels of generalization from a payoff perspective, and in particu-
lar Herrnstein learning will outperform any GRL rule. The single optimal strategy

24 To see why this is the case, consider two states of any larger approximation game. Use the reinforce-
ment gaussian for this larger game to define α as above (the proportion of reinforcement on a neighboring
state). It has been shown that this smaller system cannot reach an optimal strategy and so the larger system
it is a part of cannot either.
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provides the highest possible level of payoff in the game, and so learning to use any
other strategy will be strictly worse. Importantly, the optimal strategy in an approxi-
mation game is always the unique ESS. Therefore, GRL is unable to learn ESSes in
this game, while Herrnstein is guaranteed to do so.

Furthermore, although this analysis only addresses approximation games, it may
be extended to some other games, including ones with multiple players. O’Connor
[23] obtained similar simulation results in sim-max games, which are a variation on
the Lewis signaling game where the state space has the same similarity structure
as the approximation game. Unlike approximation games and sim-max games, most
games do not have several possible states and so it is not possible to evolve them using
GRL. For those games that do, though, if an actor generalizes over states she will only
be able to achieve optimal behavior if the acts generalized are ideal for all the states
they are generalized to. Otherwise, generalized learning will lead to reinforcement of
sub-ideal acts and thus to sub-optimal behavior, preventing play of ESSes.

5 Short Term Success and Simulation

As I will outline in this section, there is a tension that can arise between the two
desiderata a learning rule should meet—working quickly and developing behavior
that obtains the highest possible payoff.25 While low generalization learning outper-
forms high generalization learning eventually, the very property that prevents high
generalization rules from approaching optimal behavior is the one that allows them
to outperform low generalization rules in the short term. I will illustrate this argu-
ment using simulation results showing that in trials of the approximation game, high
levels of generalization can outperform low levels under certain parameter settings.
In particular, high generalization does best when states of the world are numerous,
when trials are short, and when the payoff gaussian (modeling how accurate an actor
must be to get a good payoff) is wide. This result confirms intuitive arguments about
the benefits of learning generalizations.

All the results presented in this section were generated using models where payoff
and reinforcement were calculated with gaussian functions. Each trial of a parameter
setting was run 50 times and reported results are averages of these. The parameters
that varied were the size of the state space, the length of the trial, the standard devi-
ation of the reinforcement gaussian, and the standard deviation of the payoff gaus-
sian.26 The state spaces considered were of size 100, 200, 300, 400, and 500. The
lengths of trial were 1,000, 10,000, 100,000, and 1 million runs. The reinforcement
gaussian standard deviations were 5, 10, 15, 20, and none (Herrnstein learning). And
lastly, the payoff gaussian standard deviations were 1, 5, 10, 15, and 20.

25 This has been widely observed in other fields. It has been argued in psychology that ‘fast and frugal’
decision heuristics, which allow actors to make decent strategies quickly and easily, are adaptive, despite
the possibility that they lead to irrational or sub-optimal behavior [10, 9]. Generalized learning can be
thought of as a learning rule that leads to making decent, if sometimes inaccurate, decisions quickly. In
machine learning, much work has been done on learning models that generalize from limited input to make
predictions in novel scenarios. Similar tradeoffs between speed and accuracy are found in these models
[13].

26 Height of the payoff gaussian was always 2.
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Figure 6 shows the success rates (calculated as they were in the previous section)
for one set of these trials—those where the payoff gaussian had a standard deviation
of 10. The x-axis of the figure represents the length of trial (ranging from 1,000 runs
to 1 million). The z-axis tracks the size of the state space (from 100-500). And the
y-axis tracks average success of the trials. Each surface shown represents results for
one reinforcement width parameter setting. In other words, each surface corresponds
to one learning rule and these rules vary with respect to generalization. The black sur-
face represents the highest levels of generalization (a reinforcement gaussian with a
standard deviation of 20) and successively lighter surfaces represent lower and lower
levels of generalization.

Success Rates for the Approximation Game

1,000

10,000

100,000

1 million

Length of Trial

100

200

300

400

500

Number of States
0.0

0.5

1.0

Success

Fig. 6 Average success levels for various parameter settings for an approximation game with a payoff
gaussian of standard deviation 10 evolved using GRL and Herrnstein reinforcement learning. Results are
averaged over 50 runs of each setting.

As is evident in the figure, each level of generalization considered outperforms
the others for some region of parameter space. The rule with the highest level of
generalization (black) outperforms the others in the area of parameter space where
trials are short and the number of states of the world is large. Herrnstein learning
(the lightest surface) performs best in the longest trials and when states of the world
are fewer. These results should not be surprising. In a short trial with many states
of the world, there is not enough time for the actor to learn ideal actions in each
state, so a learning rule that allows success to be generalized does better. When an
actor has a long time to learn, more precise strategies can be developed using low
generalization rules and so these do better. Similar results were obtained for the other
payoff gaussian values with the slight difference that in games where approximate
action was successful (wide payoff gaussians), higher generalization could perform
better. In extreme cases of games with very narrow payoff gaussians approximate
actions do not receive a good payoff. Generalization thus does not help the actor in
this case, because only precise strategies will be successful.
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Real world learners do not use learning strategies that exactly mimic those used
in the models here. In order to strengthen these results, I investigated their robustness
across learning rules. Under reinforcement learning with punishment, actors reinforce
successful acts for the state of the world (and for similar states under the generalized
version), and simultaneously punish, or decrease the reinforcement level for that act
in other states.27 The results of simulations for these rules were highly similar to
those presented in the last section. I also explored a learning rule outlined by Barrett
[3], which I call Barrett Learning. This rule is in some ways similar to Adjustable
Reference Point with Truncation learning introduced by Bereby and Erev [5]. Actors
using this rule discount past experience compared to more recent experience. Results
were, again, very similar to those presented in this section.

