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Abstract: This paper argues for a broadly dispositionalist approach to the ontology
of Bohmian mechanics. It first distinguishes the ‘minimal’ and the ‘causal’ versions
of Bohm’s Theory, and then briefly reviews some of the claims advanced on behalf
of the ‘causal’ version by its proponents. A number of ontological or interpretive
accounts of the wave function in Bohmian mechanics are then addressed in detail,
including i) configuration space, ii) multi-field, iii) nomological, and iv)
dispositional approaches. The main objection to each account is reviewed, namely
i) the ‘problem of perception’, ii) the ‘problem of communication’, iii) the ‘problem
of temporal laws’, and iv) the ‘problem of under-determination’. It is then shown
that a version of dispositionalism overcomes the under-determination problem
while providing neat solutions to the other three problems. A pragmatic argument
is thus furnished for the use of dispositions in the interpretation of the theory
more generally. The paper ends in a more speculative note by suggesting ways in
which a dispositionalist interpretation of the wave function is in addition able to
shed light upon some of the claims of the proponents of the causal version of
Bohmian mechanics.

1. The ‘Minimal’ Elements of Bohmian Mechanics

Bohm'’s Theory or, as I shall call it here, Bohmian Mechanics (BM) is
nowadays often described in terms of what is known as the ‘minimal’ version of
the theory. According to this version, BM is a first order theory that describes at all
times the positions and velocities of each of the particles in an N-particle system.
However, this is not the original ‘causal’ version of the theory that was famously
introduced by David Bohm himself in a couple of well-known papers in 1952, and
later developed together with collaborators such as Basil Hiley. Now, let me first of
all list and briefly explain the uncontroversial or neutral first four postulates of
BM. I shall offer some explanation for them before I go on to describe the
additional fifth postulate that distinguishes the ‘causal’ from the ‘minimal’ versions
of BM. I refer to them as the state description, dynamical, equilibrium and guidance
postulates, and they are as follows.



1. The State Description Postulate: The state description of an n-particle
system is given by (¥, Q) where W (q, t) is the quantum state with q =
(q1, 92,--» qn) € N30, and Q = (Q1, Q2,..., Qn) is the set of particle positions
with Qx € I3 as the actual position of the kth particle.

Concerning this first postulate, it is well known that BM is a hidden variable
theory, ascribing to all elementary particles a position at all times. This is
additional information that is not encoded in the quantum state or wavefunction.
Hence the first postulate of the theory already states that a full state description of
a Bohmian particle, or system of particles, is given by a precise specification of
both wavefunction and hidden state. (Therefore the description within the theory
of the entire Universe at any given time is provided by the complete or universal
wavefunction together with the complete quantum state for all the particles
contained in the Universe).

2. The Dynamical Postulate: The quantum state ¥ (q, t) evolves according
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The dynamical postulate simply asserts that the time evolution of the
quantum state is uniquely given by the unitary Schrodinger equation. This is the
altogether orthodox dynamical rule for the evolution of the quantum wavefunction
where V (q) is the classical potential, which takes value O for a free particle.
However, critically, in BM - and unlike what is the case in collapse interpretations
of quantum mechanics - this dynamical rule has no exceptions, ever. There is no
collapse of the wavefunction, not even when measurement interactions take place,
or under any other circumstances. The dynamical postulate is unexceptionally
always true in any version of BM under any interpretation.

3. The Equilibrium Postulate: The quantum equilibrium configuration
probability distribution p for an ensemble of systems each having

quantum state W is given by: p = @[’

The equilibrium postulate guarantees that the orthodox quantum
mechanical probabilities, derived from Born’s rule, accurately reflect our
ignorance over the initial state of the system. In other words the postulate enables
an epistemological reading of the probability distributions over the appropriate
quantities, and in particular, the uncertainty relations. (Since in BM the underlying
dynamics is entirely deterministic, the uncertainty relations may only be derived
in such a way, as the result of epistemic limitations on the initial state of the
system). It should also be noted that the relation established by the postulate is
equivariant. That is, once the probability distribution p takes the value given by the



square modulus of the amplitude of the wave-function [¥ (t)[2 at any given time t in
the evolution of the n-particle system described and (as long as the evolution of
the system is given by the Schrédinger equation, and the distribution of particle
positions is given by the guidance equation described in postulate 4) then it is
always so given at any other time. There are in addition arguments to the effect
that at the initial time in the evolution of the universe, to, the probability
distribution over positions must be given by the equilibrium postulate if it is
typical for the [¥ (to)|2 where W (to) is the initial state of the universe (Allori et al,,
2008, p. 356).

4. The Guidance Postulate: The particles move on trajectories given by
their positions and velocities as determined by the equation:
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This notorious fourth postulate establishes a law for the motion of particles,
via a description of their kinematics. It does so by describing a velocity field
associated to each particle, in terms of its position, once again as a function of the
quantum wavefunction. This is a first order equation in that it involves exclusively
first order differential equations with respect to the positions of the particles. (In
BM, the positions of the particles, as they figure in the quantum state, are the only
genuine magnitude that particles can be said to possess.) Notice that what this
means in practice is that the only initial conditions that need to be fixed, in
addition to the wave-function, in order to determine the values of V,:P at all times
are the initial positions of the particles, i.e. the full configuration state of the
particles ab initio, Qk at time to. No further initial conditions are required; and the
initial particle configuration state suffices to fix via the guidance equation all future
relevant states of the particles.

2. The ‘Causal’ and ‘Minimal’ Versions of Bohm’s Theory Distinguished

We may now distinguish the ‘minimal’ and ‘causal’ versions of the theory as
follows. The so-called ‘minimal’ version accepts only these four postulates and
nothing else as the axioms of BM. As a result, since only a first order equation of
motion for velocity is adopted among the axioms, this version of the theory is
sometimes known as the first order or kinematical version of BM. As described, the
minimal version of BM is merely a presentation of the theory; in particular its
ontological commitments and assumptions are very minimal and concern only the
properties of position and velocity. Other than that, there are no further
assumptions regarding what sort of entities in the world are represented by these
four equations. 1

1 Other, that is, than the very minimal assumption that whatever particles exist
must have determinate positions and velocities, i.e. that there are trajectories. But
there are no assumptions, for instance, regarding what a particle consists in, what
the background space of motion may be, whether the trajectories inhabit 3-
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The original ‘causal’ version of the theory introduced by Bohm, however,
subtly puts the emphasis beyond the kinematics of the fourth postulate and the
guidance equation. Thus, according to Bohm’s own presentation of the theory,
there exists, besides the wave-function, a so-called ‘quantum potential’, ultimately
determined by the wave-function, and which is said to play a fundamental causal
and explanatory role. As Bohm himself states in his reminiscences regarding his
original introduction of the theory, “the basic assumption was that the electron is a
particle, acted on not only by the classical potential V, but also by the quantum
potential, Q” (Bohm, 1987, p. 35). Once all the appropriate equations describing
the dynamical laws for the position of particles, wave-function, and quantum
potential are taken into account it is possible to provide “an in principle complete
causal determination of the behaviour of these elements in terms of all the relevant
equations” (ibid, 1987, p. 35). This seems to be the reason why Bohm and his
collaborators often refer to their version of the theory as the ‘causal’ version, or
‘causal interpretation’ of quantum mechanics.

The minimal version, as we saw, is essentially a first order theory: it
contains only variables for position and velocity. The causal version, however, is a
second order theory, containing variables for accelerations, forces, or a quantum
potential in addition. These differences in ontology are significant, but they are not
dramatic. On the contrary, a variety of interpretations of the theory are available in
both its minimal and causal versions. Correspondingly, for each of these two
approaches to the presentation of the theory, a particular interpretation of the
ontology may be provided, which depends on how the wave-function is
understood, and what a relationship is taken to exist between the wave-function
and the system'’s properties at any given time. In the next few sections I review
four different ontologies that may be provided for the theory on either the minimal
or causal version. I also review some of the problems associated with each of these
ontologies.

It is important, however, to distinguish from the very start these ontological
readings or interpretations of the ‘minimal’ and ‘causal’ versions of the theory
from the versions themselves. All of them are often referred to as ‘interpretations’
of Bohm'’s Theory (or even, ‘interpretations of quantum mechanics’), yet only the
fully ontologically interpreted versions can properly speaking be the
‘interpretations’ traditionally conceived by philosophers. That is, to provide an
interpretation of a theory is to provide a description of what the world would be
like were the theory true (or, more precisely in the appropriate conditional form:
what the world is like if the theory is true). The underdetermination of
interpretation by theory suggests that there is no unique ‘reading off” strategy to
extract the ontology from any version of the theory.

