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Abstract

This paper examines explanations that turn on non-local geomet-
rical facts about the space of possible configurations a system can oc-
cupy. I argue that it makes sense to contrast such explanations from
“geometry of motion” with causal explanations. I also explore how
my analysis of these explanations cuts across the distinction between
kinematics and dynamics.

1 Introduction

Most philosophers nowadays grant that not all explanations in science are
causal, but some still stubbornly defend the hegemony of causal explana-
tions with respect to explanations of individual events, for example (Skow
2013). This hegemony, or what remains of it, is partly maintained by the
opaqueness of the nature of non-causal explanations: there is little agree-
ment how to demarcate between causal and non-causal explanations. At
the same time, many people intuitively recognise a difference between causal
and non-causal explanations at least in some cases. (I will give an example
shortly.) This provides a prima facie motivation for thinking that there is
a genuine, worthwhile distinction here to be clarified. The debate can be
advanced by examining in detail some intuitively non-causal explanations
∗Forthcoming in The British Journal for the Philosophy of Science
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in attempt to demarcate their explanatory credentials from causal explana-
tions. This paper does exactly that.

There is no reason to presuppose, prima facie, that all intuitively non-
causal explanations are of a piece. Although many non-causal explanations
are broadly speaking geometrical in character, some non-causal explanations
only concern regularities, for example, as opposed to particular events.1

Such a difference may, or may not, turn out to be relevant for demarcating
between causal and non-causal explanations (cf. Saatsi and Pexton, 2013).
Be that as it may, in this paper I focus on explanations of particular events,
since the hegemony of causal explanations is least contentious here. I also
focus on a class explanations that exhibits a common, unifying character.

I take as a point of inspiration a somewhat amorphous division between
kinematic and dynamic explanations in physics. This division resonates in
interesting ways with the non-causal vs. causal distinction. Consider, for
example, a typical (but by no means definitive) ‘textbook’ presentation of
the physicists’ amorphous distinction in the context of classical mechanics.2

Kinematics: the study of the geometry of motion; kinematics is used to
relate displacement, velocity, acceleration, and time, without reference
to the cause of the motion.

Dynamics: the study of the relation existing between the forces acting on
a body, the mass of the body, and the motion of the body; dynamics
is used to predict the motion caused by given forces or to determine
the forces required to produce a given motion.

If taken at face value this suggests that while dynamics is explicitly con-
cerned with causes, kinematic explanations are non-causal. This face-value
reading turns out to be misleading: many kinematic explanations are causal.
But further reflection supports the notion that some explanations from “geo-
metry of motion” are indeed non-causal. We can begin to grasp the nature
of these explanations by reflecting on typical kinematic explanations from
mechanics, identifying some as non-causal. These can then serve as exem-
plars of a broader notion of non-causal explanation that is not restricted

1For instance, it is not very clear whether there is a particular event that can be ex-
plained by the seemingly non-causal explanation involving the ‘graph-structure’ of Königs-
berg’s bridges. The explanation of Kleiber’s law discussed in Saatsi and Pexton (2013)
only concerns a regularity.

2Cf. Beer (2010).
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to kinematics, and is also applicable outside classical mechanics. I will il-
lustrate this broader notion with reference to other non-causal explanations
that turn on “geometry of motion” in the way brought out by the exemplars.

As an entry point I will look at a simple toy example of a familiar,
paradigmatic kinematic explanation that is intuitively non-causal. By ana-
lysing this example I argue that some kinematical explanations really do
furnish genuinely non-causal explanations by virtue of involving irreducibly
non-local geometrical features. I characterise the non-causal nature of this
exemplar by defending it in detail against some potential objections (§2).
After that I will explore explanations that turn on such “geometry of mo-
tion” in more general terms, appropriating the exemplar to explanations
from different walks of physics (§3 and §4). The upshot is an account of
non-causal explanations that are: (a) non-local, by virtue of turning on non-
local geometrical facts about the space of possible configurations a system
can occupy, and (b) robust, by virtue of being independent of the details of
the underlying dynamics. Such explanations, although arguably non-causal,
are actually not radically different from familiar causal explanations; both
can be accommodated in similar counterfactual terms. Nevertheless, the
distinction between causal and non-causal explanations is a worthwhile dis-
tinction, given its value in physics (§5).

2 Toy example

Take a straight stick and parallel-transport it over a closed path on the
surface of a sphere of radius r (see Figure 1).3 Returning to the starting
point A, the stick has rotated an angle α. Whence the angle α?

Figure 1: Parallel transport of a stick on a spherical surface.

The explanandum is an individual event, or (to be precise) an aspect
thereof, with a natural contrast class: why α, as opposed to some other
angle α′? The event in question takes place when the stick returns to the
point A. We are interested in a why-question that presupposes that the stick

3Mathematically speaking, a vector can be parallel transported along a smooth curve
if the manifold in question is equipped with an affine connection which gives a sense in
which the vector must locally ‘stay straight’ along the way.
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started its journey earlier from this very point: why α, given that the stick
pointed in a different direction at this point earlier? This question concerns
the stick’s direction at A, but only in as far as this differs from its earlier
direction.4

You are probably familiar with the explanation, hinging on a simple
regularity that holds between the following variables characterising the set-
up: α, r =radius, and A =the area enclosed by the path:

α = r−2 ×A (1)

The stick has rotated an angle α because (i) the path traversed (without
rotating the stick along the way) encloses area A over a sphere of radius r,
and (ii) α depends on variables A and r as per the regularity above.5

Intuitively this strikes me as a purely geometrical, non-causal explan-
ation, exhibiting an asymmetric dependence of α on the curvature of the
sphere and the area enclosed by the loop. The explanation seems non-
causal, because the variables in question do not seem to qualify as causes of
the outcome stated in the explanandum. The curvature does not ‘twist’ the
stick at any point along the path, and the path on the whole determines α in
a way that only depends on its non-local feature (the area A).6 This is—as I

4This why-question does not ask why the stick, returning to A, points in some particular
direction in space. Explaining the stick’s particular direction at P at the end of the
journey would require reference to its particular direction at the start of the journey. This
complicates matters by introducing a further local and causal explanatory variable into
an explanation that is (I will argue) otherwise non-causal.

