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Introduction 

 Verification and validation of computer codes and models used in simulation are two 

aspects of the scientific practice of high importance and have recently been discussed by 

philosophers of science. While verification is predominantly associated with the correctness of the 

way a model is represented by a computer code or algorithm, validation more often refers to 

model’s relation to the real world and its intended use. It has been argued that because complex 

simulations are generally not transparent to a practitioner, the Duhem problem can arise for 

verification and validation due to their entanglement; such an entanglement makes it impossible 

to distinguish whether a coding error or model’s general inadequacy to its target should be blamed 

in the case of the model failure. I argue that in order to disentangle verification and validation, a 

clear distinction between computer modeling (construction of mathematical computer models of 

elementary processes) and simulation (construction of models of composite objects and processes 

by means of numerical experimenting with them) needs to be made.  Holding on to that distinction, 

I propose to relate verification (based on theoretical strategies such as inferences) to modeling and 

validation, which shares the common epistemology with experimentation, to simulation. To 

explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of 

modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem 

for verification and validation generally applicable in practice and based on differences in 

epistemic strategies and scopes. 

 

Modeling and simulation 

In order to disentangle verification and validation one needs first to disentangle and explicitly 

define modeling and simulation. Among approaches to their definition one can identify two most 

frequently occurring ones in literature: those terms are either used interchangeably without 

assigning them unambiguous and explicit definitions or in a way that simulation represents a subset 

of more universal modeling practices. For example, the definition of simulation by E.Winsberg is 

manifold, he describes it both as “the kind of “theorizing” […] – the construction of local, 

representative models,” and experimenting with computer (Winsberg, 2010); he also associates 

simulation with a model itself as used in simulation. In (Keller 2003, 204) it is also argued that 

“computer simulation is … directed toward eliciting the implications of well-formulated 

theoretical models”, relating it to a more extent to theory. P. Humphreys gives computer simulation 
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a definition of numerical experimenting (which is close to one of Winsberg’s characterizations): 

“a computer simulation is any computer-implemented method for exploring the properties of 

mathematical models”; he also calls simulation a computational device producing solutions to the 

model (Humphreys, 1991). S.Peck argues that “simulation can be viewed as another kind of 

experimental system” (Peck, 2004, 530). M.Morrison (Morrison, 2009, 55) also relates simulation 

to numerical experimentation and contends that “computer plus simulation programme functions 

as apparatus”. Some accounts even characterize computer simulations as “material experiments in 

a straightforward sense” (Parker, 2009, 495) because they are performed on a digital computer 

(which is a material system) while others argue that the physicality of processes in a computer 

does not explain why simulations generate new data (Barberousse, 2009, 573).  

There is also an ambiguity in definitions of modeling. For example, (Morrison, 2009, 47) claims 

that “the computational resources of simulation […] make[] it different from modelling” and 

ascribes simulation to “a type of “enhanced” modelling”. M.Weisberg delineates modeling as “the 

indirect study of real-world systems via the construction and analysis of models” (Weisberg, 

2013). Here modeling stands not only for building models but also for their analysis, which can 

also be understood as exploring their properties. In the former case it has much in common with 

the way Winsberg defines simulation, and in the latter – how both Winsberg and Humphreys 

characterize simulation in the sense of numerical experimentation. This latter interpretation is also 

supported by Weisberg’s description of simulation as “computing the behaviour of the model using 

a particular set of initial conditions” (Weisberg, 2013). 

One of the first and most cited denotations of simulation (not necessary computational) was given 

by S.Hartmann, who wrote that “a simulation imitates one process by another process” (Hartmann, 

1996). While this definition apparently encompasses both modeling and simulation as described 

by the aforementioned authors, one can clearly envision that in order to accomplish such a 

simulation it is necessary to both construct the imitating process (or a code (a computer-

implemented algorithm) in the case of computer simulation) and explore its behavior (run the 

computer code with a particular set of input parameters or perform many runs with parameters 

covering all the parameter space of the problem) ((Winsberg, 2014) also describes simulation as 

one run of a computer code). Even if we look into the construction of a computational code of the 

imitating process we can clearly discriminate between elementary processes (like interaction of a 

particle with a nucleus) and composite processes (heat release in an irradiated water tank, radiation 

propagation and attenuation in matter) that are constructed by embedding low-level and more 

universal elementary ones into a more general framework. 