Now it has been pointed out how the minimal and causal versions of
Bohmian mechanics differ minimally in ontology. This difference is indeed
minimal, since neither version by itself describes how the world is ultimately

dimensional or a higher dimensional configuration space and, of course, whether
there are additional entities over and above the particles.
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furnished ontologically, but to the contrary leaves the fundamental ontological
options wide open. 2 Thus, the causal version merely adds a fifth axiom, namely
the so-called “quantum potential equation of motion” (QPE), which describes
second order quantities, in the sense that the equation involves first order
derivatives of the particles’ velocities, i.e. second order differential equations with
respect to the particles’ positions:

5. The Quantum Potential Postulate: The force acting on each particle at
position k with velocity v is given by the quantum potential equation of
_ d -h V’R
motion (QPE): F =m, % =-V(V+U), where U = Ty
m
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quantum potential for a particle in the state ¥ =R- ¢ ' .
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This fifth postulate establishes the nature of the forces acting upon the
particles, which as mentioned are taken in this approach to determine and explain
their motion. The QPE is a second-order differential equation on the particles’
positions, which leads its proponents to refer to this presentation of the theory as
the 2nd order or ‘causal’ interpretation - although in line with the distinctions
already introduced in this paper, it is best to describe it as the ‘causal version’ of
the theory. Notice that defining forces in this manner is equivalent to setting down
a formula for the potentials acting on the particles, since the gradient of some
potential W implicitly defines the force as: F = -V(W).

Yet, consistency with the former four equations, including the Schrédinger
equation, demands that the form of these potentials include a term unlike anything
one finds in classical mechanics, and named for that reason by Bohm and Hiley
(1993) the quantum potential. One of the immediate consequences of the formal
definition of the quantum potential above, is the fact that for an N-particle system,
the potential depends on the real part of the n-particle wavefunction, and what this
means is that the force locally acting upon each particle essentially depends, via
the quantum potential, upon the physical quantities (including positions) of all the
remaining particles regardless of their distance. The quantum potential thereby
nicely represents the non-local character of interactions that is characteristic of
Bohmian mechanics. 3

There are putatively further explanatory and heuristic advantages to this
‘causal’ version of the theory. Its proponents argue that just as in classical
mechanics, the quantum potential equation allows us to define a force field at each

2 Thus only pragmatic reasons may lead us to embrace one or another combination
of version and ontology - there can be no logical compulsion - and some of these
pragmatic reasons are rehearsed later on in this paper in arguing for a particular
such combination.

3 This is obviously not to say that the ‘minimal’ version is local, but the non-locality
takes the form of non-supervenience there (see Esfeld et al. (2013, pp. 79ft.), for a
discussion).



point that a particle may occupy, given its mass and velocity at that point, as the
product of the mass and first order time derivative of the velocity, i.e. the particle’s
acceleration at that point. We then have putatively defined, by means of this
analogy, a dynamical equation describing the ‘forces’ that ‘cause’ particles to
accelerate in or out of inertial constant motion. Hence it is tempting to think of the
causal version as importing the explanatory framework of classical mechanical
dynamics into the quantum realm. However, note that this framework is brought
to bear merely as a consequence of the emphasis upon the appropriate equation
since, as has already been noted, the ‘causal’ version of the theory differs merely in
presentation. It does not in itself provide an ontological interpretation of the terms
that appear in the equations. Thus the bringing of a ‘classical’ explanatory
framework to bear is an entirely presentational, heuristic or pragmatic matter, and
does not in itself require the ontology of classical physics. On the contrary the
defenders of the ‘causal’ version make it abundantly clear that whatever the
correct interpretation of this version of the theory, it will certainly not import a
fully classical ontology. In particular the quantum potential does not fade off with
distance, it depends on the shape and not the amplitude of the wavefunction, and
in the many particle system case has instead built-in a notoriously sui generis kind
of non-locality (see e.g. Bohm, ibid, pp. 36-37; Hiley and Peat, 1987, p. 15; Holland,
1993, pp. 89-90). 4

Nothing much may seem to hinge upon the explicit postulation of the fifth
axiom, since it can be derived from the gradient of the guidance equation (GE)
given the Schrodinger equation in the many particle system case too (Holland,
1993: pp. 279-280). Moreover, the two equations have essentially the same
solutions given the equilibrium postulate, so there is no additional empirical
content to the theory under the causal interpretation. One may then wonder why
advocates of the causal interpretation should want to elevate the quantum
potential equation (QPE) in postulate 5 to the status of an axiom. There are two
types of consideration. Firstly, one reason adduced is that, in line with the above
considerations, this is a convenient move to emphasize the explanatory power of
the theory, since the QPE makes explicit the role of the quantum potential. And it
may be supposed that forces and potentials play an explanatory dynamical role in
BM similar to the role that they play in classical mechanics. This view seems
implicit in the following quotes from Holland, who writes with respect to classical
mechanical notions, that “Newton’s laws (or their refinements in the Lagrangian,
Hamiltonian, and Hamilton-Jacobi formalisms) allow us not only to predict the
results of experiments on fields and particles, but also to provide an explanation of
these results in terms of a definite world view - that of mass points pursuing well-
defined trajectories in space and time and interacting via preassigned potentials”
(Holland, 1993, p. 27). He then goes on to state with respect to the ‘causal’ version
of Bohm'’s theory: “The purpose of the causal interpretation [sic] is to offer an
explanation of quantum phenomena [...] The introduction of the quantum potential
as a causal agent has explanatory power which one unnecessarily foregoes by
concentrating on just [the guidance equation (GE)]” (ibid, p. 78).

* The proponents of the ‘minimal’ interpretation of course also emphasize the
strong differences with classical mechanical concepts (see e.g. Diirr, Goldstein and
Zanghi, 1996, p. 25ff.), but this is to be expected in their case.
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Secondly, there is a way to present the causal version as fundamentally
postulating only the Quantum Potential Equation (QPE) along with the other three
basic principles. Thus Solé (2013, p. 368) proposes that in the causal version of the
theory (QPE) is fundamental, and the Guidance Equation (GE) is merely a
restriction on the initial conditions of the system. So, on this understanding of the
causal version, Bohmian mechanics is fundamentally given by only the axioms 1-3
and 5, and 4 does not have the character of a postulate but only a boundary or
initial condition, which restricts the class of solutions offered by (QPE). And it is
this latter equation that on its own provides for the motion of the particles, the
only genuine equation of motion.

It is clear in either case that the (QPE) must be doing some significant
explanatory work. In the latter case it is providing the dynamics entirely on its
own, while in the former case it is supposedly adding some explanatory value
(otherwise it would not be presented as an axiom). And while I have nothing to say
in favour of bringing it explicitly as an axiom of the theory, I do think that Holland
has some point here regarding the explanatory resources of the quantum potential
equation. Moreover it is unfortunate that this good point is often dismissed by the
defenders of the minimal version of the theory along with the axiomatics, since it is
an independent point. In the final section of the essay I elaborate a few suggestions
regarding ways in which the explanatory and heuristic resources that the equation
provides may be best appreciated on a dispositionalist interpretation of the theory.
At this stage, it suffices to stress that that the minimal ontological difference
between the ‘minimal’ and ‘causal’ versions of the theory is significant. On the
minimal version all there is available for explanation are the positions and
velocities of the particles, i.e. their trajectories. But this is arguably what stands in
need of explanation (Belousek, 2003, p.135ff.). The QPE is derivable as an axiom
but on the minimal version it is merely redundant mathematical artifice. On this
view there are no ‘accelerations’, ‘forces’ or ‘potentials’ proper to speak of. The
primitive ontology of the theory (Allori et. al., 2008) is just the set of particle
positions and velocities. On the ‘causal’ version of the theory, by contrast, there are
in addition ‘accelerations’, ‘forces’ and ‘potentials’ which are causally or at least
explanatorily relevant to those particle trajectories. The primitive ontology of the
causal version of Bohmian mechanics is correspondingly larger.