5This dependence of α on A and r−2 is easiest to establish for a triangular path as in
Figure 1, but the results generalises to arbitrary closed paths that can be approximated
with some complex polygon that can be divided into triangles.

6The distinction between local and non-local properties of geometrical objects (such
as a curve) is standardly drawn both in mathematics and physics. (See e.g. Banchoff
and Lovett, 2010.) Local properties, such as local curvature, can be attributed to a small
neighbourhood of a point on a curve. Non-local properties, by contrast, are only applicable
to the whole curve (without being mere sums over local properties, in the way a curve’s
overall length is, for instance). The area enclosed by a closed curve is a paradigmatic
example of a non-local property of the curve. (The total area of a sheet of paper is not a
non-local property of the sheet in this sense, however, for it is just a sum of the areas of
its parts.) For another example, consider the non-local topological property of a rubber
band: being a closed loop. Admittedly being a closed loop depends on local facts: e.g. one
can cut open a closed loop at a single point. So this sense of non-locality is clearly different
from the non-locality associated with quantum mechanics, for example, and the non-local
features supervene on the local ones. But the topological feature remains non-local in an
interesting sense, however: the point of the present distinction is to bring out a way in
which one has to take the whole rubber band into account in determining whether it is
closed or not. Being a closed loop is not a feature applicable at all to any proper part
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will presently explain—a paradigmatic example of a kinematic explanation
in terms of “geometry of motion”.

The intuition from this toy example has to be defended against two
challenges that aim to massage it to fit the causal hegemony. In the course of
vindicating the intuition I will identify the key features of the exemplar that
we can associate more generally with the kind of non-causal explanations
“from geometry of motion” that I am interested in.

Here is the first challenge. One might argue—in the spirit of Skow (2013),
perhaps—that the explanation is causal after all, since it does provide some
information about relevant causes. This line of thought is part and parcel
of a tradition crystallised in David Lewis’s influential ‘Causal Explanation’,
according to which “to explain an event is to provide some information
about its causal history” (Lewis 1986, 217). The explanandum at stake has
a causal history involving whatever causes performed the parallel transport
as described, and the geometrical explanation seems to provide some in-
formation about it, to boot. After all, it is explicitly said that no causes
rotated the stick en route, and it is implicitly said that some causes (perhaps
relating to your intentions and actions) were responsible for taking the stick
around the loop. Hence, the explanation allegedly is causal after all, albeit
it is so in a somewhat roundabout way.7

I rebut the first challenge as follows. The explanation is not a causal
one, since none of its explanatory power is due to the causal information it
provides.8 Following Woodward (2003) and others, I take a paradigmatic
form of scientific explanation to consist in showing how the explanandum
depends on the explanans. The explanation given above of the value of α
does exactly this by virtue of relating α to r and A in a way that brings
out a precise and informative functional dependence between these relevant

of the loop, and it is not a ‘sum’ of the local features. If some explanandum depends
only on this feature of the rubber band, then any feature attributed to any proper part
of the band (location, local connectedness, curvature, what-have-you) says nothing about
whether the explanandum holds or not. (Thanks to a referee for pressing me on this.)

7Cf. Skow’s criterion for causal explanation:
A body of fact partially causally explains [event] E iff it is a body of fact
about what causes, if any, E had; or if it is a body of facts about what it
would have taken for some specific alternative or range of alternatives to E
to have occurred instead. (213, p. X)

8Lange (2013, pp. 495-6) presses this point in connection with different non-causal
explanations.
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variables. Armed with the regularity expressed in equation (1) we know
precisely how α would have been different had r and/or A had different val-
ues. By contrast, the (minimal and vague) causal information provided by
the explanation does not amount to anything like an informative functional
dependence of α on the existence of some causes (or absences of others).
They are better regarded as contingent features that are presupposed by
the why question: whence α, assuming that the stick somehow performs the
parallel transport? Moreover, any details of the specific causes and dynam-
ics involved are simply supererogatory, since the explanandum is actually
completely independent from the actual laws of motion and the forces in-
volved (as long as the presuppositions that are part of the why-question are
satisfied). (Cf. Lange 2013)

So, arguably all the explanatory power springs from the functional de-
pendence of α on the sphere’s curvature and the area enclosed by the loop.
Grasping this dependence in sufficient detail gives one something to work
with: if you wish the angle to shift only half the original amount, for example,
you can accordingly ‘manipulate’ (broadly speaking) the sphere’s radius or
the area enclosed by the path to make it happen. This complies with the
spirit of Woodward’s ‘manipulationist’ account of causal explanation:

[Causal explanations] furnish information that is potentially rel-
evant to manipulation and control: they tell us how, if we were
able to change the value of one or more variables, we could change
the value of other variables. (2003: 6)