For instance, in particle physics, a model of particle interaction with another particle or a 

nucleus is more elementary than that of its interaction with a block of material, where the particle 

encounters sometimes hundreds of other particles and takes part in a multitude of interactions of 

different kinds. The reason of this relative simplicity is that an elementary process model and 

occurs at another scale of system organization or different (lower) level of it. Building higher-level 

structural models can be recognized as a separate kind of activity and expertise (epistemic scope) 
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from both running simulation code and elementary process model building; however, from the 

point of view of scientific practice, those practitioners who run simulations can also either build 

structural models or adjust existing ones to their needs as their different role. This allows to 

consider modelers and simulationists as ideal types in the weberian sense as will be described 

below. That is one of the reasons I shall discuss the higher-level structural model construction as 

a part of simulations. 

One possible way to support the necessary distinction is to consider the epistemic scope of a 

practitioner in the field. Counterintuitively, an increase in the level of model organization does not 

always entail a respective increase in complexity and scope of required knowledge but changes 

the scope of that knowledge; such an increase usually implies alterations of the scope. A process 

modeler, who is supposed to build his or her models from the very basic principles, needs to be 

familiar and able to apply all mathematical structures pertinent to models he or she builds down to 

the level of the most elementary processes and basic laws. On the contrary, simulationists who are 

not process modelers and thus build and apply higher-level models of composite objects often are 

not required to have an extensive acquaintance with the basic structures of models that the 

underlying elementary processes are based upon; their concern is that the models they use be well 

verified by the modelers who create them1. Elementary models are usually provided to them in the 

form of ready-to-use computational procedure units suitable for incorporating them into more 

complex composite models. Therefore, simulationists have to envision the structure and 

macroscopic designs of the complex system they intend to construct. Simulationists also have a 

general understanding how the relevant model parameters affect behavior of the modeled system 

and explore influence of those parameters.  

Thus, there exists an apparent controversy in the discussed above definitions of modeling and 

simulation leaving room for a more rigorous characterizations of both domains capable of 

answering the question whether simulation is construction of a model, computing its behavior or 

both (the entire computational study of a particular system). I argue that such controversy can 

nevertheless be resolved provided one considers differences in both aspects of the practices 

(construction of elementary models, construction of composite models, their explorations) and 

epistemic scopes of corresponding practitioners (knowledge how to construct elementary process 

model on the one hand and knowledge how to construct a real-world target model based on a set 

of pre-built embedded elementary models and numerical experimentation). This latter construction 

of a “real-world” higher-level target model can comprise carrying out many individual runs of a 

simulation code supplying it with different sets of input parameters. Based on the discussion above 

I propose to resolve the controversy by defining modeling as creation of computational 

mathematical models of elementary objects and processes and simulation as creation of composite 

computational models (those embedding elementary ones) by numerical experimentation. 

                                                           
1 Much alike the use of a TV set or a phone does not require the knowledge of its internal organization. 
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A study of magnet placement in experiments with the Tevatron accelerator can serve an example 

of the distinction. In order to describe and study propagation of protons in a complex magnetic 

fields of the accelerator (including second-order effects such as so-called fringe fields) one needs 

to ascribe magnetic fields to individual magnets, dipoles, quadruples etc. which altogether 

constitute the entire magnetic system of the accelerator and create its magnetic optics. The magnets 

are characterized by shapes, sizes, relative arrangements and altogether represent the organization 

of accelerator’s technical real-world in its highest-order scale (I do not discuss here the social 

dimension). Construction and study of the accelerator’s computational model can thus be regarded 

as simulation. In the course of such simulation (model creation and particle propagation numerical 

study) practitioners usually run computer models a multitude of times supplying it with various 

sets of parameters covering all the parameter space under scrutiny in order to meet an optimal 

regime. As I shall discuss in the next paragraphs, such simulation is grounded in strategies which 

possess many features of experimental practice rather than theoretical and such an ascription of 

experimental strategies to simulation rather than modeling constitutes an essential part of my 

further argument. However, construction of a composite accelerator model relies in turn on 

incorporated in it elementary models of magnetic field creation by charged particles that are 

governed by Maxwellian equations. Maxwellian low is the lowest, the most elementary level of 

the accelerator system organization and its computational implementation serves a building block 

of the higher-level simulation model of the entire accelerator. On the other hand, a representation 

and solution of Maxwellian equations are analytical and constitutes an inference pertinent to 

theoretical strategies. Therefore, development of computational procedures calculating solutions 

of equations of electrodynamics for an arbitrary set of initial conditions is deemed as modeling for 

the purpose of my argument. 

