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Abstract

This paper presents an alternative conceptual foundation for biological

evolution. First the causal and statistical perspectives on evolutionary fitness

are analyzed, finding them to implicitly depend on each other, and hence

cannot be individually fundamental. It is argued that this is an instance of

a relativistic perspective over evolutionary phenomena. New accounts of

fitness, the struggle for life, and Natural Selection are developed under this

interpretation. This biological relativism is unique in that it draws from Gen-

eral Relativity in physics, unlike previous theories that drew upon statistical

mechanics or Newtonian dynamics. A mathematical law of evolutionary

change, as well as new theoretical biological concepts to underpin it, are

likewise developed. The law and theory are then applied to give examples
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of how both cornerstones and edge cases can be understood using these new

methods. Using General Relativistic Biology provides fresh insight into evo-

lution, all while preserving the core, canonical scientific research program.

1 Introduction

This paper presents an alternative conceptual foundation for biological evolution.

I start by discussing the problem posed by the causal and statistical interpretations

of fitness. Though the the two camps appear diametrically opposed, it is argued

that both implicitly rely upon the other. To find middle ground the causal and

statistical interpretations of fitness are recast as relativistic perspectives of a single

fundamental fitness property. This new concept of relativistic fitness will then be

developed into a general theory of evolution by drawing on General Relativity

from physics.

At first blush this theory could be seen as following in the historical footsteps

of physics: just as Newtonian Gravity gave way to Einstein’s General Relativity,

so too will the Newtonian model of Natural Selection give way to a relativistic

model. While I invite this comparison, mere historical similarity will neither pro-

vide the foundation nor philosophical sophistication required for a theory meant

to be a serious alternative to Darwinian evolution.
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Therefore, after appropriating the methods and framework of physics, exam-

ples and implementations that follow from the new biological theory will be given

to demonstrate its conceptual mileage for philosophy of biology, theoretic biol-

ogy and, potentially, practical scientific application. Besides showing the range

and depth of the theory, it also serves to provide food for biological thought. This

utility in solving problems and stimulating new ways to think about evolution

lends plausiblity to describing biological evolution in these relativistic terms.

By tracing from conceptual foundations to practical results, the strategy is to

create a new unified picture, a paradigm that provides an understanding of evolu-

tion that preserves and expands upon the successes of Darwinism.

2 Evolution and Causality

The fundamental explanatory scheme of biological evolution uses the concept of

fitness to understand Natural Selection. Over the last decade or so there’s been a

debate centered over the causal status of biological fitness. Let us grant each of the

two main camps, the statisticalists, such as Matthen and Ariew (2002) and Walsh

et al. (2002), and the causalists, such as Stephen (2004) and Northcott (2010), their

own version of fitness: Statistical Fitness and Causal Fitness. What are these two
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fitnesses? According to (Walsh, 2010, 147-8), Causal “Fitness is (or measures)

the propensity of a trait type to change in relative frequency in a population. . .

Natural selection, it seems to follow, is a population-level causal process; it is

that process caused, and measured, by fitness distribution.” Statistical “fitness is

a mere statistical, noncausal property of trait type. . . Fitness distribution explains

but does not cause the changes in a population undergoing natural selection.”

Put more prosaically, Causal Fitness is competitive: a more fit organism will

outcompete a less fit one, on average, as a causal result of their traits. It is com-

pared Newtonian Gravity in that it is a fundamental force that causes change. Just

as the gravity of a mass has an effect on the motion of another mass, the fitness of

one population will have a biological effect on other populations.

Statistical fitness, on the other hand, describes the environmental situation:

fitness is statistically correlated with changes in the environment, but does not

cause them. This is compared to Statistical Mechanics in that it acts like a gas.

A gas, if otherwise not acted upon, will reach some average temperature, even if

one part was originally warmer. The distribution of heat is not due to some causal

process of the gas, but of the underlying motion of the particles. Similarly a

population organisms may distribute itself through an environment, but this is due

to the underlying physical properties of that system and not some causal property

4



of the population.

Without a reconciliation between these causally opposed viewpoints, we have

a fundamental disagreement over how we understand the basic scientific concepts

of evolutionary biology.

2.1 The Hard Problem of Evolution

Though each claims to be the ultimate measure, as Ramsey (2013) and Hitchcock

and Velasco (2014) recently note, this research into fitness has not yielded agree-

ment and the arguments often go past each other (Ramsey, 2013, 10). Moreover,

while each position solves certain questions within evolution, neither gets at the

underlying hard causal problem. Lets first take a look at the Causalist position:

The Causalists hold that Natural Selection causes evolutionary change, but

is independent of the underlying physics. The question is how does this change

occur, since Natural Selection is a non-physical force? It would have to be a

non-physical force causing some physical result. This is problematic because

even if we can’t currently describe the entire physical reality with physics, any

given small-scale phenomenon can be adequately explained with a physical cause.

So, without a connection between biological and physical causality, given no

environmental-level Cartesian pineal gland, there is no way for Natural Selec-
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tion to have noticeable physical consequences. Hence, since Natural Selection is

fundamental for the Causalists, there is no effective causal structure.