True, the fundamental ontology of BM remains an essentially open matter in
both causal and minimal versions of the theory, > since we still need to establish on
either account what counts as ‘particles’, what is represented by the wavefunction,
and how the two relate. But the minimal ontological differences between the two
versions of the theory already make a difference to their explanatory resources.
Belousek (2003) claims that the minimal version of Bohmian mechanics is in fact
not properly speaking explanatory at all, since it merely describes motion but does
not relate it to any further entities or processes that can provide an explanation of

5> The idea that BM is not itself an ‘interpretation’ of quantum mechanics, but a
theory of its own - and one open to a plurality of interpretations just like orthodox
quantum mechanics, or Newtonian classical mechanics - goes back at least to Fine
(1996).



these motions. On his view, only the ‘causal’ version is explanatory, at least in
ambition. One need not go as far as denying that the minimal version is
explanatory, in some thin sense of explanation as ‘covering’ or ‘describing’ events.
However, it will be maintained in this paper that the added ontology built into the
‘causal’ version can certainly provide some additional explanatory power, going
beyond the mere description of motion.

3. Configuration Space Realism, and the ‘Problem of Perception’

In this and the next few sections I analyse four different interpretative
approaches to Bohmian mechanics in general, together with some of the most
significant objections to each. These interpretations go further than the minimal
ontologies discussed in the previous section, since they do inform us regarding the
meaning of particle, position, wave-function, and their interrelations. The first
interpretation that I intend to discuss is what is nowadays known as configuration
space realism. According to this view a realist understanding of quantum
mechanics will ‘depict the history of the world as playing itself out’ in
configuration space. ¢ This is because, since the wavefunction inhabits
configuration space, realism about the wavefunction demands that we accept that
this is the space that we all ‘live in’. 7 Now, for an N-particle system, configuration
space is 3N dimensional. In BM the Schrédinger equation has no exceptions, and
physical interactions, including those that constitute measurements, only serve to
integrate systems into an ever more complex entangled system. We may then refer
to the set of all interacting world particles as the World system,; this is ultimately a
W-particle system described by a universal wavefunction defined over 3W
dimensions. Now, this universal wavefunction describes the motion of one particle
in a huge 3W dimensional configuration space, and we may refer to it as the World
particle. Configuration space realism is the view that the wavefunction is real -
and this entails ultimately the reality of the world particle in the 3W dimensional
configuration space that we supposedly ‘live in’.

What sort of space is configuration space? Certainly, ‘space’ is a loaded term
in this context, since its most common understanding relates precisely to the
three-dimensional Euclidean space of classical physics, and this is ostensibly not
the configuration space of N-particles except for a one single particle system. So
whatever this realism amounts to, it is certainly no ordinary or ‘common-sense’
realism regarding the objects of our immediate or everyday perception. Now
‘common sense’ realism about the objects of our ordinary or classical perception is
predicated on their ‘living in’ three-dimensional space (or, at best, four-
dimensional spacetime in the case of relativistic phenomena). This is the arena of
all our perceptual experience - including that perceptual experience within
experimental physics that provides the background to all our experimental results.
Scientific knowledge itself - including whatever reasons we have to suppose

6 Albert, 1996, p. 277; compare the more subtle formulation in Albert, 2013, p. 53,
which emphasises the crucial fact that the space of the wavefunction is not strictly
identical to ‘our’ space, but merely isomorphic to it.

7 Albert, 1996, p. 277.



something like Bohmian or quantum mechanics to provide us with an accurate
theoretical representation of our world - depends upon this sort of ordinary
perceptual experience in plain 3 dimensional space.

Hence the view that what is ultimately real is the 3W-dimensional
configuration space of the universal wavefunction has much explaining to do. For
whatever warrant we may have for this view, it ultimately derives from our
perception of experimental results in (what appears to us to be) something very
unlike 3W dimensional space. The problem of reconciling the appearances with
what lies at the level of fundamental reality according to configuration space
realism is known as the problem of perception (Solé, 2013, p. 366; see also Belot,
2011, p. 73-74). There are a number of strategies defenders of configuration space
realism have developed in order to answer this problem, but none has convinced
the critics of configuration space realism (such as e.g. Monton, 2013). One
prominent such strategy is to show that the appearances emerge in the classical
limit as # —0(Albert, 2013, defends a version of the strategy). However, this
confronts many difficulties, since it is not obvious at all that the actual objects that
make our ordinary experience are in any way a limiting case of the world particle
in configuration space. True, the laws of classical mechanics emerge in the limit,
but this in no way explains how the objects themselves (such as tables and chairs)
are ‘composed by’ any combination of properties of the configuration space (see
e.g. the essays in Ney and Albert, 2013, which review different accounts of
reduction and emergence in this context). The problem of perception undermines
the very empirical grounds that support both quantum mechanics and BM. As a
consequence it undermines the very configuration space realism that gives rise to
the problem in the first place. For if the three dimensional appearances that
constitute empirical data are to all effects and purposes ‘illusory’, then there are no
non-illusory grounds upon which to suppose these theories are empirically
adequate, never mind true, as descriptions of reality. So no ‘interpretation’ of any
of these theories has any genuine warrant for us to suppose that they describe
anything like the real space we inhabit.

4. Multifield Realism, and the ‘Problem of Communication’.

Configuration space realism interprets the wavefunction realistically as an
object in configuration space. But this is not the only option available for
interpreting BM in such terms. 8 We may consider the multifield option - this
postulates a multitude of fields in 3d space, corresponding to each physical
particle. Each of these fields is determined by the wavefunction in configuration

8 Belot (2012) helpfully divides realistic interpretations of the wavefunction in
general - including in BM into three kinds: i) object, ii) law and iii) property
interpretations, depending on whether they take the wavefunction to be the
description of a real object, a genuine law, or an actual property. In my terms, both
configuration space and multifield realism are interpretations of kind i), the
nomological approach is an interpretation of type ii) and dispositionalism is of

type iii).



space, as follows. ? For an N-particle system wavefunction W defined over 3N
dimensions (x11, x12, X13, X21, X22, X253, ... Xn1, Xn2, xn3) a restricted function gives
values over the coordinates in 3D space of each particle only. Crucially some
information regarding entangled states will get lost in the restricted functions
(corresponding to the phase of the wavefunction in polar coordinates), so it is
imperative to perform the calculation afresh each time. In other words the
wavefunction in configuration space continues to determine the dynamics, in
accordance to the Schrodinger Equation and the dynamical postulate, and the
positions of each particle continue to depend on the wavefunction in accordance to
the Guidance Equation (GE). Yet, at each instant in time, a field is defined in 3-D
space corresponding to each particle.

The great advantage of multi-field realism over configuration space realism
is that it solves, or at least accommodates, the problem of perception. On this view it
is not just configuration space that is real, but physical 3-D space as well, with the
individual particle fields defined in it. The wavefunction in configuration space
encodes information regarding the dynamics of both particle positions and fields
in 3D space. It plays the role of a global ‘invisible hand’ without diminishing the
ontological weight of the particles and corresponding fields in ordinary 3D space.
There is no problem of perception because there is, on this approach, no need to
explain how the objects of ordinary perception emerge from configuration space.
The objects are already there ab initio, in the description of 3D space, -- albeit with
the addition of a field defined presumably at each possible particle position.

However, the multifield approach has yet a different problem, namely the
so-called problem of communication (Solé, 2013, p. 367; Belot, 2012, p. 72).
According to this view, the multi-fields are defined at each instant by the wave-
function in configuration space, and the question is how the wave-function
‘communicates’ to physical 3D space in order to fix each of the fields and the
positions of the particles for any system of N particles. Note that this is generally a
problem for any account on which the wave-function in configuration space
‘dictates’ features of physical 3D space that are responsible for the motion of
particles, whether it be a multifield, forces acting in the space, a quantum potential
located in that space, or directly the motions of the 3D particles themselves. Also,
note that the communication is curiously one way: while the wavefunction fixes
the physical properties, including position, of particles in 3D space, these have no
effect back onto the wavefunction, which essentially ignores which are the actual
particle trajectories amongst all the possible trajectories compatible with the
dynamics. So it is not possible to understand the communication as a physical
interaction between two different kinds of field. 1° By what sort of mechanism does

9 Belot (2012) here defers to Forrest (1988, Ch. 5), which gives a general account
of the equivalent of multi-fields but for dispositional properties or propensities! |
come back to the issue in the main text, but for now one gets the idea: There is
always a way to define a truncated version of the wavefunction for each particle
regardless of whether the properties of the particles are interpreted to be
dispositional or categorical.