 

Applicability of the epistemology of experimentation 

 

Based on the distinction made above between simulation and modeling an ascription of 

experimental strategies (Franklin 2012) to simulation rather than modeling in the aforementioned 

sense can be made. Simulationists as higher-level model designers often use common sense 

considerations to verify that their results are consistent; however, more often they “benchmark” 

their results (or outputs) against experimental or observational “real-world” data as well as other 

simulation methods (computer codes). For example, a complex magnetic field produced by a 

complex accelerator structure can sometimes be also measured experimentally and compared to a 

simulation output. Nevertheless, matching their outputs to analytical solutions is not generally 

available to them due to both complexity and opacity (Humphreys, 2004) of the systems they 

simulate and difference in their epistemic scope with modelers. It is, however, possible for 

modelers, who create models of elementary processes, for instance, to obtain an analytical solution 

of a lower-level problem of electrodynamics for a simplest magnetic structure and then verify how 
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its computational representation is programmed; for such models either other computational 

models or analytical solutions usually exist to compare to.  

Another method frequently used to increase confidence that apparatus works properly is to vary 

one of the parameters of the system under scrutiny, for instance, adding ink to a sample and 

observing the predicted color change in a microscope. (Winsberg, 2010) discusses that 

simulationists also vary parameters of the model and check whether the system responds in 

accordance with their expectations. However, by virtue of the distinction between the two scales 

(modeling and simulation ones) one can see that such approach is possible only for simulationists 

working with high-level models of composite objects and processes, and in this respect it is similar 

to the conventional experimentation. For instance, a simulationist can vary distances between 

individual dipole and quadruple magnets in an accelerator arrangement to see the response, for 

example, whether the agreement with the measured field strength becomes better or worse (I shall 

refer to this example when discussing validation experiments). One more such example is varying 

density or material composition in a model sample irradiated by certain particles and matching 

simulated energy release to that measured in a calorimetric experiment. On the other hand, models 

of elementary processes (eventually leading to a heat production) are verified by modelers like 

theories in a way different than object ones, i.e. parameter variations cannot suffice to argue for 

their validity. Again, the latter strategy is conceivable for elementary (low-level) process modeling 

at the stage of its computer implementation in order to verify if the model is suitably coded. That 

stage, nevertheless, cannot be referred to as the simulation (high-level) model construction itself. 

Here, simulation is considered not only as “enhanced modelling” but also a domain of different 

scale and scope than the computer modeling. 

 

One more Franklin’s experimental epistemic strategy (Winsberg 2010, 44) finds similar to that 

used in simulations is measuring the same observable with a different kind of apparatus; in 

simulations that strategy correlates with simulating the same system using two or more different 

models. According to the distinction between simulation and modeling, such a strategy cannot be 

applied to modeling of elementary processes and elaborating such models as another instrumental 

theoretical model in order to be as valid as the previous one is supposed to reproduce the same set 

of empirical data as the first one and not necessarily its predictions outside the relevant data range. 

Rather than modeling, parameters of higher-level models in simulation are varied exactly in the 

way as it is done in experimentation, assuming different models to be different “apparatuses”. The 

same accelerator can be simulated by independent simulation codes, for example, MAD and 

Synergia, which exploit completely different high-level concepts and assumptions (and can be 

associated with two different apparatuses in experimentation). Nevertheless, all codes used in the 

field reveal identical understanding of the low-level Maxwellian electrodynamics, which belongs 

to the scope of elementary process modeling. 

 In the case of different models of the same “real-world” object, for instance, accelerator 

(or thunderstorm) different codes supplied with sets of input parameters (“lattices”) are different 

representations of the same “real-world” object; however, they refer to different model objects – 
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sets of structural models implemented based on different assumptions. The correspondence 

between these different models and the “real-world” one is not obvious as the simulations models 

can employ various abstractions and idealizations (Humphreys, 2004) and, more importantly, 

models of processes may contain many different fictitious assumptions (like the artificial viscosity 

model (Winsberg, 2010, 14)) or even be in a contradiction with experience and underlying physical 

laws (like the Arakawa operator (Lenhard, 2007)). From this point of view, an important way to 

increase confidence in simulation results is to investigate models based on as different as possible 

or at least independent model representations of the process under scrutiny, as being different 

approaches to description of the same reference process by an imitating one, neither of the models 

can be thought of as per se more relevant. That is why the experimental strategy of comparing 

simulations employing different higher-level model representations and different sets of 

incorporated low-level models of processes is imperative to increase reliability of simulation 

results. 