On the other hand, Statisticalists describe Natural Selection as shorthand for

the underlying causal physics. Since we can’t describe physics to sufficient com-

plexity, we use Natural Selection as a heuristic. However if Natural Selection

were just a heuristic, then it should only work under a limited scope and fail when

it is applied otherwise. Like any other heuristic or shorthand, it should work very

well but only in a few cases. On the contrary, the use of evolutionary concepts

is only growing and being extended across many different fields, such as com-

puter science, psychology and linguistics. Natural Selection has proven to be a

robust concept, much more than a mere convenience. Therefore the Statisticalist,

in treating Natural Selection as a heuristic, has oversimplified the phenomenon by

failing to capture its depth.

Given these difficulties neither side can claim fundamentality. The Causalists

fail without the physical interaction, and the Statisticalists fail without the biolog-

ical sophistication. Since the ontological gap between biology and physics is yet

too great, we are left with a dualistic understanding of Natural Selection.
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2.2 Bridging Statistical and Causal Fitness

What has been missed is that the distinction between Statistical Fitness and Causal

Fitness cannot be maintained universally. The debate, as described below, has

been over two sides of the same coin.

First note that the two views do not differ in their results, in spite of their

different explanatory schemes. Given some biological adaptation, both causal or

statistical explanations will conclude with the adaptation having a qualitatively

similar fitness. That is, while the measurements and explanations may be conven-

tions of their respective systems, the qualitative conclusion of high or low fitness

is common to both theories. A causally high fitness for some organisms will al-

ways correspond to a statistically high fitness for those organisms, and vice versa.

These results hint at some deeper connection, but this is not represented by either

viewpoint.

Second, let’s discuss causal and statistical descriptions of fitness. Take a causal

biological story: assume that a missletoe plant (or population of missletoe) has an

adaptation that makes it more competitively fit. The adaptation could be for any

trait, but let’s say the trait is that its berries taste better to birds that distribute

seeds.

These tastier berries are a biological adaptation and, by definition, are the re-
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sult of genetic mutations. But where did the mutation come from? Mutations are

caused by environmental factors, such as errors in copying genetic material—a

factor of the cellular environment—or by UV or nuclear radiation. Hence, al-

though this is a causal story, it begins with a non-biologically-causal statistical

anomaly. Insofar as all causal stories rely on mutations at their start, all causal

fitness is dependent upon the background environmental situation.

Now lets look at a statistical biological story. Again take the two different or-

ganisms (or populations) of missletoe, and one with tastier berries. A statisticalist

wants to say that the plant with tastier berries has a higher statistical fitness due to

the situation the plants lived in and not caused by the berries being tastier.

However, note that the statisticalist still has to identify the missletoe with

tastier berries, as compared to the missletoe without the tasty berries, in deter-

mining fitness. But how did the statisticalist identify the missletoe berries, or any

other part of the missletoe’s life or reproducductive cycle in order to determine

the fitness? Life and reproduction are causal interpretations of biology. They are

not statistical or physical terms. Physics does not inherently involve biological

reproduction or life. To just describe the situation, the greater biological ontology

must already be presupposed. Hence the statistical position depends on the causal

biological concepts and cannot exist independently of them.
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Therefore there is no causal theory of fitness without already having a statisti-

cal understanding and there is no statistical theory of fitness without a prior causal

understanding. The two theories are mutually dependent, as both are essential to

each other and our understanding of them. Specifically, being mutually dependent

means that fitness cannot be explained by one, the other, or a mere combination of

both causal and statistical theory in a mixed explanation (Ylikoski, 2013). Hence

even if we were prepared to accept a dualist position, it wouldn’t apply to this

situation.

2.3 The Equality of Statistical and Causal Fitness

Given that neither theory is fundamental or distinct, they cannot be used to explain

fitness. To explain fitness we would need a more fundamental, well understood

theory than the phenomenon in question, which we do not have. Still, fitness is

currently described in terms of the interconnected causal and statistical theories

and we don’t want to lose our understanding of fitness even if there are prob-

lems with those theories. So, instead of explaining fitness causally or statistically,

what can be done is to interpret fitness causally or interpret fitness statistically.

The suggestion is that the causal and statistical methods are the ways fitness is

phenomenologically interpreted, not explained, to then understand evolutionary
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phenomena.

Though there is no definition of fitness yet — that will come that later — we

can now state an equality law describing a basic property of fitness and how we

interpret it:

Law of the Equality of Statistical and Causal Fitness: there is only one kind of

fitness and it is our perspective that changes.

This means that we have the freedom to choose between the causal or statistical

method of analysis as the need arises.

One important aspect of the law is that it makes clear that we are not inde-

pendent, objective observers when it comes to determining fitness. It is our phe-

nomenological perspective that determines which analysis we favor and not some-

thing more fundamental about either position. By placing us in-between the sta-

tisticalist and causalist positions, it allows us, as an active observer, to bridge the

gap between the causal-biological and statistical-physical explanatory schemes.

Secondly, the lack of an absolute perspective demonstrates an important con-

sequence about our epistemic relationship to biological fitness. Though we are

not independent observers of fitness, we are all non-independent observers in the

same way. Since everyone draws on both accounts, even if only implicitly, we all

have the same epistemic foundation for our understanding of fitness.
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Lastly note that the equality law explains the qualitative correspondence be-

tween the results of the different fitness theories: each is describing the same

property, but from a different phenomenological perspective.