10 Finally, also note that the same problem of communication would affect a
version of configuration space realism where only the universal wavefunction is
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the wavefunction fix, or determine, the physical properties of fields and particles in
3D space? How does the wavefunction in configuration space guide the particles in
physical space? At the very least, the theory seems to lack the resources to tell a
story here, and without a story it remains a mystery how the wavefunction
determines the multifields. As regards an ontological interpretation, this is a major
problem since it fails to describe how values of physical properties emerge from
the underlying wavefunction.

5. The Nomological Interpretation and the ‘Problem of Temporal Laws”.

Yet another interpretative option is to suppose that the wavefunction has
the character not of a space or a field, but of a law. This would be a ‘nomological’
interpretation of the wavefunction. On this view the wavefunction does not
represent any real object in 3N-dimensional configuration space, 3-dimensional
physical space, or any other space. It does not represent an object - whether a
field, a wave, or an extended particle. It rather represents a law - one that
describes the motion of real physical particles in 3-d space via the Guidance
Equation (GE). 11

Now, as has been pointed out by Gordon Belot (2012), the objections to
nomological interpretations of the wavefunction fall into two types. There is first
of all an issue regarding the modal character of laws; an issue that comes to the
fore when considering the relative status of the wavefunction (and the guidance
postulate and GE) with respect to the dynamical postulate. The dynamical
postulate establishes that the Schréodinger equation is the law that unexceptionally
governs the temporal evolution of the wavefunction. Thus if the wavefunction is a
law, it must be a second order, or subsidiary, law since at any given time the
wavefunction is delivered as the outcome of the Schrodinger equation, which itself
has undisputedly the character of a law. Hence, although at any given time the
wavefunction has via the guidance postulate a nomological role vis a vis the
positions and velocities of the particles, it itself is the result of the application of
another higher order law, given in the dynamical postulate. In other words,
whatever nomological force or necessity the wavefunction possesses over the
particle trajectories, it is subsidiary to the nomological force or necessity of the
Schrédinger equation.

reified, but not the universal particle. On such views, there is a real wavefunction
in 3N space, which effectively fixes the particle positions of each particle in 3D
space - with the same difficulty to explain how the interaction occurs. (Belot, 2012,
p.77).

11 [ suppose that the wavefunction could also be taken to represent a law
describing the motion of the world particle in configuration space; but this
combination of nomological and configuration space realism would seem to inherit
the disadvantages of both types of realism while acquiring none of their relative
advantages. And, at any rate, this is not how the proponents of the nomological
interpretation read it - see Durr et al. (1997), or Goldstein and Zanghi (2013).
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The existence of a modal hierarchy need not be an altogether
insurmountable problem. It certainly does not seem to be so in general when the
appropriate nesting relations obtain. In such cases we often distinguish
phenomenological and theoretical laws, and have no problem in assuming that the
necessity of the phenomenological laws is derived from, or subsidiary to, the
necessity of the theoretical laws. As examples, consider the relation between the
laws of geometrical and physical optics, or between Kepler’s three planetary laws
and the laws of Newtonian mechanics. In both cases it is at least arguable that the
dependence does not impugn the nomological force or character of the subsidiary
law but, if anything, explains it. Hence we gain some understanding of why
Kepler’s laws are indeed laws when we learn that they can be derived from
Newton'’s laws, and similarly for the optics case.

However, in the context of the interpretation of BM, this solution is not so
clearly applicable. Is the defender of the nomological interpretation of the
wavefunction happy to accept that its necessity is secondary just like Kepler’s laws
or the laws of geometric optics? Is he or she prepared to accept that the
wavefunction is a phenomenological but not a fundamental law? This may
moreover be seen to be a particular problem for defenders of the nomological
interpretation of the minimal version of BM. For a standard way to cash out the
difference between phenomenological and fundamental laws is precisely by
appealing to explanatory power. The fundamental laws explain the
phenomenological ones (as in the case of the relationship between Newton and
Kepler) by displaying the second order causes (forces) of the first order motions
(trajectories) that appear in the phenomenological laws. Yet the minimal version
of BM contains only first order properties, and the conjunction of the (GE) and the
Schrodinger equation therefore cannot explain the wavefunction in this way. The
fundamental laws contain no second order properties (such as forces) that may
explain causally the first order properties in the phenomenological laws. The
causal version obviously overcomes this problem very simply, since on this version
of the theory the fundamental laws include the (QPE), which does refer to second
order properties akin to Newtonian forces; hence the relation is explanatory in the
prescribed sense.

[ shall not delve further into the question here, because I think that there is
yet a more powerful objection against the nomological approach. At any rate the
onus seems to be on the defender of the approach to come up with an account of
the wavefunction as a law that does not make its nomological force entirely
subservient to, or dependent upon, that of the Schrédinger equation. 12 An
interesting proposal to achieve this is by means of the concept of the ‘effective
wavefunction’ of a quantum subsystem of the universe (Durr et al., 1996, p. 39).
Suppose then that the actual state of the universe at time t is given by Q; and W..
For a subsystem, the x-system, with generic configuration x, we may write, q = (X,
y) where y is the generic configuration of the environment of the x-system, i.e. the
rest of the Universe. Suppose that the actual configuration at time t is given by
0, =(X,.Y,); then roughly the effective wave function of the x-system at time t is

12 Or, more precisely, one that does not make it subservient to the conjunction of
the Schrodinger and Guidance equations.
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given by W (x) = II{(x,Yt). The point then is that this effective wavefunction is not

subservient to the conjunction of the GE and the Schrodinger equation (GE), as
applied to it in isolation, since it rather depends on the complete universal
wavefunction and its evolution. A nomological interpretation of the effective
wavefunction is therefore more attractive, but not yet free of problems. 13

The even deeper problem is that the modal force of any quantum wavefunction
—its status and content as a law, and the prescriptions that it exerts upon the
properties of the physical particles - is always relative to a particular instant in
time. This fact also follows from the dynamical postulate, but it is distinct and
independent from the earlier objection regarding the phenomenological character
of the wavefunction, since it concerns strictly the fact that the wavefunction is a
time dependent entity. We may refer to this distinct problem as the problem of
time-indexicality. It arises out of a consideration of the time-dependent
Schrodinger equation, which determines the wavefunction at each instant in time.
This means that the wavefunction is essentially determined afresh each time, in
accordance with the unitary evolution sanctioned by the Schrédinger equation.
And this would be fine if the wavefunction merely described the state of an entity
or its properties, which of course would vary with time, but it seems completely at
odds with any ‘nomological’ character of the wavefunction. In other words we
typically understand physical laws as determining the time evolution of the objects
in its domain but not as subject themselves to any temporal evolution. 14

The argument is not merely one of conceptual novelty with respect to the
character usually ascribed to laws. It further threatens logical contradiction. It is
extremely hard to see how the law can determine - as it must for a law - the
temporal evolution of the objects in its domain if the law itself is subject to
constant temporal evaluation. For what would it mean for the law at time t to
prescribe a certain future state at time t’ of some object in its domain when the law
itself may be a completely different one by the time t’, and therefore establish a
completely different prescription at that time? How can such a law be said to have
any modal force? Perhaps this makes sense if the prescription at time t merely
describes an expected regularity, at time t, given past behaviour up to t. But if the

13 These problems are related to the fact that the effective wavefunction is not
exactly as above, which is rather a representation of a ‘conditional wave function’
that does not obey Schrodinger’s equation (Diirr et al.,, 1996, p. 39), but I gloss
over them since I regard the problem of time-indexicality to be the more acute one
anyway.

14 At any rate, this is certainly how we understand dynamical laws - such as
Newton'’s laws and the Schrédinger equation. So much seems uncontroversial, and
it is enough to make the point in the main text above, but it may be objected that
there are also physical laws which do not have this dynamical character - perhaps
purely geometrical laws that describe the internal constitution of solids. And
perhaps the wavefunction understood as a law has this different character.
However, it seems to me that the same problem reappears here too - even if the
laws don’t prescribe the temporal evolution of the objects in their domain, it is
nonetheless bizarre to think that they themselves are time-indexed or time-
dependent things.
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prescription merely amounts to a statement of regularity, it can hardly be said to
be nomological. 15 If the law genuinely determines the state of the particles at any
given time with nomological force, it must not itself vary in time on pain of
potentially failing to determine uniquely such states, and thereby possibly
incurring a contradiction.