It should be noted that the results presented in this section are not particularly
surprising given previous results from machine learning, and previous observations
from psychology and biology about the benefits of generalization. As we will see in
the next section, however, generating similar results in an evolutionary game theoretic
model is useful in that is allows us to discuss the motivating problem presented in
section 2: why do previous evolutionary game theoretic analyses of learning predict
that rules like GRL should be unable to evolve if generalization is so ubiquitous?

6 Evolving to Generalize

At this point it has been established that high generalization learning can perform
well in the approximation game when time is limited and states are numerous despite
the fact that only non-generalized learning leads to optimal behavior. How, it will
now be asked, do these results inform the evolution of learning generalization?

The larger question at hand, remember is whether or not it is problematic to as-
sume that the short term behavior of learning rules does not matter in evolution-
ary analyses. In order to assess this using the case of learning generalization, let us
consider an evolutionary model where the environment for the actor changes regu-
larly, meaning that speed of learning may be evolutionarily relevant. The replicator
dynamics are the most commonly used model of the evolutionary process in evolu-
tionary game theory and will be employed here. These dynamics assume that actors
using strategies that receive higher payoffs will replicate more successfully than ac-
tors using strategies that receive lower payoffs.28 In populations modeled under these
dynamics high payoff strategies tend to proliferate. In the approximation game in par-
ticular, because there is only one player, the learning rule that will evolve under the
replicator dynamics is simply the one that gets the best payoff.

Consider a model where a population of actors learns to play an approximation
game using either Herrnstein learning or various GRL rules. One can think of the ac-

27 There is experimental evidence supporting the use of rules where actors punish or forget strategies,
i.e., sometimes decrement their reinforcements. See Bereby and Erev [5], for example.

28 The replicator equation determines how proportions of strategies in a population change under the
replicator dynamics. This equation states that ẋi = xi( fi(x)−∑

n
j=1 f j(x)x j) where xi is the proportion of a

population playing strategy i, fi(x) is the fitness of type i in the population state x and ∑
n
j=1 f j(x)x j is the

average population fitness in this state.
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tors’ strategies as now consisting in which learning rules to adopt. The payoffs associ-
ated with each learning rule will be the expected payoffs for the behavioral strategies
that these various learning rules develop in simulation. Now suppose that at regular
intervals, the population encounters a new approximation game (one where the actors
encounter new states and must associate them with new actions). If these intervals of
learning are short enough, under the replicator dynamics this population will evolve
to use a GRL rule rather than Herrnstein learning. This is the case because, as shown
in the previous section, generalizing rules will lead to higher payoffs for the actors
over a short timescale. And, as pointed out, for an approximation game the replicator
dynamics will always select whichever behavior receives the best payoff. To give an
example, suppose that actors in the population play approximation games with 100
states, and that they switch games every 1,000 rounds. If the initial population con-
tains the learning rules considered in the last section (Herrnstein learning and GRL
with reinforcement gaussians of widths 5, 10, 15, and 20), GRL with a reinforce-
ment gaussian of width 10 will evolve. In other words, when the environment varies,
generalization can evolve.

One might worry that in the model just described actors begin their learning pro-
cesses anew when the environment changes rather than having to forget currently
developed actions. To alleviate this worry, I also considered models of populations in
changing environments where actors must forget previously learned strategies when
the world changes. I found that under a wide range of parameter settings, generaliza-
tion evolved.29

Furthermore, there is a feature of learning situations that I have not discussed
yet which makes generalization relatively more important and more successful in
real world scenarios with numerous states. In the approximation game, every pos-
sible state of the world has its own ideal act. In reality, though, for highly similar
states, it will often be appropriate for an organism to take the same act, in which
case generalization will be more effective than the models here predict [28]. To fur-
ther elucidate this claim, consdier a scenario where a bird is learning to interact with
blackberries. Imagine a model of this scenario. The state space of this model would
have hundreds (thousands?) of states varying along multiple dimensions of perceptual
space—smell, size, color, shape, etc.—but the birds would only have two available
acts—eat and not-eat. Generalization, in this case, will only lead to suboptimal be-
havior for states right at the boundary between edible and inedible berries. For all the
other possible states, generalizing will be completely successful. In models of this
scenario, Herrnstein learning will still lead to ESS play while GRL will not, but the
benefits of Herrnstein learning are only relevant for a small proportion of states, while
GRL provides more significant benefits for most of the state space. In other words,
the window of time during which GRL is a more successful learning rule is longer,
making it more problematic to ignore short term learning behavior in evaluating the
evolution of generalization.