2.4 Struggle and Fitness

To further develop this account of fitness, some historical insight is helpful. (Bowler,

1976, 632) identified two different types of biological struggle that existed in Dar-

win’s writings, calling them struggle (a) and (b):

(a) “This is the real core of the idea of a struggle for existence; for natural selec-

tion to work at all, those individuals with favorable variations must compete

with and supplant those which are not so favored.”

(b) “. . . this emerges as the struggle against challenges imposed by the changing

nature and limited supply of the other species which serve as food.”

As you can see, Bowler’s (a) and (b), and indeed Darwin, foreshadow the contem-

porary distinction between causal and statistical theories. Note, though, Darwin’s

theories were developed in terms of struggle, not fitness.

This suggests a mapping: let us define a struggle corresponding to each fit-

ness. We can view the struggles for life as either an environmental struggle or
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causal struggle. Since these struggles are based on the fitnesses, the difference

between environmental and causal struggle is also a matter of perspective. Bio-

logical fitness determines how much, how difficult, that struggle is for an organism

or population: the fitness is a measure of an organism’s or population’s resistance

to struggles.

3 Formalizing Evolution

3.1 Restricted Biological Relativity

With this relation between the struggle for life and fitness we will have the be-

ginning of a new theory of evolutionary biology. To build this theory I’ll start by

postulating some scientific principles which will lead to a formal foundation for

the evolutionary theory. The theory will be universal in the sense that the same

concepts of struggle and fitness apply without variation in different places and

times, and across different species and environments.

It is not obvious that this is likely or possible. Some species or environments

may be better for studying evolutionary struggle than other species or environ-

ments. This is to claim that different evolutionary standards could apply to certain

species or in different environments. Certain biological formalisms would apply
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at one time, and then not at others, making a universality impossible.

For example, note that many, if not all, current theories of evolution include

drift (Plutynski, 2007; Rosenberg and Bouchard, 2010). Evolutionary drift is often

defined in terms of changes, e.g. changes in gene frequency, in a population not

due to Natural Selection. Hence the inclusion of this kind of drift in evolutionary

theory indicates that the struggle for life, with respect to Natural Selection, cannot

apply universally.

Given this consideration, we can provisionally specify environments in which

organisms and populations follow a prescribed struggle for life. Let’s start with

a controlled environment, one in which we determine who struggles and who

doesn’t. This is selective breeding and is an instance of human selection. As Dar-

win noted (Darwin, 1964, 61) there is nothing unique to human selection in that

the exact same controlled conditions could have arisen without us in nature. Hence

we can treat these cases, ones that are naturally occurring and act as if they were

a controlled environment, in the same way as human controlled environments.

Being under control means acting regularly, that is, according to some fixed,

formalizable, scheme. Either the situation is stable, or changing in a regular way.

Hence, for any such environment, that environment must too be acting relative to

some formalizable rules. We can therefore state this as a principle:
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Restricted Principle of Biological Relativity: the same laws of evolution will

apply across ecosystems that are uniformly changing.

The reason that this principle is restricted is that it is limited to ecosystems that

are stable or changing in a regular way. Tutt’s classic example of the peppered

moths during the British Industrial Revolution illustrates this well: the environ-

ment was stable except for the single changing factor of sort that directly affected

the light and dark colored moths’ camouflage (Tutt, 1896, 307). Over 50 years the

light colored moths became much less prevalent as compared to the dark moths,

since they were now less camouflaged in the darkened environment.

If we consider an ecosystem that is changing in a non-regular way, such as

with the introduction of a new competitor, then we will not be able to formalize

the system under the Restricted Principle. We will have to wait and see the com-

petitor’s effect, if any, and observer if the ecosystem has reacted in a regular way.

If it has, then this new ecosystem would fall under the Restricted Principle. Hence

the transition from one stable environment to another is outside the scope of the

Restricted Principle of Biological Relativity.
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3.2 The General Principle of Biological Relativity

We can extend the Restricted Principle of Relativity to its limit by imagining a

combination of all the stable and regularly changing environments together. Any

formalism that applied across this group would be a fundamental evolutionary

theory relative to the uniformly changing environments. If there was a way to

include irregularly changing environments along with the regularly changing ones,

then we would have the basis for a general theory of biology.

The Law of the Equality of Statistical and Causal Fitness allows us to do just

this.

Recall that the Equality Law implies that statistical struggle and competi-

tive struggle yield the same effect on fitness. This means we may account for

changes in the environment as if those changes were due to a new competitor, or,

conversely, we may account for a new competitor as a statistical environmental

change. So no matter what changes occur, there is a formalization scheme. Hence

we can explain the transition from a regularly changing environment to an ap-

parent irregularly changing one, and back, by switching interpretive schemes as

needed.

Considering the famous moths again, we can imagine a time before the in-

dustrial revolution. At that point, the soot on the trees would have been a new
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environmental factor that caused an irregular statistical change in what was the

prior, uniform environment. However, if we imagine how the moths would have

faired if the birds merely preferred to eat light colored moths from the start, and

were good at catching them regardless of the soot, then we would arrive at a simi-

lar situation. We can treat these two cases, the one with the environmental change

and the one where the birds just are better at catching light moths, as equivalent

under the Equality Law. Therefore, since the birds’ uniform preference is formal-

izable under the restricted principle, so too must the changing of pre-industrial to

industrial environment be formalizable as well.