To sum up, we have prima facie unearthed two difficulties for the
nomological construal of the wavefunction: i) whatever modal force the
wavefunction possesses it seems subservient to - i.e. dependent upon - that of the
dynamical equations of the theory - including notably, on any version of the
theory, the Schrodinger equation -, and ii) the time-indexed character of the
wavefunction militates against understanding it nomologically, under any
interpretation of ‘nomological’.

6. The Dispositional interpretation and its Response to all Problems.

The fourth and final ontological interpretation I would like to discuss is a
dispositionalist understanding of the wavefunction. On this view, the wavefunction
is not a law, and has no nomological force. It has merely a descriptive, or
representational, function concerning the state of the physical particles in 3-d
space. Yet, it does not represent any distinct object per se in 3-d space - neither a
field nor a wave nor even the particle itself. And it certainly does not represent the
state of an ultra-particle in N-dimensional configuration space. Its function is
rather to represent, in a rather indirect manner that I shall shortly describe, the
properties of the 3-d particles, including crucially a series of dispositional
properties over and above the particles’ positions. 1

The idea behind a dispositional reading of Bohmian ontology is in particular
linked to the interpretation of the Guidance Equation (GE in postulate 4). GE lays
down a velocity field at any given time t - let us denote it as X; - since it determines
for every possible particle’s position Qx in 3-d space very precisely a velocity
vector vi* (Q), given the quantum state or wavefunction ¥. Now, I emphasize

15 This may indicate that the correct construal of ‘nomological’ in this approach is
Humean - in the sense that the wavefunction is meant to be a law in the Hume-
Lewis best system sense of law, as a description of regularity over the course of the
actual world history that best summarizes space-time coincidences (see Esfeld et
al,, 2014, pp. 780ff.) for some suggestions in this regard). But the possibility of
undermining futures is a problem for the Humean analysis of laws too, and a law
that would correct itself in the future would be just as counterintuitive from this
point of view.

16 [ will for the sake of argument assume that position is not a dispositional but a
categorical property. The dispositionalist interpretation of BM would of course be
further strengthened if position turned out to be a dispositional property as well
(for some suggestions to the effect see Clifton and Pagonis, 1995). The argument
above shows that even if position is categorical, the interpretation of other
properties as dispositional already serves to solve many of the problems reviewed
so far in establishing the ontology of the theory.

14



possible particle positions, since this field X: is defined for any triple of values Qx €
3, for every particle in any n-particle system. As far as I can see nothing prevents
a strong as well as a weak reading of the modalities involved in this statement.
Thus, according to the weaker reading, given any real n-particle system and its
associated wavefunction ¥, we may calculate X; via the GE for any possible initial
position of the particles, including but not limited to their actual initial position
values. The field X: then describes, for any real particle system, the velocities the
particles would have, had their initial positions been different. But more strongly,
we can also via GE calculate for any possible n-particle system its corresponding
velocity field given a wavefunction state for it. In other words, the velocity field
describes the dispositions of every particle configuration in any real or imaginary
system of particles.

The picture that best seems to me to capture the nature of X: is therefore
entirely in analogy with a physical field. For instance, the electromagnetic field as
determined by a system of charged particles describes a vector potential quantity
for every point in space, which in turn determines how any hypothetical system of
particles would behave, and in so doing it determines a ‘dispositional’ field. In a
similar guise, a dispositional interpretation of BM invites the thought that every
point in physical 3-d space is endowed with a ‘potential velocity vector’ that
determines how a particle in a particular quantum state which found itself at that
point would evolve in time. More precisely, the idea is that on this interpretation,
an actual n-particle system in the state given by (Q: and W) determines, via the
Guidance Equation of motion (GE) a velocity vector for every point for each of its
particles. Thus if the wave-function of the n-particle system is ¥ (q, t) with q = (q1,
q2,--» qn) € N31, and the position state is Q = (Q1, Qz,..., Qn) with Qx € H3 as the
actual position of the kth particle , then the GE determines a value of a velocity for
each of the particles in their respective positions. The strong and weak modalities
that I have described may then be described as follows. For any actual n-system of
particles with quantum state wavefunction ¥ (q, t) with q = (q1, q2,..., qn) € h32 we
can consider, weakly, all the different possible position states of the n-system at
any given time, i.e. the different Q: = (Q1, Qz,..., Qu) position states at time t. Each of
these will define a velocity vector field for every point in space occupied by each
imaginary particle. Since we can in principle imagine any n-particle system, this
procedure would exhaust the points in 3D space, thus covering up the space.
Alternatively, the stronger modal reading is to imagine any arbitrary n-system
particle with its own characteristic state (Q: and W¢). We may then also fill the
entire 3D space with a velocity vector field associated to each point, but do so
differently - obviously - for each combination of the Q; and W, states.

The velocity field defined by the GE is therefore a catalogue of all the
dispositions for the motion of particles. 17 That is, in a one-particle system, it

17 One can also read the multifield approach dispositionally and, in fact, this is
what Forrest (1988, Ch. 5) does in introducing it as a ‘propensity multifield’. This
would amount, in terms of the proposal advanced in the main text above, to
defining a velocity field in 3d space for each particle, for every given wavefunction
for the corresponding n-particle system as defined in 3-n configuration space. |
don’t see any substantial difference between this proposal - if read dispositionally
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determines the trajectory that the particle, in a given quantum state, would follow
if it found itself at a particular point in 3-d space. More generally, for a larger
system of n particles in a given quantum state the velocity field defined by the GE
determines the set of all particle trajectories in the system. The only difference is
that, for a system of n particles, the wavefunction for the whole n-particle system
must be fed into the GE in order to perform the calculation. For the whole universe,
the complete wavefunction of the universe must be fed into the GE, of course, but
there is no particular difficulty here, since in BM there is at no point any need to
invoke external measuring devices in order to explain the actualization of these
dispositional properties. Rather, on this picture - and in line with the analogy with
the electromagnetic field -, the dispositional velocity property defined relative to a
state at each point is spontaneously actualised when a particle happens ‘to reside
at’ that point.

This velocity vector of course depends on the positions of all the other particles
in the n-system, as the (GE) makes clear. So this is a non-local quantity, which
depends on the values of certain quantities of distant objects, or the corresponding
related events of those quantities taking values across space-like related gaps. A
comparison is instructive with the alternative account offered by Esfeld et al.
(2014). On their account only the universal particle in configuration space has
dispositions, and the velocity field is defined over configuration space. The actual
velocities of particles in 3D space are thought instead as the manifestation of these
universal particle dispositions (Esfeld et al. p. 785). I understand this to mean that
there are no genuine dispositions for the individual particles taken in isolation.
The only dispositions that exist are those represented by the universal
wavefunction for all the particles, which concern the universal particle; these
dispositions manifest themselves in the first instance in the evolution of the
universal particle itself. True, these are perceived as motions of each of the
individual particles in 3D space but there are no dispositions ‘residing in’ physical
3d space - neither in the points of 3D space nor in the 3d particles that occupy
such points.

This “Esfeld” disposition, as we may call it, is a holistic property of the universal
wavefunction. So the manifestations will appear to be non-local, in the sense that it
will appear as if the velocity of a particular particle over here depends upon the
positions of particles elsewhere. But in reality there are no dispositions in 3D
space or in the 3D particles, there is only one higher rank disposition of the
universal particle, which is necessarily entangled or holistic (but not non-local
since there is only one universal particle with a particular location at all times). 18

in this way - and my own proposal above other than the nature of the position
property itself (which, on the multifield approach would presumably be
necessarily dispositional too).

18 In other words, I use the terms “locality” and “separability” roughly in the sense
of Howard (2008). Under this aception, locality requires separability but not
viceversa. In a typical EPR experiment, for example, one can have separable
particle states in both wings, but non-local connections; or one can postulate one
non-separable state (or even particle), but not both. The standard understanding
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By contrast, on the interpretation that I am proposing, the dispositional velocities
are in the 3d particles themselves, but they depend non-locally on the properties of
other particles, in particular they depend on the positions of the other particles.
Although in practice there is no difference between these two views at all - and in
particular they certainly do not entail different empirical predictions - there may
nonetheless be differences in the types of explanatory stories they furnish.