You would, of course, have to perform the parallel transport anew to do this,
because the dependence of α on these variables is non-local. So, even though
you may be able to thus broadly speaking ‘manipulate’ the explanans vari-
ables, this cannot be achieved by a surgical intervention on any relatively
local part of the path. Furthermore, changing of the value of an explanans
variable (e.g. radius) need not involve anything like an intervention in Wood-
ward’s sense at all: whether or not a change in these variables is caused by
something (e.g. air pressure inside a balloon) is neither here nor there for
the explanation at stake. Thus, the explanatory dependence does not ap-
pear causal, as the explanatory geometrical features—the sphere’s curvature
combined with the area enclosed by the loop—do not boil down to any local-
isable or intervenable features that ‘make a difference’ in a difference-making
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sense associated with causation.
The last claim requires careful elaboration, as this is where the second

challenge comes in. For one might argue—in the spirit of Strevens (2008),
say—that the pertinent geometrical variables can be construed as causal
after all, despite not being localisable. This line of thought hinges on the
notion that causes qua difference-makers typically involve an abstraction
from some ultra-specific causal facts. For example: in causally explaining
the breaking of a window that happened to lie along a rock’s path, we
appeal to those causal features that made a difference to the breaking (as
opposed to not breaking): the rock hitting the window in some ‘sufficiently
impactful’ manner, which can be realized by countless specific combinations
of the rock’s hardness; a specific location of the impact; a specific momentum
that is high enough for that location, etc. We typically explain with causes
thus identified by a higher-level description of the system that abstracts
away from the unnecessary specifics that a true lower-level causal description
would attribute to the system.9

Applying this line of thought to a simple geometrical example shows how
non-local geometrical features can be causal qua difference-makers. Consider
a paradigmatic equilibrium explanation, for instance: why does a ball even-
tually end up at the bottom of a concave bowl, when released just inside the
bowl’s rim? An ultra-specific causal description involves the specific forces
acting on the ball over time, due to air resistance and the specific parts of
the bowl that are in contact with it before reaching the energy-minimising
equilibrium state. But clearly those very causes and parts of the bowl are
not the difference-makers with respect to the explanandum at stake, for the
outcome would not be any different if the ball was released at some other
point along the bowl’s rim. (Ditto regarding the specific details concerning
the amount of air resistance and friction, and the strength of gravity, for
example—as long as these causal factors are large enough.) What makes
a difference, rather, is the bowl’s concave shape. Although this difference-
maker is clearly a geometrical, non-local feature of the system, it is also a
clearly identifiable causal feature that makes a difference for the explanan-
dum at stake, given the fundamental causal facts in play. The fact that an
explanation in terms of this difference-maker abstracts away from the un-

9See Strevens (2008) for a philosophy of causation and causal explanation that makes
the most of this idea.
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necessary specifics of a lower-level causal description does not make it any
less causal—according to the advocates of the difference-making concept of
causation at least.10 So, surely, the challenge goes, we can similarly construe
as causal the dependence of α on r and A.

But not so: there are critical disanalogies between the two cases. In
particular, in the case of the bowl there is always an ultra-specific causal
description that can be associated with the high-level ‘geometrical’ explan-
ation. Indeed, the explanatoriness of the ‘geometrical’ explanation in the
case of the bowl requires the existence of some such specific causal descrip-
tion: the ‘geometrical’ explanation breaks down if it is not taken to imply
something about the explanatory relevance of the gravitational and fric-
tional forces involved. By contrast, in our toy example this is not so: the
validity of this geometrical explanation actually does not imply anything at
all about some specific lower-level causes involved. The explanation would
hold just the same—it would explain equally well and for the exact same
reasons—even if no forces were in play at all. Thus, the fact that some
non-localisable geometrical feature (such as being concave) may count as a
causal qua difference-maker does not imply that all geometrical explanations
are causal in this sense. After all, higher-level causal difference-makers are
obtained by abstraction from lower-level causal facts, and while such an ab-
straction takes place in the case of the equilibrium explanation, it does not

10Woodward also regards the equilibrium explanation causal, saying that this is an
upshot of his “broad notion of causal explanation according to which, roughly, any ex-
planation that proceeds by showing how an outcome depends (where the dependence
in question is not logical or conceptual) on other variables or factors counts as causal.”
(2003, 6). The qualification ‘roughly’ is critical here; without this qualification the notion
of causation would be too liberal, including automatically too many explanations under
the causal heading (as Woodward clearly recognises elsewhere). The qualification relates
to the interventionist aspect of Woodward’s account, the idea being that the notion of
intervention makes sense with respect to the shape of the bowl, for instance. This judg-
ment seems right on the basis of our pretheoretic folk conception of causation, which takes
causation to be a relatively local matter. We must allow our pretheoretic folk conception
of causation to inform Woodward’s account to some extent, at least, due to the oft-noted
conceptual circularity in Woodward’s account: causation is characterised partly in terms
of intervention, which itself is a causal notion. We need some idea of causation to get the
account started. The fact that the folk conception of causation takes it to be a relatively
local matter renders some variables non-intervenable, as Woodward notes for example in
admitting dimensionality of spacetime as a variable on which the stability of planetary
orbits non-causally depends. The vagueness in our folk conception of causation leads to a
degree of vagueness in the distinction between intervenable and non-intervenable variables,
and correspondingly in the demarcation between causal and non-causal explanations. In
unclear borderline cases we can appeal to other theoretical benefits of drawing the line in
a particular way.
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take place in the toy example. The toy example thus has explanatory robust-
ness that distinguishes it from explanations such as the bowl case: it is fully
independent of the details of the underlying dynamics. The explanation
would function just the same, even if there is no underlying causal dynamics
at all. (By contrast, Strevens’s analysis of higher-level causal explanations
is premised on causal fundamentalism: the idea that there is a network of
causal influences at the fundamental level that ultimately underwrites the
truths about higher-level causal relevance.)11