 

Modeler and simulationist as ideal types 

 

Despite due to substantial differences in epistemic scope and strategies as well as their relation to 

different organizational scales, simulation and modeling are evidently distinct they are often 

interwoven in the scientific practice. That implies that individual practitioners are often engaged 

in both kinds of activities. In order to represent this, the weberian theory of ideal types (Weber, 

1949, 49) can be involved. Let us assume simulationist and modeler to be two ideal types whose 

differences on epistemic and ontological grounds are extensively discussed throughout this paper. 

One more important ideal type is an IT expert, whose expertise comprises computer programming 

and competent operation. Virtually, a practitioner can belong solely to any of these ideal types, 

however, more often his or her function encompasses all the three domains in one way or another. 

 

Figure 1. Triangle of ideal types in the simulation practice (vertices of the triangle) and the 

expertise of an actual practitioner (the dot inside the triangle). 

 

IT expert 

Simulationist Process modeler 
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There is, therefore, one more significant similarity between experiments and simulations, 

which results from the distinction discussed above. Experimentation requires a detailed knowledge 

of the instrumental and technical theories on which the functioning of apparatus is based for the 

sake of interpretation of data in terms of high-level theories. However, being encoded in 

computational procedures elementary process models can serve examples of procedural 

knowledge; they do not represent knowledge why something is to be calculated in a particular way 

(or proofs and inferences pertinent to theory), but rather a recipe how one can calculate a quantity, 

i.e. an instruction how to obtain an answer to a particular question by means of either applying it 

computationally or supplying it as a set of input instructions to a computer code. 

 These procedural models are circulated between modelers and simulationists, and 

therefore, simulationists in order to investigate a model in simulations need, on the one hand, to 

choose models of processes, and construe out of them composite models (simulations) of a “real-

world” object whose properties they intend to explore. Thus, the epistemic scope of simulation of 

a thunderstorm does not necessary encompass interactions of individual molecules in a cloud, or 

knowledge required to simulate interactions of a particle within a chunk of material does not 

necessarily encompass that of interactions of individual particles with individual nuclei, provided 

simulationists possess necessary elementary models as pre-existing elaborated computational 

procedures. This explains why a simulationist can successfully practice higher-level simulations 

despite being “ignorant of aspects of how [lower-level procedure] was programmed or how it 

works” (Parke, 2014). 

Once we distinguish modelers of processes from simulationists who numerically 

experiment with those models as well as notice that the boundaries between these roles tend to 

blur in practice, one can try to draw a schematic representation of the roles involved in the 

production of simulation results (Figure 1). In simulation, having acquired all necessary models 

(codes, lattices, and input decks), an advanced IT user can start experimenting with them producing 

first new results. I define here an IT expert as one whose computer literacy is sufficient to engage 

with computer systems – codes, programming languages, and operating systems; that is usually 

comprehensible by an experienced practitioner from a technical professional field who for a 

particular reason demands to turn to simulations; that can be someone, for instance, without a 

background in meteorology simulating a thunderstorm, or a background in particle interactions 

attempting to simulate particle propagation in matter. 

However, there is a long way between applying ready sets of procedures and a competent 

experimenting with models – simulation – because one needs to understand what kind of process 

models exerts which effect on output in the course of simulations. Such an understanding is crucial 

for simulationists in order to be able to adequately interpret outputs. That is why on the way from 

an IT user to an experienced simulationist a practitioner needs to communicate with modelers. 

Modelers provide them models of elementary processes with access to a limited parameter space 

of variables not implying knowledge of models’ internal mathematical structures. They also can 

create and provide beginner simulationists example decks (sets of model parameters for process 

models used) and lattices (structural object models) representing solutions of simple problems, 
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which serves them as an aid in learning how to understand and use models. An actual practitioner 

(see Figure 1) can be represented by a simulationist A instructed by a modeler B and an IT expert 

C, all the three being roles. B provides A “low-level” process models (usually in the form of 

procedures) and instructions how to use them, and C provides A supplementary computer codes 

(scripts) and instructions how to employ them. 