The dispositional interpretation of the velocity field defined by GE provides
ready-made responses to the problems that make other ontological interpretations
of BM untenable. In particular, I argue in the rest of this section that the
dispositional interpretation overcomes the problems of perception,
communication and underdetermination, which I reviewed in the previous
sections. This can be seen as a decisive advantage of the dispositional
interpretation, although it is an advantage that needs to be put in context, as
follows. The problems reviewed in the last sections were each of them in some way
artificially compounded by the corresponding ontological interpretations. Thus the
problem of perception only really makes sense with respect to configuration space
realism (or some versions of the multifield interpretation). The ontology brings the
problem with it as it were. Similarly, the problem of communication only really
makes sense in the context of ontologies that reify some space in addition to 3-d
(or perhaps 4-d spacetime) space by declaring it just as real. It is clear that such
problems do not arise in the context of a theory where only 3-d (and / or
spatiotemporal 4-d) space is real. In other words these problems cannot arise for
either nomological or dispositional interpretations of BM. The decisive issue for
the dispositionalist interpretation of BM may thus be rather whether it introduces
problems of its own, and if so, whether such problems incur a heavier or lighter
toll than the alternatives.

For example, the problem of perception as it arises in the context of
configuration space realism is inapplicable to the dispositional interpretation of
BM, since on the dispositional account 3-d physical space is the only real space.
True, on this account, not all properties of systems are categorical, and therefore
not all of them are reducible to the Humean mosaic of spatio-temporal
coincidences. There are instead important modal properties of particles, expressed
by the velocity field X;, which do not supervene on the particles’ positions.
Moreover some of these dispositional properties are explicitly non-local, and
hence can be understood to interact ‘at a distance’ with each other. I review some
of the implications of this view vis. a vis. Humean metaphysics in the next section.
For now it suffices to show that each and every one of the objections raised against
the other ontological interpretations of the theory are naturally resolved or
dissolved within the dispositional interpretation.

The problem of perception is immediately dissolved, as noted, since on the
dispositionalist account the space of our perceptions of physical and measurement
interactions and their consequences and results remains indeed the only real
physical space. On this account reality unfolds in 3-d space completely and the

of separability of states is as supervenience (Teller, 1989) and this fits in well with
Esfeld et al.’s emphasis upon the failure of Humean supervenience
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history of the world unfolds in this space in its entirety. Configuration space is, on
this account, a mere mathematical space, which plays a useful role in codifying the
properties of particles beyond position, in particular its dispositional properties
via the wavefunction. But, as [ shall argue, this higher-dimensional 3n-d space is
called in only because some of these properties fail to supervene on the particle’s
positions in 3-d space. The wavefunction, which represents these further
properties, cannot be defined in 3-d space alone. Yet, there is on the dispositional
account no need to abandon the thought that reality unfolds in 3-d ‘ordinary’ space
only. For a mathematical space to provide a helpful and efficient representation of
some of the properties of the entities the theory postulates, it is not required that
those entities themselves actually live in that space. The theory makes clear that
3d is the space in which particles move, and it is the space on which the
dispositional velocity field X: is defined at all times. The interactions that particles
have with each other and with other systems are therefore all mediated in this
space. It can hardly be surprising then, that our perceptions and measurements all
seemingly take place in this space. Our 3-d perception does not call for
explanation, and no circularities may arise that could undermine our confidence in
the theory itself.

The problem of communication is also related to the reification of higher
dimensional spaces. In any ‘hybrid’ theory where both 3n-d configuration space
and 3-d physical space are real, the challenge is not so much to explain why
perceptions seem to take place in 3-d space (since it is now possible that they
actually do take place in that space) but rather to explain how an entity in a higher
dimensional space ‘communicates’ with the particles in 3-d space in order to
‘guide’ them. How does the real wavefunction in 3n-d space interact with the real
particles in 3-d space? Note that since on this approach both the wavefunction and
the particles are independently real - each in a space of their own - for the
wavefunction to physically guide the particles, there must be some type of physical
interaction between entities that inhabit distinct spaces. But what is the nature of
such interaction - which is conspicuously absent from the theoretical framework?
The dispositional account obviously does away with the challenge, since it does
away with the reality of the higher dimensional space altogether. On this view the
wavefunction is not an entity in its own right, and is incapable of physical or causal
interaction with anything. It rather merely represents the dispositional properties
of the 3-d particles. The higher dimensional space of the wavefunction may be a
mere mathematical convenience. As a matter of fact, in a context in which the
dispositional velocity field fails to supervene on the positions it is more than a
mere convenience, it becomes a necessity. For notice that if those dispositional
properties fail to supervene on the particle’s positions then necessarily those
properties cannot be represented in 3-d space (or any of its subspaces): Since all
possible positions exhaust 3-d space, it follows that 3-d space can by definition not
suffice to represent any properties that fail to supervene on such positions. In a
context of non-supervenience, the recourse to a higher dimensional space is not
only unsurprising but entirely to be expected.

Finally, the problem of time indexicality is a problem for the nomological

interpretation of the wavefunction. It is hard to see how it would apply to any of
the other interpretations canvassed, since it is only when applied to laws that this
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sort of time dependence is perplexing. That is, time-dependent laws are perplexing,
but time-dependent states, properties, or their values are not only non-perplexing,
but seem entirely natural. As a consequence no interpretation that relinquishes the
thought that the wavefunction is a law - for instance by asserting instead that it is
an entity - can suffer from this difficulty. On the dispositional interpretation, the
wavefunction is a mathematical tool that encodes the dispositional properties of
particles at any time, given their initial positions. It is only to be expected that
particles’ properties - including their dispositional properties - will be time-
dependent in the usual manner, so there is no difficulty at all with this. Nor is there
of course, any difficulty with the wavefunction dependence upon the Schrodinger
equation expressed in the second dynamical postulate. This merely expresses the
fact that the Schrodinger equation governs the time evolution of the dispositional
field and therefore of the ensuing dispositional properties. The guidance equation
(GE) already guarantees the equivalent fact for the particles’ positions anyway.

7. Problems for the Dispositional Interpretation.

The dispositional interpretation therefore solves - or rather dissolves - all the
problems that make other interpretations untenable. However, it is important to
remind ourselves that these problems were created by the interpretations in the
first place. That is, the problem of perception only arises in the context of
configuration space realism, the problem of communication only arises in the
context of some hybrid realism regarding both configuration space and 3-d space,
while the problem of time-indexicality only really arises for the nomological
interpretation of the wavefunction. It is of course important to note that these
problems all disappear on a dispositional interpretation, but we may still wonder
whether the dispositional interpretation will not generate its own problems on a
par with these. In this last section [ would like to argue that this is not so - the
dispositional interpretation does not generate additional problems. Since we
should always prefer an interpretation that poses no problem of its own while
resolving those of its competitors, we should prefer the dispositional
interpretation to any of its present day competitors.

Some of the possible problems with the dispositional interpretation are related
to challenges and difficulties with dispositional properties in general, and I will not
discuss them in much detail here. The objections at this level are typically of two
sorts. First, there are the usual objections from those Humeans who endorse the
thesis of Humean supervenience, according to which all genuine properties
ultimate supervene on the Humean mosaic, i.e. the set of spatiotemporal local
coincidences (see Lewis, 1986, p. ix). Any properties that prima facie do not so
supervene on the Humean mosaic are condemned by such Humeans on either
empiricist grounds, or grounds of parsimony. Dispositional properties are suspect
since they do not appear to correspond to any of the events in the Humean mosaic.
Thus, generally, to have a disposition at time t to e.g. a certain position at some
time t’, is to manifest that position if appropriately tested at t’. But the disposition
is possessed at time t, with t # t’ generally, so the possession of the disposition at
time t corresponds to no event in the Humean mosaic at that time. Nevertheless,
one may suppose that dispositions supervene on the totality of the Humean
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mosaic. This would certainly be the case if dispositions supervene on categorical
properties in general. However, that the dispositional can be reduced to the
categorical, even under such a weak notion as supervenience, is disputable. It is
moreover particularly dubious at the level of the fundamental ontology of
quantum mechanics since, at this level, there are no deeper or more fundamental
properties to appeal to in order to carry out the reduction. So, on any committed
Humean supervenience account, dispositional properties remain suspect, and so
does Bohmian ontology under the dispositional interpretation of the velocity field
as expounded here. The objection is thus genuine in this context, but there is no
space to deal with it more fully here - other than point to the obvious retort that
Humean supervenience may after all be rejected altogether.