Therefore taking the Law of the Equality of Statistical and Causal Fitness to-

gether with the Restricted Principle of Biological Relativity allow us to extend our

formalism to all environments. This gives us the General Principle of Biological

Relativity:

General Principle of Biological Relativity: All ecologies are essentially equiv-

alent for the formulation of the general laws of biology.

Given new conceptions of fitness, struggle and Natural Selection that satisfy the

Equality of Statistical and Causal Fitness and the General Principle of Biological

Relativity, we will have a basis for a general evolutionary theory.

To begin, notice that the above relationship between fitness and struggle is
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abstract in that fitness is defined as a resistance to struggle. Hence there is no

reliance on any particular biological phenomena, such as reproduction or death.

A theory that makes use of such a relation between fitness and struggle will be

independent of any contingent evolutionary history. The next step is to develop a

theoretic implementation that satisfies these conditions.

4 Relativistic Biology

The reader will likely have noticed my regular use of “relativity.” I have done this

to highlight the similarity between the biological evolutionary theory presented

here and physical relativity theory.

Recall that Einstein developed General Relativity by unifying the two different

concepts of mass — inertial and gravitational — that existed at the time. Though

inertial mass always equalled the gravitational mass, and vice versa, there was no

formal physical relation between the two. Both kinds of mass were needed, but at

different times for different experiments. Einstein’s “law of the equality of inertial

and gravitational mass,” (Einstein, 1961, 77) declared that there was only one kind

of mass, though they were distinguished by our perspective on the situation. This

perspective based relativity is described in the famous ‘Space Elevator’ thought
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experiment. The above, “Law of the Equality of Statistical and Causal Fitness,”

was modeled after Einstein’s Equality Law.

Also note the above General Principle of Biological Relativity,

all ecologies are essentially equivalent for the formulation of the gen-

eral laws of biology

and Einstein’s (Einstein, 1961, 108):

The following statement corresponds to the fundamental idea of the

general principle of relativity: “All Gaussian co-ordinate systems are

essentially equivalent for the formulation of the general laws of na-

ture.”

Einstein argued for his General Principle of Relativity by combining his equality

law with the accepted notion of classical relativity, which he represented with

his Restricted Principle of Relativity (Einstein, 1961, 16). Likewise, the General

Principle of Biological Relativity was developed by combining the equality law

with an accepted notion, represented by the Restricted Principle of Biological

Relativity.

I wish to use this comparison to motivate a new relation between fitness, strug-

gle and Natural Selection as similar to physical mass, acceleration and force. The
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new relationship will enable the theory below to have immediate theoretical and

practical results.

4.1 Natural Selection = fitness × struggle

The relationship between mass, acceleration and force can be described: F =

ma. Acceleration is the change in velocity over time. Mass is the resistance to

acceleration. Force is what causes a mass to accelerate.

Following this example we then define fitness as resistance to struggle, and

Natural Selection as: Natural Selection = fitness × struggle.1 Now the task

is to biologically interpret this equation such that it satisfies the above General

Principle and Equality Law. With these new definitions we will be able to apply

the relativistic concepts to evolutionary phenomena and recover scientific results,

which is the subject of Section 5 below.

4.2 Struggle, Routine and Acceleration

According to the physical equation, F = ma, and the biological one, N = fs,

there should be a correspondence between struggle and acceleration. Note that

1Though this is Newton’s 2nd Law, it can be used under relativity by substituting relativistic

mass for inertial mass in F = ma.
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acceleration is the change in the rate of motion, the velocity. Struggle is then de-

fined as the change in the rate of phenotypic change. As this definition is abstract,

an interpretation follows.

A sense of the word “life” from C.S. Lewis helps explain what is meant here.

This sense of life consists of the Routine, the general ‘way of’ life, of the indi-

vidual (Lewis, 1960, 274). In terms of people, Lewis gives the examples from

Aristotle of the “nomadic, agricultural, the fisher’s, or the huntsman’s” life, as

each consists of different routines.

If we apply this sense of routine with respect to evolution, basic difficulties

have to do with the everyday tasks that organisms face. Generally this could

include the way that individuals gather food, find shelter, avoid predators, etc. For

the missletoe this includes taking water and nutrients from the host tree, doing

photosynthesis and producing berries. Notice that this sort of difficulty is not

strictly Tennyson’s “nature red in tooth and claw.” It works just as well being

selfish (Dawkins, 2006) as being genial (Roughgarden, 2009). Also important is

that reproducing with a degree of variation ought to be included as a routine of a

population.

We can also view the routine, everyday tasks as the difficulties that the individ-

ual has already evolved to resist. The missletoe depends upon water and nutrients,
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and has satisfied this dependency by evolving a way to acquire these requirements

through parasitism on trees.

It is not this sense of daily difficulty, the routine of the individual, in the equa-

tion N = fs. The struggle, s, indicates a change in this routine of an individual’s

or population’s daily life. Struggle is something over and above the everyday

difficulties in the routines of the individual or population. When a new Natural

Selective force, e.g. a new competitor, is introduced, this changes the routines

of a population. This change in everyday life will force the population to either

adapt or die off. In this way we have a evolutionary biological interpretation of

the abstract mathematical variable s in N = fs.