Another path in Figure 1, that from an IT user to a process modeler usually lies through 

more specialized education and communication with modelers. Structure modeling skills require 

design thinking and geometric imagination as discussed above and can be acquired through 

practice as well as a more formal education. On the other hand, process modelers in order to 

develop their procedures are usually required certain IT skills. In the course of their everyday’s 

practice they often reconcile low-level process model construction with applying those models to 

construction of composite simulations of higher-level “real-world” systems. In order to accomplish 

that certain IT expertise is also demanded. Thus, an actual low-level process modeler is often also 

a “higher-level” simulationist whereas a simulationist even starting as a pure ideal type usually 

acquires certain interactional expertise (Collins, 2010) in understanding of low-level models 

through communication with process modelers. Nevertheless, even concurrent and alternate 

practicing “low-level” modeling and “higher-level” simulation roles does not entail their epistemic 

entanglement and therefore keeping in mind that distinction is essential for differentiation between 

verification and validation. 

 

Verification and its relation to modeling 

Verification (code verification) is usually understood as either code verification, i.e. search for and 

fixing mistakes in a computer code or solution verification (estimating solution errors and accuracy 

of the code input and output. AIAA standard (AIAA, 1998) defines verification as “the process of 

determining that a model implementation accurately represents the developer’s conceptual 

description of the model and the solution to the model”. What is actually verified according to that 

definition is that an already constructed model is correctly implemented in the code (accurately 

solved) as the code is a computational representation of such a model (its conceptual description). 

Due to the discussed above applicability of inference to low-level elementary process models, in 

most cases analytical checks of both the algorithm implementation and the solution are available.  

Requirement of inference turns out to be in agreement with a practitioner’s statement that 

“verification deals with mathematics” (Oberkampf, 2004). Even in the cases when elementary 

process theories are semi-phenomenological and are based on empirical data, those data are 

acquired and low-level process model adjustments are performed in separate and independent 

studies, outside the context and scope of a particular high-level simulation under scrutiny. 

Availability of such analytical checks and the inference strategy supports association of 

verification with modeling in the sense discussed in this work. Referring to an example discussed 

above, solutions of Maxwellian electrodynamics equations can step by step be matched with 

outputs of the computational procedure and thus its implementation verified. Therefore, I suggest 
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that the conventional verification is applicable to the “low-level” elementary process model 

building defined as modeling in this work. 

 

Validation and its connections to simulation 

 

Rather than verification, validation is defined by AIAA as “the process of determining the degree 

to which a model is an accurate representation of the real world from the perspective of the 

intended uses of the model.” (AIAA, 1998) Such a description implies that the reference is a “real-

world” object and analytical solution is not generally available because the system under scrutiny 

belongs to the higher level of system organization (accelerator or thunderstorm). One more 

important feature of validation is its relation to experimental data. For such system as accelerator, 

simulation outputs are matched with empirical results for the target system itself or its smaller 

copy (prototype). In the latter case experimenting with such a copy with the aim to obtain data for 

simulation code validation is called validation experiment. A definition of physics as an 

experimental science (i.e. heavily relying on empirical data) allows to understand practitioners’ 

statement that “validation deals with physics” (Oberkampf, 2004). Simulation defined in this work 

as numerical experimentation with composite models of “real-world” objects involving 

experimentation with parameters of the computational code and other strategies common with 

experimentation (as discussed above) has certain connections with validation.  

Referring to an example discussed in previous paragraphs, in order to simulate heat release in a 

composite object irradiated by various particles, one needs to validate the simulation code versus 

data obtained in measurements of heat release in simple objects made of pure materials using 

certain particles with well-defined energies and distributions (validation experiments). Low-level 

elementary process models in the form of pre-built procedures invoked by the higher-level 

simulation code are not tested at the simulation stage (including validation), belong to a different 

epistemic scope, and are not altered at that stage. Its relation to the higher-level objects, reliance 

on experimental data as well as applicability of experimental strategies allows us to associate 

simulation as defined in this work with validation. Such a correlation implies that higher-level 

simulation codes are validated rather than verified in the conventional sense. This does not exclude 

searches and fixes of algorithmic errors, however, unavailability of analytic solutions and 

inferences makes them insufficient in absence of experimental strategies. 