In the evolutionary models presented above, the learning rule that evolves strictly
outperforms the other learning rules from a payoff perspective, and so satisfies the

29 These results are not presented here as the description of these models is lengthy and the results are
unsurprising.
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definition of an ESS (if one treats a choice of learning rule as a choice of strategy). It
would be strange to say that GRL rules are evolutionarily stable, though. In principle,
given this set-up, any learning rule (like GRL) that has not gotten to the optimal
outcome in the short time period could be outperformed, and so invaded, by a learning
rule that does better in that same time period.30 This, however, does not really matter.
The point is not that a particular rule for generalization will be stable, but rather that
this type of stability analysis ignores some of the most evolutionarily relevant features
of learning rules, in this case a need for speed. Maynard-Smith [21] and Harley [12]
are not wrong in thinking that there should be selection pressure for rules that learn
ESSes, but just wrong in thinking that this is the only, or the most important type of
selection pressuring bearing on learners.

7 Conclusion

To conclude, I will discuss how the results of this paper inform game theory and
evolutionary game theory, but first, a word should be said about the proposed inter-
pretation of the state spaces of approximation games.

I pointed out in section 2 that these state spaces should be thought of as perceptual
rather than external because generalization happens over perceptually similar states.
Given that similarity is built into the approximation game through the payoff struc-
ture, however, this interpretation assumes that perceptually similar states will always
get similar payoffs when responded to with similar actions. At first consideration,
this assumption may seem problematic. It should be noted, though, that perceptual
similarity structures themselves evolve. O’Connor [24] argues that in models of the
evolution of perceptual categorization, real world states that actors can respond to
in similar ways evolve to be perceptually similar. If this is right, it may be reason-
able to assume that perceptual similarity (usually) tracks payoff similarity. This line
of thinking points to a way in which the exploration of generalization in this paper
is incomplete, though. Generalization happens over perceptual states, and will only
be successful if the similarity structure of these perceptual states is arranged so that
perceptually similar things can be reacted to similarly. In this way, the evolution of
generalization arguably cannot be fully understood without also understanding the
evolution of perceptual similarity.

I will now return to how this exploration of the evolution of learning generaliza-
tion informs evolutionary game theory. First, and most importantly, the assumption
that the short term performance of learning rules can be ignored in evolutionary anal-
yses is a bad one. This assumption is inconsistent with other assumptions made about

30 In fact the real world behavior of learning discrimination points towards a possibility for such an
improved rule. Previous investigations into animal learning indicate that when it is relevant from a payoff
perspective for organisms to discriminate between states, they learn to do so [20]. In fact, generalization
and discrimination can be seen as two sides of a coin. The former allows animals to extend successful
behaviors to possibly relevant scenarios, the second allows animals to trim these behaviors back if they are
not applicable [28]. This combination of behaviors could be modeled with a learning rule that combines the
best aspects of GRL and Herrnstein reinforcement learning. Learners begin by generalizing, but eventually
stop generalizing and develop more precise strategies. In fact, the models developed here help illuminate
why learning discrimination is important—it helps organisms avoid sub-optimal behaviors developed when
generalizing, and can allow actors to move closer to ESSes.
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the evolution of learning, in particular that learning should be expected to evolve in
variable environments. It is an assumption that matters, because, as shown here, when
the short term success of learning rules is taken into account, evolutionary outcomes
are significantly impacted. And, as this paper shows, if this assumption is maintained,
evolutionary game theoretic models are unable to account for the evolution of gen-
eralization. When the assumption is dropped, on the other hand, evolutionary game
theoretic models can successfully account for this highly successful real world learn-
ing behavior. As such this case illustrates how the long term learning assumption is
not just intuitively suspect, but can actually lead an evolutionary analysis significantly
astray.

Past investigations into the evolution of learning rules have been used to justify as-
sumptions about equilibrium play in game theory (see, for example, Maynard-Smith
[21]). The results here indicate that a better understanding of the evolution of learn-
ing does not support this justification. Although there should be selection pressure for
learning rules to reach ESSes, there should also be selection pressure for rules that
learn quickly. When these desiderata are at odds, as is the case with learning gen-
eralization, non-equilibrium behavior should be expected in the real world. Even if
real world actors eventually learn to discriminate between relevantly different states,
and so mitigate the sub-optimal effects of generalization, while learning progresses
(which should be a non-trivial proportion of the time if actors face heterogenous en-
vironments) non-equilibrium and thus non-optimal behavior should be expected.

In recent years, the tradition of depending on ESS methodology in evolutionary
analyses has come under fire. The results presented here are one more example of
a case where a dynamical investigation reveals important insights into evolutionary
processes that ESS analysis misses. As discussed, simply identifying which learning
rules are evolutionarily stable in the sense that they lead to ESSes misses important
differences between the processes that actors employing these rules undergo, and
thus misses evolutionarily relevant information. This analysis thus gives further rea-
son to be very careful when applying ESS methodology to complicated evolutionary
scenarios.

Acknowledgements Removed for review.
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