4.3 Fitness, Resistance and Mass

Mass can be understood as how much resistance an object has to acceleration,

change in the rate of motion. Analogously, fitness is the resistance to change

in the rate of phenotypic change. Perhaps a clearer way of interpreting this is:

Fitness can be understood as how much resistance a population or individual has

to struggles. The higher a population’s fitness, the less it changes its routine;

fewer things cause it to struggle, be them perceived as competitors or statistical

evironmental changes. Another way to interpret this is that fitness is resistance
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to change in the rate of adaptation, though ‘rate of phenotypic change’ is the

fundamental concept.

To further explain the meaning of routine and fitness, it can be compared to

the Red Queen Hypothesis (Valen, 1973). The Red Queen Hypothesis states that

populations must be continually evolving in order to just keep their place in their

ecosystem. If they were to stop, they would quickly fall behind populations that

did keep evolving. Routine can be considered all the things the population does

just to keep up with its compatriots and competitors in that ecosystem. The popu-

lation, say of moths, must continually find food and shelter, avoid predators, resist

disease, and produce offspring with heredity and variation. The population’s fit-

ness would be a measure of how consistently it maintains these routines and not

fall behind the others in the system.

This description of fitness can also be described as inertial. A population’s

fitness determines how well it is able to do whatever it was doing, unless acted

upon by some new force, some new struggle that changes its routines.

Gillespie (1977) provides an interesting case because it demonstrates the non-

interpreted definition of fitness, fitness as a resistance. He showed that fitness

decreases as variance in the offspring number increases. We can view a consistent

offspring rate as one method of maintaining the rate of phenotypic change, if all
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else is equal. So, under stable conditions, it follows that increasing the variance of

the offspring rate will cause the phenotypic rate of change to fluctuate correspond-

ingly. Therefore Gillespie provided an instance of relativistic fitness: he showed,

by way of variance in offspring number, that if a population can resist a change in

the phenotypic rate of change, the population resists a drop in fitness.

Note that fitness, like mass, can apply to individuals, a population of similar

individuals or even an ensemble of dissimilar individuals. Biological relativity

makes no claim about the ontological priority of individuals or groups. Depending

upon the discussion, groups, individuals or both may be relevant. For example,

in discussing altruism one might want to talk about the fitness of a similar group,

whereas in discussing clonal organisms the individual could take priority, and

when discussing symbiotic relations groups of dissimilar organisms could take

priority. This inclusiveness is a benefit considering the diversity of life (Bouchard,

2011).

4.4 Natural Selection, Environment and Gravity

The force of Natural Selection is like the force of gravity according to Einstein’s

General Relativity. Under General Relativity gravitational force is due to the

changing shape of space-time: mass experiences acceleration due to the shape
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of space-time at that location and mass also changes space-time at its location.

Likewise, a population experiences different struggles due to a changing environ-

ment and competition at that location, and, in turn, the population changes the

environment and competition as well.

The change that a mass creates in space-time is called its gravitational field.

Following this terminology, I’ll refer to the overall challenges that a population or

individual faces, or creates, at some point in an environment2 as the Natural Se-

lection field. This field can therefore be considered aetheric, since it is pervasive,

has properties that affect populations and is the fundamental underlying structure

of Natural Selection.

An individual or population creates its own Natural Selection field—changing

the local environment and competition—by living its life, i.e. performing the rou-

tines that make up its daily existence. Conversely an individual or population has

to struggle against, exploit or work with the routines of other individuals and pop-

ulations, as well as environmental routines and patterns. Populations both struggle

against and work with the Natural Selection field that is created by them and their

environment and, in turn, change the Natural Selection field. It is equal and oppo-

2Just as in Special Relativity, where not space, but space-time, is the fundamental concept,

eventually ‘environment’ will have to be similarly reconceived.
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site. In this way Natural Selection mutually affects populations and is changed by

those populations in its environment. This account follows Abrams (2007, 2009)

in that the fitness of the population cannot be separated from the local environ-

ment, and (Glennan, 2005, 338) in that “without the activities and interactions of

these individual organisms, there are no changes”.

The change that the Natural Selection field creates can be thought of as a

pseudo-force, like relativistic gravity, since it is based upon the irreducible environmental-

competitive field, and hence this field provides the causal basis for evolutionary

change.

Note that the theory outlined here does not specify any particular biological

model or system. It treats all ecologies as equivalent for the study of biological

evolution, as is required by the General Principle above in Section 3.2. It also uses

a concept of fitness compatible with the Equality Law in Section 2.3. Hence this

theory of General Relativistic Biology can act as a law of evolutionary biology.

Insofar as F = ma does not specify a model of the solar system, N = fs

similarly has to be developed beyond these abstract grounds to be of practical use.

The rest of this essay, therefore, will be dedicated to showing applications of the

relativistic approach.
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5 Applying Relativistic Biology

With the new definition of struggle, fitness and Natural Selection, we have an evo-

lutionary formalism given by the equation N = fs. Gone are reference to survival

rates or reproduction, and hence cornerstones of evolution, such as the Survival

of the Fittest, cannot remain in their traditional forms under the relativistic view.

However, like relativity in physics, nearly all classical results will obtain in rela-

tivistic biology under normal circumstances, plus traditionally difficult edge cases

become much more manageable under the new concepts.