We can appeal to this kind of distinctive robustness in demarcating ex-
planations akin to the toy example from causal explanations that appeal
to geometrical features. Thus, I conclude that the second challenge need
not compel us to give up the intuition that we have a non-causal explan-
atory dependence at stake in the toy example. This vindication of the toy
example as non-causal may not be watertight; perhaps intuitions also dif-
fer in this regard at this point. Still, I believe to have shown that there
is a principled line that can be drawn between the toy example, on the
one hand, and explanations—geometrical or otherwise—that come out as
straightforwardly causal by the lights of the leading counterfactual accounts
causal explanation. The rest of the paper amounts to a case for regarding
this line as a worthwhile one one to draw. (Given my pre-theoretic grasp
of causation I also regard it completely natural to signify this distinction
by the contrast between ‘causal’ vs. ‘non-causal’, although ultimately I care
less about framing the distinction in this way, and more about recognising
its philosophical importance.)

Having characterised nature of the explanation furnished by the toy ex-
ample, let us summarise its key features. The explanation of the specific
angle α is geometrical by virtue of turning on the dependence of α on geo-

11Admittedly the bowl case has considerable modal robustness as well, but this is largely
due to a high degree of abstraction in the explanandum itself. That is, the abstraction from
‘unnecessary specifics’ in causal difference-making explanations is licensed by a degree of
abstraction in the explanandum itself. To wit, there are countless ways for a window to
end up broken, and there are countless of ways for a ball to end up at the bottom of a
bowl. Instead of the very broad question, ‘Why did the ball eventually end up at the
bottom when released just inside the bowl’s rim?’, we can ask a much more specific one:
‘Why did the ball end up at the bottom in 17.5435 seconds, given g = 9.80665m/s2, such-
and-such air pressure, temperature, etc.?’ Having a concave shape no longer functions
as an explanatory difference-maker, because the specific concave shape now does make a
difference—for almost all concave shapes—to the time it takes for the ball to reach the
equilibrium.
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metrical variables: the area A inside the loop, and the radius r quantifying
the curvature of the sphere. The explanans variables are non-local: the
explanation boils down to non-local geometrical facts about the (relevant
features of the) sphere and the area enclosed by the whole path.12 The
explanatory value of these non-local geometrical facts is not dependent on
any assumptions about underlying dynamics or causal structure of the world
(nor does it have anything to do with the degree of abstractness of the ex-
planandum). Indeed, the explanation is fully robust in the sense that it is
completely independent from any laws of motion or forces involved.13 The
explanatory dependence at stake is asymmetric: α depends on A and r, not
vice versa, in a way that supports a broadly ‘manipulationist’ reading and
provides corresponding counterfactual information (cf. what-if-things-
had-been-different questions in Woodward, 2003). Finally, given the set-up
of the toy example, there are constraints on possible states of the stick,
imposed by the spherical surface one the one hand, and by the requirement
of parallel transport on the other.

As said, I also take the toy example to provide an exemplar of a type
of non-causal explanation. (As such it provides a straightforward counter
example to the idea that all explanations of particular events are causal,
cf. Skow, 2013.)14 But what exactly makes the explanation non-causal? In
responding to the two challenges above I suggested that this is due to both (i)
the non-local character of the explanans variables, as well as (ii) robustness
of the explanation with respect to variation in the dynamical facts (including
laws) involved. It is these two features that demarcate this type of non-
causal explanation, since the other features are typical to causal explanations
nicely captured by popular counterfactual accounts (e.g. Woodward 2003). I

12In as far as the explanatory geometrical facts are faithfully represented by mathem-
atics, the explanation is a distinctly mathematical one (Lange, 2013).

13The explanatory geometrical facts are in this sense fully explanatory of the explanan-
dum, unless there are causal facts (‘twisting’ the stick en route) also involved, in which
case the explanation of α requires the geometrical part as a distinct and indispensable
explanatory component.

14To be exact, Skow defends the idea that all explanations of particular events are
causal—except for those that clearly are not, namely ‘in-virtue-of’ explanations. For
example, a chemist arguably thus explains the fragility of a piece of glass in terms of
its molecular structure; more generally, such explanations “explain why some fact obtains
by citing some other fact or facts that ‘ground’ the target fact, that are the ‘deeper’ facts
‘in virtue of which’ the target fact obtains” (Skow 2013, p. XX). I see no reason to think
that the toy example should be classified as a ‘grounding’ explanation, as opposed to a
counterfactual explanation based on non-causal dependence.
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will further analyse the nature and role of these demarcating features below
by first arguing that neither non-locality nor robustness are singly sufficient
for rendering an explanation non-causal. Then, the recognition that the
demarcating features are not specific to kinematics points towards a more
general appreciation of non-causal explanations from “geometry of motion”.

3 “Geometry of motion” in classical mechanics

Having described and defended an exemplar of non-causal explanation, I
now wish to explore in broader terms other explanations that it can be
assimilated with. This section will locate the key features of the toy example
in some actual explanations in classical mechanics. The next section goes
beyond mechanics with illustrations from other areas of physics.