The other source of difficulties for dispositions in general is related to the old
virtus dormitiva objection - their presumed lack of explanatory power or
conceptual triviality. Thus Moliere famously inveighs sarcastically against the
scholarly physicians who invoke the virtus dormitiva of opium in order to explain
why it would put anyone to sleep. 1° If the explanandum is that someone who has
ingested opium is falling sleep, it can hardly be explanatory to cite the ‘dormitive
power’ of opium, since the disposition here merely rephrases the explanandum.
But there are a few good retorts to this objection. First, it does not quite get the
point of Moliere who is inveighing not against dispositions per se, but against
verbose redundant explanations that merely rephrase the explanandum in
pompous language (latin). The same objection could have been raised against an
explanation in pompous language that merely places the explanans in a regular
pattern. Moliere’s sarcasm would have been just as fittingly directed to any
attempt to explain e.g. why a particular object is a square by citing its ‘squarity’.
The dispositional nature of the property in question plays no particular role.
Secondly, there are plenty of simple ordinary life counterexamples to the triviality
of dispositional explanations. We seem rather disposed in ordinary life to accept
the fragility of a particular glass as part of the explanation of its breakage, the
solubility of a particular sugar cube as part of the explanation of its dissolving in a
hot drink, etc. Nevertheless, under their usual interpretation such dispositional
properties do not - in the ordinary context at hand - amount to much more the
assertion of their power to bring about these effects. True, for ordinary physical
dispositions, most of us tend to think they ultimately reduce to further properties
(of glass, sugar, etc), which may or not be categorical. But there are other
dispositions where even to suppose a reduction is problematic (behavioural and
psychological dispositions, such as generosity, kindness, etc) and in the ordinary
context we use them just as freely in explanatory terms. So it is hard to see how the
explanatory power of the physical dispositions in any way depends on the
possibility that they may reduce. At least in an ordinary context, we do not
typically request to be shown a reduction in order to accept an explanation in
terms of a disposition such as fragility or solubility. In other words, the virtus
domitiva objection to the explanatory power of dispositions is much overrated and
does not apply generally, treading as it does on features of the example at hand.

19 In Moliere (1673, Act I1I, Third interlude): “Quare Opium facit dormire: ... Quia
est in eo Virtus dormitiva”.
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[ will not say more about these sorts of general objections here, which need not
detain the defender of the dispositional interpretation. I will instead focus on a
specific objection to Bohmian dispositions in particular. The objection is due to
Gordon Belot and was inspired by some critical remarks by Albert Einstein against
hidden variables. Were this objection to stand, the dispositional interpretation of
BM would fail regardless of the status of dispositional properties in general. Belot
(2012, pp. 77-80) endorses some of the attractions of a dispositional interpretation
while simultaneously advancing this serious challenge, which I refer to as the
under-determination objection. [ believe possible responses to the objection can
be found in propensity accounts of orthodox quantum mechanics. For this reason I
indulge in the remainder of this section in a comparison with propensity accounts
for orthodox quantum mechanics. The comparison will hopefully bring into relief
some dispositional resources to confront the objection, while also helping to
distinguish the dispositional interpretation of BM from its propensity equivalent in
orthodox quantum mechanics.

The propensity interpretation of orthodox quantum mechanics is grounded
upon what I have elsewhere called the ‘basic dispositional template’ of any
dispositional interpretations. 20 Suppose that state ¥ can be written as a linear
combination ¥ = X, ¢, | vin> of the eigenstates v, of the latent observable
represented by Q with spectral decomposition given by Q = X, a, | Vn>< Vn | .
Notably, on the orthodox eigenstate-eigenvalue link, a system in such state cannot
be said to possess a value of Q. The propensity interpretation has no difficulty here,
however, since it abandons the presupposition that systems only possess
properties if they possess values of such properties in accordance with the e/e
link. We may then assert that a system is in state W if and only if it has on a
measurement of Q the disposition to manifest eigenvalue a; with probability |c; |2.
More specifically, in the selective propensities interpretation, every discrete and
non-degenerate observable such as Q of a system in state W generates an
equivalence class of states that are statistically indistinguishable from W. It then
becomes possible to identify the propensity of ¥ that a measurement of Q would
test with the standard representative W(Q), which we may construct uniquely out
of the equivalence class.

Two aspects of this propensity interpretation are relevant to our discussion
here. Firstly, note that the propensity interpretation of quantum mechanics elicits
probabilities for each and every one of these properties, and in fact characterizes
the properties statistically, on the basis of these probabilities defined over possible
outcomes. The thought is that the process whereby propensities are actualized is
inherently stochastic — hence the dispositional properties of orthodox quantum
mechanics are propensities. However, in Bohmian mechanics, the underlying
dynamics is entirely deterministic throughout, since the Schrédinger equation has
no exceptions. The quantum probabilities can only be said to emerge as a result of
our ignorance of the initial state of the N-particle system. The probability
distribution over the initial particle positions that describes this ignorance just so

20 Suarez 2004, and 2007, p. 420. It is important to distinguish carefully this
propensity interpretation of quantum mechanics from the - flawed - propensity
interpretation of quantum probability famously defended by Karl Popper.
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happens - via the equilibrium postulate 3 - to coincide with the square modulus of
the wavefunction amplitude, and is thereafter preserved by the unitary dynamics
of the dynamical postulate 2. In other words the probabilities in this view are
epistemic, and the underlying dispositional properties are not per se propensities.
21Bohmian dispositions are instead sure-fire dispositions, since for any particle in
an N-particle system in state W, the velocity field X; defined by the GE determines a
future trajectory. In other words, the particle would follow the trajectory (with
certainty, i.e. probability = 1) if it found itself in that particular position. But given
that we may only estimate within statistical error the probability that the particle
actually finds itself in that position, this probability estimate gets carried over to
the set of possible trajectories. To summarize, Bohmian dispositions are
propensities only in some epistemic sense, which I now think is best not to
describe under the rubric. 22

Secondly, note that in this approach quantum propensities are represented by
entire classes of quantum wavefunction states. It is not in general a requirement
for a dispositional interpretation that it must identify a propensity, or dispositional
property, with each and every distinct quantum state or wavefunction. This is
relevant in response to Belot’s under-determination objection, as follows. Belot
raises and discusses Einstein’s ‘particle-in-a-box’ thought experiment in reaction
to Bohm’s theory. 23 Einstein (1953, pp. 35-40) imagines a bullet of around 1 mm.
in diameter, moving to and fro between two parallel walls about 1 meter apart
along the x-axis. The collisions are supposed to be elastic, and the centre of mass
coordinate x of the bullet is to specify its position. (Hence the example applies as
well to any point particle). Assume a potential box of length L, where the potential
is zero inside the box and goes to infinity right outside the box. Then if the particle
is free, and supposing the it is confined to a length L in the unit interval [-1/2,1/2]
€ R, the energy eigenstates are given by the following family of wavefunctions:

P, (x) = sin (mnx), forn=1,2, 3, ...

21 It must be noted that there are accounts, such as Albert’s (2000) where the
initial probability distributions represent objective chances already, which get as it
were transferred to later chances by the dynamics. On this account, there is
determinism in the dynamical evolution of chances, yet stochastic or chancy
determination of outcomes. The view is nonetheless controversial, and a full
application of propensities must await a new paper.

22 In other words [ now want to reserve the term “propensity” for an essentially
and irreducibly objective probabilistic disposition. See Solé (2013, p. 375) for an
accurate disquisition of this point in connection with my previous defence of
selective propensities for BM in Suarez (2007), for which I am grateful.

23 In the festschrift for Max Born (1953), where Einstein does not explicitly address
BM, which had at the time just appeared in press, but more generally any realist
theory about particles’ positions. He may have had in mind De Broglie’s pilot wave
theory in particular.
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This entails via the GE that the wavefunction W is stationary: g ,

and it can be represented as the superposition of two harmonic waves propagating

. . . . 1 i(at-bx l i(at+bx
in opposite directions: W = EAe( b )+§Ae( ho,

In other words, a Bohmian particle in this state in such a potential box is at rest
regardless of where it finds itself in the box. Belot then argues that while this can
generically be accommodated within BM, it nonetheless is hard to square with the
dispositional interpretation. Instead, he claims, it shows that the quantum
wavefunction is under-determined by the dispositional history of the Bohmian
particle or system of particles. For here we have an example of a particle with only
one dispositional history (i.e. only one value of the velocity field at any point) but a
whole family of quantum wavefunctions corresponding to it. So, more generally,
the under-determination of the quantum wavefunction implies that there cannot
be a one-to-one correspondence between the dispositional history (or history of
dispositional velocity field states X;) and the quantum wavefunction for any n-
particle system, including possibly the entire universe. And this, as Belot (ibid. p.
79) explains, “is dismaying. Under the standard approach, different ®, correspond
to different energetic states of the system - the larger n is, the more dangerous it is
to stick your hand in a box containing a particle in state ®,.” What appear to be
indubitably different physical states give rise to one and the same dispositional
history.