To start off thinking in terms of relativistic biology, consider what Darwin re-

ferred to as ‘living fossils.’ Living fossils, such as the coelacanth or the ginkgo

plant, have basically remained unchanged for tens, if not hundreds of millions of

years. Their only phenotypic change amounts to trivial rearrangement of their ge-

netics and they have weathered countless competitors and environments. These

different competitors and environments — including the genetic environment caus-

ing drift — have not caused a change in the routines of the coelacanth or ginkgo

plant; they have not caused them to struggle and hence the coelacanth and ginkgo

have high fitness. In this way persistence, similar to Bouchard (2008, 2011), is a

reflection of high fitness.

A different case is that of humans. The recent global success of humans has
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shown we can survive in, and resist the difficulties presented by, many different

environments and therefore have a high fitness. Humans are a different case than

the living fossils because we demonstrate that persistence is not a critical factor;

our species hasn’t existed in its modern form for more than a few million years, at

most.Whereas we infer the coelacanth has somehow withstood the environmental

changes that have happened over the course of history, we withstand many modern

environments and competitors.

Now lets return to Tutt’s famous moths. The Dark Moths did not struggle

during the environmental change of the British Industrial Revolution whereas the

Light Moths did. Appealing to N = fs allows us to make a relative judgement of

the fitness of the two populations. Since the environmental change was the same,

N is constant, say 1 for the sake of the argument. The Light Moths struggled more

than the Dark Moths did, so in that environment sLight is Big and sDark is Small.

Therefore the fitness of the Light Moths is 1/Big, which is lower than the fitness

of the Dark Moths, 1/Small.

If we imagine that a subpopulation of the Light Moths were able to adapt fast

enough to avoid annihilation, perhaps turning into Gray Moths, then these Gray

Moths would have a fitness in between the Light and Dark. The Dark moths were

able to resist the struggles, meaning they had the highest fitness. The unadapting
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Light Moths were unable to resist the struggles, eventually leading to their dying

off. The adapting Light Moths, the future Gray Moths, were able to resist more

of the struggles by rapidly changing their phenotype. This rapid adaptation—

changing the rate of adaptation—allowed the Gray Moths to resist the struggle the

environmental change posed better than the Light Moths, but not shake it off as

easily of the Dark Moths, meaning that the fitness of the Gray Moths is in between

that of the Light and Dark.

Another way to measure Natural Selection, and fitness derivatively, is to see

how much force is needed to oppose it. To formalize this, we can take inspiration

from Hooke’s Law in physics. Hooke’s law, F = −kx, states we can measure

a force (F ) acting on a mass by connecting the mass to a spring and suspending

in the direction opposing the force (e.g. a supermarket basket scale). By knowing

how rigid the spring is (k) and measuring how far the spring has stretched (x)

when the connected mass is lifted, we can determine the force acting on the mass:

the farther the spring has stretched, the greater the force acting on the object, and

the greater the mass of the object.

Similarly we can estimate the Natural Selection on a population by opposing

this force: if a population is going extinct, the amount of work we have to do

to save it should be equal to the force against it. If a population is doing very
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well for itself, say some virus, then the amount of effort it takes for us to contain

the outbreak indicates the Natural Selection we are acting against. This gives us,

N = −kbxb such that kb is the sophistication of our method used to counteract

Natural Selection and xb is how widespread we’ve had to employ that method to

complete the task.

Consider tuberculosis, which is caused by a bacterial population that we have

had some success containing. We’ve dedicated many political and biomedical re-

sources to its containment, e.g. developing tests for TB and regulating testing for

populations like university students in the United States. This means kb is very

high since these are highly sophisticated coordinated efforts. We have also been

doing this for a long time and across many universities, meaning xb is also large.

This implies that the force of Natural Selection was high and, derivatively, tuber-

culosis bacterium has a high fitness. If we now consider that some strains have

begun to resist our attempts to contain them, as witnessed by the drug resistant

forms of the disease, we can conclude that these strains are even fitter than the

previous ones because we will have to expend even more resources to resist them.
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5.1 Cornerstones

5.1.1 The Survival of the Fittest

The fittest, according to Relativistic Biology, are the most resistant to struggle, or,

resistant to changes in the rate of phenotypic change. Hence there is no specific

reliance on reproduction rates.

However, this does not mean the end of the Survival of the Fittest. Consider

two populations of very similar organisms with the only difference being one pop-

ulation has many individuals and the other has very few. The small population

may even be a tiny subset of the large population. Now consider the large popula-

tion’s resistance to struggle: for any significant change in its routines to occur, it

must happen across many individuals. Since the population is large, this change

would take a long time and consistent environmental or competitive challenge—a

large force—to affect the population.

Now consider the small population. Since that population is small, any change

in a few of the individuals will be enough to change that overall population. Hence

it will not take much time nor significant environmental or competitive struggle to

change this population.

This example shows that more numerous populations are more inherently re-
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sistant to struggles than a less numerous population of similar phenotype, by way

of the law of large numbers. If everything else is equal, e.g. enough living space

and food, it follows that increasing the population increases resistance to strug-

gle. Likewise, decreasing the population decreases resistance to struggle. Hence

the Survival of the Fittest survives under relativity insofar as those who do not

survive, those who decrease in number, will decrease in fitness, the resistance to

struggle.