Recall the initial characterisation of kinematics as a “study of geometry
of motion”. Another classic treatise in theoretical kinematics begins by
presenting its subject matter in similar terms:

Formally, kinematics is that branch of mechanics which treats
the phenomenon of motion without regard to the cause of the
motion. In kinematics there is no reference to mass or force;
the concern is only with relative positions and their changes.
(Bottema and Roth, 1979)

If kinematics (thus construed) furnishes explanations, these have the po-
tential to be non-causal by virtue of being completely independent of the
cause of motion. The toy example exemplifies how this potential can be real-
ised: the toy example is a kinematical explanation that concerns the “geo-
metry of motion” that provides only information about relative positions
and their changes with respect to a stick constrained to parallel transport
on a spherical surface. This information brings out explanatory, counterfac-
tual dependencies by reference to the relevant geometrical features of the
space of possible states. Furthermore, these can be explanatorily independ-
ent of the system’s dynamics or causes of motion, making the explanation
robust. The geometrical features need not be independent from dynamics
and forces in any fundamental metaphysical sense, of course; the independ-
ence can be only relative to a level of description. The spherical surface in
the toy example, for instance, is assumed to be rigid so as to support the
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weight of a straight stick; at a lower level of description there are forces in
play corresponding to this rigidity. But the kinematic explanation is robust
so that the details about those forces—whatever they are—are completely
‘screened off’ from explanatory relevance by the assumptions regarding the
sphere’s rigid shape (presupposed by the why-question at stake). That is,
we can ‘vary’ the forces and laws responsible for rigidity and for the geo-
metrical features of the surface and the stick as much as we like without
affecting the kinematic explanation in any way. The non-causal explanatory
dependencies have such modal independence, even if some of the features of
the explanans physically depend on underlying causal mechanisms or laws.
(cf. Lange 2013)

Kinematic explanations are robust by virtue of being independent of
dynamical features. I have argued that some kinematic explanations are
non-causal due to incorporating explanatory geometrical features that are
furthermore non-local. It is the combination of non-locality and robust-
ness that is needed to drive a wedge between non-causal explanations from
geometry of motion, and explanations that appeal to non-local geometrical
features as causally difference makers (as in the case of the bowl). Clearly
many kinematic explanations do not tick the box of non-locality, despite
being robust. I would not argue that such explanations are non-causal.

Consider the following elementary kinematic explanation, for instance.
A motor bike starts from rest and has a constant acceleration. Why does
it travel 100 meters in 4.47 seconds? Because its rate of acceleration a =
10m/s2 and the time it takes to travel distance s depends on the rate of
constant acceleration as per t =

√
2s/a. This equation provides explan-

atory counterfactual information: had the (constant) acceleration been dif-
ferent, the time would have been different accordingly. This explanation is
kinematic since it says nothing about the forces in play or the laws of evol-
ution. But despite being kinematic, the explanation is straightforwardly
causal: the explanans variable a attributes a local feature to the motorbike,
namely its acceleration at any given point, that makes a difference to how
swiftly it covers the distance.15

So, a face value reading of textbook characterisation of kinematics as
15Think of the dependence between the variables t, s, and a in terms of a graph plotting

the velocity v as a function of t. (Acceleration a gives the slope of the graph.) The area
under the line quantifies s, the distance travelled, and it clearly depends additively on
local features of the line.
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“the study of classical mechanics which describes the motion without con-
sideration of the causes of motion” is misleading, since ‘cause’ (as philosoph-
ers understand the term) cannot be simply equated with ‘force’, ‘energy’,
or some other notion that clearly falls on the dynamics’ side of physicists’
division.

Nevertheless, there are various explanations in kinematics that turn on
“geometry of motion” in a non-causal way by virtue of satisfying both non-
locality and robustness, as in the case of the toy example. There are interest-
ing, much less toy-ish real-life explanations to exemplify this, too. Consider,
for instance, the following simple device consisting of two rigid 10cm long
arms XY and YZ joined together by a hinge (Y), and a wheel (W) rotating
around a fixed point on the arm YZ. The device can freely rotate around a
pivot point (X). (Figure 2)

Figure 2: Polar planimeter. From Jennings (1994, 39).

Assume the pointer end (Z) traces exactly once around a simple closed curve
in the plane.16 As it does so, the two arms move and the wheel rotates.
Assume that at the end the wheel has rolled 1cm from its starting position.
The wheel, let’s imagine, is set to mechanically give you a reading which
is simply ten times the distance rolled by the wheel: viz. 10. This (in cm2

units) turns out to be exactly the area enclosed by the curve. Why?
The explanation of the reliable functioning of such polar planimeter turns

on the fairly easily provable fact that the area (A) inside the closed curve is
equal to the length (L) of the arm YZ times the distance (D) rolled by the
wheel.17

A = LD (2)

This simple equation brings out explanatory dependencies between the
relevant geometrical variables pertaining to the set-up’s geometry of mo-
tion: the distance D rolled by the wheel depends on A (and a fixed L). This
dependence of the rolled distance D on the non-local explanans variable is

16Simple closed curve does not cross itself like, say, the figure of eight.
17As said, for our imaginary planimeter L=10cm, of course. The regularity in equation

(2) has an interesting, purely geometrical derivation, which furnishes a further non-causal,
‘distinctly mathematical’ explanation of the regularity itself. See Jennings (1994).