But why should any of this bother the defender of a dispositional
interpretation? After all there is nothing in the nature of dispositional
interpretations that requires such a one-to-one correspondence. One has to go no
further than the selective propensity interpretation of orthodox quantum
mechanics above in order to find a perfectly possible account, namely one in which
a dispositional state or property, or history of such states, does indeed correspond
to an entire equivalence class of physical states. As long as there is a determinate
manner to fix the class, whether by description or implicit definition, there is
nothing fundamentally lost in considering the equivalence class vis a vis the
velocity field X.. Moreover, the one-to-many correspondence may well have its
uses as I point out shortly. There is no reason as far as I can see why the defender
of dispositions should in this context have to dispense with any additional state
information beyond that regarding the dispositional velocity field, in particular
since it turns out that this information is relevant to further dispositions, or their
properties.

Belot (ibid. p. 80) adds the proviso that it may be possible to prove that only
in very special cases it is not possible to reconstruct the wavefunction entirely
from the complete history of the velocity dispositions; and in those very special
cases one could bite the bullet and claim that there are no determinate facts
regarding quantities beyond position, such as energy, etc. What [ am proposing is a
way around this problem by constructing equivalence classes of states with
respect to each observables of interest. The solution entails the dispositional
interpretation of the wavefunction - the assertion that the wavefunction describes
dispositional properties - but it does not require all properties catalogued by the
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wavefunction to be first-order dispositions of the particles (or, in fact, dispositions
at all, since actual positions are typically understood as categorical).

8. The Explanatory Role of Bohmian Dispositions

[ have argued in this paper that the dispositional interpretation of Bohmian
mechanics (BM) provides natural responses to the problems that make other
interpretations untenable, while yielding natural responses to other prima facie
major challenges for BM. Thus my main claim in this paper, namely that a
dispositional interpretation of BM is preferable, has already been argued for. Now,
the dispositional interpretation of the velocity field in BM is compatible with both
the causal and minimal versions of the theory, since it applies directly to the main
equation of motion according to both versions of the theory, that is, the Guidance
Equation (GE). So the dispositional interpretation per se does not provide an
argument in favour of the causal version. Yet, in emphasizing the Quantum
Potential Equation (QPE), the ‘causal’ version brings to the fore certain heuristic
and explanatory elements that, I argue, can best be appreciated in a dispositional
interpretation. Thus in this final section, I would like to outline a way of reading
the second order quantities that the QPE brings to the fore in a dispositional guise.

The critical difference, from a dispositional point of view, between a first order
equation such as (GE) and a second-order one such as (GPE) is that if the GE
describes first-order dispositions then GPE necessarily describes second-order
ones. GE establishes the dispositional velocity field for the particles, which a first
order dispositional property of each of the particles. It is the disposition of the
particle to move along a particular trajectory (given that the N-particle system is in
state W and the particle in question finds itself in a particular position). The GPE
then establishes the evolution of this dispositional velocity field as a result of what
it refers to as the ‘quantum potential’. In a dispositional interpretation the
quantum potential is nothing but a second order disposition, and the GPE then
effectively describes the disposition of (first order) velocity dispositions to evolve.

It is of course true that the ‘minimal’ version also accepts the GPE equation -
which, after all, follows from GE with additional assumptions. Yet, accepting this
equation is not the same as committing to the existence of second order
dispositions. For as was noted, the GPE equation is purely a formal result for the
defender of the minimal version, which does not characterize any fundamental
physical result. From the point of view of the minimal version ontology there are
only particles and their positions and velocities (which may be interpreted
dispositionally); therefore strictly speaking there cannot be second order
dispositions, even under a dispositional interpretation of the velocity field.

So, here we find a significant difference in ontology between the minimal and
causal versions of the theory. In particular, the defender of the ‘causal’ version can
now appeal to some explanatory and heuristic advantages in putting the GPE
explicitly upfront. First, the GPE brings out the explicit dynamical features of BM,
which prescribes not just conditional trajectories, but also a dynamics for such
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conditional trajectories. 24 Second, it turns out that most non-local effects in BM
are encoded in this second-order dynamics, in the sense that the quantum
potential is explicitly non-local since it depends on the (second order derivative of
the) real amplitude of the wavefunction at all times. Thus, for example, in
Einstein’s thought experiment, the particle in the box is stationary according to the
GE, as long as the potential walls are kept infinitely large at the extremes. The GE
does not reveal how the state of the particle may change with a varying potential
gradient. Only the GPE does allow that - in effect revealing the second-order
dispositions that are implicit in the experimental set up. Thus, if we were to
suddenly reduce the potential in one of the walls but not the other, we would ipso
facto change the wavefunction, which would no longer be stationary, and the first
order dispositions (velocities) of the particles. But while the minimal version has
nothing illuminating to say about why this should be the case (it merely predicts
that it would be the case), the causal version can say that the changes in the
potentials (V and U) acting on the particles have induced changes in the velocities
of the particles (i.e. the second order dispositions have changed and thereby
induced a change in the first order dispositions). This is a typical feature of
dispositions of many ordinary or everyday-life objects, such as the fragility typical
of glass, which may be understood and explained away by an appeal to further
properties (categorical but arguably also dispositional) of glass, including chemical
composition and reticular shape. There is a sense in which going second order is
equivalent to providing a more in-depth analysis of the reductive base of a
disposition. And while this is not required in ordinary contexts for a routine
explanation of a particular phenomenon of ‘fragility’ or ‘solubility’ it is required
when we begin to ask questions about how the fragility or solubility of a particular
object changes when we change the conditions or otherwise interact with its
performance.

So, I am suggesting that dynamical interaction under experimental conditions
is the key. If we just want a theoretical description of the behaviour of physical
systems when left to ‘their own devices’ in thought experiments such as Einstein’s,
the minimal version does everything we could ask for. But if we are asking how a
particular and concrete experimental set up may change in response to our
interactions with it, the causal version comes in handy with an explanatory story of
how those changes come about. Again there is no new phenomenon that the GE
and the minimal version could not accurately describe; but neither is there any
story to be told from the perspective of this version. While a theoretician may rest
content with a thought experiment, an experimentally minded philosopher or
scientist would appreciate a story that informs what happens in practice in real
experiments. For the latter, the causal version does have some explanatory value

24 Sometimes the word ‘dynamics’ is taken to implicitly refer to forces, as in
“Newtonian dynamics” and to carry the corresponding causal connotations. More
generally, however, it can be employed as in the text above to refer to any second-
order derivative function of the position - and to the framework that articulates
the properties that are operative at that level. Hence | am not employing the term
in its most committed sense as requiring the existence of independent forces
acting causally upon the particles’ velocities. Rather GPE is legitimately dynamical
merely on account of its formal second order character.
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to offer. Any account of the dynamics of dispositional properties requires a second-
order theory, in order to describe the possible changes on dispositional properties
under different circumstances (counterfactual or actual). The QPE explicitly
provides just that second order treatment, so it seems heuristically and
pragmatically justified that it should be placed upfront, as opposed to leaving it
implicit in the background. And notice that while the appeal to second order
dispositions has an explanatory gain, there is little to lose philosophical since
dispositions have already been accepted at the first order level. In other words,
once one has taken the courageous step to accept first order dispositions (as Esfeld
etal, 2014, do) there is no real gain and there may well be explanatory loss in
refraining from accepting second order dispositions as well, and embracing the full
causal version of Bohmian mechanics under a dispositional interpretation.

9. Conclusions

My main purpose in this essay has been to show that a dispositional
interpretation of Bohmian mechanics is not only possible but, in light of the
difficulties of alternative interpretations, seems desirable. The dispositional
interpretation naturally dispenses with the problems and objections that other
interpretations generate while creating no significant problems of its own. Of
course, one may wonder whether the alternative interpretations were required in
the first place. In fact one wonders whether any interpretation is really necessary.
However, to the extent that the literature assumes that a realistic interpretation of
Bohmian mechanics is desirable, this requires the provision of some ontology. If so,
a dispositional ontology is not only relatively straightforwardly at hand. It serves
in addition to furnish some understanding of claims by Bohm and his collaborators
in favour of their ‘causal’ version - claims that would remain opaque otherwise.
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