Classical survival and reproductive rate based fitness theories are then vindi-

cated, in part, since increases in population can indicate increases in resistance to

change in the rate of phenotypic change. However, reproduction is now no longer

the fundamental metric of fitness but one method of increasing it.

5.1.2 Drift

As mentioned above, many theories of evolution include drift (Plutynski, 2007;

Beatty, 1984; Mills and Beatty, 1979; Millstein, 2002; Millstein et al., 2009;

Walsh, 2007, 2010; Matthen, 2010). Darwin said in the Origin (Darwin, 1964,

81), “Variations neither useful nor injurious would not be affected by natural se-

lection, and would be left a fluctuating element. . . ” Generally drift can then be

thought of as alternative way that populations can change separate from Natural
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Selection. However, drift is part of fitness in relativistic biology and hence not

separate from Natural Selection.

To understand this, recall the fundamental uninterpreted definition of fitness:

Fitness is a property that indicates resistance to change in the rate of phenotypic

change. Hence it is presupposed in the definition of fitness that there is some

rate of phenotypic change; natural selection is only recognized with changes of

resistance to changes in this rate.

Having a non-zero rate of change should therefore be seen as an adaptive trait

of a population. Except for living fossils, which have an extremely high fitness

to begin with, a population that has no new adaptations will soon lose out to one

that does adapt, and hence a certain degree of variability is necessary in order to

generate potential new adaptations. The degree of variability is a critical factor

to a population: too little variability and the population will become susceptible

to faster adapting competition, and too much variability will yield an unstable,

splintered population. Hence sources of variability, such as drift, play an essential

role in a population’s resistance to struggle, and are not some alternative to Natural

Selection.

From the relativistic perspective all changes can be seen as the result of Nat-

ural Selection, given the right frame of reference. Contrary to Millstein (2009),
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being able to select the ‘relevant level’ at will (see Section 5.2.3 below) does dis-

solve the distinction between selection and drift, but is not problematic. Imagine

there is some change in a human population that could be considered an exam-

ple of drift, such as a rise in blue eye color. While eye color has no effect on

the rate of phenotypic change of humans, if we look at the gene level, the situa-

tion is different. According to gene-level accounts (Dawkins, 2006; Sterelny and

Kitcher, 1988; Gardner and Welch, 2011), the gene for blue eyes has increased

in replication and hence has an increased fitness. Likewise, the relativistic ac-

count would view the increased number of genes for blue eyes as an increase in

their (the population of genes for blue eyes) resistance to change, as described in

Section 5.1.1 above. Hence what looks like an unimportant change at the human

level is relevant at the gene level. This result is general to the relativistic position:

all biological change is due to Natural Selection on some level or another. As

the example shows, though, explaining Natural Selection is a matter of carefully

understanding which population is relevant to the change.

Therefore, although there is no longer drift as traditionally conceived, it re-

mains as a fundamental source of variability critical to fitness.3

3There will also be a limit on the precision of the measurement and difficulties in making

observations—both an uncertainty principle and ‘special’ relativistic concerns—which also need

to be taken into account. These are cases that I hope to return to in the future.
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5.2 Non-Darwinian Inheritance

There has been a growing literature of non-Darwinian evolutionary factors that

some consider a challenge to contemporary evolutionary theory (Jablonka and

Lamb, 2005; Pigliucci et al., 2010; Laland et al., 2013, 2014). Though discussing

Darwinian edge-case phenomena in detail is well beyond the scope here, General

Relativistic Biology has theoretic resources to straight-forwardly understand and

explain non-(straight-forwardly)-Darwinian biological inheritance. Far from pre-

senting difficulties, these Darwinian edge cases provide paradigmatic examples of

the benefits of the relativistic approach.

5.2.1 Lamarckism and Epigenetics

A new issue of biological inheritance has been recognized by the recent study of

epigenetics. Epigenetics has shown that certain genetic changes, but not to the

DNA sequence, acquired during the life of an individual can be passed on to off-

spring. This is independent of traditional Darwinian inheritance which treats the

hereditary material as separate from the environmental situation of an individual

and does not address how an organism lived, other than its reproductive rates. In-

heritance due to epigenetic changes have been refered to as a new Lamarckism

(Jablonka and Lamb, 1995, 2005) harkening back to Lamarck’s pre-Darwinian
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theory of biological change.

Explaining the fitness benefit of epigenetic change under relativity is straight-

forward. Epigenetics allow for one phenotype to have different states by regulat-

ing gene activity. If one state is better in a certain environment — it allows for

greater resistance to struggle — and this is passed along to offspring, then the

benefit is passed along. Later, if the situation changes, the organisms are able to

morph into a new state. Since both states were already part of the one phenotype,

all struggles were resisted by that phenotype.

If we compare this situation to a population that does not use epigenetics,

one or both of the different environments may have caused that population to

struggle. This population would have either 1) increased the rate of adaptation

in order to survive at its current level, that is, changed the rate of phenotypic

change, decreasing fitness, or 2) died off, at least in part, again decreasing fitness

as described in Section 5.1.1 above.