13



non-causal, for clearly the area as a non-local variable does not cause the
wheel to roll, or cause ‘the final reading’. Nor is the dependence in any
relevant way based on the laws of motion or forces involved in the process.
This dependence is nevertheless explanatory, since we know precisely how
D would have been different, had the area been smaller or larger, and we
know that D had nothing to do with any specific local feature of the path
around A or the causes of the planimeter’s motion. This dependence is fur-
thermore asymmetric, since the area only depends on the path taken by the
pointer (Z). Finally, there are geometrical constraints to the system given
its set-up (fixed pivot point, single hinge, the length of the rigid arms, etc.):
these constraints limit the possible (kinematic) states the system can oc-
cupy. The explanation of polar planimeter’s correct reading shares all the
key features identified in connection with the initial exemplar. In particu-
lar, as we have seen, there are non-local geometrical facts about the space
of possible states associated with a polar planimeter that are explanatory
without being causal.

So, some, but not all, kinematic explanations are non-causal. But is it
the case that all non-causal explanations that thus turn on non-local “geo-
metry of motion” are exclusive to kinematics? The answer is no. There
are significant non-causal explanations in physics that, despite falling on
the dynamics’ side of physicists’ division, turn on “geometry of motion” in
a way exemplified by our kinematic exemplar. One paradigmatic geomet-
rical explanation in mechanics pertains to the so-called ‘geometrical phase’
of a dynamical system. This is broad-ranging phenomenon, but some of its
instances are closely related to our toy example. Consider the familiar Fou-
cault’s pendulum, for instance. It exhibits a phase shift in the pendulum’s
plane of motion that is explained in terms of “geometry of motion”. The
turning of Foucault’s pendulum is too often falsely ‘explained’ in terms of
the idea that the pendulum’s plane of motion remains fixed as Earth rotates
‘underneath it’. This idea completely fails to account for the precession of
the pendulum, however: the fact that the plane of motion fails to return to
its original orientation after a full (24h) revolution of the Earth—unless the
pendulum is located at a pole or the equator. In reality the phenomenon
can be explained in purely geometrical terms.

The daily precession α′ experienced by a Foucault pendulum, as a func-
tion of the latitude λ, is given by α′ = −2π sinλ. This is known as a geomet-
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rical phase (or (an)holonomy, or Hannay’s angle) of a classical dynamical
system that travels a closed loop in a parameter space without returning
to its original state. As suggested by its name, geometrical phase depends
on geometrical features. As said, in some cases it does so in a way that
is closely related to our toy example. The overall phase shift of Foucault’s
pendulum, for example, is equal to the solid angle subtended by the circle
of latitude, i.e. α = 2π(1 − sinλ) = r−2 × A.18 The geometrical nature of
the phenomenon allows the phase shift to be derived from geometrical con-
siderations that indicate how the dependence of the phase shift on latitude,
as captured by this equation, has “a deep geometric meaning and is inde-
pendent of the local properties of the path—it depends only on the enclosed
area.” (von Bergmann et al, 2007, 891)

A geometrical explanation of Hannay’s angle requires the use of dy-
namical concepts, as the phenomenon depends on the motion exhibiting
conservation of momentum, for instance. More generally, it depends on
the Hamiltonian, which must be integrable, and the requirement that the
Hamiltonian’s excursion in the parameter space is sufficiently slow, i.e. adia-
batic.19 Nevertheless, despite this dynamic context, the explanation has a
geometrical character that is robust and non-local in the sense exemplified
by kinematic explanations from “geometry of motion”: the explanation is
fully independent of the specific laws and causes in the sense that the geo-
metrical phase only depends on non-local geometrical variables involved in
a closed loop in the system’s parameter space. For Foucault’s pendulum,
for instance, it does not matter how fast or slowly we complete the rotation
of the globe (as long as we do it adiabatically, of course). Neither does it
matter at all what the causes (if any) of the rotation are. This explanation
from “geometry of motion” is thus robust and non-local as per our exemplar,
and thus non-causal in this sense.

I will bring this section to a close by precisifying further the present view-
point by contrasting it to an explanation discussed in Lange (2013). The
why-question at stake involves a double pendulum in homogeneous gravit-
ational field, which (as a matter of necessity) has at least four equilibrium
configurations. Why is that?

18A is the area of the Earth’s surface enclosed by the circle of latitude; r is the radius
of the Earth.

19See Hannay (1985) or Arnold (1989) for details and other examples.
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Figure 3: Double pendulum. From Lange (2013).

Lange documents an explanation of the number of equilibrium config-
urations that is ‘distinctly mathematical’, and in his view also non-causal.
As is well known, the configuration space of a double pendulum is a torus
parameterised by the two angles α and β (Figure 3). The explanation of
interest turns on a general geometrical fact about compact surfaces such as
this configuration space: most differentiable functions are Morse functions,
which on a compact surface of genus g have at least 2g + 2 critical points.
A torus (g = 1) thus has at least four critical points (viz. saddle points,
maxima, or minima). The potential energy function of the system is given
by a Morse function; it thus has at least four critical points. Each critical
point of the potential energy function is also an equilibrium point: at critical
points the gradient of the potential energy vanishes, and this amounts to
there being no force, viz. an equilibrium.

Figure 4: Pendulum’s configuration space with a potential energy function.

This explanation, too, clearly belongs to dynamics (as opposed to kin-
ematics), depending on a potential energy function and forces deriving from
it. As Lange puts it, the explanation appeals to “a natural law: a system
is at equilibrium exactly when the net force on each of its parts is zero
(i.e. when its potential energy is stationary)—a particular case of Newton’s
second law.” (2013, 503). Lange nevertheless argues that the explanation
is a non-causal one, since it does not include any specific information about
the way in which the system evolves under force.

Any causal explanation in terms of forces (or energy) must go
beyond Newton’s second law to describe the particular forces at
work (or energy function in play)—if not specifying them fully,
then at least giving their relevant features (such as their propor-
tionality to the inverse-square of the distance). That is why the
distinctively mathematical double-pendulum explanation I have
just described is non-causal despite including Newton’s second
law. (Ibid.)