Role of calibration 

Calibration or “the process of adjusting numerical or physical modeling parameters in the 

computational model for the purpose of improving agreement with real-world data” (AIAA, 1998) 

is one of experimental strategies of exceptional importance in simulations requires particular 

attention given the definitions of simulation and modeling proposed in this work. In simulation as 

well as conventional experimentation Franklin’s description of calibration as is also applicable: “a 

legitimate and important factor, [which] may even be decisive, in determining the validity of an 
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experimental result” [Franklin, 1994]. From practitioners’ viewpoint, it is employed when 

“validation is not feasible or practical,” (Oberkampf, 2004) and purports adjusting computational 

model parameters so that its outputs matched empirical data for a well-understood (or standard) 

case (a validation experiment can serve an example). An agreement of model outputs with the 

standard case suggests that the use of that model in a novel context may also be conceivable. 

Bearing on the distinction in system organization levels and epistemic scopes discussed here, one 

has to clearly differentiate simulation (higher-level) model parameters, which are subject to 

alterations in the course of calibration, and elementary process (low-level) ones, which are not. 

Oversight of this rule in certain cases can entail entanglement discussed below. 

 

Entanglement arguments 

A number of arguments has been arisen that support the viewpoint that verification and validation 

are entangled. For instance, (Jebeile, 2012) argues that verification and validation are “two phases 

[that] cannot be performed distinctively” and thus are entangled. One of examples that can 

illuminate such an entanglement can be considered examined by (Lenhard, 2007) implementation 

of the “Arakawa operator” (this example was shortly discussed above). (Jebeile, 2012; Lenhard, 

2007) point out to a possibility of introducing distortions in the system behavior through so-called 

discretization schemes2, when differential equations of a mathematical model are converted to 

difference (algebraic) ones with the aim of a more convenient programming of a computer code. 

Given the distinction discussed in this work, a plausible approach to alleviate harm of the 

discretization and similar errors is to separate construction of such discretization schemes (low-

level epistemic scope of modeling) from application of such schemes for simulation of higher-

level models. I do not assert that it is always practically feasible, and concede that in certain 

practical cases such and entanglement can take place, however, I maintain that when scopes and 

strategies are separable and distinct, verification and validation can be differentiated. Distinction 

of scopes allows to prevent “model success due to piecemeal adjustment” (Winsberg, 2010), which 

causes the entanglement or the Duhem problem for verification and validation.  

Another part of the entanglement argument is that “computer simulations are not open to direct 

inspection” (J.Jebeile, 2012) or epistemic opacity (Humphreys, 2004) of simulation. I suggest that 

elementary process models, their computer implementation, and code verification are open to 

direct inspection by modelers (theorists); also in the majority of practically relevant cases methods 

exist to estimate numerical solution error at this stage. On the other hand, I concur that simulation 

is epistemically opaque, but is a numerical-experimental practice (different epistemic scope), and 

proceeds through Franklin’s epistemic strategies of experimentation as discussed above, and thus 

do not need to be open but rather properly calibrated comparably to an experimental apparatus. 

Therefore, epistemic opacity claim is not relevant for modeling as defined in this work and, 

                                                           
2 In accelerator beam dynamics simulations similar uncertainties are often associated with so-called 
“symplecticity”.  
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although true for simulation, does not bring about a verification and validation entanglement with 

necessity in general. 

Conclusion 

In this paper argue that verification and validation entanglement is not indispensable and although 

can arise in certain practically relevant cases is not true as a generalization. To justify that I assert 

that a distinction between modeling (defined here as construction of low-level mathematical 

computer models of elementary processes) and simulation (construction of higher-level models of 

composite objects and processes assisted by numerical experimenting with them) needs to be 

recognized. Those are different in epistemic scope, the former being theorizing involving inference 

and relying on analytical solutions, and the latter being numerical experimentation based on 

Franklin’s epistemic strategies. I contend that such a distinction whenever practically feasible can 

alleviate implications of the Duhem problem for verification and validation. I show that although 

epistemically distinct, in practice modeling and simulation constitute roles and ideal types and can 

be performed by the same practitioners and, therefore, if not acknowledged by them as roles can 

call for a “role entanglement”. I suggest that for this distinction to hold and to mitigate the 

verification and validation entanglement as well as the “piecemeal adjustment” of models 

undermining their reliability, low-level elementary process models undergone verification must 

not be altered afterwards in the course of higher-level validation simulations. 
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