Hence the greater phenotypic plasticity epigenetics provides means fewer new

adaptations are needed to survive different struggles, and therefore epigentics in-

creases a population’s fitness.
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5.2.2 Niche Construction

Organisms change their environment in ways beneficial to how they live, and these

environmental changes are left to their offspring, who, in turn, benefit from these

changes. This creates an environmental-population feedback loop called Niche

construction (Laland et al., 2013). The niche supports the population’s way of

life, and the population works to maintain the niche.

Niche construction is considered non-Darwinian because, like epigenetics, the

changes are made during the life of the individual and are then passed on to the

offspring. Moreover, the niche is a relationship between the population and its

environment and, hence, is a different kind of thing than the hereditary material

passed on in Darwinian evolution.

As noted above in Section 4.4, the environment and the organisms mutually

interact, and in Section 4.2, the routines of life, which include modifying the local

environment, are a fundamental part of the relativistic theory. Hence identifying

and understanding Niche construction follows from the definitions of the relativis-

tic theory.
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5.2.3 Units and Levels of Selection

An artifact of understanding evolution in terms of reproductive rates is that it is

necessary to determine the unit that is reproducing and what counts as reproduc-

tion (Lloyd, 2012; Okasha, 2006). Without answers to what the fundamental unit

is and what counts as reproduction, such as genes (Sterelny and Kitcher, 1988;

Dawkins, 2006), individual organisms (Bouchard and Rosenberg, 2004) or pop-

ulations of organisms (Millstein, 2006; Godfrey-Smith, 2009), identifying cases

of evolution as distinct from other kinds of change is difficult. As argued by

(Bouchard, 2011, 113) and (Gilbert et al., 2012, 336), identifying specific units

is not just difficult, but impossible, and hence a significant departure from the

current approach is called for.

For instance, the Quaking Aspen (Grant, 1993; Bouchard, 2011) can produce

what appears to be a forest, but instead is really a single huge organism connected

underground by runners. Though it can reproduce sexually, often one initial as-

pen sends out these runners, creating new “trees” and taking up ever more space.

While we initially might perceive many organisms, they are all one interconnected

plant that can live many thousands of years. Since this one plant expands but does

not reproduce in a traditional fashion, determining its Darwinian fitness is diffi-

cult.
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We could, with Bouchard (2008, 2011), hold a differential persistence view of

fitness, e.g. “compare. . . relative fitness in terms of. . . capacity to still be there in x

number of years” (Bouchard, 2008, 569). Though long term persistence provides

benefits in many cases that don’t fit easily within prior theories, it piggy-backs on

the causal account of evolution like the Statisticalists mentioned above. For in-

stance, consider the differential persistence, and hence fitness, of Mount Everest.

Since the mountain has persisted for a long time and will likely continue to persist,

it must have high fitness. We can make this claim about the mountain’s fitness be-

cause differential persistence makes no reference to any biological property, be it

the struggle for life, reproduction, or some other biological phenomenon. This im-

plies that the differential persistence view is dependent upon other, prior theories

of evolution, similar to the statistical interpretation above: In order to apply the

differential persistence view to biological evolution, we must already have known

where biological evolution occurs. Therefore, even though differential persistence

does often track the results of evolutionary fitness, in widening evolutionary the-

ory to be more inclusive towards the variety of life, differential persistence widens

it too far.

The issue of finding specific units or levels is side-stepped by relativity since

it does not prioritize reproduction. As noted above in Section 4.3, relativistic
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biology is concerned with any individual or group that resists changes to its phe-

notypic rate of change. Moreover, with respect to the fundamental unit or popula-

tion it acts upon, relativistic biology is fundamentally undetermined. The General

Principle of Biological Relativity states that all ecologies are essentially equivalent

for the formulation of the general laws of biology, which means no environment

or level has priority over another.

Returning to the Quaking Aspen, we can appeal to niche construction as well

as a modified argument for reproduction. First, by taking up lots of space and

being able to transport nutrients via the underground runners, it can more quickly

inhabit space than competition, making a niche efficiently (Bouchard, 2011, 112).

Secondly, expanding in space can be seen analogously to expanding in population

along the same lines as discussed in Section 5.1.1 above: having a larger spa-

cial footprint makes the Aspen more resistant to any localized problem, just like

having more individuals.

Noble (2012) argues that level relativity has already been implemented by sys-

tems biologists and integrative physiologists. By first showing both upward and

downward causation within heart cell models, he then generalizes to a theory of

multi-level feedback. He states, “a priori, there is no priveleged level of causation

in biological systems,” (Noble, 2012, 6) that is, biological causation applies at all
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levels.

Hence identifying a base unit and its associated ecology is no longer a funda-

mental requirement of evolutionary theory; according to the General Principle, it

cannot be. Natural Selection may act upon any and all groups comprised of any

kind of unit. We may investigate the most relevant unit or level in a particular case

of Natural Selection—be it a gene or group of dissimilar individuals—but this is

an empirical biological question, not a theoretical problem.

6 Conclusion

The focus of this paper was to provide the philosophical basis for, and show the

biological usefulness of, evolutionary relativity, such that the initial philosophical

problems motivate the biological theory, and the useful applications of the theory

lend plausibility to the underlying concepts. Given the success of this scheme,

General Relativistic Biology presents a viable alternative to Darwinian Evolution

that yields new insights and theoretic tools, while preserving the core, canonical

scientific research program.
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