But I am not sure why an explanation should thus involve any more
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specific features of the forces at work (or their effect on motion) in order to
be causal. Admittedly the causal information provided by (the pared-down
version of) Newton’s second law is rather abstract, but arguably this is all
the causal information that is relevant for the (relatively abstract) explanan-
dum at stake. The explanation brings out the way in which for almost any
configuration of the system there are local differences in the potential energy
that cause the system to move, apart from a few (but at least four) equilib-
rium configurations. By virtue of saying all this about the causes within a
double pendulum system we might well be inclined to regard this as a causal
explanation. (Note that with respect to its high degree of abstractness this
explanation is not that different from the causal equilibrium explanation
discussed in section §2—the equilibrium explanation did not require specific
information about particular forces at work either.)20

It may nevertheless seem that there is a significant non-causal aspect to
the double pendulum explanation, turning on the fact that the configuration
space is a torus—a fact about the global “geometry of motion”. Given this,
is there still a close parallel between this explanation and the non-causal
explanations explored above? I do not think so. For while it is true that
there is a non-causal aspect to this (in my view causal) explanation in a
sense, this can be taken to be merely due to the specific why-question at
stake. The explanation for the equilibrium nature of each of the critical
points, taken individually, turns on relatively local matters: there are no
forces at this configuration, but forces would be in play were the system to
shift to any nearby configuration allowed by the kinematic constraints. The
fact that there are more than one—or, as it turns out, more than three—
such equilibrium points altogether is, unsurprisingly, a non-local feature of
the system. Thus, the explanation turns on non-local matters regarding the
configuration space purely by virtue of asking a question about such non-
particular fact. This is quite a different explanatory input from the cases of
“geometry of motion” explored above.

20The two explanations are quite different with respect to their explanans, however,
for while the explanandum of the equilibrium explanation is an individual event, in the
present case the explanandum is a more abstract regularity without any corresponding
individual event.
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4 Beyond classical mechanics

Thus far we have discussed non-causal explanations firmly in the context of
classical mechanics. But the key idea applies naturally also to other areas of
physics where we can conceptually distinguish between pertinent non-local
explanatory facts regarding the space of possible physical states of a system,
and its laws of evolution.21 In the light of this general distinction, the leading
idea of this paper—that some non-causal explanations may completely turn
on non-local geometrical facts about a system’s space of possible physical
states, viz. its “geometry of motion”—is not at all wedded or native to
classical mechanics. Rather, such non-causal explanations can take place
whenever a theory posits a space of possible physical states with sufficiently
rich structure to ground robust explanatory non-causal dependencies of the
sort we have explored above. Here I provide a further example to illustrate
this.

The discussion of geometrical phase above anticipates a natural exten-
sion of our analysis beyond classical mechanics. A huge range of physical
phenomena is accountable in terms of an anholonomy in a system’s para-
meter space; Hannay’s phase in classical mechanics is but a special case.22

For example, in quantum mechanics the so-called Berry phase relates to
the fact that a system’s wavefunction often exhibits a phase difference after
its parameters cycle slowly (adiabatically) around a circuit in an abstract
parameter space that specifies the system in relation to its environment.
In general terms, it follows from Schrödinger’s equation that for a slowly
changing Hamiltonian H(R) that depends on parameters R1(t), R2(t),. . . ,
Rn(t), and for a system in a discrete eigenstate ψn of H(R), the geometric
phase shift over a closed circuit R0 → RT in parameter space is

γn(T ) = i

∮
〈ψn|∇Rψn〉

This phase difference again depends only on non-local geometrical properties
of the circuit in parameter space, and it is independent of the time taken
to complete the circuit (apart from the requirement that the process is slow

21The conceptual distinction between kinematics and dynamics is also completely inde-
pendent from mechanics.

22There are various known examples of geometrical phase, coming e.g. from classical op-
tics, nuclear magnetic resonance, hydrodynamics, and quantum field theory. See Wilczek
et al. (1989).
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enough to constitute an adiabatic chance). In the simplest cases the phase
difference is proportional to the area enclosed by the circuit, in close analogy
to the classical Hannay’s angle of Foucault’s pendulum.

For a concrete example (adapted from Griffiths (1995)), consider a spin
S = ~

2 neutron in a magnetic field B(t) that is constant in its magnitude but
changes direction. In particular, assume that B(t) makes a fixed angle α with
the z-axis, precessing around it at constant angular velocity ω. Assume that
the neutron starts in a spin-up eigenstate in direction of B(0). When the
direction of B(t) slowly shifts, the neutron remains in a spin-up eigenstate
in the direction of the magnetic field. Returning to the starting point in
the parameter space, the neutron is in the original eigenstate but it has
acquired a geometric phase which, for such an adiabatic excursion around
the parameter space of the Hamiltonian H(t) = e

mB · S, is

γ(T ) = π(cosα− 1).

That is, the geometric phase is proportional to the solid angle subtended
by the magnetic field vector from the origin. Thus this equation brings out
the precise functional dependence of the Berry phase only on the non-local
geometrical variable determined by α. Furthermore, this result generalises
to arbitrary closed excursions of the Hamiltonian in the parameter space:
if the shifting direction of the magnetic field leads the neutron’s spin adia-
batically around an arbitrary closed path, the geometric phase shift is equal
to minus one half the solid angle swept out by the magnetic field vector.
(See e.g. Griffiths 1995) This dependence of the phase shift on non-local
features of such a cyclic change is a purely geometric consequence of the
assumption that the particle’s quantum state obeys Schrödinger’s equation:
the phase shift is given by a closed line integral in parameter space that
is independent not only of any local features determining the shape of the
excursion, but also of the rate at which the excursion is done and the energy
of the system.23

23The reality of this kind of phase shift has been well documented in neutron interfero-
metry, for instance, where the spin polarisation of neutrons travelling through a magnetic
field is rotated ‘around a loop’. The geometric phase shift produced by the experiment
contributes to the total phase difference with the other interferometer path, revealed in
the diffraction pattern. (See Werner (2012) for a recent review.) But did I not just use
causal language to describe all this, saying that the experimental set-up produces a given
phase-shift to one of the neutron currents in the interferometer? Does the magnetic field
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In Berry’s treatment of quantum geometric phase he required that the
system remains in the same eigenstate of the Hamiltonian at every instant
throughout this evolution. This adiabaticity requirement has been relaxed in
the subsequent work, e.g. in Aharonov and Anandan (1987), and Anandan
and Stodolsky (1987). In their more general treatment of quantum geo-
metric phase Anandan et al. also associated the phenomenon directly with
the ‘motion’ of the quantum system, as opposed to tracking the particular
Hamiltonian used to achieve this motion. Thus, the features of the geometry
of motion at play can be associated with the quantum mechanical state it-
self, and this furthermore does not depend on the requirement of adiabaticity
for the varying environment (the Hamiltonian). Furthermore, Mukunda and
Simon (1993) show how the geometric phase can be decoupled from Hamilto-
nian dynamics altogether by construing it in even more fundamental terms
as a purely kinematic consequence of the structure of Hilbert space, being a
non-local property of curves connecting quantum state vectors. This brings
out even more forcefully its purely geometrical nature.

In the philosophical literature Batterman (2003) has rightly emphasised
the importance of non-causal explanations from geometrical phase. Ac-
cording to Batterman the “most remarkable features” of the Berry phase,
for example, is “the fact that topological and geometric structures of an
abstract space of parameters can have observable, physical, but obviously
noncausal ‘effects’.” (2003, 553) I have been writing very much in the same
spirit, offering an analysis the non-causal character of these explanations:
the geometrical structures pertaining to the system’s “geometry of motion”
are explanatory by virtue of providing counterfactual information about an
asymmetric dependence of the explanandum on non-local geometrical fea-
tures of the space of possible states of the system. The prevalence of such
explanations remains to be further examined; there are various explanations
that physicists characterise as ‘purely kinematic’ or ‘purely geometrical’, and
many of these, I suspect, bear the hallmarks of non-causal explanations from

causes the neutron wavefunction phase to shift, after all? Yes, and no. When we describe
an experimental set-up in higher-level terms, or explain its diffraction pattern outcome
in terms of the regularities pertaining to the relevant variables, we can, of course, appeal
to causal notions in as far as those variables are amenable to a causal reading by virtue
of being intervenable. At a more fundamental level, when describing what happens when
the neutrons travel through the magnetic field, the relevant explanatory variables are no
longer amenable to such causal reading, however.
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“geometry of motion”.24

5 Conclusion: a worthwhile distinction

This paper has engaged with an issue of demarcation: drawing a line between
causal and (some) non-causal explanations. How worthwhile is this demarca-
tion issue? One might worry that the issue ultimately turns out to be largely
terminological: “So you think it is worth calling that a ‘cause’? Well, I do
not”. All the more so, perhaps, given that I have argued that non-causal
explanation from “geometry of motion” only require a natural extension of
already broadly applicable counterfactual framework for analysing explana-
tions.

There are actually two distinct issues here, one concerning the value
of drawing the distinction in causal terms, the other concerning the value
of drawing the distinction at all. I care more profoundly about the latter
issue, and I think the significance of the distinction at stake is ultimately
underwritten by its value to science. It really matters to science that we can
recognise and are able to conceive of different kinds of scientific explanations:
some straightforwardly dynamical and causal; others geometrical, non-local,
and (explanatorily) independent of the dynamics.25 The recognition of the
existence of explanation-supporting dependences of the latter ilk is a hugely
significant scientific achievement, and it marks a natural ‘joint’ in the nature
of scientific explanation. It is a joint that furthermore naturally supports
philosophers’ renouncement of the hegemony of causal explanation. Insist-
ing on the hegemony, it seems to me, only works to satisfy an outdated
philosophical prejudice for the price of weakening our intuitive grasp on
causation and causal explanation.

At the same time, the significance of the distinction at hand should
not be taken signify the need for a radically different account of explan-
ation. Rather, a counterfactual framework along the lines of Woodward

24For example, I am inclined to think (pace Skow, 2013) that various explanations
turning on the Pauli exclusion principle, fit this mould, although I will not argue for this
here.

25Often such explanations furthermore contribute in tandem to a complete explanation
of a particular effect, as neither type of explanation fully account for the explanandum on
its own. Consider, for example, a Foucault’s pendulum that is also subject to dynamical
torsion, so that there is both a causal and a non-local geometrical contribution to the end
result. See also footnote 4.
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(2003) still functions well as a philosophical framework for analysing non-
causal explanations from “geometry of motion”, for these explanations also
turn on informative functional regularities that are invariant under changes
in clearly identifiable explanans variables that lead to answers to “what-if-
things-had-been-different” questions. It is only the robustly non-local geo-
metrical nature of the explanans variables that demarcate these explanations
from otherwise profoundly similar causal explanations.
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